linux/include/linux/sched/signal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_SIGNAL_H
   3#define _LINUX_SCHED_SIGNAL_H
   4
   5#include <linux/rculist.h>
   6#include <linux/signal.h>
   7#include <linux/sched.h>
   8#include <linux/sched/jobctl.h>
   9#include <linux/sched/task.h>
  10#include <linux/cred.h>
  11#include <linux/refcount.h>
  12#include <linux/posix-timers.h>
  13
  14/*
  15 * Types defining task->signal and task->sighand and APIs using them:
  16 */
  17
  18struct sighand_struct {
  19        spinlock_t              siglock;
  20        refcount_t              count;
  21        wait_queue_head_t       signalfd_wqh;
  22        struct k_sigaction      action[_NSIG];
  23};
  24
  25/*
  26 * Per-process accounting stats:
  27 */
  28struct pacct_struct {
  29        int                     ac_flag;
  30        long                    ac_exitcode;
  31        unsigned long           ac_mem;
  32        u64                     ac_utime, ac_stime;
  33        unsigned long           ac_minflt, ac_majflt;
  34};
  35
  36struct cpu_itimer {
  37        u64 expires;
  38        u64 incr;
  39};
  40
  41/*
  42 * This is the atomic variant of task_cputime, which can be used for
  43 * storing and updating task_cputime statistics without locking.
  44 */
  45struct task_cputime_atomic {
  46        atomic64_t utime;
  47        atomic64_t stime;
  48        atomic64_t sum_exec_runtime;
  49};
  50
  51#define INIT_CPUTIME_ATOMIC \
  52        (struct task_cputime_atomic) {                          \
  53                .utime = ATOMIC64_INIT(0),                      \
  54                .stime = ATOMIC64_INIT(0),                      \
  55                .sum_exec_runtime = ATOMIC64_INIT(0),           \
  56        }
  57/**
  58 * struct thread_group_cputimer - thread group interval timer counts
  59 * @cputime_atomic:     atomic thread group interval timers.
  60 *
  61 * This structure contains the version of task_cputime, above, that is
  62 * used for thread group CPU timer calculations.
  63 */
  64struct thread_group_cputimer {
  65        struct task_cputime_atomic cputime_atomic;
  66};
  67
  68struct multiprocess_signals {
  69        sigset_t signal;
  70        struct hlist_node node;
  71};
  72
  73/*
  74 * NOTE! "signal_struct" does not have its own
  75 * locking, because a shared signal_struct always
  76 * implies a shared sighand_struct, so locking
  77 * sighand_struct is always a proper superset of
  78 * the locking of signal_struct.
  79 */
  80struct signal_struct {
  81        refcount_t              sigcnt;
  82        atomic_t                live;
  83        int                     nr_threads;
  84        struct list_head        thread_head;
  85
  86        wait_queue_head_t       wait_chldexit;  /* for wait4() */
  87
  88        /* current thread group signal load-balancing target: */
  89        struct task_struct      *curr_target;
  90
  91        /* shared signal handling: */
  92        struct sigpending       shared_pending;
  93
  94        /* For collecting multiprocess signals during fork */
  95        struct hlist_head       multiprocess;
  96
  97        /* thread group exit support */
  98        int                     group_exit_code;
  99        /* overloaded:
 100         * - notify group_exit_task when ->count is equal to notify_count
 101         * - everyone except group_exit_task is stopped during signal delivery
 102         *   of fatal signals, group_exit_task processes the signal.
 103         */
 104        int                     notify_count;
 105        struct task_struct      *group_exit_task;
 106
 107        /* thread group stop support, overloads group_exit_code too */
 108        int                     group_stop_count;
 109        unsigned int            flags; /* see SIGNAL_* flags below */
 110
 111        /*
 112         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 113         * manager, to re-parent orphan (double-forking) child processes
 114         * to this process instead of 'init'. The service manager is
 115         * able to receive SIGCHLD signals and is able to investigate
 116         * the process until it calls wait(). All children of this
 117         * process will inherit a flag if they should look for a
 118         * child_subreaper process at exit.
 119         */
 120        unsigned int            is_child_subreaper:1;
 121        unsigned int            has_child_subreaper:1;
 122
 123#ifdef CONFIG_POSIX_TIMERS
 124
 125        /* POSIX.1b Interval Timers */
 126        int                     posix_timer_id;
 127        struct list_head        posix_timers;
 128
 129        /* ITIMER_REAL timer for the process */
 130        struct hrtimer real_timer;
 131        ktime_t it_real_incr;
 132
 133        /*
 134         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 135         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 136         * values are defined to 0 and 1 respectively
 137         */
 138        struct cpu_itimer it[2];
 139
 140        /*
 141         * Thread group totals for process CPU timers.
 142         * See thread_group_cputimer(), et al, for details.
 143         */
 144        struct thread_group_cputimer cputimer;
 145
 146#endif
 147        /* Empty if CONFIG_POSIX_TIMERS=n */
 148        struct posix_cputimers posix_cputimers;
 149
 150        /* PID/PID hash table linkage. */
 151        struct pid *pids[PIDTYPE_MAX];
 152
 153#ifdef CONFIG_NO_HZ_FULL
 154        atomic_t tick_dep_mask;
 155#endif
 156
 157        struct pid *tty_old_pgrp;
 158
 159        /* boolean value for session group leader */
 160        int leader;
 161
 162        struct tty_struct *tty; /* NULL if no tty */
 163
 164#ifdef CONFIG_SCHED_AUTOGROUP
 165        struct autogroup *autogroup;
 166#endif
 167        /*
 168         * Cumulative resource counters for dead threads in the group,
 169         * and for reaped dead child processes forked by this group.
 170         * Live threads maintain their own counters and add to these
 171         * in __exit_signal, except for the group leader.
 172         */
 173        seqlock_t stats_lock;
 174        u64 utime, stime, cutime, cstime;
 175        u64 gtime;
 176        u64 cgtime;
 177        struct prev_cputime prev_cputime;
 178        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 179        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 180        unsigned long inblock, oublock, cinblock, coublock;
 181        unsigned long maxrss, cmaxrss;
 182        struct task_io_accounting ioac;
 183
 184        /*
 185         * Cumulative ns of schedule CPU time fo dead threads in the
 186         * group, not including a zombie group leader, (This only differs
 187         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 188         * other than jiffies.)
 189         */
 190        unsigned long long sum_sched_runtime;
 191
 192        /*
 193         * We don't bother to synchronize most readers of this at all,
 194         * because there is no reader checking a limit that actually needs
 195         * to get both rlim_cur and rlim_max atomically, and either one
 196         * alone is a single word that can safely be read normally.
 197         * getrlimit/setrlimit use task_lock(current->group_leader) to
 198         * protect this instead of the siglock, because they really
 199         * have no need to disable irqs.
 200         */
 201        struct rlimit rlim[RLIM_NLIMITS];
 202
 203#ifdef CONFIG_BSD_PROCESS_ACCT
 204        struct pacct_struct pacct;      /* per-process accounting information */
 205#endif
 206#ifdef CONFIG_TASKSTATS
 207        struct taskstats *stats;
 208#endif
 209#ifdef CONFIG_AUDIT
 210        unsigned audit_tty;
 211        struct tty_audit_buf *tty_audit_buf;
 212#endif
 213
 214        /*
 215         * Thread is the potential origin of an oom condition; kill first on
 216         * oom
 217         */
 218        bool oom_flag_origin;
 219        short oom_score_adj;            /* OOM kill score adjustment */
 220        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 221                                         * Only settable by CAP_SYS_RESOURCE. */
 222        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 223                                         * killed by the oom killer */
 224
 225        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 226                                         * credential calculations
 227                                         * (notably. ptrace) */
 228} __randomize_layout;
 229
 230/*
 231 * Bits in flags field of signal_struct.
 232 */
 233#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 234#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 235#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 236#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 237/*
 238 * Pending notifications to parent.
 239 */
 240#define SIGNAL_CLD_STOPPED      0x00000010
 241#define SIGNAL_CLD_CONTINUED    0x00000020
 242#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 243
 244#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 245
 246#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 247                          SIGNAL_STOP_CONTINUED)
 248
 249static inline void signal_set_stop_flags(struct signal_struct *sig,
 250                                         unsigned int flags)
 251{
 252        WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 253        sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 254}
 255
 256/* If true, all threads except ->group_exit_task have pending SIGKILL */
 257static inline int signal_group_exit(const struct signal_struct *sig)
 258{
 259        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 260                (sig->group_exit_task != NULL);
 261}
 262
 263extern void flush_signals(struct task_struct *);
 264extern void ignore_signals(struct task_struct *);
 265extern void flush_signal_handlers(struct task_struct *, int force_default);
 266extern int dequeue_signal(struct task_struct *task,
 267                          sigset_t *mask, kernel_siginfo_t *info);
 268
 269static inline int kernel_dequeue_signal(void)
 270{
 271        struct task_struct *task = current;
 272        kernel_siginfo_t __info;
 273        int ret;
 274
 275        spin_lock_irq(&task->sighand->siglock);
 276        ret = dequeue_signal(task, &task->blocked, &__info);
 277        spin_unlock_irq(&task->sighand->siglock);
 278
 279        return ret;
 280}
 281
 282static inline void kernel_signal_stop(void)
 283{
 284        spin_lock_irq(&current->sighand->siglock);
 285        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 286                set_special_state(TASK_STOPPED);
 287        spin_unlock_irq(&current->sighand->siglock);
 288
 289        schedule();
 290}
 291#ifdef __ARCH_SI_TRAPNO
 292# define ___ARCH_SI_TRAPNO(_a1) , _a1
 293#else
 294# define ___ARCH_SI_TRAPNO(_a1)
 295#endif
 296#ifdef __ia64__
 297# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
 298#else
 299# define ___ARCH_SI_IA64(_a1, _a2, _a3)
 300#endif
 301
 302int force_sig_fault_to_task(int sig, int code, void __user *addr
 303        ___ARCH_SI_TRAPNO(int trapno)
 304        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 305        , struct task_struct *t);
 306int force_sig_fault(int sig, int code, void __user *addr
 307        ___ARCH_SI_TRAPNO(int trapno)
 308        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
 309int send_sig_fault(int sig, int code, void __user *addr
 310        ___ARCH_SI_TRAPNO(int trapno)
 311        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 312        , struct task_struct *t);
 313
 314int force_sig_mceerr(int code, void __user *, short);
 315int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
 316
 317int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
 318int force_sig_pkuerr(void __user *addr, u32 pkey);
 319
 320int force_sig_ptrace_errno_trap(int errno, void __user *addr);
 321
 322extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
 323extern void force_sigsegv(int sig);
 324extern int force_sig_info(struct kernel_siginfo *);
 325extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
 326extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
 327extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
 328                                const struct cred *);
 329extern int kill_pgrp(struct pid *pid, int sig, int priv);
 330extern int kill_pid(struct pid *pid, int sig, int priv);
 331extern __must_check bool do_notify_parent(struct task_struct *, int);
 332extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 333extern void force_sig(int);
 334extern int send_sig(int, struct task_struct *, int);
 335extern int zap_other_threads(struct task_struct *p);
 336extern struct sigqueue *sigqueue_alloc(void);
 337extern void sigqueue_free(struct sigqueue *);
 338extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
 339extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 340
 341static inline int restart_syscall(void)
 342{
 343        set_tsk_thread_flag(current, TIF_SIGPENDING);
 344        return -ERESTARTNOINTR;
 345}
 346
 347static inline int signal_pending(struct task_struct *p)
 348{
 349        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 350}
 351
 352static inline int __fatal_signal_pending(struct task_struct *p)
 353{
 354        return unlikely(sigismember(&p->pending.signal, SIGKILL));
 355}
 356
 357static inline int fatal_signal_pending(struct task_struct *p)
 358{
 359        return signal_pending(p) && __fatal_signal_pending(p);
 360}
 361
 362static inline int signal_pending_state(long state, struct task_struct *p)
 363{
 364        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 365                return 0;
 366        if (!signal_pending(p))
 367                return 0;
 368
 369        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 370}
 371
 372/*
 373 * Reevaluate whether the task has signals pending delivery.
 374 * Wake the task if so.
 375 * This is required every time the blocked sigset_t changes.
 376 * callers must hold sighand->siglock.
 377 */
 378extern void recalc_sigpending_and_wake(struct task_struct *t);
 379extern void recalc_sigpending(void);
 380extern void calculate_sigpending(void);
 381
 382extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 383
 384static inline void signal_wake_up(struct task_struct *t, bool resume)
 385{
 386        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 387}
 388static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 389{
 390        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 391}
 392
 393void task_join_group_stop(struct task_struct *task);
 394
 395#ifdef TIF_RESTORE_SIGMASK
 396/*
 397 * Legacy restore_sigmask accessors.  These are inefficient on
 398 * SMP architectures because they require atomic operations.
 399 */
 400
 401/**
 402 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 403 *
 404 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 405 * will run before returning to user mode, to process the flag.  For
 406 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 407 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 408 * arch code will notice on return to user mode, in case those bits
 409 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 410 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 411 */
 412static inline void set_restore_sigmask(void)
 413{
 414        set_thread_flag(TIF_RESTORE_SIGMASK);
 415}
 416
 417static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 418{
 419        clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 420}
 421
 422static inline void clear_restore_sigmask(void)
 423{
 424        clear_thread_flag(TIF_RESTORE_SIGMASK);
 425}
 426static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 427{
 428        return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 429}
 430static inline bool test_restore_sigmask(void)
 431{
 432        return test_thread_flag(TIF_RESTORE_SIGMASK);
 433}
 434static inline bool test_and_clear_restore_sigmask(void)
 435{
 436        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 437}
 438
 439#else   /* TIF_RESTORE_SIGMASK */
 440
 441/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 442static inline void set_restore_sigmask(void)
 443{
 444        current->restore_sigmask = true;
 445}
 446static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 447{
 448        task->restore_sigmask = false;
 449}
 450static inline void clear_restore_sigmask(void)
 451{
 452        current->restore_sigmask = false;
 453}
 454static inline bool test_restore_sigmask(void)
 455{
 456        return current->restore_sigmask;
 457}
 458static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 459{
 460        return task->restore_sigmask;
 461}
 462static inline bool test_and_clear_restore_sigmask(void)
 463{
 464        if (!current->restore_sigmask)
 465                return false;
 466        current->restore_sigmask = false;
 467        return true;
 468}
 469#endif
 470
 471static inline void restore_saved_sigmask(void)
 472{
 473        if (test_and_clear_restore_sigmask())
 474                __set_current_blocked(&current->saved_sigmask);
 475}
 476
 477extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
 478
 479static inline void restore_saved_sigmask_unless(bool interrupted)
 480{
 481        if (interrupted)
 482                WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 483        else
 484                restore_saved_sigmask();
 485}
 486
 487static inline sigset_t *sigmask_to_save(void)
 488{
 489        sigset_t *res = &current->blocked;
 490        if (unlikely(test_restore_sigmask()))
 491                res = &current->saved_sigmask;
 492        return res;
 493}
 494
 495static inline int kill_cad_pid(int sig, int priv)
 496{
 497        return kill_pid(cad_pid, sig, priv);
 498}
 499
 500/* These can be the second arg to send_sig_info/send_group_sig_info.  */
 501#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
 502#define SEND_SIG_PRIV   ((struct kernel_siginfo *) 1)
 503
 504/*
 505 * True if we are on the alternate signal stack.
 506 */
 507static inline int on_sig_stack(unsigned long sp)
 508{
 509        /*
 510         * If the signal stack is SS_AUTODISARM then, by construction, we
 511         * can't be on the signal stack unless user code deliberately set
 512         * SS_AUTODISARM when we were already on it.
 513         *
 514         * This improves reliability: if user state gets corrupted such that
 515         * the stack pointer points very close to the end of the signal stack,
 516         * then this check will enable the signal to be handled anyway.
 517         */
 518        if (current->sas_ss_flags & SS_AUTODISARM)
 519                return 0;
 520
 521#ifdef CONFIG_STACK_GROWSUP
 522        return sp >= current->sas_ss_sp &&
 523                sp - current->sas_ss_sp < current->sas_ss_size;
 524#else
 525        return sp > current->sas_ss_sp &&
 526                sp - current->sas_ss_sp <= current->sas_ss_size;
 527#endif
 528}
 529
 530static inline int sas_ss_flags(unsigned long sp)
 531{
 532        if (!current->sas_ss_size)
 533                return SS_DISABLE;
 534
 535        return on_sig_stack(sp) ? SS_ONSTACK : 0;
 536}
 537
 538static inline void sas_ss_reset(struct task_struct *p)
 539{
 540        p->sas_ss_sp = 0;
 541        p->sas_ss_size = 0;
 542        p->sas_ss_flags = SS_DISABLE;
 543}
 544
 545static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 546{
 547        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 548#ifdef CONFIG_STACK_GROWSUP
 549                return current->sas_ss_sp;
 550#else
 551                return current->sas_ss_sp + current->sas_ss_size;
 552#endif
 553        return sp;
 554}
 555
 556extern void __cleanup_sighand(struct sighand_struct *);
 557extern void flush_itimer_signals(void);
 558
 559#define tasklist_empty() \
 560        list_empty(&init_task.tasks)
 561
 562#define next_task(p) \
 563        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 564
 565#define for_each_process(p) \
 566        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 567
 568extern bool current_is_single_threaded(void);
 569
 570/*
 571 * Careful: do_each_thread/while_each_thread is a double loop so
 572 *          'break' will not work as expected - use goto instead.
 573 */
 574#define do_each_thread(g, t) \
 575        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 576
 577#define while_each_thread(g, t) \
 578        while ((t = next_thread(t)) != g)
 579
 580#define __for_each_thread(signal, t)    \
 581        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 582
 583#define for_each_thread(p, t)           \
 584        __for_each_thread((p)->signal, t)
 585
 586/* Careful: this is a double loop, 'break' won't work as expected. */
 587#define for_each_process_thread(p, t)   \
 588        for_each_process(p) for_each_thread(p, t)
 589
 590typedef int (*proc_visitor)(struct task_struct *p, void *data);
 591void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 592
 593static inline
 594struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 595{
 596        struct pid *pid;
 597        if (type == PIDTYPE_PID)
 598                pid = task_pid(task);
 599        else
 600                pid = task->signal->pids[type];
 601        return pid;
 602}
 603
 604static inline struct pid *task_tgid(struct task_struct *task)
 605{
 606        return task->signal->pids[PIDTYPE_TGID];
 607}
 608
 609/*
 610 * Without tasklist or RCU lock it is not safe to dereference
 611 * the result of task_pgrp/task_session even if task == current,
 612 * we can race with another thread doing sys_setsid/sys_setpgid.
 613 */
 614static inline struct pid *task_pgrp(struct task_struct *task)
 615{
 616        return task->signal->pids[PIDTYPE_PGID];
 617}
 618
 619static inline struct pid *task_session(struct task_struct *task)
 620{
 621        return task->signal->pids[PIDTYPE_SID];
 622}
 623
 624static inline int get_nr_threads(struct task_struct *task)
 625{
 626        return task->signal->nr_threads;
 627}
 628
 629static inline bool thread_group_leader(struct task_struct *p)
 630{
 631        return p->exit_signal >= 0;
 632}
 633
 634/* Do to the insanities of de_thread it is possible for a process
 635 * to have the pid of the thread group leader without actually being
 636 * the thread group leader.  For iteration through the pids in proc
 637 * all we care about is that we have a task with the appropriate
 638 * pid, we don't actually care if we have the right task.
 639 */
 640static inline bool has_group_leader_pid(struct task_struct *p)
 641{
 642        return task_pid(p) == task_tgid(p);
 643}
 644
 645static inline
 646bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 647{
 648        return p1->signal == p2->signal;
 649}
 650
 651static inline struct task_struct *next_thread(const struct task_struct *p)
 652{
 653        return list_entry_rcu(p->thread_group.next,
 654                              struct task_struct, thread_group);
 655}
 656
 657static inline int thread_group_empty(struct task_struct *p)
 658{
 659        return list_empty(&p->thread_group);
 660}
 661
 662#define delay_group_leader(p) \
 663                (thread_group_leader(p) && !thread_group_empty(p))
 664
 665extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
 666                                                        unsigned long *flags);
 667
 668static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
 669                                                       unsigned long *flags)
 670{
 671        struct sighand_struct *ret;
 672
 673        ret = __lock_task_sighand(task, flags);
 674        (void)__cond_lock(&task->sighand->siglock, ret);
 675        return ret;
 676}
 677
 678static inline void unlock_task_sighand(struct task_struct *task,
 679                                                unsigned long *flags)
 680{
 681        spin_unlock_irqrestore(&task->sighand->siglock, *flags);
 682}
 683
 684static inline unsigned long task_rlimit(const struct task_struct *task,
 685                unsigned int limit)
 686{
 687        return READ_ONCE(task->signal->rlim[limit].rlim_cur);
 688}
 689
 690static inline unsigned long task_rlimit_max(const struct task_struct *task,
 691                unsigned int limit)
 692{
 693        return READ_ONCE(task->signal->rlim[limit].rlim_max);
 694}
 695
 696static inline unsigned long rlimit(unsigned int limit)
 697{
 698        return task_rlimit(current, limit);
 699}
 700
 701static inline unsigned long rlimit_max(unsigned int limit)
 702{
 703        return task_rlimit_max(current, limit);
 704}
 705
 706#endif /* _LINUX_SCHED_SIGNAL_H */
 707