linux/include/uapi/linux/btrfs_tree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2#ifndef _BTRFS_CTREE_H_
   3#define _BTRFS_CTREE_H_
   4
   5#include <linux/btrfs.h>
   6#include <linux/types.h>
   7
   8/*
   9 * This header contains the structure definitions and constants used
  10 * by file system objects that can be retrieved using
  11 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  12 * is needed to describe a leaf node's key or item contents.
  13 */
  14
  15/* holds pointers to all of the tree roots */
  16#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  17
  18/* stores information about which extents are in use, and reference counts */
  19#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  20
  21/*
  22 * chunk tree stores translations from logical -> physical block numbering
  23 * the super block points to the chunk tree
  24 */
  25#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  26
  27/*
  28 * stores information about which areas of a given device are in use.
  29 * one per device.  The tree of tree roots points to the device tree
  30 */
  31#define BTRFS_DEV_TREE_OBJECTID 4ULL
  32
  33/* one per subvolume, storing files and directories */
  34#define BTRFS_FS_TREE_OBJECTID 5ULL
  35
  36/* directory objectid inside the root tree */
  37#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  38
  39/* holds checksums of all the data extents */
  40#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  41
  42/* holds quota configuration and tracking */
  43#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  44
  45/* for storing items that use the BTRFS_UUID_KEY* types */
  46#define BTRFS_UUID_TREE_OBJECTID 9ULL
  47
  48/* tracks free space in block groups. */
  49#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  50
  51/* device stats in the device tree */
  52#define BTRFS_DEV_STATS_OBJECTID 0ULL
  53
  54/* for storing balance parameters in the root tree */
  55#define BTRFS_BALANCE_OBJECTID -4ULL
  56
  57/* orhpan objectid for tracking unlinked/truncated files */
  58#define BTRFS_ORPHAN_OBJECTID -5ULL
  59
  60/* does write ahead logging to speed up fsyncs */
  61#define BTRFS_TREE_LOG_OBJECTID -6ULL
  62#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  63
  64/* for space balancing */
  65#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  66#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  67
  68/*
  69 * extent checksums all have this objectid
  70 * this allows them to share the logging tree
  71 * for fsyncs
  72 */
  73#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  74
  75/* For storing free space cache */
  76#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  77
  78/*
  79 * The inode number assigned to the special inode for storing
  80 * free ino cache
  81 */
  82#define BTRFS_FREE_INO_OBJECTID -12ULL
  83
  84/* dummy objectid represents multiple objectids */
  85#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  86
  87/*
  88 * All files have objectids in this range.
  89 */
  90#define BTRFS_FIRST_FREE_OBJECTID 256ULL
  91#define BTRFS_LAST_FREE_OBJECTID -256ULL
  92#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
  93
  94
  95/*
  96 * the device items go into the chunk tree.  The key is in the form
  97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
  98 */
  99#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 100
 101#define BTRFS_BTREE_INODE_OBJECTID 1
 102
 103#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 104
 105#define BTRFS_DEV_REPLACE_DEVID 0ULL
 106
 107/*
 108 * inode items have the data typically returned from stat and store other
 109 * info about object characteristics.  There is one for every file and dir in
 110 * the FS
 111 */
 112#define BTRFS_INODE_ITEM_KEY            1
 113#define BTRFS_INODE_REF_KEY             12
 114#define BTRFS_INODE_EXTREF_KEY          13
 115#define BTRFS_XATTR_ITEM_KEY            24
 116#define BTRFS_ORPHAN_ITEM_KEY           48
 117/* reserve 2-15 close to the inode for later flexibility */
 118
 119/*
 120 * dir items are the name -> inode pointers in a directory.  There is one
 121 * for every name in a directory.
 122 */
 123#define BTRFS_DIR_LOG_ITEM_KEY  60
 124#define BTRFS_DIR_LOG_INDEX_KEY 72
 125#define BTRFS_DIR_ITEM_KEY      84
 126#define BTRFS_DIR_INDEX_KEY     96
 127/*
 128 * extent data is for file data
 129 */
 130#define BTRFS_EXTENT_DATA_KEY   108
 131
 132/*
 133 * extent csums are stored in a separate tree and hold csums for
 134 * an entire extent on disk.
 135 */
 136#define BTRFS_EXTENT_CSUM_KEY   128
 137
 138/*
 139 * root items point to tree roots.  They are typically in the root
 140 * tree used by the super block to find all the other trees
 141 */
 142#define BTRFS_ROOT_ITEM_KEY     132
 143
 144/*
 145 * root backrefs tie subvols and snapshots to the directory entries that
 146 * reference them
 147 */
 148#define BTRFS_ROOT_BACKREF_KEY  144
 149
 150/*
 151 * root refs make a fast index for listing all of the snapshots and
 152 * subvolumes referenced by a given root.  They point directly to the
 153 * directory item in the root that references the subvol
 154 */
 155#define BTRFS_ROOT_REF_KEY      156
 156
 157/*
 158 * extent items are in the extent map tree.  These record which blocks
 159 * are used, and how many references there are to each block
 160 */
 161#define BTRFS_EXTENT_ITEM_KEY   168
 162
 163/*
 164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 165 * the length, so we save the level in key->offset instead of the length.
 166 */
 167#define BTRFS_METADATA_ITEM_KEY 169
 168
 169#define BTRFS_TREE_BLOCK_REF_KEY        176
 170
 171#define BTRFS_EXTENT_DATA_REF_KEY       178
 172
 173#define BTRFS_EXTENT_REF_V0_KEY         180
 174
 175#define BTRFS_SHARED_BLOCK_REF_KEY      182
 176
 177#define BTRFS_SHARED_DATA_REF_KEY       184
 178
 179/*
 180 * block groups give us hints into the extent allocation trees.  Which
 181 * blocks are free etc etc
 182 */
 183#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 184
 185/*
 186 * Every block group is represented in the free space tree by a free space info
 187 * item, which stores some accounting information. It is keyed on
 188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 189 */
 190#define BTRFS_FREE_SPACE_INFO_KEY 198
 191
 192/*
 193 * A free space extent tracks an extent of space that is free in a block group.
 194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 195 */
 196#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 197
 198/*
 199 * When a block group becomes very fragmented, we convert it to use bitmaps
 200 * instead of extents. A free space bitmap is keyed on
 201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 202 * (length / sectorsize) bits.
 203 */
 204#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 205
 206#define BTRFS_DEV_EXTENT_KEY    204
 207#define BTRFS_DEV_ITEM_KEY      216
 208#define BTRFS_CHUNK_ITEM_KEY    228
 209
 210/*
 211 * Records the overall state of the qgroups.
 212 * There's only one instance of this key present,
 213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 214 */
 215#define BTRFS_QGROUP_STATUS_KEY         240
 216/*
 217 * Records the currently used space of the qgroup.
 218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 219 */
 220#define BTRFS_QGROUP_INFO_KEY           242
 221/*
 222 * Contains the user configured limits for the qgroup.
 223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 224 */
 225#define BTRFS_QGROUP_LIMIT_KEY          244
 226/*
 227 * Records the child-parent relationship of qgroups. For
 228 * each relation, 2 keys are present:
 229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 231 */
 232#define BTRFS_QGROUP_RELATION_KEY       246
 233
 234/*
 235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 236 */
 237#define BTRFS_BALANCE_ITEM_KEY  248
 238
 239/*
 240 * The key type for tree items that are stored persistently, but do not need to
 241 * exist for extended period of time. The items can exist in any tree.
 242 *
 243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 244 *
 245 * Existing items:
 246 *
 247 * - balance status item
 248 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 249 */
 250#define BTRFS_TEMPORARY_ITEM_KEY        248
 251
 252/*
 253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 254 */
 255#define BTRFS_DEV_STATS_KEY             249
 256
 257/*
 258 * The key type for tree items that are stored persistently and usually exist
 259 * for a long period, eg. filesystem lifetime. The item kinds can be status
 260 * information, stats or preference values. The item can exist in any tree.
 261 *
 262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 263 *
 264 * Existing items:
 265 *
 266 * - device statistics, store IO stats in the device tree, one key for all
 267 *   stats
 268 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 269 */
 270#define BTRFS_PERSISTENT_ITEM_KEY       249
 271
 272/*
 273 * Persistantly stores the device replace state in the device tree.
 274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 275 */
 276#define BTRFS_DEV_REPLACE_KEY   250
 277
 278/*
 279 * Stores items that allow to quickly map UUIDs to something else.
 280 * These items are part of the filesystem UUID tree.
 281 * The key is built like this:
 282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 283 */
 284#if BTRFS_UUID_SIZE != 16
 285#error "UUID items require BTRFS_UUID_SIZE == 16!"
 286#endif
 287#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 288#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 289                                                 * received subvols */
 290
 291/*
 292 * string items are for debugging.  They just store a short string of
 293 * data in the FS
 294 */
 295#define BTRFS_STRING_ITEM_KEY   253
 296
 297
 298
 299/* 32 bytes in various csum fields */
 300#define BTRFS_CSUM_SIZE 32
 301
 302/* csum types */
 303enum btrfs_csum_type {
 304        BTRFS_CSUM_TYPE_CRC32   = 0,
 305};
 306
 307/*
 308 * flags definitions for directory entry item type
 309 *
 310 * Used by:
 311 * struct btrfs_dir_item.type
 312 *
 313 * Values 0..7 must match common file type values in fs_types.h.
 314 */
 315#define BTRFS_FT_UNKNOWN        0
 316#define BTRFS_FT_REG_FILE       1
 317#define BTRFS_FT_DIR            2
 318#define BTRFS_FT_CHRDEV         3
 319#define BTRFS_FT_BLKDEV         4
 320#define BTRFS_FT_FIFO           5
 321#define BTRFS_FT_SOCK           6
 322#define BTRFS_FT_SYMLINK        7
 323#define BTRFS_FT_XATTR          8
 324#define BTRFS_FT_MAX            9
 325
 326/*
 327 * The key defines the order in the tree, and so it also defines (optimal)
 328 * block layout.
 329 *
 330 * objectid corresponds to the inode number.
 331 *
 332 * type tells us things about the object, and is a kind of stream selector.
 333 * so for a given inode, keys with type of 1 might refer to the inode data,
 334 * type of 2 may point to file data in the btree and type == 3 may point to
 335 * extents.
 336 *
 337 * offset is the starting byte offset for this key in the stream.
 338 *
 339 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 340 * in cpu native order.  Otherwise they are identical and their sizes
 341 * should be the same (ie both packed)
 342 */
 343struct btrfs_disk_key {
 344        __le64 objectid;
 345        __u8 type;
 346        __le64 offset;
 347} __attribute__ ((__packed__));
 348
 349struct btrfs_key {
 350        __u64 objectid;
 351        __u8 type;
 352        __u64 offset;
 353} __attribute__ ((__packed__));
 354
 355struct btrfs_dev_item {
 356        /* the internal btrfs device id */
 357        __le64 devid;
 358
 359        /* size of the device */
 360        __le64 total_bytes;
 361
 362        /* bytes used */
 363        __le64 bytes_used;
 364
 365        /* optimal io alignment for this device */
 366        __le32 io_align;
 367
 368        /* optimal io width for this device */
 369        __le32 io_width;
 370
 371        /* minimal io size for this device */
 372        __le32 sector_size;
 373
 374        /* type and info about this device */
 375        __le64 type;
 376
 377        /* expected generation for this device */
 378        __le64 generation;
 379
 380        /*
 381         * starting byte of this partition on the device,
 382         * to allow for stripe alignment in the future
 383         */
 384        __le64 start_offset;
 385
 386        /* grouping information for allocation decisions */
 387        __le32 dev_group;
 388
 389        /* seek speed 0-100 where 100 is fastest */
 390        __u8 seek_speed;
 391
 392        /* bandwidth 0-100 where 100 is fastest */
 393        __u8 bandwidth;
 394
 395        /* btrfs generated uuid for this device */
 396        __u8 uuid[BTRFS_UUID_SIZE];
 397
 398        /* uuid of FS who owns this device */
 399        __u8 fsid[BTRFS_UUID_SIZE];
 400} __attribute__ ((__packed__));
 401
 402struct btrfs_stripe {
 403        __le64 devid;
 404        __le64 offset;
 405        __u8 dev_uuid[BTRFS_UUID_SIZE];
 406} __attribute__ ((__packed__));
 407
 408struct btrfs_chunk {
 409        /* size of this chunk in bytes */
 410        __le64 length;
 411
 412        /* objectid of the root referencing this chunk */
 413        __le64 owner;
 414
 415        __le64 stripe_len;
 416        __le64 type;
 417
 418        /* optimal io alignment for this chunk */
 419        __le32 io_align;
 420
 421        /* optimal io width for this chunk */
 422        __le32 io_width;
 423
 424        /* minimal io size for this chunk */
 425        __le32 sector_size;
 426
 427        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 428         * item in the btree
 429         */
 430        __le16 num_stripes;
 431
 432        /* sub stripes only matter for raid10 */
 433        __le16 sub_stripes;
 434        struct btrfs_stripe stripe;
 435        /* additional stripes go here */
 436} __attribute__ ((__packed__));
 437
 438#define BTRFS_FREE_SPACE_EXTENT 1
 439#define BTRFS_FREE_SPACE_BITMAP 2
 440
 441struct btrfs_free_space_entry {
 442        __le64 offset;
 443        __le64 bytes;
 444        __u8 type;
 445} __attribute__ ((__packed__));
 446
 447struct btrfs_free_space_header {
 448        struct btrfs_disk_key location;
 449        __le64 generation;
 450        __le64 num_entries;
 451        __le64 num_bitmaps;
 452} __attribute__ ((__packed__));
 453
 454#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 455#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 456
 457/* Super block flags */
 458/* Errors detected */
 459#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 460
 461#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 462#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 463#define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
 464#define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
 465#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
 466
 467
 468/*
 469 * items in the extent btree are used to record the objectid of the
 470 * owner of the block and the number of references
 471 */
 472
 473struct btrfs_extent_item {
 474        __le64 refs;
 475        __le64 generation;
 476        __le64 flags;
 477} __attribute__ ((__packed__));
 478
 479struct btrfs_extent_item_v0 {
 480        __le32 refs;
 481} __attribute__ ((__packed__));
 482
 483
 484#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 485#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 486
 487/* following flags only apply to tree blocks */
 488
 489/* use full backrefs for extent pointers in the block */
 490#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 491
 492/*
 493 * this flag is only used internally by scrub and may be changed at any time
 494 * it is only declared here to avoid collisions
 495 */
 496#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 497
 498struct btrfs_tree_block_info {
 499        struct btrfs_disk_key key;
 500        __u8 level;
 501} __attribute__ ((__packed__));
 502
 503struct btrfs_extent_data_ref {
 504        __le64 root;
 505        __le64 objectid;
 506        __le64 offset;
 507        __le32 count;
 508} __attribute__ ((__packed__));
 509
 510struct btrfs_shared_data_ref {
 511        __le32 count;
 512} __attribute__ ((__packed__));
 513
 514struct btrfs_extent_inline_ref {
 515        __u8 type;
 516        __le64 offset;
 517} __attribute__ ((__packed__));
 518
 519/* old style backrefs item */
 520struct btrfs_extent_ref_v0 {
 521        __le64 root;
 522        __le64 generation;
 523        __le64 objectid;
 524        __le32 count;
 525} __attribute__ ((__packed__));
 526
 527
 528/* dev extents record free space on individual devices.  The owner
 529 * field points back to the chunk allocation mapping tree that allocated
 530 * the extent.  The chunk tree uuid field is a way to double check the owner
 531 */
 532struct btrfs_dev_extent {
 533        __le64 chunk_tree;
 534        __le64 chunk_objectid;
 535        __le64 chunk_offset;
 536        __le64 length;
 537        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 538} __attribute__ ((__packed__));
 539
 540struct btrfs_inode_ref {
 541        __le64 index;
 542        __le16 name_len;
 543        /* name goes here */
 544} __attribute__ ((__packed__));
 545
 546struct btrfs_inode_extref {
 547        __le64 parent_objectid;
 548        __le64 index;
 549        __le16 name_len;
 550        __u8   name[0];
 551        /* name goes here */
 552} __attribute__ ((__packed__));
 553
 554struct btrfs_timespec {
 555        __le64 sec;
 556        __le32 nsec;
 557} __attribute__ ((__packed__));
 558
 559struct btrfs_inode_item {
 560        /* nfs style generation number */
 561        __le64 generation;
 562        /* transid that last touched this inode */
 563        __le64 transid;
 564        __le64 size;
 565        __le64 nbytes;
 566        __le64 block_group;
 567        __le32 nlink;
 568        __le32 uid;
 569        __le32 gid;
 570        __le32 mode;
 571        __le64 rdev;
 572        __le64 flags;
 573
 574        /* modification sequence number for NFS */
 575        __le64 sequence;
 576
 577        /*
 578         * a little future expansion, for more than this we can
 579         * just grow the inode item and version it
 580         */
 581        __le64 reserved[4];
 582        struct btrfs_timespec atime;
 583        struct btrfs_timespec ctime;
 584        struct btrfs_timespec mtime;
 585        struct btrfs_timespec otime;
 586} __attribute__ ((__packed__));
 587
 588struct btrfs_dir_log_item {
 589        __le64 end;
 590} __attribute__ ((__packed__));
 591
 592struct btrfs_dir_item {
 593        struct btrfs_disk_key location;
 594        __le64 transid;
 595        __le16 data_len;
 596        __le16 name_len;
 597        __u8 type;
 598} __attribute__ ((__packed__));
 599
 600#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 601
 602/*
 603 * Internal in-memory flag that a subvolume has been marked for deletion but
 604 * still visible as a directory
 605 */
 606#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 607
 608struct btrfs_root_item {
 609        struct btrfs_inode_item inode;
 610        __le64 generation;
 611        __le64 root_dirid;
 612        __le64 bytenr;
 613        __le64 byte_limit;
 614        __le64 bytes_used;
 615        __le64 last_snapshot;
 616        __le64 flags;
 617        __le32 refs;
 618        struct btrfs_disk_key drop_progress;
 619        __u8 drop_level;
 620        __u8 level;
 621
 622        /*
 623         * The following fields appear after subvol_uuids+subvol_times
 624         * were introduced.
 625         */
 626
 627        /*
 628         * This generation number is used to test if the new fields are valid
 629         * and up to date while reading the root item. Every time the root item
 630         * is written out, the "generation" field is copied into this field. If
 631         * anyone ever mounted the fs with an older kernel, we will have
 632         * mismatching generation values here and thus must invalidate the
 633         * new fields. See btrfs_update_root and btrfs_find_last_root for
 634         * details.
 635         * the offset of generation_v2 is also used as the start for the memset
 636         * when invalidating the fields.
 637         */
 638        __le64 generation_v2;
 639        __u8 uuid[BTRFS_UUID_SIZE];
 640        __u8 parent_uuid[BTRFS_UUID_SIZE];
 641        __u8 received_uuid[BTRFS_UUID_SIZE];
 642        __le64 ctransid; /* updated when an inode changes */
 643        __le64 otransid; /* trans when created */
 644        __le64 stransid; /* trans when sent. non-zero for received subvol */
 645        __le64 rtransid; /* trans when received. non-zero for received subvol */
 646        struct btrfs_timespec ctime;
 647        struct btrfs_timespec otime;
 648        struct btrfs_timespec stime;
 649        struct btrfs_timespec rtime;
 650        __le64 reserved[8]; /* for future */
 651} __attribute__ ((__packed__));
 652
 653/*
 654 * this is used for both forward and backward root refs
 655 */
 656struct btrfs_root_ref {
 657        __le64 dirid;
 658        __le64 sequence;
 659        __le16 name_len;
 660} __attribute__ ((__packed__));
 661
 662struct btrfs_disk_balance_args {
 663        /*
 664         * profiles to operate on, single is denoted by
 665         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 666         */
 667        __le64 profiles;
 668
 669        /*
 670         * usage filter
 671         * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 672         * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 673         */
 674        union {
 675                __le64 usage;
 676                struct {
 677                        __le32 usage_min;
 678                        __le32 usage_max;
 679                };
 680        };
 681
 682        /* devid filter */
 683        __le64 devid;
 684
 685        /* devid subset filter [pstart..pend) */
 686        __le64 pstart;
 687        __le64 pend;
 688
 689        /* btrfs virtual address space subset filter [vstart..vend) */
 690        __le64 vstart;
 691        __le64 vend;
 692
 693        /*
 694         * profile to convert to, single is denoted by
 695         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 696         */
 697        __le64 target;
 698
 699        /* BTRFS_BALANCE_ARGS_* */
 700        __le64 flags;
 701
 702        /*
 703         * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 704         * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 705         * and maximum
 706         */
 707        union {
 708                __le64 limit;
 709                struct {
 710                        __le32 limit_min;
 711                        __le32 limit_max;
 712                };
 713        };
 714
 715        /*
 716         * Process chunks that cross stripes_min..stripes_max devices,
 717         * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 718         */
 719        __le32 stripes_min;
 720        __le32 stripes_max;
 721
 722        __le64 unused[6];
 723} __attribute__ ((__packed__));
 724
 725/*
 726 * store balance parameters to disk so that balance can be properly
 727 * resumed after crash or unmount
 728 */
 729struct btrfs_balance_item {
 730        /* BTRFS_BALANCE_* */
 731        __le64 flags;
 732
 733        struct btrfs_disk_balance_args data;
 734        struct btrfs_disk_balance_args meta;
 735        struct btrfs_disk_balance_args sys;
 736
 737        __le64 unused[4];
 738} __attribute__ ((__packed__));
 739
 740#define BTRFS_FILE_EXTENT_INLINE 0
 741#define BTRFS_FILE_EXTENT_REG 1
 742#define BTRFS_FILE_EXTENT_PREALLOC 2
 743#define BTRFS_FILE_EXTENT_TYPES 2
 744
 745struct btrfs_file_extent_item {
 746        /*
 747         * transaction id that created this extent
 748         */
 749        __le64 generation;
 750        /*
 751         * max number of bytes to hold this extent in ram
 752         * when we split a compressed extent we can't know how big
 753         * each of the resulting pieces will be.  So, this is
 754         * an upper limit on the size of the extent in ram instead of
 755         * an exact limit.
 756         */
 757        __le64 ram_bytes;
 758
 759        /*
 760         * 32 bits for the various ways we might encode the data,
 761         * including compression and encryption.  If any of these
 762         * are set to something a given disk format doesn't understand
 763         * it is treated like an incompat flag for reading and writing,
 764         * but not for stat.
 765         */
 766        __u8 compression;
 767        __u8 encryption;
 768        __le16 other_encoding; /* spare for later use */
 769
 770        /* are we inline data or a real extent? */
 771        __u8 type;
 772
 773        /*
 774         * disk space consumed by the extent, checksum blocks are included
 775         * in these numbers
 776         *
 777         * At this offset in the structure, the inline extent data start.
 778         */
 779        __le64 disk_bytenr;
 780        __le64 disk_num_bytes;
 781        /*
 782         * the logical offset in file blocks (no csums)
 783         * this extent record is for.  This allows a file extent to point
 784         * into the middle of an existing extent on disk, sharing it
 785         * between two snapshots (useful if some bytes in the middle of the
 786         * extent have changed
 787         */
 788        __le64 offset;
 789        /*
 790         * the logical number of file blocks (no csums included).  This
 791         * always reflects the size uncompressed and without encoding.
 792         */
 793        __le64 num_bytes;
 794
 795} __attribute__ ((__packed__));
 796
 797struct btrfs_csum_item {
 798        __u8 csum;
 799} __attribute__ ((__packed__));
 800
 801struct btrfs_dev_stats_item {
 802        /*
 803         * grow this item struct at the end for future enhancements and keep
 804         * the existing values unchanged
 805         */
 806        __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 807} __attribute__ ((__packed__));
 808
 809#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
 810#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
 811
 812struct btrfs_dev_replace_item {
 813        /*
 814         * grow this item struct at the end for future enhancements and keep
 815         * the existing values unchanged
 816         */
 817        __le64 src_devid;
 818        __le64 cursor_left;
 819        __le64 cursor_right;
 820        __le64 cont_reading_from_srcdev_mode;
 821
 822        __le64 replace_state;
 823        __le64 time_started;
 824        __le64 time_stopped;
 825        __le64 num_write_errors;
 826        __le64 num_uncorrectable_read_errors;
 827} __attribute__ ((__packed__));
 828
 829/* different types of block groups (and chunks) */
 830#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 831#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 832#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 833#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 834#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 835#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 836#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 837#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 838#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 839#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 840                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 841
 842enum btrfs_raid_types {
 843        BTRFS_RAID_RAID10,
 844        BTRFS_RAID_RAID1,
 845        BTRFS_RAID_DUP,
 846        BTRFS_RAID_RAID0,
 847        BTRFS_RAID_SINGLE,
 848        BTRFS_RAID_RAID5,
 849        BTRFS_RAID_RAID6,
 850        BTRFS_NR_RAID_TYPES
 851};
 852
 853#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 854                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 855                                         BTRFS_BLOCK_GROUP_METADATA)
 856
 857#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 858                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 859                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 860                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 861                                         BTRFS_BLOCK_GROUP_DUP |     \
 862                                         BTRFS_BLOCK_GROUP_RAID10)
 863#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 864                                         BTRFS_BLOCK_GROUP_RAID6)
 865
 866#define BTRFS_BLOCK_GROUP_RAID1_MASK    (BTRFS_BLOCK_GROUP_RAID1)
 867
 868/*
 869 * We need a bit for restriper to be able to tell when chunks of type
 870 * SINGLE are available.  This "extended" profile format is used in
 871 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 872 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 873 * to avoid remappings between two formats in future.
 874 */
 875#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 876
 877/*
 878 * A fake block group type that is used to communicate global block reserve
 879 * size to userspace via the SPACE_INFO ioctl.
 880 */
 881#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 882
 883#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 884                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 885
 886static inline __u64 chunk_to_extended(__u64 flags)
 887{
 888        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 889                flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 890
 891        return flags;
 892}
 893static inline __u64 extended_to_chunk(__u64 flags)
 894{
 895        return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 896}
 897
 898struct btrfs_block_group_item {
 899        __le64 used;
 900        __le64 chunk_objectid;
 901        __le64 flags;
 902} __attribute__ ((__packed__));
 903
 904struct btrfs_free_space_info {
 905        __le32 extent_count;
 906        __le32 flags;
 907} __attribute__ ((__packed__));
 908
 909#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
 910
 911#define BTRFS_QGROUP_LEVEL_SHIFT                48
 912static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
 913{
 914        return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
 915}
 916
 917/*
 918 * is subvolume quota turned on?
 919 */
 920#define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
 921/*
 922 * RESCAN is set during the initialization phase
 923 */
 924#define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
 925/*
 926 * Some qgroup entries are known to be out of date,
 927 * either because the configuration has changed in a way that
 928 * makes a rescan necessary, or because the fs has been mounted
 929 * with a non-qgroup-aware version.
 930 * Turning qouta off and on again makes it inconsistent, too.
 931 */
 932#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
 933
 934#define BTRFS_QGROUP_STATUS_VERSION        1
 935
 936struct btrfs_qgroup_status_item {
 937        __le64 version;
 938        /*
 939         * the generation is updated during every commit. As older
 940         * versions of btrfs are not aware of qgroups, it will be
 941         * possible to detect inconsistencies by checking the
 942         * generation on mount time
 943         */
 944        __le64 generation;
 945
 946        /* flag definitions see above */
 947        __le64 flags;
 948
 949        /*
 950         * only used during scanning to record the progress
 951         * of the scan. It contains a logical address
 952         */
 953        __le64 rescan;
 954} __attribute__ ((__packed__));
 955
 956struct btrfs_qgroup_info_item {
 957        __le64 generation;
 958        __le64 rfer;
 959        __le64 rfer_cmpr;
 960        __le64 excl;
 961        __le64 excl_cmpr;
 962} __attribute__ ((__packed__));
 963
 964struct btrfs_qgroup_limit_item {
 965        /*
 966         * only updated when any of the other values change
 967         */
 968        __le64 flags;
 969        __le64 max_rfer;
 970        __le64 max_excl;
 971        __le64 rsv_rfer;
 972        __le64 rsv_excl;
 973} __attribute__ ((__packed__));
 974
 975#endif /* _BTRFS_CTREE_H_ */
 976