linux/ipc/mqueue.c
<<
>>
Prefs
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *                          Manfred Spraul          (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47        struct ipc_namespace    *ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC    0x19800202
  51#define DIRENT_SIZE     20
  52#define FILENT_SIZE     80
  53
  54#define SEND            0
  55#define RECV            1
  56
  57#define STATE_NONE      0
  58#define STATE_READY     1
  59
  60struct posix_msg_tree_node {
  61        struct rb_node          rb_node;
  62        struct list_head        msg_list;
  63        int                     priority;
  64};
  65
  66struct ext_wait_queue {         /* queue of sleeping tasks */
  67        struct task_struct *task;
  68        struct list_head list;
  69        struct msg_msg *msg;    /* ptr of loaded message */
  70        int state;              /* one of STATE_* values */
  71};
  72
  73struct mqueue_inode_info {
  74        spinlock_t lock;
  75        struct inode vfs_inode;
  76        wait_queue_head_t wait_q;
  77
  78        struct rb_root msg_tree;
  79        struct rb_node *msg_tree_rightmost;
  80        struct posix_msg_tree_node *node_cache;
  81        struct mq_attr attr;
  82
  83        struct sigevent notify;
  84        struct pid *notify_owner;
  85        struct user_namespace *notify_user_ns;
  86        struct user_struct *user;       /* user who created, for accounting */
  87        struct sock *notify_sock;
  88        struct sk_buff *notify_cookie;
  89
  90        /* for tasks waiting for free space and messages, respectively */
  91        struct ext_wait_queue e_wait_q[2];
  92
  93        unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  94};
  95
  96static struct file_system_type mqueue_fs_type;
  97static const struct inode_operations mqueue_dir_inode_operations;
  98static const struct file_operations mqueue_file_operations;
  99static const struct super_operations mqueue_super_ops;
 100static const struct fs_context_operations mqueue_fs_context_ops;
 101static void remove_notification(struct mqueue_inode_info *info);
 102
 103static struct kmem_cache *mqueue_inode_cachep;
 104
 105static struct ctl_table_header *mq_sysctl_table;
 106
 107static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 108{
 109        return container_of(inode, struct mqueue_inode_info, vfs_inode);
 110}
 111
 112/*
 113 * This routine should be called with the mq_lock held.
 114 */
 115static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 116{
 117        return get_ipc_ns(inode->i_sb->s_fs_info);
 118}
 119
 120static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 121{
 122        struct ipc_namespace *ns;
 123
 124        spin_lock(&mq_lock);
 125        ns = __get_ns_from_inode(inode);
 126        spin_unlock(&mq_lock);
 127        return ns;
 128}
 129
 130/* Auxiliary functions to manipulate messages' list */
 131static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 132{
 133        struct rb_node **p, *parent = NULL;
 134        struct posix_msg_tree_node *leaf;
 135        bool rightmost = true;
 136
 137        p = &info->msg_tree.rb_node;
 138        while (*p) {
 139                parent = *p;
 140                leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 141
 142                if (likely(leaf->priority == msg->m_type))
 143                        goto insert_msg;
 144                else if (msg->m_type < leaf->priority) {
 145                        p = &(*p)->rb_left;
 146                        rightmost = false;
 147                } else
 148                        p = &(*p)->rb_right;
 149        }
 150        if (info->node_cache) {
 151                leaf = info->node_cache;
 152                info->node_cache = NULL;
 153        } else {
 154                leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 155                if (!leaf)
 156                        return -ENOMEM;
 157                INIT_LIST_HEAD(&leaf->msg_list);
 158        }
 159        leaf->priority = msg->m_type;
 160
 161        if (rightmost)
 162                info->msg_tree_rightmost = &leaf->rb_node;
 163
 164        rb_link_node(&leaf->rb_node, parent, p);
 165        rb_insert_color(&leaf->rb_node, &info->msg_tree);
 166insert_msg:
 167        info->attr.mq_curmsgs++;
 168        info->qsize += msg->m_ts;
 169        list_add_tail(&msg->m_list, &leaf->msg_list);
 170        return 0;
 171}
 172
 173static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 174                                  struct mqueue_inode_info *info)
 175{
 176        struct rb_node *node = &leaf->rb_node;
 177
 178        if (info->msg_tree_rightmost == node)
 179                info->msg_tree_rightmost = rb_prev(node);
 180
 181        rb_erase(node, &info->msg_tree);
 182        if (info->node_cache) {
 183                kfree(leaf);
 184        } else {
 185                info->node_cache = leaf;
 186        }
 187}
 188
 189static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 190{
 191        struct rb_node *parent = NULL;
 192        struct posix_msg_tree_node *leaf;
 193        struct msg_msg *msg;
 194
 195try_again:
 196        /*
 197         * During insert, low priorities go to the left and high to the
 198         * right.  On receive, we want the highest priorities first, so
 199         * walk all the way to the right.
 200         */
 201        parent = info->msg_tree_rightmost;
 202        if (!parent) {
 203                if (info->attr.mq_curmsgs) {
 204                        pr_warn_once("Inconsistency in POSIX message queue, "
 205                                     "no tree element, but supposedly messages "
 206                                     "should exist!\n");
 207                        info->attr.mq_curmsgs = 0;
 208                }
 209                return NULL;
 210        }
 211        leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 212        if (unlikely(list_empty(&leaf->msg_list))) {
 213                pr_warn_once("Inconsistency in POSIX message queue, "
 214                             "empty leaf node but we haven't implemented "
 215                             "lazy leaf delete!\n");
 216                msg_tree_erase(leaf, info);
 217                goto try_again;
 218        } else {
 219                msg = list_first_entry(&leaf->msg_list,
 220                                       struct msg_msg, m_list);
 221                list_del(&msg->m_list);
 222                if (list_empty(&leaf->msg_list)) {
 223                        msg_tree_erase(leaf, info);
 224                }
 225        }
 226        info->attr.mq_curmsgs--;
 227        info->qsize -= msg->m_ts;
 228        return msg;
 229}
 230
 231static struct inode *mqueue_get_inode(struct super_block *sb,
 232                struct ipc_namespace *ipc_ns, umode_t mode,
 233                struct mq_attr *attr)
 234{
 235        struct user_struct *u = current_user();
 236        struct inode *inode;
 237        int ret = -ENOMEM;
 238
 239        inode = new_inode(sb);
 240        if (!inode)
 241                goto err;
 242
 243        inode->i_ino = get_next_ino();
 244        inode->i_mode = mode;
 245        inode->i_uid = current_fsuid();
 246        inode->i_gid = current_fsgid();
 247        inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 248
 249        if (S_ISREG(mode)) {
 250                struct mqueue_inode_info *info;
 251                unsigned long mq_bytes, mq_treesize;
 252
 253                inode->i_fop = &mqueue_file_operations;
 254                inode->i_size = FILENT_SIZE;
 255                /* mqueue specific info */
 256                info = MQUEUE_I(inode);
 257                spin_lock_init(&info->lock);
 258                init_waitqueue_head(&info->wait_q);
 259                INIT_LIST_HEAD(&info->e_wait_q[0].list);
 260                INIT_LIST_HEAD(&info->e_wait_q[1].list);
 261                info->notify_owner = NULL;
 262                info->notify_user_ns = NULL;
 263                info->qsize = 0;
 264                info->user = NULL;      /* set when all is ok */
 265                info->msg_tree = RB_ROOT;
 266                info->msg_tree_rightmost = NULL;
 267                info->node_cache = NULL;
 268                memset(&info->attr, 0, sizeof(info->attr));
 269                info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 270                                           ipc_ns->mq_msg_default);
 271                info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 272                                            ipc_ns->mq_msgsize_default);
 273                if (attr) {
 274                        info->attr.mq_maxmsg = attr->mq_maxmsg;
 275                        info->attr.mq_msgsize = attr->mq_msgsize;
 276                }
 277                /*
 278                 * We used to allocate a static array of pointers and account
 279                 * the size of that array as well as one msg_msg struct per
 280                 * possible message into the queue size. That's no longer
 281                 * accurate as the queue is now an rbtree and will grow and
 282                 * shrink depending on usage patterns.  We can, however, still
 283                 * account one msg_msg struct per message, but the nodes are
 284                 * allocated depending on priority usage, and most programs
 285                 * only use one, or a handful, of priorities.  However, since
 286                 * this is pinned memory, we need to assume worst case, so
 287                 * that means the min(mq_maxmsg, max_priorities) * struct
 288                 * posix_msg_tree_node.
 289                 */
 290
 291                ret = -EINVAL;
 292                if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 293                        goto out_inode;
 294                if (capable(CAP_SYS_RESOURCE)) {
 295                        if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 296                            info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 297                                goto out_inode;
 298                } else {
 299                        if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 300                                        info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 301                                goto out_inode;
 302                }
 303                ret = -EOVERFLOW;
 304                /* check for overflow */
 305                if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 306                        goto out_inode;
 307                mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 308                        min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 309                        sizeof(struct posix_msg_tree_node);
 310                mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 311                if (mq_bytes + mq_treesize < mq_bytes)
 312                        goto out_inode;
 313                mq_bytes += mq_treesize;
 314                spin_lock(&mq_lock);
 315                if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 316                    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 317                        spin_unlock(&mq_lock);
 318                        /* mqueue_evict_inode() releases info->messages */
 319                        ret = -EMFILE;
 320                        goto out_inode;
 321                }
 322                u->mq_bytes += mq_bytes;
 323                spin_unlock(&mq_lock);
 324
 325                /* all is ok */
 326                info->user = get_uid(u);
 327        } else if (S_ISDIR(mode)) {
 328                inc_nlink(inode);
 329                /* Some things misbehave if size == 0 on a directory */
 330                inode->i_size = 2 * DIRENT_SIZE;
 331                inode->i_op = &mqueue_dir_inode_operations;
 332                inode->i_fop = &simple_dir_operations;
 333        }
 334
 335        return inode;
 336out_inode:
 337        iput(inode);
 338err:
 339        return ERR_PTR(ret);
 340}
 341
 342static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 343{
 344        struct inode *inode;
 345        struct ipc_namespace *ns = sb->s_fs_info;
 346
 347        sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 348        sb->s_blocksize = PAGE_SIZE;
 349        sb->s_blocksize_bits = PAGE_SHIFT;
 350        sb->s_magic = MQUEUE_MAGIC;
 351        sb->s_op = &mqueue_super_ops;
 352
 353        inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 354        if (IS_ERR(inode))
 355                return PTR_ERR(inode);
 356
 357        sb->s_root = d_make_root(inode);
 358        if (!sb->s_root)
 359                return -ENOMEM;
 360        return 0;
 361}
 362
 363static int mqueue_get_tree(struct fs_context *fc)
 364{
 365        struct mqueue_fs_context *ctx = fc->fs_private;
 366
 367        return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 368}
 369
 370static void mqueue_fs_context_free(struct fs_context *fc)
 371{
 372        struct mqueue_fs_context *ctx = fc->fs_private;
 373
 374        put_ipc_ns(ctx->ipc_ns);
 375        kfree(ctx);
 376}
 377
 378static int mqueue_init_fs_context(struct fs_context *fc)
 379{
 380        struct mqueue_fs_context *ctx;
 381
 382        ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 383        if (!ctx)
 384                return -ENOMEM;
 385
 386        ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 387        put_user_ns(fc->user_ns);
 388        fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 389        fc->fs_private = ctx;
 390        fc->ops = &mqueue_fs_context_ops;
 391        return 0;
 392}
 393
 394static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 395{
 396        struct mqueue_fs_context *ctx;
 397        struct fs_context *fc;
 398        struct vfsmount *mnt;
 399
 400        fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 401        if (IS_ERR(fc))
 402                return ERR_CAST(fc);
 403
 404        ctx = fc->fs_private;
 405        put_ipc_ns(ctx->ipc_ns);
 406        ctx->ipc_ns = get_ipc_ns(ns);
 407        put_user_ns(fc->user_ns);
 408        fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 409
 410        mnt = fc_mount(fc);
 411        put_fs_context(fc);
 412        return mnt;
 413}
 414
 415static void init_once(void *foo)
 416{
 417        struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 418
 419        inode_init_once(&p->vfs_inode);
 420}
 421
 422static struct inode *mqueue_alloc_inode(struct super_block *sb)
 423{
 424        struct mqueue_inode_info *ei;
 425
 426        ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 427        if (!ei)
 428                return NULL;
 429        return &ei->vfs_inode;
 430}
 431
 432static void mqueue_free_inode(struct inode *inode)
 433{
 434        kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 435}
 436
 437static void mqueue_evict_inode(struct inode *inode)
 438{
 439        struct mqueue_inode_info *info;
 440        struct user_struct *user;
 441        struct ipc_namespace *ipc_ns;
 442        struct msg_msg *msg, *nmsg;
 443        LIST_HEAD(tmp_msg);
 444
 445        clear_inode(inode);
 446
 447        if (S_ISDIR(inode->i_mode))
 448                return;
 449
 450        ipc_ns = get_ns_from_inode(inode);
 451        info = MQUEUE_I(inode);
 452        spin_lock(&info->lock);
 453        while ((msg = msg_get(info)) != NULL)
 454                list_add_tail(&msg->m_list, &tmp_msg);
 455        kfree(info->node_cache);
 456        spin_unlock(&info->lock);
 457
 458        list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 459                list_del(&msg->m_list);
 460                free_msg(msg);
 461        }
 462
 463        user = info->user;
 464        if (user) {
 465                unsigned long mq_bytes, mq_treesize;
 466
 467                /* Total amount of bytes accounted for the mqueue */
 468                mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 469                        min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 470                        sizeof(struct posix_msg_tree_node);
 471
 472                mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 473                                          info->attr.mq_msgsize);
 474
 475                spin_lock(&mq_lock);
 476                user->mq_bytes -= mq_bytes;
 477                /*
 478                 * get_ns_from_inode() ensures that the
 479                 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 480                 * to which we now hold a reference, or it is NULL.
 481                 * We can't put it here under mq_lock, though.
 482                 */
 483                if (ipc_ns)
 484                        ipc_ns->mq_queues_count--;
 485                spin_unlock(&mq_lock);
 486                free_uid(user);
 487        }
 488        if (ipc_ns)
 489                put_ipc_ns(ipc_ns);
 490}
 491
 492static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 493{
 494        struct inode *dir = dentry->d_parent->d_inode;
 495        struct inode *inode;
 496        struct mq_attr *attr = arg;
 497        int error;
 498        struct ipc_namespace *ipc_ns;
 499
 500        spin_lock(&mq_lock);
 501        ipc_ns = __get_ns_from_inode(dir);
 502        if (!ipc_ns) {
 503                error = -EACCES;
 504                goto out_unlock;
 505        }
 506
 507        if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 508            !capable(CAP_SYS_RESOURCE)) {
 509                error = -ENOSPC;
 510                goto out_unlock;
 511        }
 512        ipc_ns->mq_queues_count++;
 513        spin_unlock(&mq_lock);
 514
 515        inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 516        if (IS_ERR(inode)) {
 517                error = PTR_ERR(inode);
 518                spin_lock(&mq_lock);
 519                ipc_ns->mq_queues_count--;
 520                goto out_unlock;
 521        }
 522
 523        put_ipc_ns(ipc_ns);
 524        dir->i_size += DIRENT_SIZE;
 525        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 526
 527        d_instantiate(dentry, inode);
 528        dget(dentry);
 529        return 0;
 530out_unlock:
 531        spin_unlock(&mq_lock);
 532        if (ipc_ns)
 533                put_ipc_ns(ipc_ns);
 534        return error;
 535}
 536
 537static int mqueue_create(struct inode *dir, struct dentry *dentry,
 538                                umode_t mode, bool excl)
 539{
 540        return mqueue_create_attr(dentry, mode, NULL);
 541}
 542
 543static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 544{
 545        struct inode *inode = d_inode(dentry);
 546
 547        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 548        dir->i_size -= DIRENT_SIZE;
 549        drop_nlink(inode);
 550        dput(dentry);
 551        return 0;
 552}
 553
 554/*
 555*       This is routine for system read from queue file.
 556*       To avoid mess with doing here some sort of mq_receive we allow
 557*       to read only queue size & notification info (the only values
 558*       that are interesting from user point of view and aren't accessible
 559*       through std routines)
 560*/
 561static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 562                                size_t count, loff_t *off)
 563{
 564        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 565        char buffer[FILENT_SIZE];
 566        ssize_t ret;
 567
 568        spin_lock(&info->lock);
 569        snprintf(buffer, sizeof(buffer),
 570                        "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 571                        info->qsize,
 572                        info->notify_owner ? info->notify.sigev_notify : 0,
 573                        (info->notify_owner &&
 574                         info->notify.sigev_notify == SIGEV_SIGNAL) ?
 575                                info->notify.sigev_signo : 0,
 576                        pid_vnr(info->notify_owner));
 577        spin_unlock(&info->lock);
 578        buffer[sizeof(buffer)-1] = '\0';
 579
 580        ret = simple_read_from_buffer(u_data, count, off, buffer,
 581                                strlen(buffer));
 582        if (ret <= 0)
 583                return ret;
 584
 585        file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 586        return ret;
 587}
 588
 589static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 590{
 591        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 592
 593        spin_lock(&info->lock);
 594        if (task_tgid(current) == info->notify_owner)
 595                remove_notification(info);
 596
 597        spin_unlock(&info->lock);
 598        return 0;
 599}
 600
 601static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 602{
 603        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 604        __poll_t retval = 0;
 605
 606        poll_wait(filp, &info->wait_q, poll_tab);
 607
 608        spin_lock(&info->lock);
 609        if (info->attr.mq_curmsgs)
 610                retval = EPOLLIN | EPOLLRDNORM;
 611
 612        if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 613                retval |= EPOLLOUT | EPOLLWRNORM;
 614        spin_unlock(&info->lock);
 615
 616        return retval;
 617}
 618
 619/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 620static void wq_add(struct mqueue_inode_info *info, int sr,
 621                        struct ext_wait_queue *ewp)
 622{
 623        struct ext_wait_queue *walk;
 624
 625        list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 626                if (walk->task->prio <= current->prio) {
 627                        list_add_tail(&ewp->list, &walk->list);
 628                        return;
 629                }
 630        }
 631        list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 632}
 633
 634/*
 635 * Puts current task to sleep. Caller must hold queue lock. After return
 636 * lock isn't held.
 637 * sr: SEND or RECV
 638 */
 639static int wq_sleep(struct mqueue_inode_info *info, int sr,
 640                    ktime_t *timeout, struct ext_wait_queue *ewp)
 641        __releases(&info->lock)
 642{
 643        int retval;
 644        signed long time;
 645
 646        wq_add(info, sr, ewp);
 647
 648        for (;;) {
 649                __set_current_state(TASK_INTERRUPTIBLE);
 650
 651                spin_unlock(&info->lock);
 652                time = schedule_hrtimeout_range_clock(timeout, 0,
 653                        HRTIMER_MODE_ABS, CLOCK_REALTIME);
 654
 655                if (ewp->state == STATE_READY) {
 656                        retval = 0;
 657                        goto out;
 658                }
 659                spin_lock(&info->lock);
 660                if (ewp->state == STATE_READY) {
 661                        retval = 0;
 662                        goto out_unlock;
 663                }
 664                if (signal_pending(current)) {
 665                        retval = -ERESTARTSYS;
 666                        break;
 667                }
 668                if (time == 0) {
 669                        retval = -ETIMEDOUT;
 670                        break;
 671                }
 672        }
 673        list_del(&ewp->list);
 674out_unlock:
 675        spin_unlock(&info->lock);
 676out:
 677        return retval;
 678}
 679
 680/*
 681 * Returns waiting task that should be serviced first or NULL if none exists
 682 */
 683static struct ext_wait_queue *wq_get_first_waiter(
 684                struct mqueue_inode_info *info, int sr)
 685{
 686        struct list_head *ptr;
 687
 688        ptr = info->e_wait_q[sr].list.prev;
 689        if (ptr == &info->e_wait_q[sr].list)
 690                return NULL;
 691        return list_entry(ptr, struct ext_wait_queue, list);
 692}
 693
 694
 695static inline void set_cookie(struct sk_buff *skb, char code)
 696{
 697        ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 698}
 699
 700/*
 701 * The next function is only to split too long sys_mq_timedsend
 702 */
 703static void __do_notify(struct mqueue_inode_info *info)
 704{
 705        /* notification
 706         * invoked when there is registered process and there isn't process
 707         * waiting synchronously for message AND state of queue changed from
 708         * empty to not empty. Here we are sure that no one is waiting
 709         * synchronously. */
 710        if (info->notify_owner &&
 711            info->attr.mq_curmsgs == 1) {
 712                struct kernel_siginfo sig_i;
 713                switch (info->notify.sigev_notify) {
 714                case SIGEV_NONE:
 715                        break;
 716                case SIGEV_SIGNAL:
 717                        /* sends signal */
 718
 719                        clear_siginfo(&sig_i);
 720                        sig_i.si_signo = info->notify.sigev_signo;
 721                        sig_i.si_errno = 0;
 722                        sig_i.si_code = SI_MESGQ;
 723                        sig_i.si_value = info->notify.sigev_value;
 724                        /* map current pid/uid into info->owner's namespaces */
 725                        rcu_read_lock();
 726                        sig_i.si_pid = task_tgid_nr_ns(current,
 727                                                ns_of_pid(info->notify_owner));
 728                        sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 729                        rcu_read_unlock();
 730
 731                        kill_pid_info(info->notify.sigev_signo,
 732                                      &sig_i, info->notify_owner);
 733                        break;
 734                case SIGEV_THREAD:
 735                        set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 736                        netlink_sendskb(info->notify_sock, info->notify_cookie);
 737                        break;
 738                }
 739                /* after notification unregisters process */
 740                put_pid(info->notify_owner);
 741                put_user_ns(info->notify_user_ns);
 742                info->notify_owner = NULL;
 743                info->notify_user_ns = NULL;
 744        }
 745        wake_up(&info->wait_q);
 746}
 747
 748static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 749                           struct timespec64 *ts)
 750{
 751        if (get_timespec64(ts, u_abs_timeout))
 752                return -EFAULT;
 753        if (!timespec64_valid(ts))
 754                return -EINVAL;
 755        return 0;
 756}
 757
 758static void remove_notification(struct mqueue_inode_info *info)
 759{
 760        if (info->notify_owner != NULL &&
 761            info->notify.sigev_notify == SIGEV_THREAD) {
 762                set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 763                netlink_sendskb(info->notify_sock, info->notify_cookie);
 764        }
 765        put_pid(info->notify_owner);
 766        put_user_ns(info->notify_user_ns);
 767        info->notify_owner = NULL;
 768        info->notify_user_ns = NULL;
 769}
 770
 771static int prepare_open(struct dentry *dentry, int oflag, int ro,
 772                        umode_t mode, struct filename *name,
 773                        struct mq_attr *attr)
 774{
 775        static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 776                                                  MAY_READ | MAY_WRITE };
 777        int acc;
 778
 779        if (d_really_is_negative(dentry)) {
 780                if (!(oflag & O_CREAT))
 781                        return -ENOENT;
 782                if (ro)
 783                        return ro;
 784                audit_inode_parent_hidden(name, dentry->d_parent);
 785                return vfs_mkobj(dentry, mode & ~current_umask(),
 786                                  mqueue_create_attr, attr);
 787        }
 788        /* it already existed */
 789        audit_inode(name, dentry, 0);
 790        if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 791                return -EEXIST;
 792        if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 793                return -EINVAL;
 794        acc = oflag2acc[oflag & O_ACCMODE];
 795        return inode_permission(d_inode(dentry), acc);
 796}
 797
 798static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 799                      struct mq_attr *attr)
 800{
 801        struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 802        struct dentry *root = mnt->mnt_root;
 803        struct filename *name;
 804        struct path path;
 805        int fd, error;
 806        int ro;
 807
 808        audit_mq_open(oflag, mode, attr);
 809
 810        if (IS_ERR(name = getname(u_name)))
 811                return PTR_ERR(name);
 812
 813        fd = get_unused_fd_flags(O_CLOEXEC);
 814        if (fd < 0)
 815                goto out_putname;
 816
 817        ro = mnt_want_write(mnt);       /* we'll drop it in any case */
 818        inode_lock(d_inode(root));
 819        path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 820        if (IS_ERR(path.dentry)) {
 821                error = PTR_ERR(path.dentry);
 822                goto out_putfd;
 823        }
 824        path.mnt = mntget(mnt);
 825        error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 826        if (!error) {
 827                struct file *file = dentry_open(&path, oflag, current_cred());
 828                if (!IS_ERR(file))
 829                        fd_install(fd, file);
 830                else
 831                        error = PTR_ERR(file);
 832        }
 833        path_put(&path);
 834out_putfd:
 835        if (error) {
 836                put_unused_fd(fd);
 837                fd = error;
 838        }
 839        inode_unlock(d_inode(root));
 840        if (!ro)
 841                mnt_drop_write(mnt);
 842out_putname:
 843        putname(name);
 844        return fd;
 845}
 846
 847SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 848                struct mq_attr __user *, u_attr)
 849{
 850        struct mq_attr attr;
 851        if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 852                return -EFAULT;
 853
 854        return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 855}
 856
 857SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 858{
 859        int err;
 860        struct filename *name;
 861        struct dentry *dentry;
 862        struct inode *inode = NULL;
 863        struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 864        struct vfsmount *mnt = ipc_ns->mq_mnt;
 865
 866        name = getname(u_name);
 867        if (IS_ERR(name))
 868                return PTR_ERR(name);
 869
 870        audit_inode_parent_hidden(name, mnt->mnt_root);
 871        err = mnt_want_write(mnt);
 872        if (err)
 873                goto out_name;
 874        inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 875        dentry = lookup_one_len(name->name, mnt->mnt_root,
 876                                strlen(name->name));
 877        if (IS_ERR(dentry)) {
 878                err = PTR_ERR(dentry);
 879                goto out_unlock;
 880        }
 881
 882        inode = d_inode(dentry);
 883        if (!inode) {
 884                err = -ENOENT;
 885        } else {
 886                ihold(inode);
 887                err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 888        }
 889        dput(dentry);
 890
 891out_unlock:
 892        inode_unlock(d_inode(mnt->mnt_root));
 893        if (inode)
 894                iput(inode);
 895        mnt_drop_write(mnt);
 896out_name:
 897        putname(name);
 898
 899        return err;
 900}
 901
 902/* Pipelined send and receive functions.
 903 *
 904 * If a receiver finds no waiting message, then it registers itself in the
 905 * list of waiting receivers. A sender checks that list before adding the new
 906 * message into the message array. If there is a waiting receiver, then it
 907 * bypasses the message array and directly hands the message over to the
 908 * receiver. The receiver accepts the message and returns without grabbing the
 909 * queue spinlock:
 910 *
 911 * - Set pointer to message.
 912 * - Queue the receiver task for later wakeup (without the info->lock).
 913 * - Update its state to STATE_READY. Now the receiver can continue.
 914 * - Wake up the process after the lock is dropped. Should the process wake up
 915 *   before this wakeup (due to a timeout or a signal) it will either see
 916 *   STATE_READY and continue or acquire the lock to check the state again.
 917 *
 918 * The same algorithm is used for senders.
 919 */
 920
 921/* pipelined_send() - send a message directly to the task waiting in
 922 * sys_mq_timedreceive() (without inserting message into a queue).
 923 */
 924static inline void pipelined_send(struct wake_q_head *wake_q,
 925                                  struct mqueue_inode_info *info,
 926                                  struct msg_msg *message,
 927                                  struct ext_wait_queue *receiver)
 928{
 929        receiver->msg = message;
 930        list_del(&receiver->list);
 931        wake_q_add(wake_q, receiver->task);
 932        /*
 933         * Rely on the implicit cmpxchg barrier from wake_q_add such
 934         * that we can ensure that updating receiver->state is the last
 935         * write operation: As once set, the receiver can continue,
 936         * and if we don't have the reference count from the wake_q,
 937         * yet, at that point we can later have a use-after-free
 938         * condition and bogus wakeup.
 939         */
 940        receiver->state = STATE_READY;
 941}
 942
 943/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 944 * gets its message and put to the queue (we have one free place for sure). */
 945static inline void pipelined_receive(struct wake_q_head *wake_q,
 946                                     struct mqueue_inode_info *info)
 947{
 948        struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 949
 950        if (!sender) {
 951                /* for poll */
 952                wake_up_interruptible(&info->wait_q);
 953                return;
 954        }
 955        if (msg_insert(sender->msg, info))
 956                return;
 957
 958        list_del(&sender->list);
 959        wake_q_add(wake_q, sender->task);
 960        sender->state = STATE_READY;
 961}
 962
 963static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
 964                size_t msg_len, unsigned int msg_prio,
 965                struct timespec64 *ts)
 966{
 967        struct fd f;
 968        struct inode *inode;
 969        struct ext_wait_queue wait;
 970        struct ext_wait_queue *receiver;
 971        struct msg_msg *msg_ptr;
 972        struct mqueue_inode_info *info;
 973        ktime_t expires, *timeout = NULL;
 974        struct posix_msg_tree_node *new_leaf = NULL;
 975        int ret = 0;
 976        DEFINE_WAKE_Q(wake_q);
 977
 978        if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 979                return -EINVAL;
 980
 981        if (ts) {
 982                expires = timespec64_to_ktime(*ts);
 983                timeout = &expires;
 984        }
 985
 986        audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
 987
 988        f = fdget(mqdes);
 989        if (unlikely(!f.file)) {
 990                ret = -EBADF;
 991                goto out;
 992        }
 993
 994        inode = file_inode(f.file);
 995        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 996                ret = -EBADF;
 997                goto out_fput;
 998        }
 999        info = MQUEUE_I(inode);
1000        audit_file(f.file);
1001
1002        if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1003                ret = -EBADF;
1004                goto out_fput;
1005        }
1006
1007        if (unlikely(msg_len > info->attr.mq_msgsize)) {
1008                ret = -EMSGSIZE;
1009                goto out_fput;
1010        }
1011
1012        /* First try to allocate memory, before doing anything with
1013         * existing queues. */
1014        msg_ptr = load_msg(u_msg_ptr, msg_len);
1015        if (IS_ERR(msg_ptr)) {
1016                ret = PTR_ERR(msg_ptr);
1017                goto out_fput;
1018        }
1019        msg_ptr->m_ts = msg_len;
1020        msg_ptr->m_type = msg_prio;
1021
1022        /*
1023         * msg_insert really wants us to have a valid, spare node struct so
1024         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1025         * fall back to that if necessary.
1026         */
1027        if (!info->node_cache)
1028                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1029
1030        spin_lock(&info->lock);
1031
1032        if (!info->node_cache && new_leaf) {
1033                /* Save our speculative allocation into the cache */
1034                INIT_LIST_HEAD(&new_leaf->msg_list);
1035                info->node_cache = new_leaf;
1036                new_leaf = NULL;
1037        } else {
1038                kfree(new_leaf);
1039        }
1040
1041        if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1042                if (f.file->f_flags & O_NONBLOCK) {
1043                        ret = -EAGAIN;
1044                } else {
1045                        wait.task = current;
1046                        wait.msg = (void *) msg_ptr;
1047                        wait.state = STATE_NONE;
1048                        ret = wq_sleep(info, SEND, timeout, &wait);
1049                        /*
1050                         * wq_sleep must be called with info->lock held, and
1051                         * returns with the lock released
1052                         */
1053                        goto out_free;
1054                }
1055        } else {
1056                receiver = wq_get_first_waiter(info, RECV);
1057                if (receiver) {
1058                        pipelined_send(&wake_q, info, msg_ptr, receiver);
1059                } else {
1060                        /* adds message to the queue */
1061                        ret = msg_insert(msg_ptr, info);
1062                        if (ret)
1063                                goto out_unlock;
1064                        __do_notify(info);
1065                }
1066                inode->i_atime = inode->i_mtime = inode->i_ctime =
1067                                current_time(inode);
1068        }
1069out_unlock:
1070        spin_unlock(&info->lock);
1071        wake_up_q(&wake_q);
1072out_free:
1073        if (ret)
1074                free_msg(msg_ptr);
1075out_fput:
1076        fdput(f);
1077out:
1078        return ret;
1079}
1080
1081static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1082                size_t msg_len, unsigned int __user *u_msg_prio,
1083                struct timespec64 *ts)
1084{
1085        ssize_t ret;
1086        struct msg_msg *msg_ptr;
1087        struct fd f;
1088        struct inode *inode;
1089        struct mqueue_inode_info *info;
1090        struct ext_wait_queue wait;
1091        ktime_t expires, *timeout = NULL;
1092        struct posix_msg_tree_node *new_leaf = NULL;
1093
1094        if (ts) {
1095                expires = timespec64_to_ktime(*ts);
1096                timeout = &expires;
1097        }
1098
1099        audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1100
1101        f = fdget(mqdes);
1102        if (unlikely(!f.file)) {
1103                ret = -EBADF;
1104                goto out;
1105        }
1106
1107        inode = file_inode(f.file);
1108        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1109                ret = -EBADF;
1110                goto out_fput;
1111        }
1112        info = MQUEUE_I(inode);
1113        audit_file(f.file);
1114
1115        if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1116                ret = -EBADF;
1117                goto out_fput;
1118        }
1119
1120        /* checks if buffer is big enough */
1121        if (unlikely(msg_len < info->attr.mq_msgsize)) {
1122                ret = -EMSGSIZE;
1123                goto out_fput;
1124        }
1125
1126        /*
1127         * msg_insert really wants us to have a valid, spare node struct so
1128         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1129         * fall back to that if necessary.
1130         */
1131        if (!info->node_cache)
1132                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1133
1134        spin_lock(&info->lock);
1135
1136        if (!info->node_cache && new_leaf) {
1137                /* Save our speculative allocation into the cache */
1138                INIT_LIST_HEAD(&new_leaf->msg_list);
1139                info->node_cache = new_leaf;
1140        } else {
1141                kfree(new_leaf);
1142        }
1143
1144        if (info->attr.mq_curmsgs == 0) {
1145                if (f.file->f_flags & O_NONBLOCK) {
1146                        spin_unlock(&info->lock);
1147                        ret = -EAGAIN;
1148                } else {
1149                        wait.task = current;
1150                        wait.state = STATE_NONE;
1151                        ret = wq_sleep(info, RECV, timeout, &wait);
1152                        msg_ptr = wait.msg;
1153                }
1154        } else {
1155                DEFINE_WAKE_Q(wake_q);
1156
1157                msg_ptr = msg_get(info);
1158
1159                inode->i_atime = inode->i_mtime = inode->i_ctime =
1160                                current_time(inode);
1161
1162                /* There is now free space in queue. */
1163                pipelined_receive(&wake_q, info);
1164                spin_unlock(&info->lock);
1165                wake_up_q(&wake_q);
1166                ret = 0;
1167        }
1168        if (ret == 0) {
1169                ret = msg_ptr->m_ts;
1170
1171                if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1172                        store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1173                        ret = -EFAULT;
1174                }
1175                free_msg(msg_ptr);
1176        }
1177out_fput:
1178        fdput(f);
1179out:
1180        return ret;
1181}
1182
1183SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1184                size_t, msg_len, unsigned int, msg_prio,
1185                const struct __kernel_timespec __user *, u_abs_timeout)
1186{
1187        struct timespec64 ts, *p = NULL;
1188        if (u_abs_timeout) {
1189                int res = prepare_timeout(u_abs_timeout, &ts);
1190                if (res)
1191                        return res;
1192                p = &ts;
1193        }
1194        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1195}
1196
1197SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1198                size_t, msg_len, unsigned int __user *, u_msg_prio,
1199                const struct __kernel_timespec __user *, u_abs_timeout)
1200{
1201        struct timespec64 ts, *p = NULL;
1202        if (u_abs_timeout) {
1203                int res = prepare_timeout(u_abs_timeout, &ts);
1204                if (res)
1205                        return res;
1206                p = &ts;
1207        }
1208        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1209}
1210
1211/*
1212 * Notes: the case when user wants us to deregister (with NULL as pointer)
1213 * and he isn't currently owner of notification, will be silently discarded.
1214 * It isn't explicitly defined in the POSIX.
1215 */
1216static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1217{
1218        int ret;
1219        struct fd f;
1220        struct sock *sock;
1221        struct inode *inode;
1222        struct mqueue_inode_info *info;
1223        struct sk_buff *nc;
1224
1225        audit_mq_notify(mqdes, notification);
1226
1227        nc = NULL;
1228        sock = NULL;
1229        if (notification != NULL) {
1230                if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1231                             notification->sigev_notify != SIGEV_SIGNAL &&
1232                             notification->sigev_notify != SIGEV_THREAD))
1233                        return -EINVAL;
1234                if (notification->sigev_notify == SIGEV_SIGNAL &&
1235                        !valid_signal(notification->sigev_signo)) {
1236                        return -EINVAL;
1237                }
1238                if (notification->sigev_notify == SIGEV_THREAD) {
1239                        long timeo;
1240
1241                        /* create the notify skb */
1242                        nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1243                        if (!nc)
1244                                return -ENOMEM;
1245
1246                        if (copy_from_user(nc->data,
1247                                        notification->sigev_value.sival_ptr,
1248                                        NOTIFY_COOKIE_LEN)) {
1249                                ret = -EFAULT;
1250                                goto free_skb;
1251                        }
1252
1253                        /* TODO: add a header? */
1254                        skb_put(nc, NOTIFY_COOKIE_LEN);
1255                        /* and attach it to the socket */
1256retry:
1257                        f = fdget(notification->sigev_signo);
1258                        if (!f.file) {
1259                                ret = -EBADF;
1260                                goto out;
1261                        }
1262                        sock = netlink_getsockbyfilp(f.file);
1263                        fdput(f);
1264                        if (IS_ERR(sock)) {
1265                                ret = PTR_ERR(sock);
1266                                goto free_skb;
1267                        }
1268
1269                        timeo = MAX_SCHEDULE_TIMEOUT;
1270                        ret = netlink_attachskb(sock, nc, &timeo, NULL);
1271                        if (ret == 1) {
1272                                sock = NULL;
1273                                goto retry;
1274                        }
1275                        if (ret)
1276                                return ret;
1277                }
1278        }
1279
1280        f = fdget(mqdes);
1281        if (!f.file) {
1282                ret = -EBADF;
1283                goto out;
1284        }
1285
1286        inode = file_inode(f.file);
1287        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1288                ret = -EBADF;
1289                goto out_fput;
1290        }
1291        info = MQUEUE_I(inode);
1292
1293        ret = 0;
1294        spin_lock(&info->lock);
1295        if (notification == NULL) {
1296                if (info->notify_owner == task_tgid(current)) {
1297                        remove_notification(info);
1298                        inode->i_atime = inode->i_ctime = current_time(inode);
1299                }
1300        } else if (info->notify_owner != NULL) {
1301                ret = -EBUSY;
1302        } else {
1303                switch (notification->sigev_notify) {
1304                case SIGEV_NONE:
1305                        info->notify.sigev_notify = SIGEV_NONE;
1306                        break;
1307                case SIGEV_THREAD:
1308                        info->notify_sock = sock;
1309                        info->notify_cookie = nc;
1310                        sock = NULL;
1311                        nc = NULL;
1312                        info->notify.sigev_notify = SIGEV_THREAD;
1313                        break;
1314                case SIGEV_SIGNAL:
1315                        info->notify.sigev_signo = notification->sigev_signo;
1316                        info->notify.sigev_value = notification->sigev_value;
1317                        info->notify.sigev_notify = SIGEV_SIGNAL;
1318                        break;
1319                }
1320
1321                info->notify_owner = get_pid(task_tgid(current));
1322                info->notify_user_ns = get_user_ns(current_user_ns());
1323                inode->i_atime = inode->i_ctime = current_time(inode);
1324        }
1325        spin_unlock(&info->lock);
1326out_fput:
1327        fdput(f);
1328out:
1329        if (sock)
1330                netlink_detachskb(sock, nc);
1331        else
1332free_skb:
1333                dev_kfree_skb(nc);
1334
1335        return ret;
1336}
1337
1338SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1339                const struct sigevent __user *, u_notification)
1340{
1341        struct sigevent n, *p = NULL;
1342        if (u_notification) {
1343                if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1344                        return -EFAULT;
1345                p = &n;
1346        }
1347        return do_mq_notify(mqdes, p);
1348}
1349
1350static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1351{
1352        struct fd f;
1353        struct inode *inode;
1354        struct mqueue_inode_info *info;
1355
1356        if (new && (new->mq_flags & (~O_NONBLOCK)))
1357                return -EINVAL;
1358
1359        f = fdget(mqdes);
1360        if (!f.file)
1361                return -EBADF;
1362
1363        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1364                fdput(f);
1365                return -EBADF;
1366        }
1367
1368        inode = file_inode(f.file);
1369        info = MQUEUE_I(inode);
1370
1371        spin_lock(&info->lock);
1372
1373        if (old) {
1374                *old = info->attr;
1375                old->mq_flags = f.file->f_flags & O_NONBLOCK;
1376        }
1377        if (new) {
1378                audit_mq_getsetattr(mqdes, new);
1379                spin_lock(&f.file->f_lock);
1380                if (new->mq_flags & O_NONBLOCK)
1381                        f.file->f_flags |= O_NONBLOCK;
1382                else
1383                        f.file->f_flags &= ~O_NONBLOCK;
1384                spin_unlock(&f.file->f_lock);
1385
1386                inode->i_atime = inode->i_ctime = current_time(inode);
1387        }
1388
1389        spin_unlock(&info->lock);
1390        fdput(f);
1391        return 0;
1392}
1393
1394SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1395                const struct mq_attr __user *, u_mqstat,
1396                struct mq_attr __user *, u_omqstat)
1397{
1398        int ret;
1399        struct mq_attr mqstat, omqstat;
1400        struct mq_attr *new = NULL, *old = NULL;
1401
1402        if (u_mqstat) {
1403                new = &mqstat;
1404                if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1405                        return -EFAULT;
1406        }
1407        if (u_omqstat)
1408                old = &omqstat;
1409
1410        ret = do_mq_getsetattr(mqdes, new, old);
1411        if (ret || !old)
1412                return ret;
1413
1414        if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1415                return -EFAULT;
1416        return 0;
1417}
1418
1419#ifdef CONFIG_COMPAT
1420
1421struct compat_mq_attr {
1422        compat_long_t mq_flags;      /* message queue flags                  */
1423        compat_long_t mq_maxmsg;     /* maximum number of messages           */
1424        compat_long_t mq_msgsize;    /* maximum message size                 */
1425        compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1426        compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1427};
1428
1429static inline int get_compat_mq_attr(struct mq_attr *attr,
1430                        const struct compat_mq_attr __user *uattr)
1431{
1432        struct compat_mq_attr v;
1433
1434        if (copy_from_user(&v, uattr, sizeof(*uattr)))
1435                return -EFAULT;
1436
1437        memset(attr, 0, sizeof(*attr));
1438        attr->mq_flags = v.mq_flags;
1439        attr->mq_maxmsg = v.mq_maxmsg;
1440        attr->mq_msgsize = v.mq_msgsize;
1441        attr->mq_curmsgs = v.mq_curmsgs;
1442        return 0;
1443}
1444
1445static inline int put_compat_mq_attr(const struct mq_attr *attr,
1446                        struct compat_mq_attr __user *uattr)
1447{
1448        struct compat_mq_attr v;
1449
1450        memset(&v, 0, sizeof(v));
1451        v.mq_flags = attr->mq_flags;
1452        v.mq_maxmsg = attr->mq_maxmsg;
1453        v.mq_msgsize = attr->mq_msgsize;
1454        v.mq_curmsgs = attr->mq_curmsgs;
1455        if (copy_to_user(uattr, &v, sizeof(*uattr)))
1456                return -EFAULT;
1457        return 0;
1458}
1459
1460COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1461                       int, oflag, compat_mode_t, mode,
1462                       struct compat_mq_attr __user *, u_attr)
1463{
1464        struct mq_attr attr, *p = NULL;
1465        if (u_attr && oflag & O_CREAT) {
1466                p = &attr;
1467                if (get_compat_mq_attr(&attr, u_attr))
1468                        return -EFAULT;
1469        }
1470        return do_mq_open(u_name, oflag, mode, p);
1471}
1472
1473COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1474                       const struct compat_sigevent __user *, u_notification)
1475{
1476        struct sigevent n, *p = NULL;
1477        if (u_notification) {
1478                if (get_compat_sigevent(&n, u_notification))
1479                        return -EFAULT;
1480                if (n.sigev_notify == SIGEV_THREAD)
1481                        n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1482                p = &n;
1483        }
1484        return do_mq_notify(mqdes, p);
1485}
1486
1487COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1488                       const struct compat_mq_attr __user *, u_mqstat,
1489                       struct compat_mq_attr __user *, u_omqstat)
1490{
1491        int ret;
1492        struct mq_attr mqstat, omqstat;
1493        struct mq_attr *new = NULL, *old = NULL;
1494
1495        if (u_mqstat) {
1496                new = &mqstat;
1497                if (get_compat_mq_attr(new, u_mqstat))
1498                        return -EFAULT;
1499        }
1500        if (u_omqstat)
1501                old = &omqstat;
1502
1503        ret = do_mq_getsetattr(mqdes, new, old);
1504        if (ret || !old)
1505                return ret;
1506
1507        if (put_compat_mq_attr(old, u_omqstat))
1508                return -EFAULT;
1509        return 0;
1510}
1511#endif
1512
1513#ifdef CONFIG_COMPAT_32BIT_TIME
1514static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1515                                   struct timespec64 *ts)
1516{
1517        if (get_old_timespec32(ts, p))
1518                return -EFAULT;
1519        if (!timespec64_valid(ts))
1520                return -EINVAL;
1521        return 0;
1522}
1523
1524SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1525                const char __user *, u_msg_ptr,
1526                unsigned int, msg_len, unsigned int, msg_prio,
1527                const struct old_timespec32 __user *, u_abs_timeout)
1528{
1529        struct timespec64 ts, *p = NULL;
1530        if (u_abs_timeout) {
1531                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1532                if (res)
1533                        return res;
1534                p = &ts;
1535        }
1536        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1537}
1538
1539SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1540                char __user *, u_msg_ptr,
1541                unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1542                const struct old_timespec32 __user *, u_abs_timeout)
1543{
1544        struct timespec64 ts, *p = NULL;
1545        if (u_abs_timeout) {
1546                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1547                if (res)
1548                        return res;
1549                p = &ts;
1550        }
1551        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1552}
1553#endif
1554
1555static const struct inode_operations mqueue_dir_inode_operations = {
1556        .lookup = simple_lookup,
1557        .create = mqueue_create,
1558        .unlink = mqueue_unlink,
1559};
1560
1561static const struct file_operations mqueue_file_operations = {
1562        .flush = mqueue_flush_file,
1563        .poll = mqueue_poll_file,
1564        .read = mqueue_read_file,
1565        .llseek = default_llseek,
1566};
1567
1568static const struct super_operations mqueue_super_ops = {
1569        .alloc_inode = mqueue_alloc_inode,
1570        .free_inode = mqueue_free_inode,
1571        .evict_inode = mqueue_evict_inode,
1572        .statfs = simple_statfs,
1573};
1574
1575static const struct fs_context_operations mqueue_fs_context_ops = {
1576        .free           = mqueue_fs_context_free,
1577        .get_tree       = mqueue_get_tree,
1578};
1579
1580static struct file_system_type mqueue_fs_type = {
1581        .name                   = "mqueue",
1582        .init_fs_context        = mqueue_init_fs_context,
1583        .kill_sb                = kill_litter_super,
1584        .fs_flags               = FS_USERNS_MOUNT,
1585};
1586
1587int mq_init_ns(struct ipc_namespace *ns)
1588{
1589        struct vfsmount *m;
1590
1591        ns->mq_queues_count  = 0;
1592        ns->mq_queues_max    = DFLT_QUEUESMAX;
1593        ns->mq_msg_max       = DFLT_MSGMAX;
1594        ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1595        ns->mq_msg_default   = DFLT_MSG;
1596        ns->mq_msgsize_default  = DFLT_MSGSIZE;
1597
1598        m = mq_create_mount(ns);
1599        if (IS_ERR(m))
1600                return PTR_ERR(m);
1601        ns->mq_mnt = m;
1602        return 0;
1603}
1604
1605void mq_clear_sbinfo(struct ipc_namespace *ns)
1606{
1607        ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1608}
1609
1610void mq_put_mnt(struct ipc_namespace *ns)
1611{
1612        kern_unmount(ns->mq_mnt);
1613}
1614
1615static int __init init_mqueue_fs(void)
1616{
1617        int error;
1618
1619        mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1620                                sizeof(struct mqueue_inode_info), 0,
1621                                SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1622        if (mqueue_inode_cachep == NULL)
1623                return -ENOMEM;
1624
1625        /* ignore failures - they are not fatal */
1626        mq_sysctl_table = mq_register_sysctl_table();
1627
1628        error = register_filesystem(&mqueue_fs_type);
1629        if (error)
1630                goto out_sysctl;
1631
1632        spin_lock_init(&mq_lock);
1633
1634        error = mq_init_ns(&init_ipc_ns);
1635        if (error)
1636                goto out_filesystem;
1637
1638        return 0;
1639
1640out_filesystem:
1641        unregister_filesystem(&mqueue_fs_type);
1642out_sysctl:
1643        if (mq_sysctl_table)
1644                unregister_sysctl_table(mq_sysctl_table);
1645        kmem_cache_destroy(mqueue_inode_cachep);
1646        return error;
1647}
1648
1649device_initcall(init_mqueue_fs);
1650