linux/kernel/cpu.c
<<
>>
Prefs
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/sched/isolation.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/smt.h>
  15#include <linux/unistd.h>
  16#include <linux/cpu.h>
  17#include <linux/oom.h>
  18#include <linux/rcupdate.h>
  19#include <linux/export.h>
  20#include <linux/bug.h>
  21#include <linux/kthread.h>
  22#include <linux/stop_machine.h>
  23#include <linux/mutex.h>
  24#include <linux/gfp.h>
  25#include <linux/suspend.h>
  26#include <linux/lockdep.h>
  27#include <linux/tick.h>
  28#include <linux/irq.h>
  29#include <linux/nmi.h>
  30#include <linux/smpboot.h>
  31#include <linux/relay.h>
  32#include <linux/slab.h>
  33#include <linux/percpu-rwsem.h>
  34
  35#include <trace/events/power.h>
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/cpuhp.h>
  38
  39#include "smpboot.h"
  40
  41/**
  42 * cpuhp_cpu_state - Per cpu hotplug state storage
  43 * @state:      The current cpu state
  44 * @target:     The target state
  45 * @thread:     Pointer to the hotplug thread
  46 * @should_run: Thread should execute
  47 * @rollback:   Perform a rollback
  48 * @single:     Single callback invocation
  49 * @bringup:    Single callback bringup or teardown selector
  50 * @cb_state:   The state for a single callback (install/uninstall)
  51 * @result:     Result of the operation
  52 * @done_up:    Signal completion to the issuer of the task for cpu-up
  53 * @done_down:  Signal completion to the issuer of the task for cpu-down
  54 */
  55struct cpuhp_cpu_state {
  56        enum cpuhp_state        state;
  57        enum cpuhp_state        target;
  58        enum cpuhp_state        fail;
  59#ifdef CONFIG_SMP
  60        struct task_struct      *thread;
  61        bool                    should_run;
  62        bool                    rollback;
  63        bool                    single;
  64        bool                    bringup;
  65        struct hlist_node       *node;
  66        struct hlist_node       *last;
  67        enum cpuhp_state        cb_state;
  68        int                     result;
  69        struct completion       done_up;
  70        struct completion       done_down;
  71#endif
  72};
  73
  74static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  75        .fail = CPUHP_INVALID,
  76};
  77
  78#ifdef CONFIG_SMP
  79cpumask_t cpus_booted_once_mask;
  80#endif
  81
  82#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  83static struct lockdep_map cpuhp_state_up_map =
  84        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  85static struct lockdep_map cpuhp_state_down_map =
  86        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  87
  88
  89static inline void cpuhp_lock_acquire(bool bringup)
  90{
  91        lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  92}
  93
  94static inline void cpuhp_lock_release(bool bringup)
  95{
  96        lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  97}
  98#else
  99
 100static inline void cpuhp_lock_acquire(bool bringup) { }
 101static inline void cpuhp_lock_release(bool bringup) { }
 102
 103#endif
 104
 105/**
 106 * cpuhp_step - Hotplug state machine step
 107 * @name:       Name of the step
 108 * @startup:    Startup function of the step
 109 * @teardown:   Teardown function of the step
 110 * @cant_stop:  Bringup/teardown can't be stopped at this step
 111 */
 112struct cpuhp_step {
 113        const char              *name;
 114        union {
 115                int             (*single)(unsigned int cpu);
 116                int             (*multi)(unsigned int cpu,
 117                                         struct hlist_node *node);
 118        } startup;
 119        union {
 120                int             (*single)(unsigned int cpu);
 121                int             (*multi)(unsigned int cpu,
 122                                         struct hlist_node *node);
 123        } teardown;
 124        struct hlist_head       list;
 125        bool                    cant_stop;
 126        bool                    multi_instance;
 127};
 128
 129static DEFINE_MUTEX(cpuhp_state_mutex);
 130static struct cpuhp_step cpuhp_hp_states[];
 131
 132static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 133{
 134        return cpuhp_hp_states + state;
 135}
 136
 137/**
 138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 139 * @cpu:        The cpu for which the callback should be invoked
 140 * @state:      The state to do callbacks for
 141 * @bringup:    True if the bringup callback should be invoked
 142 * @node:       For multi-instance, do a single entry callback for install/remove
 143 * @lastp:      For multi-instance rollback, remember how far we got
 144 *
 145 * Called from cpu hotplug and from the state register machinery.
 146 */
 147static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 148                                 bool bringup, struct hlist_node *node,
 149                                 struct hlist_node **lastp)
 150{
 151        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 152        struct cpuhp_step *step = cpuhp_get_step(state);
 153        int (*cbm)(unsigned int cpu, struct hlist_node *node);
 154        int (*cb)(unsigned int cpu);
 155        int ret, cnt;
 156
 157        if (st->fail == state) {
 158                st->fail = CPUHP_INVALID;
 159
 160                if (!(bringup ? step->startup.single : step->teardown.single))
 161                        return 0;
 162
 163                return -EAGAIN;
 164        }
 165
 166        if (!step->multi_instance) {
 167                WARN_ON_ONCE(lastp && *lastp);
 168                cb = bringup ? step->startup.single : step->teardown.single;
 169                if (!cb)
 170                        return 0;
 171                trace_cpuhp_enter(cpu, st->target, state, cb);
 172                ret = cb(cpu);
 173                trace_cpuhp_exit(cpu, st->state, state, ret);
 174                return ret;
 175        }
 176        cbm = bringup ? step->startup.multi : step->teardown.multi;
 177        if (!cbm)
 178                return 0;
 179
 180        /* Single invocation for instance add/remove */
 181        if (node) {
 182                WARN_ON_ONCE(lastp && *lastp);
 183                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 184                ret = cbm(cpu, node);
 185                trace_cpuhp_exit(cpu, st->state, state, ret);
 186                return ret;
 187        }
 188
 189        /* State transition. Invoke on all instances */
 190        cnt = 0;
 191        hlist_for_each(node, &step->list) {
 192                if (lastp && node == *lastp)
 193                        break;
 194
 195                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 196                ret = cbm(cpu, node);
 197                trace_cpuhp_exit(cpu, st->state, state, ret);
 198                if (ret) {
 199                        if (!lastp)
 200                                goto err;
 201
 202                        *lastp = node;
 203                        return ret;
 204                }
 205                cnt++;
 206        }
 207        if (lastp)
 208                *lastp = NULL;
 209        return 0;
 210err:
 211        /* Rollback the instances if one failed */
 212        cbm = !bringup ? step->startup.multi : step->teardown.multi;
 213        if (!cbm)
 214                return ret;
 215
 216        hlist_for_each(node, &step->list) {
 217                if (!cnt--)
 218                        break;
 219
 220                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 221                ret = cbm(cpu, node);
 222                trace_cpuhp_exit(cpu, st->state, state, ret);
 223                /*
 224                 * Rollback must not fail,
 225                 */
 226                WARN_ON_ONCE(ret);
 227        }
 228        return ret;
 229}
 230
 231#ifdef CONFIG_SMP
 232static bool cpuhp_is_ap_state(enum cpuhp_state state)
 233{
 234        /*
 235         * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 236         * purposes as that state is handled explicitly in cpu_down.
 237         */
 238        return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 239}
 240
 241static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 242{
 243        struct completion *done = bringup ? &st->done_up : &st->done_down;
 244        wait_for_completion(done);
 245}
 246
 247static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 248{
 249        struct completion *done = bringup ? &st->done_up : &st->done_down;
 250        complete(done);
 251}
 252
 253/*
 254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 255 */
 256static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 257{
 258        return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 259}
 260
 261/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 262static DEFINE_MUTEX(cpu_add_remove_lock);
 263bool cpuhp_tasks_frozen;
 264EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 265
 266/*
 267 * The following two APIs (cpu_maps_update_begin/done) must be used when
 268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 269 */
 270void cpu_maps_update_begin(void)
 271{
 272        mutex_lock(&cpu_add_remove_lock);
 273}
 274
 275void cpu_maps_update_done(void)
 276{
 277        mutex_unlock(&cpu_add_remove_lock);
 278}
 279
 280/*
 281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 282 * Should always be manipulated under cpu_add_remove_lock
 283 */
 284static int cpu_hotplug_disabled;
 285
 286#ifdef CONFIG_HOTPLUG_CPU
 287
 288DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 289
 290void cpus_read_lock(void)
 291{
 292        percpu_down_read(&cpu_hotplug_lock);
 293}
 294EXPORT_SYMBOL_GPL(cpus_read_lock);
 295
 296int cpus_read_trylock(void)
 297{
 298        return percpu_down_read_trylock(&cpu_hotplug_lock);
 299}
 300EXPORT_SYMBOL_GPL(cpus_read_trylock);
 301
 302void cpus_read_unlock(void)
 303{
 304        percpu_up_read(&cpu_hotplug_lock);
 305}
 306EXPORT_SYMBOL_GPL(cpus_read_unlock);
 307
 308void cpus_write_lock(void)
 309{
 310        percpu_down_write(&cpu_hotplug_lock);
 311}
 312
 313void cpus_write_unlock(void)
 314{
 315        percpu_up_write(&cpu_hotplug_lock);
 316}
 317
 318void lockdep_assert_cpus_held(void)
 319{
 320        /*
 321         * We can't have hotplug operations before userspace starts running,
 322         * and some init codepaths will knowingly not take the hotplug lock.
 323         * This is all valid, so mute lockdep until it makes sense to report
 324         * unheld locks.
 325         */
 326        if (system_state < SYSTEM_RUNNING)
 327                return;
 328
 329        percpu_rwsem_assert_held(&cpu_hotplug_lock);
 330}
 331
 332static void lockdep_acquire_cpus_lock(void)
 333{
 334        rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
 335}
 336
 337static void lockdep_release_cpus_lock(void)
 338{
 339        rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
 340}
 341
 342/*
 343 * Wait for currently running CPU hotplug operations to complete (if any) and
 344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 346 * hotplug path before performing hotplug operations. So acquiring that lock
 347 * guarantees mutual exclusion from any currently running hotplug operations.
 348 */
 349void cpu_hotplug_disable(void)
 350{
 351        cpu_maps_update_begin();
 352        cpu_hotplug_disabled++;
 353        cpu_maps_update_done();
 354}
 355EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 356
 357static void __cpu_hotplug_enable(void)
 358{
 359        if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 360                return;
 361        cpu_hotplug_disabled--;
 362}
 363
 364void cpu_hotplug_enable(void)
 365{
 366        cpu_maps_update_begin();
 367        __cpu_hotplug_enable();
 368        cpu_maps_update_done();
 369}
 370EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 371
 372#else
 373
 374static void lockdep_acquire_cpus_lock(void)
 375{
 376}
 377
 378static void lockdep_release_cpus_lock(void)
 379{
 380}
 381
 382#endif  /* CONFIG_HOTPLUG_CPU */
 383
 384/*
 385 * Architectures that need SMT-specific errata handling during SMT hotplug
 386 * should override this.
 387 */
 388void __weak arch_smt_update(void) { }
 389
 390#ifdef CONFIG_HOTPLUG_SMT
 391enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 392
 393void __init cpu_smt_disable(bool force)
 394{
 395        if (!cpu_smt_possible())
 396                return;
 397
 398        if (force) {
 399                pr_info("SMT: Force disabled\n");
 400                cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 401        } else {
 402                pr_info("SMT: disabled\n");
 403                cpu_smt_control = CPU_SMT_DISABLED;
 404        }
 405}
 406
 407/*
 408 * The decision whether SMT is supported can only be done after the full
 409 * CPU identification. Called from architecture code.
 410 */
 411void __init cpu_smt_check_topology(void)
 412{
 413        if (!topology_smt_supported())
 414                cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 415}
 416
 417static int __init smt_cmdline_disable(char *str)
 418{
 419        cpu_smt_disable(str && !strcmp(str, "force"));
 420        return 0;
 421}
 422early_param("nosmt", smt_cmdline_disable);
 423
 424static inline bool cpu_smt_allowed(unsigned int cpu)
 425{
 426        if (cpu_smt_control == CPU_SMT_ENABLED)
 427                return true;
 428
 429        if (topology_is_primary_thread(cpu))
 430                return true;
 431
 432        /*
 433         * On x86 it's required to boot all logical CPUs at least once so
 434         * that the init code can get a chance to set CR4.MCE on each
 435         * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
 436         * core will shutdown the machine.
 437         */
 438        return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 439}
 440
 441/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
 442bool cpu_smt_possible(void)
 443{
 444        return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 445                cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 446}
 447EXPORT_SYMBOL_GPL(cpu_smt_possible);
 448#else
 449static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 450#endif
 451
 452static inline enum cpuhp_state
 453cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 454{
 455        enum cpuhp_state prev_state = st->state;
 456
 457        st->rollback = false;
 458        st->last = NULL;
 459
 460        st->target = target;
 461        st->single = false;
 462        st->bringup = st->state < target;
 463
 464        return prev_state;
 465}
 466
 467static inline void
 468cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 469{
 470        st->rollback = true;
 471
 472        /*
 473         * If we have st->last we need to undo partial multi_instance of this
 474         * state first. Otherwise start undo at the previous state.
 475         */
 476        if (!st->last) {
 477                if (st->bringup)
 478                        st->state--;
 479                else
 480                        st->state++;
 481        }
 482
 483        st->target = prev_state;
 484        st->bringup = !st->bringup;
 485}
 486
 487/* Regular hotplug invocation of the AP hotplug thread */
 488static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 489{
 490        if (!st->single && st->state == st->target)
 491                return;
 492
 493        st->result = 0;
 494        /*
 495         * Make sure the above stores are visible before should_run becomes
 496         * true. Paired with the mb() above in cpuhp_thread_fun()
 497         */
 498        smp_mb();
 499        st->should_run = true;
 500        wake_up_process(st->thread);
 501        wait_for_ap_thread(st, st->bringup);
 502}
 503
 504static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 505{
 506        enum cpuhp_state prev_state;
 507        int ret;
 508
 509        prev_state = cpuhp_set_state(st, target);
 510        __cpuhp_kick_ap(st);
 511        if ((ret = st->result)) {
 512                cpuhp_reset_state(st, prev_state);
 513                __cpuhp_kick_ap(st);
 514        }
 515
 516        return ret;
 517}
 518
 519static int bringup_wait_for_ap(unsigned int cpu)
 520{
 521        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 522
 523        /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 524        wait_for_ap_thread(st, true);
 525        if (WARN_ON_ONCE((!cpu_online(cpu))))
 526                return -ECANCELED;
 527
 528        /* Unpark the stopper thread and the hotplug thread of the target cpu */
 529        stop_machine_unpark(cpu);
 530        kthread_unpark(st->thread);
 531
 532        /*
 533         * SMT soft disabling on X86 requires to bring the CPU out of the
 534         * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 535         * CPU marked itself as booted_once in notify_cpu_starting() so the
 536         * cpu_smt_allowed() check will now return false if this is not the
 537         * primary sibling.
 538         */
 539        if (!cpu_smt_allowed(cpu))
 540                return -ECANCELED;
 541
 542        if (st->target <= CPUHP_AP_ONLINE_IDLE)
 543                return 0;
 544
 545        return cpuhp_kick_ap(st, st->target);
 546}
 547
 548static int bringup_cpu(unsigned int cpu)
 549{
 550        struct task_struct *idle = idle_thread_get(cpu);
 551        int ret;
 552
 553        /*
 554         * Some architectures have to walk the irq descriptors to
 555         * setup the vector space for the cpu which comes online.
 556         * Prevent irq alloc/free across the bringup.
 557         */
 558        irq_lock_sparse();
 559
 560        /* Arch-specific enabling code. */
 561        ret = __cpu_up(cpu, idle);
 562        irq_unlock_sparse();
 563        if (ret)
 564                return ret;
 565        return bringup_wait_for_ap(cpu);
 566}
 567
 568/*
 569 * Hotplug state machine related functions
 570 */
 571
 572static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 573{
 574        for (st->state--; st->state > st->target; st->state--)
 575                cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 576}
 577
 578static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 579{
 580        if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 581                return true;
 582        /*
 583         * When CPU hotplug is disabled, then taking the CPU down is not
 584         * possible because takedown_cpu() and the architecture and
 585         * subsystem specific mechanisms are not available. So the CPU
 586         * which would be completely unplugged again needs to stay around
 587         * in the current state.
 588         */
 589        return st->state <= CPUHP_BRINGUP_CPU;
 590}
 591
 592static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 593                              enum cpuhp_state target)
 594{
 595        enum cpuhp_state prev_state = st->state;
 596        int ret = 0;
 597
 598        while (st->state < target) {
 599                st->state++;
 600                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 601                if (ret) {
 602                        if (can_rollback_cpu(st)) {
 603                                st->target = prev_state;
 604                                undo_cpu_up(cpu, st);
 605                        }
 606                        break;
 607                }
 608        }
 609        return ret;
 610}
 611
 612/*
 613 * The cpu hotplug threads manage the bringup and teardown of the cpus
 614 */
 615static void cpuhp_create(unsigned int cpu)
 616{
 617        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 618
 619        init_completion(&st->done_up);
 620        init_completion(&st->done_down);
 621}
 622
 623static int cpuhp_should_run(unsigned int cpu)
 624{
 625        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 626
 627        return st->should_run;
 628}
 629
 630/*
 631 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 632 * callbacks when a state gets [un]installed at runtime.
 633 *
 634 * Each invocation of this function by the smpboot thread does a single AP
 635 * state callback.
 636 *
 637 * It has 3 modes of operation:
 638 *  - single: runs st->cb_state
 639 *  - up:     runs ++st->state, while st->state < st->target
 640 *  - down:   runs st->state--, while st->state > st->target
 641 *
 642 * When complete or on error, should_run is cleared and the completion is fired.
 643 */
 644static void cpuhp_thread_fun(unsigned int cpu)
 645{
 646        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 647        bool bringup = st->bringup;
 648        enum cpuhp_state state;
 649
 650        if (WARN_ON_ONCE(!st->should_run))
 651                return;
 652
 653        /*
 654         * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 655         * that if we see ->should_run we also see the rest of the state.
 656         */
 657        smp_mb();
 658
 659        /*
 660         * The BP holds the hotplug lock, but we're now running on the AP,
 661         * ensure that anybody asserting the lock is held, will actually find
 662         * it so.
 663         */
 664        lockdep_acquire_cpus_lock();
 665        cpuhp_lock_acquire(bringup);
 666
 667        if (st->single) {
 668                state = st->cb_state;
 669                st->should_run = false;
 670        } else {
 671                if (bringup) {
 672                        st->state++;
 673                        state = st->state;
 674                        st->should_run = (st->state < st->target);
 675                        WARN_ON_ONCE(st->state > st->target);
 676                } else {
 677                        state = st->state;
 678                        st->state--;
 679                        st->should_run = (st->state > st->target);
 680                        WARN_ON_ONCE(st->state < st->target);
 681                }
 682        }
 683
 684        WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 685
 686        if (cpuhp_is_atomic_state(state)) {
 687                local_irq_disable();
 688                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 689                local_irq_enable();
 690
 691                /*
 692                 * STARTING/DYING must not fail!
 693                 */
 694                WARN_ON_ONCE(st->result);
 695        } else {
 696                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 697        }
 698
 699        if (st->result) {
 700                /*
 701                 * If we fail on a rollback, we're up a creek without no
 702                 * paddle, no way forward, no way back. We loose, thanks for
 703                 * playing.
 704                 */
 705                WARN_ON_ONCE(st->rollback);
 706                st->should_run = false;
 707        }
 708
 709        cpuhp_lock_release(bringup);
 710        lockdep_release_cpus_lock();
 711
 712        if (!st->should_run)
 713                complete_ap_thread(st, bringup);
 714}
 715
 716/* Invoke a single callback on a remote cpu */
 717static int
 718cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 719                         struct hlist_node *node)
 720{
 721        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 722        int ret;
 723
 724        if (!cpu_online(cpu))
 725                return 0;
 726
 727        cpuhp_lock_acquire(false);
 728        cpuhp_lock_release(false);
 729
 730        cpuhp_lock_acquire(true);
 731        cpuhp_lock_release(true);
 732
 733        /*
 734         * If we are up and running, use the hotplug thread. For early calls
 735         * we invoke the thread function directly.
 736         */
 737        if (!st->thread)
 738                return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 739
 740        st->rollback = false;
 741        st->last = NULL;
 742
 743        st->node = node;
 744        st->bringup = bringup;
 745        st->cb_state = state;
 746        st->single = true;
 747
 748        __cpuhp_kick_ap(st);
 749
 750        /*
 751         * If we failed and did a partial, do a rollback.
 752         */
 753        if ((ret = st->result) && st->last) {
 754                st->rollback = true;
 755                st->bringup = !bringup;
 756
 757                __cpuhp_kick_ap(st);
 758        }
 759
 760        /*
 761         * Clean up the leftovers so the next hotplug operation wont use stale
 762         * data.
 763         */
 764        st->node = st->last = NULL;
 765        return ret;
 766}
 767
 768static int cpuhp_kick_ap_work(unsigned int cpu)
 769{
 770        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 771        enum cpuhp_state prev_state = st->state;
 772        int ret;
 773
 774        cpuhp_lock_acquire(false);
 775        cpuhp_lock_release(false);
 776
 777        cpuhp_lock_acquire(true);
 778        cpuhp_lock_release(true);
 779
 780        trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 781        ret = cpuhp_kick_ap(st, st->target);
 782        trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 783
 784        return ret;
 785}
 786
 787static struct smp_hotplug_thread cpuhp_threads = {
 788        .store                  = &cpuhp_state.thread,
 789        .create                 = &cpuhp_create,
 790        .thread_should_run      = cpuhp_should_run,
 791        .thread_fn              = cpuhp_thread_fun,
 792        .thread_comm            = "cpuhp/%u",
 793        .selfparking            = true,
 794};
 795
 796void __init cpuhp_threads_init(void)
 797{
 798        BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 799        kthread_unpark(this_cpu_read(cpuhp_state.thread));
 800}
 801
 802#ifdef CONFIG_HOTPLUG_CPU
 803/**
 804 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 805 * @cpu: a CPU id
 806 *
 807 * This function walks all processes, finds a valid mm struct for each one and
 808 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 809 * trivial, there are various non-obvious corner cases, which this function
 810 * tries to solve in a safe manner.
 811 *
 812 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 813 * be called only for an already offlined CPU.
 814 */
 815void clear_tasks_mm_cpumask(int cpu)
 816{
 817        struct task_struct *p;
 818
 819        /*
 820         * This function is called after the cpu is taken down and marked
 821         * offline, so its not like new tasks will ever get this cpu set in
 822         * their mm mask. -- Peter Zijlstra
 823         * Thus, we may use rcu_read_lock() here, instead of grabbing
 824         * full-fledged tasklist_lock.
 825         */
 826        WARN_ON(cpu_online(cpu));
 827        rcu_read_lock();
 828        for_each_process(p) {
 829                struct task_struct *t;
 830
 831                /*
 832                 * Main thread might exit, but other threads may still have
 833                 * a valid mm. Find one.
 834                 */
 835                t = find_lock_task_mm(p);
 836                if (!t)
 837                        continue;
 838                cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 839                task_unlock(t);
 840        }
 841        rcu_read_unlock();
 842}
 843
 844/* Take this CPU down. */
 845static int take_cpu_down(void *_param)
 846{
 847        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 848        enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 849        int err, cpu = smp_processor_id();
 850        int ret;
 851
 852        /* Ensure this CPU doesn't handle any more interrupts. */
 853        err = __cpu_disable();
 854        if (err < 0)
 855                return err;
 856
 857        /*
 858         * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 859         * do this step again.
 860         */
 861        WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 862        st->state--;
 863        /* Invoke the former CPU_DYING callbacks */
 864        for (; st->state > target; st->state--) {
 865                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 866                /*
 867                 * DYING must not fail!
 868                 */
 869                WARN_ON_ONCE(ret);
 870        }
 871
 872        /* Give up timekeeping duties */
 873        tick_handover_do_timer();
 874        /* Remove CPU from timer broadcasting */
 875        tick_offline_cpu(cpu);
 876        /* Park the stopper thread */
 877        stop_machine_park(cpu);
 878        return 0;
 879}
 880
 881static int takedown_cpu(unsigned int cpu)
 882{
 883        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 884        int err;
 885
 886        /* Park the smpboot threads */
 887        kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 888
 889        /*
 890         * Prevent irq alloc/free while the dying cpu reorganizes the
 891         * interrupt affinities.
 892         */
 893        irq_lock_sparse();
 894
 895        /*
 896         * So now all preempt/rcu users must observe !cpu_active().
 897         */
 898        err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 899        if (err) {
 900                /* CPU refused to die */
 901                irq_unlock_sparse();
 902                /* Unpark the hotplug thread so we can rollback there */
 903                kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 904                return err;
 905        }
 906        BUG_ON(cpu_online(cpu));
 907
 908        /*
 909         * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 910         * all runnable tasks from the CPU, there's only the idle task left now
 911         * that the migration thread is done doing the stop_machine thing.
 912         *
 913         * Wait for the stop thread to go away.
 914         */
 915        wait_for_ap_thread(st, false);
 916        BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 917
 918        /* Interrupts are moved away from the dying cpu, reenable alloc/free */
 919        irq_unlock_sparse();
 920
 921        hotplug_cpu__broadcast_tick_pull(cpu);
 922        /* This actually kills the CPU. */
 923        __cpu_die(cpu);
 924
 925        tick_cleanup_dead_cpu(cpu);
 926        rcutree_migrate_callbacks(cpu);
 927        return 0;
 928}
 929
 930static void cpuhp_complete_idle_dead(void *arg)
 931{
 932        struct cpuhp_cpu_state *st = arg;
 933
 934        complete_ap_thread(st, false);
 935}
 936
 937void cpuhp_report_idle_dead(void)
 938{
 939        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 940
 941        BUG_ON(st->state != CPUHP_AP_OFFLINE);
 942        rcu_report_dead(smp_processor_id());
 943        st->state = CPUHP_AP_IDLE_DEAD;
 944        /*
 945         * We cannot call complete after rcu_report_dead() so we delegate it
 946         * to an online cpu.
 947         */
 948        smp_call_function_single(cpumask_first(cpu_online_mask),
 949                                 cpuhp_complete_idle_dead, st, 0);
 950}
 951
 952static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 953{
 954        for (st->state++; st->state < st->target; st->state++)
 955                cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 956}
 957
 958static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 959                                enum cpuhp_state target)
 960{
 961        enum cpuhp_state prev_state = st->state;
 962        int ret = 0;
 963
 964        for (; st->state > target; st->state--) {
 965                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 966                if (ret) {
 967                        st->target = prev_state;
 968                        if (st->state < prev_state)
 969                                undo_cpu_down(cpu, st);
 970                        break;
 971                }
 972        }
 973        return ret;
 974}
 975
 976/* Requires cpu_add_remove_lock to be held */
 977static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 978                           enum cpuhp_state target)
 979{
 980        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 981        int prev_state, ret = 0;
 982
 983        if (num_online_cpus() == 1)
 984                return -EBUSY;
 985
 986        if (!cpu_present(cpu))
 987                return -EINVAL;
 988
 989        cpus_write_lock();
 990
 991        cpuhp_tasks_frozen = tasks_frozen;
 992
 993        prev_state = cpuhp_set_state(st, target);
 994        /*
 995         * If the current CPU state is in the range of the AP hotplug thread,
 996         * then we need to kick the thread.
 997         */
 998        if (st->state > CPUHP_TEARDOWN_CPU) {
 999                st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1000                ret = cpuhp_kick_ap_work(cpu);
1001                /*
1002                 * The AP side has done the error rollback already. Just
1003                 * return the error code..
1004                 */
1005                if (ret)
1006                        goto out;
1007
1008                /*
1009                 * We might have stopped still in the range of the AP hotplug
1010                 * thread. Nothing to do anymore.
1011                 */
1012                if (st->state > CPUHP_TEARDOWN_CPU)
1013                        goto out;
1014
1015                st->target = target;
1016        }
1017        /*
1018         * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1019         * to do the further cleanups.
1020         */
1021        ret = cpuhp_down_callbacks(cpu, st, target);
1022        if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1023                cpuhp_reset_state(st, prev_state);
1024                __cpuhp_kick_ap(st);
1025        }
1026
1027out:
1028        cpus_write_unlock();
1029        /*
1030         * Do post unplug cleanup. This is still protected against
1031         * concurrent CPU hotplug via cpu_add_remove_lock.
1032         */
1033        lockup_detector_cleanup();
1034        arch_smt_update();
1035        return ret;
1036}
1037
1038static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1039{
1040        if (cpu_hotplug_disabled)
1041                return -EBUSY;
1042        return _cpu_down(cpu, 0, target);
1043}
1044
1045static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1046{
1047        int err;
1048
1049        cpu_maps_update_begin();
1050        err = cpu_down_maps_locked(cpu, target);
1051        cpu_maps_update_done();
1052        return err;
1053}
1054
1055int cpu_down(unsigned int cpu)
1056{
1057        return do_cpu_down(cpu, CPUHP_OFFLINE);
1058}
1059EXPORT_SYMBOL(cpu_down);
1060
1061#else
1062#define takedown_cpu            NULL
1063#endif /*CONFIG_HOTPLUG_CPU*/
1064
1065/**
1066 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1067 * @cpu: cpu that just started
1068 *
1069 * It must be called by the arch code on the new cpu, before the new cpu
1070 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1071 */
1072void notify_cpu_starting(unsigned int cpu)
1073{
1074        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1075        enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1076        int ret;
1077
1078        rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1079        cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1080        while (st->state < target) {
1081                st->state++;
1082                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1083                /*
1084                 * STARTING must not fail!
1085                 */
1086                WARN_ON_ONCE(ret);
1087        }
1088}
1089
1090/*
1091 * Called from the idle task. Wake up the controlling task which brings the
1092 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1093 * the rest of the online bringup to the hotplug thread.
1094 */
1095void cpuhp_online_idle(enum cpuhp_state state)
1096{
1097        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1098
1099        /* Happens for the boot cpu */
1100        if (state != CPUHP_AP_ONLINE_IDLE)
1101                return;
1102
1103        st->state = CPUHP_AP_ONLINE_IDLE;
1104        complete_ap_thread(st, true);
1105}
1106
1107/* Requires cpu_add_remove_lock to be held */
1108static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1109{
1110        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1111        struct task_struct *idle;
1112        int ret = 0;
1113
1114        cpus_write_lock();
1115
1116        if (!cpu_present(cpu)) {
1117                ret = -EINVAL;
1118                goto out;
1119        }
1120
1121        /*
1122         * The caller of do_cpu_up might have raced with another
1123         * caller. Ignore it for now.
1124         */
1125        if (st->state >= target)
1126                goto out;
1127
1128        if (st->state == CPUHP_OFFLINE) {
1129                /* Let it fail before we try to bring the cpu up */
1130                idle = idle_thread_get(cpu);
1131                if (IS_ERR(idle)) {
1132                        ret = PTR_ERR(idle);
1133                        goto out;
1134                }
1135        }
1136
1137        cpuhp_tasks_frozen = tasks_frozen;
1138
1139        cpuhp_set_state(st, target);
1140        /*
1141         * If the current CPU state is in the range of the AP hotplug thread,
1142         * then we need to kick the thread once more.
1143         */
1144        if (st->state > CPUHP_BRINGUP_CPU) {
1145                ret = cpuhp_kick_ap_work(cpu);
1146                /*
1147                 * The AP side has done the error rollback already. Just
1148                 * return the error code..
1149                 */
1150                if (ret)
1151                        goto out;
1152        }
1153
1154        /*
1155         * Try to reach the target state. We max out on the BP at
1156         * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1157         * responsible for bringing it up to the target state.
1158         */
1159        target = min((int)target, CPUHP_BRINGUP_CPU);
1160        ret = cpuhp_up_callbacks(cpu, st, target);
1161out:
1162        cpus_write_unlock();
1163        arch_smt_update();
1164        return ret;
1165}
1166
1167static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1168{
1169        int err = 0;
1170
1171        if (!cpu_possible(cpu)) {
1172                pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1173                       cpu);
1174#if defined(CONFIG_IA64)
1175                pr_err("please check additional_cpus= boot parameter\n");
1176#endif
1177                return -EINVAL;
1178        }
1179
1180        err = try_online_node(cpu_to_node(cpu));
1181        if (err)
1182                return err;
1183
1184        cpu_maps_update_begin();
1185
1186        if (cpu_hotplug_disabled) {
1187                err = -EBUSY;
1188                goto out;
1189        }
1190        if (!cpu_smt_allowed(cpu)) {
1191                err = -EPERM;
1192                goto out;
1193        }
1194
1195        err = _cpu_up(cpu, 0, target);
1196out:
1197        cpu_maps_update_done();
1198        return err;
1199}
1200
1201int cpu_up(unsigned int cpu)
1202{
1203        return do_cpu_up(cpu, CPUHP_ONLINE);
1204}
1205EXPORT_SYMBOL_GPL(cpu_up);
1206
1207#ifdef CONFIG_PM_SLEEP_SMP
1208static cpumask_var_t frozen_cpus;
1209
1210int freeze_secondary_cpus(int primary)
1211{
1212        int cpu, error = 0;
1213
1214        cpu_maps_update_begin();
1215        if (primary == -1) {
1216                primary = cpumask_first(cpu_online_mask);
1217                if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1218                        primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1219        } else {
1220                if (!cpu_online(primary))
1221                        primary = cpumask_first(cpu_online_mask);
1222        }
1223
1224        /*
1225         * We take down all of the non-boot CPUs in one shot to avoid races
1226         * with the userspace trying to use the CPU hotplug at the same time
1227         */
1228        cpumask_clear(frozen_cpus);
1229
1230        pr_info("Disabling non-boot CPUs ...\n");
1231        for_each_online_cpu(cpu) {
1232                if (cpu == primary)
1233                        continue;
1234
1235                if (pm_wakeup_pending()) {
1236                        pr_info("Wakeup pending. Abort CPU freeze\n");
1237                        error = -EBUSY;
1238                        break;
1239                }
1240
1241                trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1242                error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1243                trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1244                if (!error)
1245                        cpumask_set_cpu(cpu, frozen_cpus);
1246                else {
1247                        pr_err("Error taking CPU%d down: %d\n", cpu, error);
1248                        break;
1249                }
1250        }
1251
1252        if (!error)
1253                BUG_ON(num_online_cpus() > 1);
1254        else
1255                pr_err("Non-boot CPUs are not disabled\n");
1256
1257        /*
1258         * Make sure the CPUs won't be enabled by someone else. We need to do
1259         * this even in case of failure as all disable_nonboot_cpus() users are
1260         * supposed to do enable_nonboot_cpus() on the failure path.
1261         */
1262        cpu_hotplug_disabled++;
1263
1264        cpu_maps_update_done();
1265        return error;
1266}
1267
1268void __weak arch_enable_nonboot_cpus_begin(void)
1269{
1270}
1271
1272void __weak arch_enable_nonboot_cpus_end(void)
1273{
1274}
1275
1276void enable_nonboot_cpus(void)
1277{
1278        int cpu, error;
1279
1280        /* Allow everyone to use the CPU hotplug again */
1281        cpu_maps_update_begin();
1282        __cpu_hotplug_enable();
1283        if (cpumask_empty(frozen_cpus))
1284                goto out;
1285
1286        pr_info("Enabling non-boot CPUs ...\n");
1287
1288        arch_enable_nonboot_cpus_begin();
1289
1290        for_each_cpu(cpu, frozen_cpus) {
1291                trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1292                error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1293                trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1294                if (!error) {
1295                        pr_info("CPU%d is up\n", cpu);
1296                        continue;
1297                }
1298                pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1299        }
1300
1301        arch_enable_nonboot_cpus_end();
1302
1303        cpumask_clear(frozen_cpus);
1304out:
1305        cpu_maps_update_done();
1306}
1307
1308static int __init alloc_frozen_cpus(void)
1309{
1310        if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1311                return -ENOMEM;
1312        return 0;
1313}
1314core_initcall(alloc_frozen_cpus);
1315
1316/*
1317 * When callbacks for CPU hotplug notifications are being executed, we must
1318 * ensure that the state of the system with respect to the tasks being frozen
1319 * or not, as reported by the notification, remains unchanged *throughout the
1320 * duration* of the execution of the callbacks.
1321 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1322 *
1323 * This synchronization is implemented by mutually excluding regular CPU
1324 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1325 * Hibernate notifications.
1326 */
1327static int
1328cpu_hotplug_pm_callback(struct notifier_block *nb,
1329                        unsigned long action, void *ptr)
1330{
1331        switch (action) {
1332
1333        case PM_SUSPEND_PREPARE:
1334        case PM_HIBERNATION_PREPARE:
1335                cpu_hotplug_disable();
1336                break;
1337
1338        case PM_POST_SUSPEND:
1339        case PM_POST_HIBERNATION:
1340                cpu_hotplug_enable();
1341                break;
1342
1343        default:
1344                return NOTIFY_DONE;
1345        }
1346
1347        return NOTIFY_OK;
1348}
1349
1350
1351static int __init cpu_hotplug_pm_sync_init(void)
1352{
1353        /*
1354         * cpu_hotplug_pm_callback has higher priority than x86
1355         * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1356         * to disable cpu hotplug to avoid cpu hotplug race.
1357         */
1358        pm_notifier(cpu_hotplug_pm_callback, 0);
1359        return 0;
1360}
1361core_initcall(cpu_hotplug_pm_sync_init);
1362
1363#endif /* CONFIG_PM_SLEEP_SMP */
1364
1365int __boot_cpu_id;
1366
1367#endif /* CONFIG_SMP */
1368
1369/* Boot processor state steps */
1370static struct cpuhp_step cpuhp_hp_states[] = {
1371        [CPUHP_OFFLINE] = {
1372                .name                   = "offline",
1373                .startup.single         = NULL,
1374                .teardown.single        = NULL,
1375        },
1376#ifdef CONFIG_SMP
1377        [CPUHP_CREATE_THREADS]= {
1378                .name                   = "threads:prepare",
1379                .startup.single         = smpboot_create_threads,
1380                .teardown.single        = NULL,
1381                .cant_stop              = true,
1382        },
1383        [CPUHP_PERF_PREPARE] = {
1384                .name                   = "perf:prepare",
1385                .startup.single         = perf_event_init_cpu,
1386                .teardown.single        = perf_event_exit_cpu,
1387        },
1388        [CPUHP_WORKQUEUE_PREP] = {
1389                .name                   = "workqueue:prepare",
1390                .startup.single         = workqueue_prepare_cpu,
1391                .teardown.single        = NULL,
1392        },
1393        [CPUHP_HRTIMERS_PREPARE] = {
1394                .name                   = "hrtimers:prepare",
1395                .startup.single         = hrtimers_prepare_cpu,
1396                .teardown.single        = hrtimers_dead_cpu,
1397        },
1398        [CPUHP_SMPCFD_PREPARE] = {
1399                .name                   = "smpcfd:prepare",
1400                .startup.single         = smpcfd_prepare_cpu,
1401                .teardown.single        = smpcfd_dead_cpu,
1402        },
1403        [CPUHP_RELAY_PREPARE] = {
1404                .name                   = "relay:prepare",
1405                .startup.single         = relay_prepare_cpu,
1406                .teardown.single        = NULL,
1407        },
1408        [CPUHP_SLAB_PREPARE] = {
1409                .name                   = "slab:prepare",
1410                .startup.single         = slab_prepare_cpu,
1411                .teardown.single        = slab_dead_cpu,
1412        },
1413        [CPUHP_RCUTREE_PREP] = {
1414                .name                   = "RCU/tree:prepare",
1415                .startup.single         = rcutree_prepare_cpu,
1416                .teardown.single        = rcutree_dead_cpu,
1417        },
1418        /*
1419         * On the tear-down path, timers_dead_cpu() must be invoked
1420         * before blk_mq_queue_reinit_notify() from notify_dead(),
1421         * otherwise a RCU stall occurs.
1422         */
1423        [CPUHP_TIMERS_PREPARE] = {
1424                .name                   = "timers:prepare",
1425                .startup.single         = timers_prepare_cpu,
1426                .teardown.single        = timers_dead_cpu,
1427        },
1428        /* Kicks the plugged cpu into life */
1429        [CPUHP_BRINGUP_CPU] = {
1430                .name                   = "cpu:bringup",
1431                .startup.single         = bringup_cpu,
1432                .teardown.single        = NULL,
1433                .cant_stop              = true,
1434        },
1435        /* Final state before CPU kills itself */
1436        [CPUHP_AP_IDLE_DEAD] = {
1437                .name                   = "idle:dead",
1438        },
1439        /*
1440         * Last state before CPU enters the idle loop to die. Transient state
1441         * for synchronization.
1442         */
1443        [CPUHP_AP_OFFLINE] = {
1444                .name                   = "ap:offline",
1445                .cant_stop              = true,
1446        },
1447        /* First state is scheduler control. Interrupts are disabled */
1448        [CPUHP_AP_SCHED_STARTING] = {
1449                .name                   = "sched:starting",
1450                .startup.single         = sched_cpu_starting,
1451                .teardown.single        = sched_cpu_dying,
1452        },
1453        [CPUHP_AP_RCUTREE_DYING] = {
1454                .name                   = "RCU/tree:dying",
1455                .startup.single         = NULL,
1456                .teardown.single        = rcutree_dying_cpu,
1457        },
1458        [CPUHP_AP_SMPCFD_DYING] = {
1459                .name                   = "smpcfd:dying",
1460                .startup.single         = NULL,
1461                .teardown.single        = smpcfd_dying_cpu,
1462        },
1463        /* Entry state on starting. Interrupts enabled from here on. Transient
1464         * state for synchronsization */
1465        [CPUHP_AP_ONLINE] = {
1466                .name                   = "ap:online",
1467        },
1468        /*
1469         * Handled on controll processor until the plugged processor manages
1470         * this itself.
1471         */
1472        [CPUHP_TEARDOWN_CPU] = {
1473                .name                   = "cpu:teardown",
1474                .startup.single         = NULL,
1475                .teardown.single        = takedown_cpu,
1476                .cant_stop              = true,
1477        },
1478        /* Handle smpboot threads park/unpark */
1479        [CPUHP_AP_SMPBOOT_THREADS] = {
1480                .name                   = "smpboot/threads:online",
1481                .startup.single         = smpboot_unpark_threads,
1482                .teardown.single        = smpboot_park_threads,
1483        },
1484        [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1485                .name                   = "irq/affinity:online",
1486                .startup.single         = irq_affinity_online_cpu,
1487                .teardown.single        = NULL,
1488        },
1489        [CPUHP_AP_PERF_ONLINE] = {
1490                .name                   = "perf:online",
1491                .startup.single         = perf_event_init_cpu,
1492                .teardown.single        = perf_event_exit_cpu,
1493        },
1494        [CPUHP_AP_WATCHDOG_ONLINE] = {
1495                .name                   = "lockup_detector:online",
1496                .startup.single         = lockup_detector_online_cpu,
1497                .teardown.single        = lockup_detector_offline_cpu,
1498        },
1499        [CPUHP_AP_WORKQUEUE_ONLINE] = {
1500                .name                   = "workqueue:online",
1501                .startup.single         = workqueue_online_cpu,
1502                .teardown.single        = workqueue_offline_cpu,
1503        },
1504        [CPUHP_AP_RCUTREE_ONLINE] = {
1505                .name                   = "RCU/tree:online",
1506                .startup.single         = rcutree_online_cpu,
1507                .teardown.single        = rcutree_offline_cpu,
1508        },
1509#endif
1510        /*
1511         * The dynamically registered state space is here
1512         */
1513
1514#ifdef CONFIG_SMP
1515        /* Last state is scheduler control setting the cpu active */
1516        [CPUHP_AP_ACTIVE] = {
1517                .name                   = "sched:active",
1518                .startup.single         = sched_cpu_activate,
1519                .teardown.single        = sched_cpu_deactivate,
1520        },
1521#endif
1522
1523        /* CPU is fully up and running. */
1524        [CPUHP_ONLINE] = {
1525                .name                   = "online",
1526                .startup.single         = NULL,
1527                .teardown.single        = NULL,
1528        },
1529};
1530
1531/* Sanity check for callbacks */
1532static int cpuhp_cb_check(enum cpuhp_state state)
1533{
1534        if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1535                return -EINVAL;
1536        return 0;
1537}
1538
1539/*
1540 * Returns a free for dynamic slot assignment of the Online state. The states
1541 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1542 * by having no name assigned.
1543 */
1544static int cpuhp_reserve_state(enum cpuhp_state state)
1545{
1546        enum cpuhp_state i, end;
1547        struct cpuhp_step *step;
1548
1549        switch (state) {
1550        case CPUHP_AP_ONLINE_DYN:
1551                step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1552                end = CPUHP_AP_ONLINE_DYN_END;
1553                break;
1554        case CPUHP_BP_PREPARE_DYN:
1555                step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1556                end = CPUHP_BP_PREPARE_DYN_END;
1557                break;
1558        default:
1559                return -EINVAL;
1560        }
1561
1562        for (i = state; i <= end; i++, step++) {
1563                if (!step->name)
1564                        return i;
1565        }
1566        WARN(1, "No more dynamic states available for CPU hotplug\n");
1567        return -ENOSPC;
1568}
1569
1570static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1571                                 int (*startup)(unsigned int cpu),
1572                                 int (*teardown)(unsigned int cpu),
1573                                 bool multi_instance)
1574{
1575        /* (Un)Install the callbacks for further cpu hotplug operations */
1576        struct cpuhp_step *sp;
1577        int ret = 0;
1578
1579        /*
1580         * If name is NULL, then the state gets removed.
1581         *
1582         * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1583         * the first allocation from these dynamic ranges, so the removal
1584         * would trigger a new allocation and clear the wrong (already
1585         * empty) state, leaving the callbacks of the to be cleared state
1586         * dangling, which causes wreckage on the next hotplug operation.
1587         */
1588        if (name && (state == CPUHP_AP_ONLINE_DYN ||
1589                     state == CPUHP_BP_PREPARE_DYN)) {
1590                ret = cpuhp_reserve_state(state);
1591                if (ret < 0)
1592                        return ret;
1593                state = ret;
1594        }
1595        sp = cpuhp_get_step(state);
1596        if (name && sp->name)
1597                return -EBUSY;
1598
1599        sp->startup.single = startup;
1600        sp->teardown.single = teardown;
1601        sp->name = name;
1602        sp->multi_instance = multi_instance;
1603        INIT_HLIST_HEAD(&sp->list);
1604        return ret;
1605}
1606
1607static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1608{
1609        return cpuhp_get_step(state)->teardown.single;
1610}
1611
1612/*
1613 * Call the startup/teardown function for a step either on the AP or
1614 * on the current CPU.
1615 */
1616static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1617                            struct hlist_node *node)
1618{
1619        struct cpuhp_step *sp = cpuhp_get_step(state);
1620        int ret;
1621
1622        /*
1623         * If there's nothing to do, we done.
1624         * Relies on the union for multi_instance.
1625         */
1626        if ((bringup && !sp->startup.single) ||
1627            (!bringup && !sp->teardown.single))
1628                return 0;
1629        /*
1630         * The non AP bound callbacks can fail on bringup. On teardown
1631         * e.g. module removal we crash for now.
1632         */
1633#ifdef CONFIG_SMP
1634        if (cpuhp_is_ap_state(state))
1635                ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1636        else
1637                ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1638#else
1639        ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1640#endif
1641        BUG_ON(ret && !bringup);
1642        return ret;
1643}
1644
1645/*
1646 * Called from __cpuhp_setup_state on a recoverable failure.
1647 *
1648 * Note: The teardown callbacks for rollback are not allowed to fail!
1649 */
1650static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1651                                   struct hlist_node *node)
1652{
1653        int cpu;
1654
1655        /* Roll back the already executed steps on the other cpus */
1656        for_each_present_cpu(cpu) {
1657                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658                int cpustate = st->state;
1659
1660                if (cpu >= failedcpu)
1661                        break;
1662
1663                /* Did we invoke the startup call on that cpu ? */
1664                if (cpustate >= state)
1665                        cpuhp_issue_call(cpu, state, false, node);
1666        }
1667}
1668
1669int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1670                                          struct hlist_node *node,
1671                                          bool invoke)
1672{
1673        struct cpuhp_step *sp;
1674        int cpu;
1675        int ret;
1676
1677        lockdep_assert_cpus_held();
1678
1679        sp = cpuhp_get_step(state);
1680        if (sp->multi_instance == false)
1681                return -EINVAL;
1682
1683        mutex_lock(&cpuhp_state_mutex);
1684
1685        if (!invoke || !sp->startup.multi)
1686                goto add_node;
1687
1688        /*
1689         * Try to call the startup callback for each present cpu
1690         * depending on the hotplug state of the cpu.
1691         */
1692        for_each_present_cpu(cpu) {
1693                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1694                int cpustate = st->state;
1695
1696                if (cpustate < state)
1697                        continue;
1698
1699                ret = cpuhp_issue_call(cpu, state, true, node);
1700                if (ret) {
1701                        if (sp->teardown.multi)
1702                                cpuhp_rollback_install(cpu, state, node);
1703                        goto unlock;
1704                }
1705        }
1706add_node:
1707        ret = 0;
1708        hlist_add_head(node, &sp->list);
1709unlock:
1710        mutex_unlock(&cpuhp_state_mutex);
1711        return ret;
1712}
1713
1714int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1715                               bool invoke)
1716{
1717        int ret;
1718
1719        cpus_read_lock();
1720        ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1721        cpus_read_unlock();
1722        return ret;
1723}
1724EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1725
1726/**
1727 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1728 * @state:              The state to setup
1729 * @invoke:             If true, the startup function is invoked for cpus where
1730 *                      cpu state >= @state
1731 * @startup:            startup callback function
1732 * @teardown:           teardown callback function
1733 * @multi_instance:     State is set up for multiple instances which get
1734 *                      added afterwards.
1735 *
1736 * The caller needs to hold cpus read locked while calling this function.
1737 * Returns:
1738 *   On success:
1739 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1740 *      0 for all other states
1741 *   On failure: proper (negative) error code
1742 */
1743int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1744                                   const char *name, bool invoke,
1745                                   int (*startup)(unsigned int cpu),
1746                                   int (*teardown)(unsigned int cpu),
1747                                   bool multi_instance)
1748{
1749        int cpu, ret = 0;
1750        bool dynstate;
1751
1752        lockdep_assert_cpus_held();
1753
1754        if (cpuhp_cb_check(state) || !name)
1755                return -EINVAL;
1756
1757        mutex_lock(&cpuhp_state_mutex);
1758
1759        ret = cpuhp_store_callbacks(state, name, startup, teardown,
1760                                    multi_instance);
1761
1762        dynstate = state == CPUHP_AP_ONLINE_DYN;
1763        if (ret > 0 && dynstate) {
1764                state = ret;
1765                ret = 0;
1766        }
1767
1768        if (ret || !invoke || !startup)
1769                goto out;
1770
1771        /*
1772         * Try to call the startup callback for each present cpu
1773         * depending on the hotplug state of the cpu.
1774         */
1775        for_each_present_cpu(cpu) {
1776                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1777                int cpustate = st->state;
1778
1779                if (cpustate < state)
1780                        continue;
1781
1782                ret = cpuhp_issue_call(cpu, state, true, NULL);
1783                if (ret) {
1784                        if (teardown)
1785                                cpuhp_rollback_install(cpu, state, NULL);
1786                        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1787                        goto out;
1788                }
1789        }
1790out:
1791        mutex_unlock(&cpuhp_state_mutex);
1792        /*
1793         * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1794         * dynamically allocated state in case of success.
1795         */
1796        if (!ret && dynstate)
1797                return state;
1798        return ret;
1799}
1800EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1801
1802int __cpuhp_setup_state(enum cpuhp_state state,
1803                        const char *name, bool invoke,
1804                        int (*startup)(unsigned int cpu),
1805                        int (*teardown)(unsigned int cpu),
1806                        bool multi_instance)
1807{
1808        int ret;
1809
1810        cpus_read_lock();
1811        ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1812                                             teardown, multi_instance);
1813        cpus_read_unlock();
1814        return ret;
1815}
1816EXPORT_SYMBOL(__cpuhp_setup_state);
1817
1818int __cpuhp_state_remove_instance(enum cpuhp_state state,
1819                                  struct hlist_node *node, bool invoke)
1820{
1821        struct cpuhp_step *sp = cpuhp_get_step(state);
1822        int cpu;
1823
1824        BUG_ON(cpuhp_cb_check(state));
1825
1826        if (!sp->multi_instance)
1827                return -EINVAL;
1828
1829        cpus_read_lock();
1830        mutex_lock(&cpuhp_state_mutex);
1831
1832        if (!invoke || !cpuhp_get_teardown_cb(state))
1833                goto remove;
1834        /*
1835         * Call the teardown callback for each present cpu depending
1836         * on the hotplug state of the cpu. This function is not
1837         * allowed to fail currently!
1838         */
1839        for_each_present_cpu(cpu) {
1840                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1841                int cpustate = st->state;
1842
1843                if (cpustate >= state)
1844                        cpuhp_issue_call(cpu, state, false, node);
1845        }
1846
1847remove:
1848        hlist_del(node);
1849        mutex_unlock(&cpuhp_state_mutex);
1850        cpus_read_unlock();
1851
1852        return 0;
1853}
1854EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1855
1856/**
1857 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1858 * @state:      The state to remove
1859 * @invoke:     If true, the teardown function is invoked for cpus where
1860 *              cpu state >= @state
1861 *
1862 * The caller needs to hold cpus read locked while calling this function.
1863 * The teardown callback is currently not allowed to fail. Think
1864 * about module removal!
1865 */
1866void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1867{
1868        struct cpuhp_step *sp = cpuhp_get_step(state);
1869        int cpu;
1870
1871        BUG_ON(cpuhp_cb_check(state));
1872
1873        lockdep_assert_cpus_held();
1874
1875        mutex_lock(&cpuhp_state_mutex);
1876        if (sp->multi_instance) {
1877                WARN(!hlist_empty(&sp->list),
1878                     "Error: Removing state %d which has instances left.\n",
1879                     state);
1880                goto remove;
1881        }
1882
1883        if (!invoke || !cpuhp_get_teardown_cb(state))
1884                goto remove;
1885
1886        /*
1887         * Call the teardown callback for each present cpu depending
1888         * on the hotplug state of the cpu. This function is not
1889         * allowed to fail currently!
1890         */
1891        for_each_present_cpu(cpu) {
1892                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1893                int cpustate = st->state;
1894
1895                if (cpustate >= state)
1896                        cpuhp_issue_call(cpu, state, false, NULL);
1897        }
1898remove:
1899        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1900        mutex_unlock(&cpuhp_state_mutex);
1901}
1902EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1903
1904void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1905{
1906        cpus_read_lock();
1907        __cpuhp_remove_state_cpuslocked(state, invoke);
1908        cpus_read_unlock();
1909}
1910EXPORT_SYMBOL(__cpuhp_remove_state);
1911
1912#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1913static ssize_t show_cpuhp_state(struct device *dev,
1914                                struct device_attribute *attr, char *buf)
1915{
1916        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1917
1918        return sprintf(buf, "%d\n", st->state);
1919}
1920static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1921
1922static ssize_t write_cpuhp_target(struct device *dev,
1923                                  struct device_attribute *attr,
1924                                  const char *buf, size_t count)
1925{
1926        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1927        struct cpuhp_step *sp;
1928        int target, ret;
1929
1930        ret = kstrtoint(buf, 10, &target);
1931        if (ret)
1932                return ret;
1933
1934#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1935        if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1936                return -EINVAL;
1937#else
1938        if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1939                return -EINVAL;
1940#endif
1941
1942        ret = lock_device_hotplug_sysfs();
1943        if (ret)
1944                return ret;
1945
1946        mutex_lock(&cpuhp_state_mutex);
1947        sp = cpuhp_get_step(target);
1948        ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1949        mutex_unlock(&cpuhp_state_mutex);
1950        if (ret)
1951                goto out;
1952
1953        if (st->state < target)
1954                ret = do_cpu_up(dev->id, target);
1955        else
1956                ret = do_cpu_down(dev->id, target);
1957out:
1958        unlock_device_hotplug();
1959        return ret ? ret : count;
1960}
1961
1962static ssize_t show_cpuhp_target(struct device *dev,
1963                                 struct device_attribute *attr, char *buf)
1964{
1965        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1966
1967        return sprintf(buf, "%d\n", st->target);
1968}
1969static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1970
1971
1972static ssize_t write_cpuhp_fail(struct device *dev,
1973                                struct device_attribute *attr,
1974                                const char *buf, size_t count)
1975{
1976        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1977        struct cpuhp_step *sp;
1978        int fail, ret;
1979
1980        ret = kstrtoint(buf, 10, &fail);
1981        if (ret)
1982                return ret;
1983
1984        if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1985                return -EINVAL;
1986
1987        /*
1988         * Cannot fail STARTING/DYING callbacks.
1989         */
1990        if (cpuhp_is_atomic_state(fail))
1991                return -EINVAL;
1992
1993        /*
1994         * Cannot fail anything that doesn't have callbacks.
1995         */
1996        mutex_lock(&cpuhp_state_mutex);
1997        sp = cpuhp_get_step(fail);
1998        if (!sp->startup.single && !sp->teardown.single)
1999                ret = -EINVAL;
2000        mutex_unlock(&cpuhp_state_mutex);
2001        if (ret)
2002                return ret;
2003
2004        st->fail = fail;
2005
2006        return count;
2007}
2008
2009static ssize_t show_cpuhp_fail(struct device *dev,
2010                               struct device_attribute *attr, char *buf)
2011{
2012        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2013
2014        return sprintf(buf, "%d\n", st->fail);
2015}
2016
2017static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2018
2019static struct attribute *cpuhp_cpu_attrs[] = {
2020        &dev_attr_state.attr,
2021        &dev_attr_target.attr,
2022        &dev_attr_fail.attr,
2023        NULL
2024};
2025
2026static const struct attribute_group cpuhp_cpu_attr_group = {
2027        .attrs = cpuhp_cpu_attrs,
2028        .name = "hotplug",
2029        NULL
2030};
2031
2032static ssize_t show_cpuhp_states(struct device *dev,
2033                                 struct device_attribute *attr, char *buf)
2034{
2035        ssize_t cur, res = 0;
2036        int i;
2037
2038        mutex_lock(&cpuhp_state_mutex);
2039        for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2040                struct cpuhp_step *sp = cpuhp_get_step(i);
2041
2042                if (sp->name) {
2043                        cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2044                        buf += cur;
2045                        res += cur;
2046                }
2047        }
2048        mutex_unlock(&cpuhp_state_mutex);
2049        return res;
2050}
2051static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2052
2053static struct attribute *cpuhp_cpu_root_attrs[] = {
2054        &dev_attr_states.attr,
2055        NULL
2056};
2057
2058static const struct attribute_group cpuhp_cpu_root_attr_group = {
2059        .attrs = cpuhp_cpu_root_attrs,
2060        .name = "hotplug",
2061        NULL
2062};
2063
2064#ifdef CONFIG_HOTPLUG_SMT
2065
2066static void cpuhp_offline_cpu_device(unsigned int cpu)
2067{
2068        struct device *dev = get_cpu_device(cpu);
2069
2070        dev->offline = true;
2071        /* Tell user space about the state change */
2072        kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2073}
2074
2075static void cpuhp_online_cpu_device(unsigned int cpu)
2076{
2077        struct device *dev = get_cpu_device(cpu);
2078
2079        dev->offline = false;
2080        /* Tell user space about the state change */
2081        kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2082}
2083
2084int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2085{
2086        int cpu, ret = 0;
2087
2088        cpu_maps_update_begin();
2089        for_each_online_cpu(cpu) {
2090                if (topology_is_primary_thread(cpu))
2091                        continue;
2092                ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2093                if (ret)
2094                        break;
2095                /*
2096                 * As this needs to hold the cpu maps lock it's impossible
2097                 * to call device_offline() because that ends up calling
2098                 * cpu_down() which takes cpu maps lock. cpu maps lock
2099                 * needs to be held as this might race against in kernel
2100                 * abusers of the hotplug machinery (thermal management).
2101                 *
2102                 * So nothing would update device:offline state. That would
2103                 * leave the sysfs entry stale and prevent onlining after
2104                 * smt control has been changed to 'off' again. This is
2105                 * called under the sysfs hotplug lock, so it is properly
2106                 * serialized against the regular offline usage.
2107                 */
2108                cpuhp_offline_cpu_device(cpu);
2109        }
2110        if (!ret)
2111                cpu_smt_control = ctrlval;
2112        cpu_maps_update_done();
2113        return ret;
2114}
2115
2116int cpuhp_smt_enable(void)
2117{
2118        int cpu, ret = 0;
2119
2120        cpu_maps_update_begin();
2121        cpu_smt_control = CPU_SMT_ENABLED;
2122        for_each_present_cpu(cpu) {
2123                /* Skip online CPUs and CPUs on offline nodes */
2124                if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2125                        continue;
2126                ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2127                if (ret)
2128                        break;
2129                /* See comment in cpuhp_smt_disable() */
2130                cpuhp_online_cpu_device(cpu);
2131        }
2132        cpu_maps_update_done();
2133        return ret;
2134}
2135
2136
2137static ssize_t
2138__store_smt_control(struct device *dev, struct device_attribute *attr,
2139                    const char *buf, size_t count)
2140{
2141        int ctrlval, ret;
2142
2143        if (sysfs_streq(buf, "on"))
2144                ctrlval = CPU_SMT_ENABLED;
2145        else if (sysfs_streq(buf, "off"))
2146                ctrlval = CPU_SMT_DISABLED;
2147        else if (sysfs_streq(buf, "forceoff"))
2148                ctrlval = CPU_SMT_FORCE_DISABLED;
2149        else
2150                return -EINVAL;
2151
2152        if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2153                return -EPERM;
2154
2155        if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2156                return -ENODEV;
2157
2158        ret = lock_device_hotplug_sysfs();
2159        if (ret)
2160                return ret;
2161
2162        if (ctrlval != cpu_smt_control) {
2163                switch (ctrlval) {
2164                case CPU_SMT_ENABLED:
2165                        ret = cpuhp_smt_enable();
2166                        break;
2167                case CPU_SMT_DISABLED:
2168                case CPU_SMT_FORCE_DISABLED:
2169                        ret = cpuhp_smt_disable(ctrlval);
2170                        break;
2171                }
2172        }
2173
2174        unlock_device_hotplug();
2175        return ret ? ret : count;
2176}
2177
2178#else /* !CONFIG_HOTPLUG_SMT */
2179static ssize_t
2180__store_smt_control(struct device *dev, struct device_attribute *attr,
2181                    const char *buf, size_t count)
2182{
2183        return -ENODEV;
2184}
2185#endif /* CONFIG_HOTPLUG_SMT */
2186
2187static const char *smt_states[] = {
2188        [CPU_SMT_ENABLED]               = "on",
2189        [CPU_SMT_DISABLED]              = "off",
2190        [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2191        [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2192        [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2193};
2194
2195static ssize_t
2196show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2197{
2198        const char *state = smt_states[cpu_smt_control];
2199
2200        return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2201}
2202
2203static ssize_t
2204store_smt_control(struct device *dev, struct device_attribute *attr,
2205                  const char *buf, size_t count)
2206{
2207        return __store_smt_control(dev, attr, buf, count);
2208}
2209static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2210
2211static ssize_t
2212show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2213{
2214        return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2215}
2216static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2217
2218static struct attribute *cpuhp_smt_attrs[] = {
2219        &dev_attr_control.attr,
2220        &dev_attr_active.attr,
2221        NULL
2222};
2223
2224static const struct attribute_group cpuhp_smt_attr_group = {
2225        .attrs = cpuhp_smt_attrs,
2226        .name = "smt",
2227        NULL
2228};
2229
2230static int __init cpu_smt_sysfs_init(void)
2231{
2232        return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2233                                  &cpuhp_smt_attr_group);
2234}
2235
2236static int __init cpuhp_sysfs_init(void)
2237{
2238        int cpu, ret;
2239
2240        ret = cpu_smt_sysfs_init();
2241        if (ret)
2242                return ret;
2243
2244        ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2245                                 &cpuhp_cpu_root_attr_group);
2246        if (ret)
2247                return ret;
2248
2249        for_each_possible_cpu(cpu) {
2250                struct device *dev = get_cpu_device(cpu);
2251
2252                if (!dev)
2253                        continue;
2254                ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2255                if (ret)
2256                        return ret;
2257        }
2258        return 0;
2259}
2260device_initcall(cpuhp_sysfs_init);
2261#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2262
2263/*
2264 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2265 * represents all NR_CPUS bits binary values of 1<<nr.
2266 *
2267 * It is used by cpumask_of() to get a constant address to a CPU
2268 * mask value that has a single bit set only.
2269 */
2270
2271/* cpu_bit_bitmap[0] is empty - so we can back into it */
2272#define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2273#define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2274#define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2275#define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2276
2277const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2278
2279        MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2280        MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2281#if BITS_PER_LONG > 32
2282        MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2283        MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2284#endif
2285};
2286EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2287
2288const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2289EXPORT_SYMBOL(cpu_all_bits);
2290
2291#ifdef CONFIG_INIT_ALL_POSSIBLE
2292struct cpumask __cpu_possible_mask __read_mostly
2293        = {CPU_BITS_ALL};
2294#else
2295struct cpumask __cpu_possible_mask __read_mostly;
2296#endif
2297EXPORT_SYMBOL(__cpu_possible_mask);
2298
2299struct cpumask __cpu_online_mask __read_mostly;
2300EXPORT_SYMBOL(__cpu_online_mask);
2301
2302struct cpumask __cpu_present_mask __read_mostly;
2303EXPORT_SYMBOL(__cpu_present_mask);
2304
2305struct cpumask __cpu_active_mask __read_mostly;
2306EXPORT_SYMBOL(__cpu_active_mask);
2307
2308atomic_t __num_online_cpus __read_mostly;
2309EXPORT_SYMBOL(__num_online_cpus);
2310
2311void init_cpu_present(const struct cpumask *src)
2312{
2313        cpumask_copy(&__cpu_present_mask, src);
2314}
2315
2316void init_cpu_possible(const struct cpumask *src)
2317{
2318        cpumask_copy(&__cpu_possible_mask, src);
2319}
2320
2321void init_cpu_online(const struct cpumask *src)
2322{
2323        cpumask_copy(&__cpu_online_mask, src);
2324}
2325
2326void set_cpu_online(unsigned int cpu, bool online)
2327{
2328        /*
2329         * atomic_inc/dec() is required to handle the horrid abuse of this
2330         * function by the reboot and kexec code which invoke it from
2331         * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2332         * regular CPU hotplug is properly serialized.
2333         *
2334         * Note, that the fact that __num_online_cpus is of type atomic_t
2335         * does not protect readers which are not serialized against
2336         * concurrent hotplug operations.
2337         */
2338        if (online) {
2339                if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2340                        atomic_inc(&__num_online_cpus);
2341        } else {
2342                if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2343                        atomic_dec(&__num_online_cpus);
2344        }
2345}
2346
2347/*
2348 * Activate the first processor.
2349 */
2350void __init boot_cpu_init(void)
2351{
2352        int cpu = smp_processor_id();
2353
2354        /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2355        set_cpu_online(cpu, true);
2356        set_cpu_active(cpu, true);
2357        set_cpu_present(cpu, true);
2358        set_cpu_possible(cpu, true);
2359
2360#ifdef CONFIG_SMP
2361        __boot_cpu_id = cpu;
2362#endif
2363}
2364
2365/*
2366 * Must be called _AFTER_ setting up the per_cpu areas
2367 */
2368void __init boot_cpu_hotplug_init(void)
2369{
2370#ifdef CONFIG_SMP
2371        cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2372#endif
2373        this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2374}
2375
2376/*
2377 * These are used for a global "mitigations=" cmdline option for toggling
2378 * optional CPU mitigations.
2379 */
2380enum cpu_mitigations {
2381        CPU_MITIGATIONS_OFF,
2382        CPU_MITIGATIONS_AUTO,
2383        CPU_MITIGATIONS_AUTO_NOSMT,
2384};
2385
2386static enum cpu_mitigations cpu_mitigations __ro_after_init =
2387        CPU_MITIGATIONS_AUTO;
2388
2389static int __init mitigations_parse_cmdline(char *arg)
2390{
2391        if (!strcmp(arg, "off"))
2392                cpu_mitigations = CPU_MITIGATIONS_OFF;
2393        else if (!strcmp(arg, "auto"))
2394                cpu_mitigations = CPU_MITIGATIONS_AUTO;
2395        else if (!strcmp(arg, "auto,nosmt"))
2396                cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2397        else
2398                pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2399                        arg);
2400
2401        return 0;
2402}
2403early_param("mitigations", mitigations_parse_cmdline);
2404
2405/* mitigations=off */
2406bool cpu_mitigations_off(void)
2407{
2408        return cpu_mitigations == CPU_MITIGATIONS_OFF;
2409}
2410EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2411
2412/* mitigations=auto,nosmt */
2413bool cpu_mitigations_auto_nosmt(void)
2414{
2415        return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2416}
2417EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2418