linux/kernel/locking/rtmutex.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   4 *
   5 * started by Ingo Molnar and Thomas Gleixner.
   6 *
   7 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   8 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   9 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
  10 *  Copyright (C) 2006 Esben Nielsen
  11 *
  12 *  See Documentation/locking/rt-mutex-design.rst for details.
  13 */
  14#include <linux/spinlock.h>
  15#include <linux/export.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/rt.h>
  18#include <linux/sched/deadline.h>
  19#include <linux/sched/wake_q.h>
  20#include <linux/sched/debug.h>
  21#include <linux/timer.h>
  22
  23#include "rtmutex_common.h"
  24
  25/*
  26 * lock->owner state tracking:
  27 *
  28 * lock->owner holds the task_struct pointer of the owner. Bit 0
  29 * is used to keep track of the "lock has waiters" state.
  30 *
  31 * owner        bit0
  32 * NULL         0       lock is free (fast acquire possible)
  33 * NULL         1       lock is free and has waiters and the top waiter
  34 *                              is going to take the lock*
  35 * taskpointer  0       lock is held (fast release possible)
  36 * taskpointer  1       lock is held and has waiters**
  37 *
  38 * The fast atomic compare exchange based acquire and release is only
  39 * possible when bit 0 of lock->owner is 0.
  40 *
  41 * (*) It also can be a transitional state when grabbing the lock
  42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
  43 * we need to set the bit0 before looking at the lock, and the owner may be
  44 * NULL in this small time, hence this can be a transitional state.
  45 *
  46 * (**) There is a small time when bit 0 is set but there are no
  47 * waiters. This can happen when grabbing the lock in the slow path.
  48 * To prevent a cmpxchg of the owner releasing the lock, we need to
  49 * set this bit before looking at the lock.
  50 */
  51
  52static void
  53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
  54{
  55        unsigned long val = (unsigned long)owner;
  56
  57        if (rt_mutex_has_waiters(lock))
  58                val |= RT_MUTEX_HAS_WAITERS;
  59
  60        lock->owner = (struct task_struct *)val;
  61}
  62
  63static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  64{
  65        lock->owner = (struct task_struct *)
  66                        ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  67}
  68
  69static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  70{
  71        unsigned long owner, *p = (unsigned long *) &lock->owner;
  72
  73        if (rt_mutex_has_waiters(lock))
  74                return;
  75
  76        /*
  77         * The rbtree has no waiters enqueued, now make sure that the
  78         * lock->owner still has the waiters bit set, otherwise the
  79         * following can happen:
  80         *
  81         * CPU 0        CPU 1           CPU2
  82         * l->owner=T1
  83         *              rt_mutex_lock(l)
  84         *              lock(l->lock)
  85         *              l->owner = T1 | HAS_WAITERS;
  86         *              enqueue(T2)
  87         *              boost()
  88         *                unlock(l->lock)
  89         *              block()
  90         *
  91         *                              rt_mutex_lock(l)
  92         *                              lock(l->lock)
  93         *                              l->owner = T1 | HAS_WAITERS;
  94         *                              enqueue(T3)
  95         *                              boost()
  96         *                                unlock(l->lock)
  97         *                              block()
  98         *              signal(->T2)    signal(->T3)
  99         *              lock(l->lock)
 100         *              dequeue(T2)
 101         *              deboost()
 102         *                unlock(l->lock)
 103         *                              lock(l->lock)
 104         *                              dequeue(T3)
 105         *                               ==> wait list is empty
 106         *                              deboost()
 107         *                               unlock(l->lock)
 108         *              lock(l->lock)
 109         *              fixup_rt_mutex_waiters()
 110         *                if (wait_list_empty(l) {
 111         *                  l->owner = owner
 112         *                  owner = l->owner & ~HAS_WAITERS;
 113         *                    ==> l->owner = T1
 114         *                }
 115         *                              lock(l->lock)
 116         * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
 117         *                                if (wait_list_empty(l) {
 118         *                                  owner = l->owner & ~HAS_WAITERS;
 119         * cmpxchg(l->owner, T1, NULL)
 120         *  ===> Success (l->owner = NULL)
 121         *
 122         *                                  l->owner = owner
 123         *                                    ==> l->owner = T1
 124         *                                }
 125         *
 126         * With the check for the waiter bit in place T3 on CPU2 will not
 127         * overwrite. All tasks fiddling with the waiters bit are
 128         * serialized by l->lock, so nothing else can modify the waiters
 129         * bit. If the bit is set then nothing can change l->owner either
 130         * so the simple RMW is safe. The cmpxchg() will simply fail if it
 131         * happens in the middle of the RMW because the waiters bit is
 132         * still set.
 133         */
 134        owner = READ_ONCE(*p);
 135        if (owner & RT_MUTEX_HAS_WAITERS)
 136                WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
 137}
 138
 139/*
 140 * We can speed up the acquire/release, if there's no debugging state to be
 141 * set up.
 142 */
 143#ifndef CONFIG_DEBUG_RT_MUTEXES
 144# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
 145# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
 146# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
 147
 148/*
 149 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
 150 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
 151 * relaxed semantics suffice.
 152 */
 153static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 154{
 155        unsigned long owner, *p = (unsigned long *) &lock->owner;
 156
 157        do {
 158                owner = *p;
 159        } while (cmpxchg_relaxed(p, owner,
 160                                 owner | RT_MUTEX_HAS_WAITERS) != owner);
 161}
 162
 163/*
 164 * Safe fastpath aware unlock:
 165 * 1) Clear the waiters bit
 166 * 2) Drop lock->wait_lock
 167 * 3) Try to unlock the lock with cmpxchg
 168 */
 169static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 170                                        unsigned long flags)
 171        __releases(lock->wait_lock)
 172{
 173        struct task_struct *owner = rt_mutex_owner(lock);
 174
 175        clear_rt_mutex_waiters(lock);
 176        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 177        /*
 178         * If a new waiter comes in between the unlock and the cmpxchg
 179         * we have two situations:
 180         *
 181         * unlock(wait_lock);
 182         *                                      lock(wait_lock);
 183         * cmpxchg(p, owner, 0) == owner
 184         *                                      mark_rt_mutex_waiters(lock);
 185         *                                      acquire(lock);
 186         * or:
 187         *
 188         * unlock(wait_lock);
 189         *                                      lock(wait_lock);
 190         *                                      mark_rt_mutex_waiters(lock);
 191         *
 192         * cmpxchg(p, owner, 0) != owner
 193         *                                      enqueue_waiter();
 194         *                                      unlock(wait_lock);
 195         * lock(wait_lock);
 196         * wake waiter();
 197         * unlock(wait_lock);
 198         *                                      lock(wait_lock);
 199         *                                      acquire(lock);
 200         */
 201        return rt_mutex_cmpxchg_release(lock, owner, NULL);
 202}
 203
 204#else
 205# define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
 206# define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
 207# define rt_mutex_cmpxchg_release(l,c,n)        (0)
 208
 209static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 210{
 211        lock->owner = (struct task_struct *)
 212                        ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
 213}
 214
 215/*
 216 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
 217 */
 218static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 219                                        unsigned long flags)
 220        __releases(lock->wait_lock)
 221{
 222        lock->owner = NULL;
 223        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 224        return true;
 225}
 226#endif
 227
 228/*
 229 * Only use with rt_mutex_waiter_{less,equal}()
 230 */
 231#define task_to_waiter(p)       \
 232        &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
 233
 234static inline int
 235rt_mutex_waiter_less(struct rt_mutex_waiter *left,
 236                     struct rt_mutex_waiter *right)
 237{
 238        if (left->prio < right->prio)
 239                return 1;
 240
 241        /*
 242         * If both waiters have dl_prio(), we check the deadlines of the
 243         * associated tasks.
 244         * If left waiter has a dl_prio(), and we didn't return 1 above,
 245         * then right waiter has a dl_prio() too.
 246         */
 247        if (dl_prio(left->prio))
 248                return dl_time_before(left->deadline, right->deadline);
 249
 250        return 0;
 251}
 252
 253static inline int
 254rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
 255                      struct rt_mutex_waiter *right)
 256{
 257        if (left->prio != right->prio)
 258                return 0;
 259
 260        /*
 261         * If both waiters have dl_prio(), we check the deadlines of the
 262         * associated tasks.
 263         * If left waiter has a dl_prio(), and we didn't return 0 above,
 264         * then right waiter has a dl_prio() too.
 265         */
 266        if (dl_prio(left->prio))
 267                return left->deadline == right->deadline;
 268
 269        return 1;
 270}
 271
 272static void
 273rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 274{
 275        struct rb_node **link = &lock->waiters.rb_root.rb_node;
 276        struct rb_node *parent = NULL;
 277        struct rt_mutex_waiter *entry;
 278        bool leftmost = true;
 279
 280        while (*link) {
 281                parent = *link;
 282                entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
 283                if (rt_mutex_waiter_less(waiter, entry)) {
 284                        link = &parent->rb_left;
 285                } else {
 286                        link = &parent->rb_right;
 287                        leftmost = false;
 288                }
 289        }
 290
 291        rb_link_node(&waiter->tree_entry, parent, link);
 292        rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
 293}
 294
 295static void
 296rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 297{
 298        if (RB_EMPTY_NODE(&waiter->tree_entry))
 299                return;
 300
 301        rb_erase_cached(&waiter->tree_entry, &lock->waiters);
 302        RB_CLEAR_NODE(&waiter->tree_entry);
 303}
 304
 305static void
 306rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 307{
 308        struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
 309        struct rb_node *parent = NULL;
 310        struct rt_mutex_waiter *entry;
 311        bool leftmost = true;
 312
 313        while (*link) {
 314                parent = *link;
 315                entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
 316                if (rt_mutex_waiter_less(waiter, entry)) {
 317                        link = &parent->rb_left;
 318                } else {
 319                        link = &parent->rb_right;
 320                        leftmost = false;
 321                }
 322        }
 323
 324        rb_link_node(&waiter->pi_tree_entry, parent, link);
 325        rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
 326}
 327
 328static void
 329rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 330{
 331        if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
 332                return;
 333
 334        rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
 335        RB_CLEAR_NODE(&waiter->pi_tree_entry);
 336}
 337
 338static void rt_mutex_adjust_prio(struct task_struct *p)
 339{
 340        struct task_struct *pi_task = NULL;
 341
 342        lockdep_assert_held(&p->pi_lock);
 343
 344        if (task_has_pi_waiters(p))
 345                pi_task = task_top_pi_waiter(p)->task;
 346
 347        rt_mutex_setprio(p, pi_task);
 348}
 349
 350/*
 351 * Deadlock detection is conditional:
 352 *
 353 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
 354 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
 355 *
 356 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
 357 * conducted independent of the detect argument.
 358 *
 359 * If the waiter argument is NULL this indicates the deboost path and
 360 * deadlock detection is disabled independent of the detect argument
 361 * and the config settings.
 362 */
 363static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
 364                                          enum rtmutex_chainwalk chwalk)
 365{
 366        /*
 367         * This is just a wrapper function for the following call,
 368         * because debug_rt_mutex_detect_deadlock() smells like a magic
 369         * debug feature and I wanted to keep the cond function in the
 370         * main source file along with the comments instead of having
 371         * two of the same in the headers.
 372         */
 373        return debug_rt_mutex_detect_deadlock(waiter, chwalk);
 374}
 375
 376/*
 377 * Max number of times we'll walk the boosting chain:
 378 */
 379int max_lock_depth = 1024;
 380
 381static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
 382{
 383        return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
 384}
 385
 386/*
 387 * Adjust the priority chain. Also used for deadlock detection.
 388 * Decreases task's usage by one - may thus free the task.
 389 *
 390 * @task:       the task owning the mutex (owner) for which a chain walk is
 391 *              probably needed
 392 * @chwalk:     do we have to carry out deadlock detection?
 393 * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
 394 *              things for a task that has just got its priority adjusted, and
 395 *              is waiting on a mutex)
 396 * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
 397 *              we dropped its pi_lock. Is never dereferenced, only used for
 398 *              comparison to detect lock chain changes.
 399 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
 400 *              its priority to the mutex owner (can be NULL in the case
 401 *              depicted above or if the top waiter is gone away and we are
 402 *              actually deboosting the owner)
 403 * @top_task:   the current top waiter
 404 *
 405 * Returns 0 or -EDEADLK.
 406 *
 407 * Chain walk basics and protection scope
 408 *
 409 * [R] refcount on task
 410 * [P] task->pi_lock held
 411 * [L] rtmutex->wait_lock held
 412 *
 413 * Step Description                             Protected by
 414 *      function arguments:
 415 *      @task                                   [R]
 416 *      @orig_lock if != NULL                   @top_task is blocked on it
 417 *      @next_lock                              Unprotected. Cannot be
 418 *                                              dereferenced. Only used for
 419 *                                              comparison.
 420 *      @orig_waiter if != NULL                 @top_task is blocked on it
 421 *      @top_task                               current, or in case of proxy
 422 *                                              locking protected by calling
 423 *                                              code
 424 *      again:
 425 *        loop_sanity_check();
 426 *      retry:
 427 * [1]    lock(task->pi_lock);                  [R] acquire [P]
 428 * [2]    waiter = task->pi_blocked_on;         [P]
 429 * [3]    check_exit_conditions_1();            [P]
 430 * [4]    lock = waiter->lock;                  [P]
 431 * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
 432 *          unlock(task->pi_lock);              release [P]
 433 *          goto retry;
 434 *        }
 435 * [6]    check_exit_conditions_2();            [P] + [L]
 436 * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
 437 * [8]    unlock(task->pi_lock);                release [P]
 438 *        put_task_struct(task);                release [R]
 439 * [9]    check_exit_conditions_3();            [L]
 440 * [10]   task = owner(lock);                   [L]
 441 *        get_task_struct(task);                [L] acquire [R]
 442 *        lock(task->pi_lock);                  [L] acquire [P]
 443 * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
 444 * [12]   check_exit_conditions_4();            [P] + [L]
 445 * [13]   unlock(task->pi_lock);                release [P]
 446 *        unlock(lock->wait_lock);              release [L]
 447 *        goto again;
 448 */
 449static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 450                                      enum rtmutex_chainwalk chwalk,
 451                                      struct rt_mutex *orig_lock,
 452                                      struct rt_mutex *next_lock,
 453                                      struct rt_mutex_waiter *orig_waiter,
 454                                      struct task_struct *top_task)
 455{
 456        struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 457        struct rt_mutex_waiter *prerequeue_top_waiter;
 458        int ret = 0, depth = 0;
 459        struct rt_mutex *lock;
 460        bool detect_deadlock;
 461        bool requeue = true;
 462
 463        detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
 464
 465        /*
 466         * The (de)boosting is a step by step approach with a lot of
 467         * pitfalls. We want this to be preemptible and we want hold a
 468         * maximum of two locks per step. So we have to check
 469         * carefully whether things change under us.
 470         */
 471 again:
 472        /*
 473         * We limit the lock chain length for each invocation.
 474         */
 475        if (++depth > max_lock_depth) {
 476                static int prev_max;
 477
 478                /*
 479                 * Print this only once. If the admin changes the limit,
 480                 * print a new message when reaching the limit again.
 481                 */
 482                if (prev_max != max_lock_depth) {
 483                        prev_max = max_lock_depth;
 484                        printk(KERN_WARNING "Maximum lock depth %d reached "
 485                               "task: %s (%d)\n", max_lock_depth,
 486                               top_task->comm, task_pid_nr(top_task));
 487                }
 488                put_task_struct(task);
 489
 490                return -EDEADLK;
 491        }
 492
 493        /*
 494         * We are fully preemptible here and only hold the refcount on
 495         * @task. So everything can have changed under us since the
 496         * caller or our own code below (goto retry/again) dropped all
 497         * locks.
 498         */
 499 retry:
 500        /*
 501         * [1] Task cannot go away as we did a get_task() before !
 502         */
 503        raw_spin_lock_irq(&task->pi_lock);
 504
 505        /*
 506         * [2] Get the waiter on which @task is blocked on.
 507         */
 508        waiter = task->pi_blocked_on;
 509
 510        /*
 511         * [3] check_exit_conditions_1() protected by task->pi_lock.
 512         */
 513
 514        /*
 515         * Check whether the end of the boosting chain has been
 516         * reached or the state of the chain has changed while we
 517         * dropped the locks.
 518         */
 519        if (!waiter)
 520                goto out_unlock_pi;
 521
 522        /*
 523         * Check the orig_waiter state. After we dropped the locks,
 524         * the previous owner of the lock might have released the lock.
 525         */
 526        if (orig_waiter && !rt_mutex_owner(orig_lock))
 527                goto out_unlock_pi;
 528
 529        /*
 530         * We dropped all locks after taking a refcount on @task, so
 531         * the task might have moved on in the lock chain or even left
 532         * the chain completely and blocks now on an unrelated lock or
 533         * on @orig_lock.
 534         *
 535         * We stored the lock on which @task was blocked in @next_lock,
 536         * so we can detect the chain change.
 537         */
 538        if (next_lock != waiter->lock)
 539                goto out_unlock_pi;
 540
 541        /*
 542         * Drop out, when the task has no waiters. Note,
 543         * top_waiter can be NULL, when we are in the deboosting
 544         * mode!
 545         */
 546        if (top_waiter) {
 547                if (!task_has_pi_waiters(task))
 548                        goto out_unlock_pi;
 549                /*
 550                 * If deadlock detection is off, we stop here if we
 551                 * are not the top pi waiter of the task. If deadlock
 552                 * detection is enabled we continue, but stop the
 553                 * requeueing in the chain walk.
 554                 */
 555                if (top_waiter != task_top_pi_waiter(task)) {
 556                        if (!detect_deadlock)
 557                                goto out_unlock_pi;
 558                        else
 559                                requeue = false;
 560                }
 561        }
 562
 563        /*
 564         * If the waiter priority is the same as the task priority
 565         * then there is no further priority adjustment necessary.  If
 566         * deadlock detection is off, we stop the chain walk. If its
 567         * enabled we continue, but stop the requeueing in the chain
 568         * walk.
 569         */
 570        if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
 571                if (!detect_deadlock)
 572                        goto out_unlock_pi;
 573                else
 574                        requeue = false;
 575        }
 576
 577        /*
 578         * [4] Get the next lock
 579         */
 580        lock = waiter->lock;
 581        /*
 582         * [5] We need to trylock here as we are holding task->pi_lock,
 583         * which is the reverse lock order versus the other rtmutex
 584         * operations.
 585         */
 586        if (!raw_spin_trylock(&lock->wait_lock)) {
 587                raw_spin_unlock_irq(&task->pi_lock);
 588                cpu_relax();
 589                goto retry;
 590        }
 591
 592        /*
 593         * [6] check_exit_conditions_2() protected by task->pi_lock and
 594         * lock->wait_lock.
 595         *
 596         * Deadlock detection. If the lock is the same as the original
 597         * lock which caused us to walk the lock chain or if the
 598         * current lock is owned by the task which initiated the chain
 599         * walk, we detected a deadlock.
 600         */
 601        if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 602                debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
 603                raw_spin_unlock(&lock->wait_lock);
 604                ret = -EDEADLK;
 605                goto out_unlock_pi;
 606        }
 607
 608        /*
 609         * If we just follow the lock chain for deadlock detection, no
 610         * need to do all the requeue operations. To avoid a truckload
 611         * of conditionals around the various places below, just do the
 612         * minimum chain walk checks.
 613         */
 614        if (!requeue) {
 615                /*
 616                 * No requeue[7] here. Just release @task [8]
 617                 */
 618                raw_spin_unlock(&task->pi_lock);
 619                put_task_struct(task);
 620
 621                /*
 622                 * [9] check_exit_conditions_3 protected by lock->wait_lock.
 623                 * If there is no owner of the lock, end of chain.
 624                 */
 625                if (!rt_mutex_owner(lock)) {
 626                        raw_spin_unlock_irq(&lock->wait_lock);
 627                        return 0;
 628                }
 629
 630                /* [10] Grab the next task, i.e. owner of @lock */
 631                task = get_task_struct(rt_mutex_owner(lock));
 632                raw_spin_lock(&task->pi_lock);
 633
 634                /*
 635                 * No requeue [11] here. We just do deadlock detection.
 636                 *
 637                 * [12] Store whether owner is blocked
 638                 * itself. Decision is made after dropping the locks
 639                 */
 640                next_lock = task_blocked_on_lock(task);
 641                /*
 642                 * Get the top waiter for the next iteration
 643                 */
 644                top_waiter = rt_mutex_top_waiter(lock);
 645
 646                /* [13] Drop locks */
 647                raw_spin_unlock(&task->pi_lock);
 648                raw_spin_unlock_irq(&lock->wait_lock);
 649
 650                /* If owner is not blocked, end of chain. */
 651                if (!next_lock)
 652                        goto out_put_task;
 653                goto again;
 654        }
 655
 656        /*
 657         * Store the current top waiter before doing the requeue
 658         * operation on @lock. We need it for the boost/deboost
 659         * decision below.
 660         */
 661        prerequeue_top_waiter = rt_mutex_top_waiter(lock);
 662
 663        /* [7] Requeue the waiter in the lock waiter tree. */
 664        rt_mutex_dequeue(lock, waiter);
 665
 666        /*
 667         * Update the waiter prio fields now that we're dequeued.
 668         *
 669         * These values can have changed through either:
 670         *
 671         *   sys_sched_set_scheduler() / sys_sched_setattr()
 672         *
 673         * or
 674         *
 675         *   DL CBS enforcement advancing the effective deadline.
 676         *
 677         * Even though pi_waiters also uses these fields, and that tree is only
 678         * updated in [11], we can do this here, since we hold [L], which
 679         * serializes all pi_waiters access and rb_erase() does not care about
 680         * the values of the node being removed.
 681         */
 682        waiter->prio = task->prio;
 683        waiter->deadline = task->dl.deadline;
 684
 685        rt_mutex_enqueue(lock, waiter);
 686
 687        /* [8] Release the task */
 688        raw_spin_unlock(&task->pi_lock);
 689        put_task_struct(task);
 690
 691        /*
 692         * [9] check_exit_conditions_3 protected by lock->wait_lock.
 693         *
 694         * We must abort the chain walk if there is no lock owner even
 695         * in the dead lock detection case, as we have nothing to
 696         * follow here. This is the end of the chain we are walking.
 697         */
 698        if (!rt_mutex_owner(lock)) {
 699                /*
 700                 * If the requeue [7] above changed the top waiter,
 701                 * then we need to wake the new top waiter up to try
 702                 * to get the lock.
 703                 */
 704                if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
 705                        wake_up_process(rt_mutex_top_waiter(lock)->task);
 706                raw_spin_unlock_irq(&lock->wait_lock);
 707                return 0;
 708        }
 709
 710        /* [10] Grab the next task, i.e. the owner of @lock */
 711        task = get_task_struct(rt_mutex_owner(lock));
 712        raw_spin_lock(&task->pi_lock);
 713
 714        /* [11] requeue the pi waiters if necessary */
 715        if (waiter == rt_mutex_top_waiter(lock)) {
 716                /*
 717                 * The waiter became the new top (highest priority)
 718                 * waiter on the lock. Replace the previous top waiter
 719                 * in the owner tasks pi waiters tree with this waiter
 720                 * and adjust the priority of the owner.
 721                 */
 722                rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
 723                rt_mutex_enqueue_pi(task, waiter);
 724                rt_mutex_adjust_prio(task);
 725
 726        } else if (prerequeue_top_waiter == waiter) {
 727                /*
 728                 * The waiter was the top waiter on the lock, but is
 729                 * no longer the top prority waiter. Replace waiter in
 730                 * the owner tasks pi waiters tree with the new top
 731                 * (highest priority) waiter and adjust the priority
 732                 * of the owner.
 733                 * The new top waiter is stored in @waiter so that
 734                 * @waiter == @top_waiter evaluates to true below and
 735                 * we continue to deboost the rest of the chain.
 736                 */
 737                rt_mutex_dequeue_pi(task, waiter);
 738                waiter = rt_mutex_top_waiter(lock);
 739                rt_mutex_enqueue_pi(task, waiter);
 740                rt_mutex_adjust_prio(task);
 741        } else {
 742                /*
 743                 * Nothing changed. No need to do any priority
 744                 * adjustment.
 745                 */
 746        }
 747
 748        /*
 749         * [12] check_exit_conditions_4() protected by task->pi_lock
 750         * and lock->wait_lock. The actual decisions are made after we
 751         * dropped the locks.
 752         *
 753         * Check whether the task which owns the current lock is pi
 754         * blocked itself. If yes we store a pointer to the lock for
 755         * the lock chain change detection above. After we dropped
 756         * task->pi_lock next_lock cannot be dereferenced anymore.
 757         */
 758        next_lock = task_blocked_on_lock(task);
 759        /*
 760         * Store the top waiter of @lock for the end of chain walk
 761         * decision below.
 762         */
 763        top_waiter = rt_mutex_top_waiter(lock);
 764
 765        /* [13] Drop the locks */
 766        raw_spin_unlock(&task->pi_lock);
 767        raw_spin_unlock_irq(&lock->wait_lock);
 768
 769        /*
 770         * Make the actual exit decisions [12], based on the stored
 771         * values.
 772         *
 773         * We reached the end of the lock chain. Stop right here. No
 774         * point to go back just to figure that out.
 775         */
 776        if (!next_lock)
 777                goto out_put_task;
 778
 779        /*
 780         * If the current waiter is not the top waiter on the lock,
 781         * then we can stop the chain walk here if we are not in full
 782         * deadlock detection mode.
 783         */
 784        if (!detect_deadlock && waiter != top_waiter)
 785                goto out_put_task;
 786
 787        goto again;
 788
 789 out_unlock_pi:
 790        raw_spin_unlock_irq(&task->pi_lock);
 791 out_put_task:
 792        put_task_struct(task);
 793
 794        return ret;
 795}
 796
 797/*
 798 * Try to take an rt-mutex
 799 *
 800 * Must be called with lock->wait_lock held and interrupts disabled
 801 *
 802 * @lock:   The lock to be acquired.
 803 * @task:   The task which wants to acquire the lock
 804 * @waiter: The waiter that is queued to the lock's wait tree if the
 805 *          callsite called task_blocked_on_lock(), otherwise NULL
 806 */
 807static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 808                                struct rt_mutex_waiter *waiter)
 809{
 810        lockdep_assert_held(&lock->wait_lock);
 811
 812        /*
 813         * Before testing whether we can acquire @lock, we set the
 814         * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
 815         * other tasks which try to modify @lock into the slow path
 816         * and they serialize on @lock->wait_lock.
 817         *
 818         * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
 819         * as explained at the top of this file if and only if:
 820         *
 821         * - There is a lock owner. The caller must fixup the
 822         *   transient state if it does a trylock or leaves the lock
 823         *   function due to a signal or timeout.
 824         *
 825         * - @task acquires the lock and there are no other
 826         *   waiters. This is undone in rt_mutex_set_owner(@task) at
 827         *   the end of this function.
 828         */
 829        mark_rt_mutex_waiters(lock);
 830
 831        /*
 832         * If @lock has an owner, give up.
 833         */
 834        if (rt_mutex_owner(lock))
 835                return 0;
 836
 837        /*
 838         * If @waiter != NULL, @task has already enqueued the waiter
 839         * into @lock waiter tree. If @waiter == NULL then this is a
 840         * trylock attempt.
 841         */
 842        if (waiter) {
 843                /*
 844                 * If waiter is not the highest priority waiter of
 845                 * @lock, give up.
 846                 */
 847                if (waiter != rt_mutex_top_waiter(lock))
 848                        return 0;
 849
 850                /*
 851                 * We can acquire the lock. Remove the waiter from the
 852                 * lock waiters tree.
 853                 */
 854                rt_mutex_dequeue(lock, waiter);
 855
 856        } else {
 857                /*
 858                 * If the lock has waiters already we check whether @task is
 859                 * eligible to take over the lock.
 860                 *
 861                 * If there are no other waiters, @task can acquire
 862                 * the lock.  @task->pi_blocked_on is NULL, so it does
 863                 * not need to be dequeued.
 864                 */
 865                if (rt_mutex_has_waiters(lock)) {
 866                        /*
 867                         * If @task->prio is greater than or equal to
 868                         * the top waiter priority (kernel view),
 869                         * @task lost.
 870                         */
 871                        if (!rt_mutex_waiter_less(task_to_waiter(task),
 872                                                  rt_mutex_top_waiter(lock)))
 873                                return 0;
 874
 875                        /*
 876                         * The current top waiter stays enqueued. We
 877                         * don't have to change anything in the lock
 878                         * waiters order.
 879                         */
 880                } else {
 881                        /*
 882                         * No waiters. Take the lock without the
 883                         * pi_lock dance.@task->pi_blocked_on is NULL
 884                         * and we have no waiters to enqueue in @task
 885                         * pi waiters tree.
 886                         */
 887                        goto takeit;
 888                }
 889        }
 890
 891        /*
 892         * Clear @task->pi_blocked_on. Requires protection by
 893         * @task->pi_lock. Redundant operation for the @waiter == NULL
 894         * case, but conditionals are more expensive than a redundant
 895         * store.
 896         */
 897        raw_spin_lock(&task->pi_lock);
 898        task->pi_blocked_on = NULL;
 899        /*
 900         * Finish the lock acquisition. @task is the new owner. If
 901         * other waiters exist we have to insert the highest priority
 902         * waiter into @task->pi_waiters tree.
 903         */
 904        if (rt_mutex_has_waiters(lock))
 905                rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
 906        raw_spin_unlock(&task->pi_lock);
 907
 908takeit:
 909        /* We got the lock. */
 910        debug_rt_mutex_lock(lock);
 911
 912        /*
 913         * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
 914         * are still waiters or clears it.
 915         */
 916        rt_mutex_set_owner(lock, task);
 917
 918        return 1;
 919}
 920
 921/*
 922 * Task blocks on lock.
 923 *
 924 * Prepare waiter and propagate pi chain
 925 *
 926 * This must be called with lock->wait_lock held and interrupts disabled
 927 */
 928static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 929                                   struct rt_mutex_waiter *waiter,
 930                                   struct task_struct *task,
 931                                   enum rtmutex_chainwalk chwalk)
 932{
 933        struct task_struct *owner = rt_mutex_owner(lock);
 934        struct rt_mutex_waiter *top_waiter = waiter;
 935        struct rt_mutex *next_lock;
 936        int chain_walk = 0, res;
 937
 938        lockdep_assert_held(&lock->wait_lock);
 939
 940        /*
 941         * Early deadlock detection. We really don't want the task to
 942         * enqueue on itself just to untangle the mess later. It's not
 943         * only an optimization. We drop the locks, so another waiter
 944         * can come in before the chain walk detects the deadlock. So
 945         * the other will detect the deadlock and return -EDEADLOCK,
 946         * which is wrong, as the other waiter is not in a deadlock
 947         * situation.
 948         */
 949        if (owner == task)
 950                return -EDEADLK;
 951
 952        raw_spin_lock(&task->pi_lock);
 953        waiter->task = task;
 954        waiter->lock = lock;
 955        waiter->prio = task->prio;
 956        waiter->deadline = task->dl.deadline;
 957
 958        /* Get the top priority waiter on the lock */
 959        if (rt_mutex_has_waiters(lock))
 960                top_waiter = rt_mutex_top_waiter(lock);
 961        rt_mutex_enqueue(lock, waiter);
 962
 963        task->pi_blocked_on = waiter;
 964
 965        raw_spin_unlock(&task->pi_lock);
 966
 967        if (!owner)
 968                return 0;
 969
 970        raw_spin_lock(&owner->pi_lock);
 971        if (waiter == rt_mutex_top_waiter(lock)) {
 972                rt_mutex_dequeue_pi(owner, top_waiter);
 973                rt_mutex_enqueue_pi(owner, waiter);
 974
 975                rt_mutex_adjust_prio(owner);
 976                if (owner->pi_blocked_on)
 977                        chain_walk = 1;
 978        } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
 979                chain_walk = 1;
 980        }
 981
 982        /* Store the lock on which owner is blocked or NULL */
 983        next_lock = task_blocked_on_lock(owner);
 984
 985        raw_spin_unlock(&owner->pi_lock);
 986        /*
 987         * Even if full deadlock detection is on, if the owner is not
 988         * blocked itself, we can avoid finding this out in the chain
 989         * walk.
 990         */
 991        if (!chain_walk || !next_lock)
 992                return 0;
 993
 994        /*
 995         * The owner can't disappear while holding a lock,
 996         * so the owner struct is protected by wait_lock.
 997         * Gets dropped in rt_mutex_adjust_prio_chain()!
 998         */
 999        get_task_struct(owner);
1000
1001        raw_spin_unlock_irq(&lock->wait_lock);
1002
1003        res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1004                                         next_lock, waiter, task);
1005
1006        raw_spin_lock_irq(&lock->wait_lock);
1007
1008        return res;
1009}
1010
1011/*
1012 * Remove the top waiter from the current tasks pi waiter tree and
1013 * queue it up.
1014 *
1015 * Called with lock->wait_lock held and interrupts disabled.
1016 */
1017static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1018                                    struct rt_mutex *lock)
1019{
1020        struct rt_mutex_waiter *waiter;
1021
1022        raw_spin_lock(&current->pi_lock);
1023
1024        waiter = rt_mutex_top_waiter(lock);
1025
1026        /*
1027         * Remove it from current->pi_waiters and deboost.
1028         *
1029         * We must in fact deboost here in order to ensure we call
1030         * rt_mutex_setprio() to update p->pi_top_task before the
1031         * task unblocks.
1032         */
1033        rt_mutex_dequeue_pi(current, waiter);
1034        rt_mutex_adjust_prio(current);
1035
1036        /*
1037         * As we are waking up the top waiter, and the waiter stays
1038         * queued on the lock until it gets the lock, this lock
1039         * obviously has waiters. Just set the bit here and this has
1040         * the added benefit of forcing all new tasks into the
1041         * slow path making sure no task of lower priority than
1042         * the top waiter can steal this lock.
1043         */
1044        lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1045
1046        /*
1047         * We deboosted before waking the top waiter task such that we don't
1048         * run two tasks with the 'same' priority (and ensure the
1049         * p->pi_top_task pointer points to a blocked task). This however can
1050         * lead to priority inversion if we would get preempted after the
1051         * deboost but before waking our donor task, hence the preempt_disable()
1052         * before unlock.
1053         *
1054         * Pairs with preempt_enable() in rt_mutex_postunlock();
1055         */
1056        preempt_disable();
1057        wake_q_add(wake_q, waiter->task);
1058        raw_spin_unlock(&current->pi_lock);
1059}
1060
1061/*
1062 * Remove a waiter from a lock and give up
1063 *
1064 * Must be called with lock->wait_lock held and interrupts disabled. I must
1065 * have just failed to try_to_take_rt_mutex().
1066 */
1067static void remove_waiter(struct rt_mutex *lock,
1068                          struct rt_mutex_waiter *waiter)
1069{
1070        bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1071        struct task_struct *owner = rt_mutex_owner(lock);
1072        struct rt_mutex *next_lock;
1073
1074        lockdep_assert_held(&lock->wait_lock);
1075
1076        raw_spin_lock(&current->pi_lock);
1077        rt_mutex_dequeue(lock, waiter);
1078        current->pi_blocked_on = NULL;
1079        raw_spin_unlock(&current->pi_lock);
1080
1081        /*
1082         * Only update priority if the waiter was the highest priority
1083         * waiter of the lock and there is an owner to update.
1084         */
1085        if (!owner || !is_top_waiter)
1086                return;
1087
1088        raw_spin_lock(&owner->pi_lock);
1089
1090        rt_mutex_dequeue_pi(owner, waiter);
1091
1092        if (rt_mutex_has_waiters(lock))
1093                rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1094
1095        rt_mutex_adjust_prio(owner);
1096
1097        /* Store the lock on which owner is blocked or NULL */
1098        next_lock = task_blocked_on_lock(owner);
1099
1100        raw_spin_unlock(&owner->pi_lock);
1101
1102        /*
1103         * Don't walk the chain, if the owner task is not blocked
1104         * itself.
1105         */
1106        if (!next_lock)
1107                return;
1108
1109        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1110        get_task_struct(owner);
1111
1112        raw_spin_unlock_irq(&lock->wait_lock);
1113
1114        rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1115                                   next_lock, NULL, current);
1116
1117        raw_spin_lock_irq(&lock->wait_lock);
1118}
1119
1120/*
1121 * Recheck the pi chain, in case we got a priority setting
1122 *
1123 * Called from sched_setscheduler
1124 */
1125void rt_mutex_adjust_pi(struct task_struct *task)
1126{
1127        struct rt_mutex_waiter *waiter;
1128        struct rt_mutex *next_lock;
1129        unsigned long flags;
1130
1131        raw_spin_lock_irqsave(&task->pi_lock, flags);
1132
1133        waiter = task->pi_blocked_on;
1134        if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1135                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1136                return;
1137        }
1138        next_lock = waiter->lock;
1139        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1140
1141        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1142        get_task_struct(task);
1143
1144        rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1145                                   next_lock, NULL, task);
1146}
1147
1148void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1149{
1150        debug_rt_mutex_init_waiter(waiter);
1151        RB_CLEAR_NODE(&waiter->pi_tree_entry);
1152        RB_CLEAR_NODE(&waiter->tree_entry);
1153        waiter->task = NULL;
1154}
1155
1156/**
1157 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1158 * @lock:                the rt_mutex to take
1159 * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1160 *                       or TASK_UNINTERRUPTIBLE)
1161 * @timeout:             the pre-initialized and started timer, or NULL for none
1162 * @waiter:              the pre-initialized rt_mutex_waiter
1163 *
1164 * Must be called with lock->wait_lock held and interrupts disabled
1165 */
1166static int __sched
1167__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1168                    struct hrtimer_sleeper *timeout,
1169                    struct rt_mutex_waiter *waiter)
1170{
1171        int ret = 0;
1172
1173        for (;;) {
1174                /* Try to acquire the lock: */
1175                if (try_to_take_rt_mutex(lock, current, waiter))
1176                        break;
1177
1178                /*
1179                 * TASK_INTERRUPTIBLE checks for signals and
1180                 * timeout. Ignored otherwise.
1181                 */
1182                if (likely(state == TASK_INTERRUPTIBLE)) {
1183                        /* Signal pending? */
1184                        if (signal_pending(current))
1185                                ret = -EINTR;
1186                        if (timeout && !timeout->task)
1187                                ret = -ETIMEDOUT;
1188                        if (ret)
1189                                break;
1190                }
1191
1192                raw_spin_unlock_irq(&lock->wait_lock);
1193
1194                debug_rt_mutex_print_deadlock(waiter);
1195
1196                schedule();
1197
1198                raw_spin_lock_irq(&lock->wait_lock);
1199                set_current_state(state);
1200        }
1201
1202        __set_current_state(TASK_RUNNING);
1203        return ret;
1204}
1205
1206static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1207                                     struct rt_mutex_waiter *w)
1208{
1209        /*
1210         * If the result is not -EDEADLOCK or the caller requested
1211         * deadlock detection, nothing to do here.
1212         */
1213        if (res != -EDEADLOCK || detect_deadlock)
1214                return;
1215
1216        /*
1217         * Yell lowdly and stop the task right here.
1218         */
1219        rt_mutex_print_deadlock(w);
1220        while (1) {
1221                set_current_state(TASK_INTERRUPTIBLE);
1222                schedule();
1223        }
1224}
1225
1226/*
1227 * Slow path lock function:
1228 */
1229static int __sched
1230rt_mutex_slowlock(struct rt_mutex *lock, int state,
1231                  struct hrtimer_sleeper *timeout,
1232                  enum rtmutex_chainwalk chwalk)
1233{
1234        struct rt_mutex_waiter waiter;
1235        unsigned long flags;
1236        int ret = 0;
1237
1238        rt_mutex_init_waiter(&waiter);
1239
1240        /*
1241         * Technically we could use raw_spin_[un]lock_irq() here, but this can
1242         * be called in early boot if the cmpxchg() fast path is disabled
1243         * (debug, no architecture support). In this case we will acquire the
1244         * rtmutex with lock->wait_lock held. But we cannot unconditionally
1245         * enable interrupts in that early boot case. So we need to use the
1246         * irqsave/restore variants.
1247         */
1248        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1249
1250        /* Try to acquire the lock again: */
1251        if (try_to_take_rt_mutex(lock, current, NULL)) {
1252                raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1253                return 0;
1254        }
1255
1256        set_current_state(state);
1257
1258        /* Setup the timer, when timeout != NULL */
1259        if (unlikely(timeout))
1260                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1261
1262        ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1263
1264        if (likely(!ret))
1265                /* sleep on the mutex */
1266                ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1267
1268        if (unlikely(ret)) {
1269                __set_current_state(TASK_RUNNING);
1270                remove_waiter(lock, &waiter);
1271                rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1272        }
1273
1274        /*
1275         * try_to_take_rt_mutex() sets the waiter bit
1276         * unconditionally. We might have to fix that up.
1277         */
1278        fixup_rt_mutex_waiters(lock);
1279
1280        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1281
1282        /* Remove pending timer: */
1283        if (unlikely(timeout))
1284                hrtimer_cancel(&timeout->timer);
1285
1286        debug_rt_mutex_free_waiter(&waiter);
1287
1288        return ret;
1289}
1290
1291static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1292{
1293        int ret = try_to_take_rt_mutex(lock, current, NULL);
1294
1295        /*
1296         * try_to_take_rt_mutex() sets the lock waiters bit
1297         * unconditionally. Clean this up.
1298         */
1299        fixup_rt_mutex_waiters(lock);
1300
1301        return ret;
1302}
1303
1304/*
1305 * Slow path try-lock function:
1306 */
1307static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1308{
1309        unsigned long flags;
1310        int ret;
1311
1312        /*
1313         * If the lock already has an owner we fail to get the lock.
1314         * This can be done without taking the @lock->wait_lock as
1315         * it is only being read, and this is a trylock anyway.
1316         */
1317        if (rt_mutex_owner(lock))
1318                return 0;
1319
1320        /*
1321         * The mutex has currently no owner. Lock the wait lock and try to
1322         * acquire the lock. We use irqsave here to support early boot calls.
1323         */
1324        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1325
1326        ret = __rt_mutex_slowtrylock(lock);
1327
1328        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1329
1330        return ret;
1331}
1332
1333/*
1334 * Slow path to release a rt-mutex.
1335 *
1336 * Return whether the current task needs to call rt_mutex_postunlock().
1337 */
1338static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1339                                        struct wake_q_head *wake_q)
1340{
1341        unsigned long flags;
1342
1343        /* irqsave required to support early boot calls */
1344        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1345
1346        debug_rt_mutex_unlock(lock);
1347
1348        /*
1349         * We must be careful here if the fast path is enabled. If we
1350         * have no waiters queued we cannot set owner to NULL here
1351         * because of:
1352         *
1353         * foo->lock->owner = NULL;
1354         *                      rtmutex_lock(foo->lock);   <- fast path
1355         *                      free = atomic_dec_and_test(foo->refcnt);
1356         *                      rtmutex_unlock(foo->lock); <- fast path
1357         *                      if (free)
1358         *                              kfree(foo);
1359         * raw_spin_unlock(foo->lock->wait_lock);
1360         *
1361         * So for the fastpath enabled kernel:
1362         *
1363         * Nothing can set the waiters bit as long as we hold
1364         * lock->wait_lock. So we do the following sequence:
1365         *
1366         *      owner = rt_mutex_owner(lock);
1367         *      clear_rt_mutex_waiters(lock);
1368         *      raw_spin_unlock(&lock->wait_lock);
1369         *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1370         *              return;
1371         *      goto retry;
1372         *
1373         * The fastpath disabled variant is simple as all access to
1374         * lock->owner is serialized by lock->wait_lock:
1375         *
1376         *      lock->owner = NULL;
1377         *      raw_spin_unlock(&lock->wait_lock);
1378         */
1379        while (!rt_mutex_has_waiters(lock)) {
1380                /* Drops lock->wait_lock ! */
1381                if (unlock_rt_mutex_safe(lock, flags) == true)
1382                        return false;
1383                /* Relock the rtmutex and try again */
1384                raw_spin_lock_irqsave(&lock->wait_lock, flags);
1385        }
1386
1387        /*
1388         * The wakeup next waiter path does not suffer from the above
1389         * race. See the comments there.
1390         *
1391         * Queue the next waiter for wakeup once we release the wait_lock.
1392         */
1393        mark_wakeup_next_waiter(wake_q, lock);
1394        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1395
1396        return true; /* call rt_mutex_postunlock() */
1397}
1398
1399/*
1400 * debug aware fast / slowpath lock,trylock,unlock
1401 *
1402 * The atomic acquire/release ops are compiled away, when either the
1403 * architecture does not support cmpxchg or when debugging is enabled.
1404 */
1405static inline int
1406rt_mutex_fastlock(struct rt_mutex *lock, int state,
1407                  int (*slowfn)(struct rt_mutex *lock, int state,
1408                                struct hrtimer_sleeper *timeout,
1409                                enum rtmutex_chainwalk chwalk))
1410{
1411        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1412                return 0;
1413
1414        return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1415}
1416
1417static inline int
1418rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1419                        struct hrtimer_sleeper *timeout,
1420                        enum rtmutex_chainwalk chwalk,
1421                        int (*slowfn)(struct rt_mutex *lock, int state,
1422                                      struct hrtimer_sleeper *timeout,
1423                                      enum rtmutex_chainwalk chwalk))
1424{
1425        if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1426            likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1427                return 0;
1428
1429        return slowfn(lock, state, timeout, chwalk);
1430}
1431
1432static inline int
1433rt_mutex_fasttrylock(struct rt_mutex *lock,
1434                     int (*slowfn)(struct rt_mutex *lock))
1435{
1436        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1437                return 1;
1438
1439        return slowfn(lock);
1440}
1441
1442/*
1443 * Performs the wakeup of the the top-waiter and re-enables preemption.
1444 */
1445void rt_mutex_postunlock(struct wake_q_head *wake_q)
1446{
1447        wake_up_q(wake_q);
1448
1449        /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1450        preempt_enable();
1451}
1452
1453static inline void
1454rt_mutex_fastunlock(struct rt_mutex *lock,
1455                    bool (*slowfn)(struct rt_mutex *lock,
1456                                   struct wake_q_head *wqh))
1457{
1458        DEFINE_WAKE_Q(wake_q);
1459
1460        if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1461                return;
1462
1463        if (slowfn(lock, &wake_q))
1464                rt_mutex_postunlock(&wake_q);
1465}
1466
1467static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1468{
1469        might_sleep();
1470
1471        mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1472        rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1473}
1474
1475#ifdef CONFIG_DEBUG_LOCK_ALLOC
1476/**
1477 * rt_mutex_lock_nested - lock a rt_mutex
1478 *
1479 * @lock: the rt_mutex to be locked
1480 * @subclass: the lockdep subclass
1481 */
1482void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1483{
1484        __rt_mutex_lock(lock, subclass);
1485}
1486EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1487
1488#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1489
1490/**
1491 * rt_mutex_lock - lock a rt_mutex
1492 *
1493 * @lock: the rt_mutex to be locked
1494 */
1495void __sched rt_mutex_lock(struct rt_mutex *lock)
1496{
1497        __rt_mutex_lock(lock, 0);
1498}
1499EXPORT_SYMBOL_GPL(rt_mutex_lock);
1500#endif
1501
1502/**
1503 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1504 *
1505 * @lock:               the rt_mutex to be locked
1506 *
1507 * Returns:
1508 *  0           on success
1509 * -EINTR       when interrupted by a signal
1510 */
1511int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1512{
1513        int ret;
1514
1515        might_sleep();
1516
1517        mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1518        ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1519        if (ret)
1520                mutex_release(&lock->dep_map, 1, _RET_IP_);
1521
1522        return ret;
1523}
1524EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1525
1526/*
1527 * Futex variant, must not use fastpath.
1528 */
1529int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1530{
1531        return rt_mutex_slowtrylock(lock);
1532}
1533
1534int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1535{
1536        return __rt_mutex_slowtrylock(lock);
1537}
1538
1539/**
1540 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1541 *                      the timeout structure is provided
1542 *                      by the caller
1543 *
1544 * @lock:               the rt_mutex to be locked
1545 * @timeout:            timeout structure or NULL (no timeout)
1546 *
1547 * Returns:
1548 *  0           on success
1549 * -EINTR       when interrupted by a signal
1550 * -ETIMEDOUT   when the timeout expired
1551 */
1552int
1553rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1554{
1555        int ret;
1556
1557        might_sleep();
1558
1559        mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1560        ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1561                                       RT_MUTEX_MIN_CHAINWALK,
1562                                       rt_mutex_slowlock);
1563        if (ret)
1564                mutex_release(&lock->dep_map, 1, _RET_IP_);
1565
1566        return ret;
1567}
1568EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1569
1570/**
1571 * rt_mutex_trylock - try to lock a rt_mutex
1572 *
1573 * @lock:       the rt_mutex to be locked
1574 *
1575 * This function can only be called in thread context. It's safe to
1576 * call it from atomic regions, but not from hard interrupt or soft
1577 * interrupt context.
1578 *
1579 * Returns 1 on success and 0 on contention
1580 */
1581int __sched rt_mutex_trylock(struct rt_mutex *lock)
1582{
1583        int ret;
1584
1585        if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1586                return 0;
1587
1588        ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1589        if (ret)
1590                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1591
1592        return ret;
1593}
1594EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1595
1596/**
1597 * rt_mutex_unlock - unlock a rt_mutex
1598 *
1599 * @lock: the rt_mutex to be unlocked
1600 */
1601void __sched rt_mutex_unlock(struct rt_mutex *lock)
1602{
1603        mutex_release(&lock->dep_map, 1, _RET_IP_);
1604        rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1605}
1606EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1607
1608/**
1609 * Futex variant, that since futex variants do not use the fast-path, can be
1610 * simple and will not need to retry.
1611 */
1612bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1613                                    struct wake_q_head *wake_q)
1614{
1615        lockdep_assert_held(&lock->wait_lock);
1616
1617        debug_rt_mutex_unlock(lock);
1618
1619        if (!rt_mutex_has_waiters(lock)) {
1620                lock->owner = NULL;
1621                return false; /* done */
1622        }
1623
1624        /*
1625         * We've already deboosted, mark_wakeup_next_waiter() will
1626         * retain preempt_disabled when we drop the wait_lock, to
1627         * avoid inversion prior to the wakeup.  preempt_disable()
1628         * therein pairs with rt_mutex_postunlock().
1629         */
1630        mark_wakeup_next_waiter(wake_q, lock);
1631
1632        return true; /* call postunlock() */
1633}
1634
1635void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1636{
1637        DEFINE_WAKE_Q(wake_q);
1638        unsigned long flags;
1639        bool postunlock;
1640
1641        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1642        postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1643        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1644
1645        if (postunlock)
1646                rt_mutex_postunlock(&wake_q);
1647}
1648
1649/**
1650 * rt_mutex_destroy - mark a mutex unusable
1651 * @lock: the mutex to be destroyed
1652 *
1653 * This function marks the mutex uninitialized, and any subsequent
1654 * use of the mutex is forbidden. The mutex must not be locked when
1655 * this function is called.
1656 */
1657void rt_mutex_destroy(struct rt_mutex *lock)
1658{
1659        WARN_ON(rt_mutex_is_locked(lock));
1660#ifdef CONFIG_DEBUG_RT_MUTEXES
1661        lock->magic = NULL;
1662#endif
1663}
1664EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1665
1666/**
1667 * __rt_mutex_init - initialize the rt lock
1668 *
1669 * @lock: the rt lock to be initialized
1670 *
1671 * Initialize the rt lock to unlocked state.
1672 *
1673 * Initializing of a locked rt lock is not allowed
1674 */
1675void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1676                     struct lock_class_key *key)
1677{
1678        lock->owner = NULL;
1679        raw_spin_lock_init(&lock->wait_lock);
1680        lock->waiters = RB_ROOT_CACHED;
1681
1682        if (name && key)
1683                debug_rt_mutex_init(lock, name, key);
1684}
1685EXPORT_SYMBOL_GPL(__rt_mutex_init);
1686
1687/**
1688 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1689 *                              proxy owner
1690 *
1691 * @lock:       the rt_mutex to be locked
1692 * @proxy_owner:the task to set as owner
1693 *
1694 * No locking. Caller has to do serializing itself
1695 *
1696 * Special API call for PI-futex support. This initializes the rtmutex and
1697 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1698 * possible at this point because the pi_state which contains the rtmutex
1699 * is not yet visible to other tasks.
1700 */
1701void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1702                                struct task_struct *proxy_owner)
1703{
1704        __rt_mutex_init(lock, NULL, NULL);
1705        debug_rt_mutex_proxy_lock(lock, proxy_owner);
1706        rt_mutex_set_owner(lock, proxy_owner);
1707}
1708
1709/**
1710 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1711 *
1712 * @lock:       the rt_mutex to be locked
1713 *
1714 * No locking. Caller has to do serializing itself
1715 *
1716 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1717 * (debugging) state. Concurrent operations on this rt_mutex are not
1718 * possible because it belongs to the pi_state which is about to be freed
1719 * and it is not longer visible to other tasks.
1720 */
1721void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1722                           struct task_struct *proxy_owner)
1723{
1724        debug_rt_mutex_proxy_unlock(lock);
1725        rt_mutex_set_owner(lock, NULL);
1726}
1727
1728/**
1729 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1730 * @lock:               the rt_mutex to take
1731 * @waiter:             the pre-initialized rt_mutex_waiter
1732 * @task:               the task to prepare
1733 *
1734 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1735 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1736 *
1737 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1738 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1739 *
1740 * Returns:
1741 *  0 - task blocked on lock
1742 *  1 - acquired the lock for task, caller should wake it up
1743 * <0 - error
1744 *
1745 * Special API call for PI-futex support.
1746 */
1747int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1748                              struct rt_mutex_waiter *waiter,
1749                              struct task_struct *task)
1750{
1751        int ret;
1752
1753        lockdep_assert_held(&lock->wait_lock);
1754
1755        if (try_to_take_rt_mutex(lock, task, NULL))
1756                return 1;
1757
1758        /* We enforce deadlock detection for futexes */
1759        ret = task_blocks_on_rt_mutex(lock, waiter, task,
1760                                      RT_MUTEX_FULL_CHAINWALK);
1761
1762        if (ret && !rt_mutex_owner(lock)) {
1763                /*
1764                 * Reset the return value. We might have
1765                 * returned with -EDEADLK and the owner
1766                 * released the lock while we were walking the
1767                 * pi chain.  Let the waiter sort it out.
1768                 */
1769                ret = 0;
1770        }
1771
1772        debug_rt_mutex_print_deadlock(waiter);
1773
1774        return ret;
1775}
1776
1777/**
1778 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1779 * @lock:               the rt_mutex to take
1780 * @waiter:             the pre-initialized rt_mutex_waiter
1781 * @task:               the task to prepare
1782 *
1783 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1784 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1785 *
1786 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1787 * on failure.
1788 *
1789 * Returns:
1790 *  0 - task blocked on lock
1791 *  1 - acquired the lock for task, caller should wake it up
1792 * <0 - error
1793 *
1794 * Special API call for PI-futex support.
1795 */
1796int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1797                              struct rt_mutex_waiter *waiter,
1798                              struct task_struct *task)
1799{
1800        int ret;
1801
1802        raw_spin_lock_irq(&lock->wait_lock);
1803        ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1804        if (unlikely(ret))
1805                remove_waiter(lock, waiter);
1806        raw_spin_unlock_irq(&lock->wait_lock);
1807
1808        return ret;
1809}
1810
1811/**
1812 * rt_mutex_next_owner - return the next owner of the lock
1813 *
1814 * @lock: the rt lock query
1815 *
1816 * Returns the next owner of the lock or NULL
1817 *
1818 * Caller has to serialize against other accessors to the lock
1819 * itself.
1820 *
1821 * Special API call for PI-futex support
1822 */
1823struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1824{
1825        if (!rt_mutex_has_waiters(lock))
1826                return NULL;
1827
1828        return rt_mutex_top_waiter(lock)->task;
1829}
1830
1831/**
1832 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1833 * @lock:               the rt_mutex we were woken on
1834 * @to:                 the timeout, null if none. hrtimer should already have
1835 *                      been started.
1836 * @waiter:             the pre-initialized rt_mutex_waiter
1837 *
1838 * Wait for the the lock acquisition started on our behalf by
1839 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1840 * rt_mutex_cleanup_proxy_lock().
1841 *
1842 * Returns:
1843 *  0 - success
1844 * <0 - error, one of -EINTR, -ETIMEDOUT
1845 *
1846 * Special API call for PI-futex support
1847 */
1848int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1849                               struct hrtimer_sleeper *to,
1850                               struct rt_mutex_waiter *waiter)
1851{
1852        int ret;
1853
1854        raw_spin_lock_irq(&lock->wait_lock);
1855        /* sleep on the mutex */
1856        set_current_state(TASK_INTERRUPTIBLE);
1857        ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1858        /*
1859         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1860         * have to fix that up.
1861         */
1862        fixup_rt_mutex_waiters(lock);
1863        raw_spin_unlock_irq(&lock->wait_lock);
1864
1865        return ret;
1866}
1867
1868/**
1869 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1870 * @lock:               the rt_mutex we were woken on
1871 * @waiter:             the pre-initialized rt_mutex_waiter
1872 *
1873 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1874 * rt_mutex_wait_proxy_lock().
1875 *
1876 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1877 * in fact still be granted ownership until we're removed. Therefore we can
1878 * find we are in fact the owner and must disregard the
1879 * rt_mutex_wait_proxy_lock() failure.
1880 *
1881 * Returns:
1882 *  true  - did the cleanup, we done.
1883 *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1884 *          caller should disregards its return value.
1885 *
1886 * Special API call for PI-futex support
1887 */
1888bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1889                                 struct rt_mutex_waiter *waiter)
1890{
1891        bool cleanup = false;
1892
1893        raw_spin_lock_irq(&lock->wait_lock);
1894        /*
1895         * Do an unconditional try-lock, this deals with the lock stealing
1896         * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1897         * sets a NULL owner.
1898         *
1899         * We're not interested in the return value, because the subsequent
1900         * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1901         * we will own the lock and it will have removed the waiter. If we
1902         * failed the trylock, we're still not owner and we need to remove
1903         * ourselves.
1904         */
1905        try_to_take_rt_mutex(lock, current, waiter);
1906        /*
1907         * Unless we're the owner; we're still enqueued on the wait_list.
1908         * So check if we became owner, if not, take us off the wait_list.
1909         */
1910        if (rt_mutex_owner(lock) != current) {
1911                remove_waiter(lock, waiter);
1912                cleanup = true;
1913        }
1914        /*
1915         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1916         * have to fix that up.
1917         */
1918        fixup_rt_mutex_waiters(lock);
1919
1920        raw_spin_unlock_irq(&lock->wait_lock);
1921
1922        return cleanup;
1923}
1924