linux/kernel/rcu/tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *          Manfred Spraul <manfred@colorfullife.com>
   9 *          Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *      Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/percpu.h>
  36#include <linux/notifier.h>
  37#include <linux/cpu.h>
  38#include <linux/mutex.h>
  39#include <linux/time.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/wait.h>
  42#include <linux/kthread.h>
  43#include <uapi/linux/sched/types.h>
  44#include <linux/prefetch.h>
  45#include <linux/delay.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/trace_events.h>
  49#include <linux/suspend.h>
  50#include <linux/ftrace.h>
  51#include <linux/tick.h>
  52#include <linux/sysrq.h>
  53#include <linux/kprobes.h>
  54#include <linux/gfp.h>
  55#include <linux/oom.h>
  56#include <linux/smpboot.h>
  57#include <linux/jiffies.h>
  58#include <linux/sched/isolation.h>
  59#include <linux/sched/clock.h>
  60#include "../time/tick-internal.h"
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  74 * control.  Initially this is for TLB flushing.
  75 */
  76#define RCU_DYNTICK_CTRL_MASK 0x1
  77#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
  78#ifndef rcu_eqs_special_exit
  79#define rcu_eqs_special_exit() do { } while (0)
  80#endif
  81
  82static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  83        .dynticks_nesting = 1,
  84        .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  85        .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  86};
  87struct rcu_state rcu_state = {
  88        .level = { &rcu_state.node[0] },
  89        .gp_state = RCU_GP_IDLE,
  90        .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  91        .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  92        .name = RCU_NAME,
  93        .abbr = RCU_ABBR,
  94        .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  95        .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  96        .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
  97};
  98
  99/* Dump rcu_node combining tree at boot to verify correct setup. */
 100static bool dump_tree;
 101module_param(dump_tree, bool, 0444);
 102/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 103static bool use_softirq = 1;
 104module_param(use_softirq, bool, 0444);
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146                              unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 153
 154/* rcuc/rcub kthread realtime priority */
 155static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 156module_param(kthread_prio, int, 0444);
 157
 158/* Delay in jiffies for grace-period initialization delays, debug only. */
 159
 160static int gp_preinit_delay;
 161module_param(gp_preinit_delay, int, 0444);
 162static int gp_init_delay;
 163module_param(gp_init_delay, int, 0444);
 164static int gp_cleanup_delay;
 165module_param(gp_cleanup_delay, int, 0444);
 166
 167/* Retrieve RCU kthreads priority for rcutorture */
 168int rcu_get_gp_kthreads_prio(void)
 169{
 170        return kthread_prio;
 171}
 172EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 173
 174/*
 175 * Number of grace periods between delays, normalized by the duration of
 176 * the delay.  The longer the delay, the more the grace periods between
 177 * each delay.  The reason for this normalization is that it means that,
 178 * for non-zero delays, the overall slowdown of grace periods is constant
 179 * regardless of the duration of the delay.  This arrangement balances
 180 * the need for long delays to increase some race probabilities with the
 181 * need for fast grace periods to increase other race probabilities.
 182 */
 183#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 184
 185/*
 186 * Compute the mask of online CPUs for the specified rcu_node structure.
 187 * This will not be stable unless the rcu_node structure's ->lock is
 188 * held, but the bit corresponding to the current CPU will be stable
 189 * in most contexts.
 190 */
 191unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 192{
 193        return READ_ONCE(rnp->qsmaskinitnext);
 194}
 195
 196/*
 197 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 198 * permit this function to be invoked without holding the root rcu_node
 199 * structure's ->lock, but of course results can be subject to change.
 200 */
 201static int rcu_gp_in_progress(void)
 202{
 203        return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 204}
 205
 206/*
 207 * Return the number of callbacks queued on the specified CPU.
 208 * Handles both the nocbs and normal cases.
 209 */
 210static long rcu_get_n_cbs_cpu(int cpu)
 211{
 212        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 213
 214        if (rcu_segcblist_is_enabled(&rdp->cblist))
 215                return rcu_segcblist_n_cbs(&rdp->cblist);
 216        return 0;
 217}
 218
 219void rcu_softirq_qs(void)
 220{
 221        rcu_qs();
 222        rcu_preempt_deferred_qs(current);
 223}
 224
 225/*
 226 * Record entry into an extended quiescent state.  This is only to be
 227 * called when not already in an extended quiescent state.
 228 */
 229static void rcu_dynticks_eqs_enter(void)
 230{
 231        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 232        int seq;
 233
 234        /*
 235         * CPUs seeing atomic_add_return() must see prior RCU read-side
 236         * critical sections, and we also must force ordering with the
 237         * next idle sojourn.
 238         */
 239        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 240        /* Better be in an extended quiescent state! */
 241        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 242                     (seq & RCU_DYNTICK_CTRL_CTR));
 243        /* Better not have special action (TLB flush) pending! */
 244        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 245                     (seq & RCU_DYNTICK_CTRL_MASK));
 246}
 247
 248/*
 249 * Record exit from an extended quiescent state.  This is only to be
 250 * called from an extended quiescent state.
 251 */
 252static void rcu_dynticks_eqs_exit(void)
 253{
 254        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 255        int seq;
 256
 257        /*
 258         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 259         * and we also must force ordering with the next RCU read-side
 260         * critical section.
 261         */
 262        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 263        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 264                     !(seq & RCU_DYNTICK_CTRL_CTR));
 265        if (seq & RCU_DYNTICK_CTRL_MASK) {
 266                atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 267                smp_mb__after_atomic(); /* _exit after clearing mask. */
 268                /* Prefer duplicate flushes to losing a flush. */
 269                rcu_eqs_special_exit();
 270        }
 271}
 272
 273/*
 274 * Reset the current CPU's ->dynticks counter to indicate that the
 275 * newly onlined CPU is no longer in an extended quiescent state.
 276 * This will either leave the counter unchanged, or increment it
 277 * to the next non-quiescent value.
 278 *
 279 * The non-atomic test/increment sequence works because the upper bits
 280 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 281 * or when the corresponding CPU is offline.
 282 */
 283static void rcu_dynticks_eqs_online(void)
 284{
 285        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 286
 287        if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 288                return;
 289        atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 290}
 291
 292/*
 293 * Is the current CPU in an extended quiescent state?
 294 *
 295 * No ordering, as we are sampling CPU-local information.
 296 */
 297bool rcu_dynticks_curr_cpu_in_eqs(void)
 298{
 299        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 300
 301        return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 302}
 303
 304/*
 305 * Snapshot the ->dynticks counter with full ordering so as to allow
 306 * stable comparison of this counter with past and future snapshots.
 307 */
 308int rcu_dynticks_snap(struct rcu_data *rdp)
 309{
 310        int snap = atomic_add_return(0, &rdp->dynticks);
 311
 312        return snap & ~RCU_DYNTICK_CTRL_MASK;
 313}
 314
 315/*
 316 * Return true if the snapshot returned from rcu_dynticks_snap()
 317 * indicates that RCU is in an extended quiescent state.
 318 */
 319static bool rcu_dynticks_in_eqs(int snap)
 320{
 321        return !(snap & RCU_DYNTICK_CTRL_CTR);
 322}
 323
 324/*
 325 * Return true if the CPU corresponding to the specified rcu_data
 326 * structure has spent some time in an extended quiescent state since
 327 * rcu_dynticks_snap() returned the specified snapshot.
 328 */
 329static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 330{
 331        return snap != rcu_dynticks_snap(rdp);
 332}
 333
 334/*
 335 * Set the special (bottom) bit of the specified CPU so that it
 336 * will take special action (such as flushing its TLB) on the
 337 * next exit from an extended quiescent state.  Returns true if
 338 * the bit was successfully set, or false if the CPU was not in
 339 * an extended quiescent state.
 340 */
 341bool rcu_eqs_special_set(int cpu)
 342{
 343        int old;
 344        int new;
 345        struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 346
 347        do {
 348                old = atomic_read(&rdp->dynticks);
 349                if (old & RCU_DYNTICK_CTRL_CTR)
 350                        return false;
 351                new = old | RCU_DYNTICK_CTRL_MASK;
 352        } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
 353        return true;
 354}
 355
 356/*
 357 * Let the RCU core know that this CPU has gone through the scheduler,
 358 * which is a quiescent state.  This is called when the need for a
 359 * quiescent state is urgent, so we burn an atomic operation and full
 360 * memory barriers to let the RCU core know about it, regardless of what
 361 * this CPU might (or might not) do in the near future.
 362 *
 363 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 364 *
 365 * The caller must have disabled interrupts and must not be idle.
 366 */
 367static void __maybe_unused rcu_momentary_dyntick_idle(void)
 368{
 369        int special;
 370
 371        raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 372        special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 373                                    &this_cpu_ptr(&rcu_data)->dynticks);
 374        /* It is illegal to call this from idle state. */
 375        WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 376        rcu_preempt_deferred_qs(current);
 377}
 378
 379/**
 380 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
 381 *
 382 * If the current CPU is idle and running at a first-level (not nested)
 383 * interrupt from idle, return true.  The caller must have at least
 384 * disabled preemption.
 385 */
 386static int rcu_is_cpu_rrupt_from_idle(void)
 387{
 388        /* Called only from within the scheduling-clock interrupt */
 389        lockdep_assert_in_irq();
 390
 391        /* Check for counter underflows */
 392        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
 393                         "RCU dynticks_nesting counter underflow!");
 394        RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
 395                         "RCU dynticks_nmi_nesting counter underflow/zero!");
 396
 397        /* Are we at first interrupt nesting level? */
 398        if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
 399                return false;
 400
 401        /* Does CPU appear to be idle from an RCU standpoint? */
 402        return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
 403}
 404
 405#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
 406#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
 407static long blimit = DEFAULT_RCU_BLIMIT;
 408#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 409static long qhimark = DEFAULT_RCU_QHIMARK;
 410#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 411static long qlowmark = DEFAULT_RCU_QLOMARK;
 412
 413module_param(blimit, long, 0444);
 414module_param(qhimark, long, 0444);
 415module_param(qlowmark, long, 0444);
 416
 417static ulong jiffies_till_first_fqs = ULONG_MAX;
 418static ulong jiffies_till_next_fqs = ULONG_MAX;
 419static bool rcu_kick_kthreads;
 420static int rcu_divisor = 7;
 421module_param(rcu_divisor, int, 0644);
 422
 423/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 424static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 425module_param(rcu_resched_ns, long, 0644);
 426
 427/*
 428 * How long the grace period must be before we start recruiting
 429 * quiescent-state help from rcu_note_context_switch().
 430 */
 431static ulong jiffies_till_sched_qs = ULONG_MAX;
 432module_param(jiffies_till_sched_qs, ulong, 0444);
 433static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 434module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 435
 436/*
 437 * Make sure that we give the grace-period kthread time to detect any
 438 * idle CPUs before taking active measures to force quiescent states.
 439 * However, don't go below 100 milliseconds, adjusted upwards for really
 440 * large systems.
 441 */
 442static void adjust_jiffies_till_sched_qs(void)
 443{
 444        unsigned long j;
 445
 446        /* If jiffies_till_sched_qs was specified, respect the request. */
 447        if (jiffies_till_sched_qs != ULONG_MAX) {
 448                WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 449                return;
 450        }
 451        /* Otherwise, set to third fqs scan, but bound below on large system. */
 452        j = READ_ONCE(jiffies_till_first_fqs) +
 453                      2 * READ_ONCE(jiffies_till_next_fqs);
 454        if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 455                j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 456        pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 457        WRITE_ONCE(jiffies_to_sched_qs, j);
 458}
 459
 460static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 461{
 462        ulong j;
 463        int ret = kstrtoul(val, 0, &j);
 464
 465        if (!ret) {
 466                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 467                adjust_jiffies_till_sched_qs();
 468        }
 469        return ret;
 470}
 471
 472static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 473{
 474        ulong j;
 475        int ret = kstrtoul(val, 0, &j);
 476
 477        if (!ret) {
 478                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 479                adjust_jiffies_till_sched_qs();
 480        }
 481        return ret;
 482}
 483
 484static struct kernel_param_ops first_fqs_jiffies_ops = {
 485        .set = param_set_first_fqs_jiffies,
 486        .get = param_get_ulong,
 487};
 488
 489static struct kernel_param_ops next_fqs_jiffies_ops = {
 490        .set = param_set_next_fqs_jiffies,
 491        .get = param_get_ulong,
 492};
 493
 494module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 495module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 496module_param(rcu_kick_kthreads, bool, 0644);
 497
 498static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 499static int rcu_pending(void);
 500
 501/*
 502 * Return the number of RCU GPs completed thus far for debug & stats.
 503 */
 504unsigned long rcu_get_gp_seq(void)
 505{
 506        return READ_ONCE(rcu_state.gp_seq);
 507}
 508EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 509
 510/*
 511 * Return the number of RCU expedited batches completed thus far for
 512 * debug & stats.  Odd numbers mean that a batch is in progress, even
 513 * numbers mean idle.  The value returned will thus be roughly double
 514 * the cumulative batches since boot.
 515 */
 516unsigned long rcu_exp_batches_completed(void)
 517{
 518        return rcu_state.expedited_sequence;
 519}
 520EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 521
 522/*
 523 * Return the root node of the rcu_state structure.
 524 */
 525static struct rcu_node *rcu_get_root(void)
 526{
 527        return &rcu_state.node[0];
 528}
 529
 530/*
 531 * Convert a ->gp_state value to a character string.
 532 */
 533static const char *gp_state_getname(short gs)
 534{
 535        if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 536                return "???";
 537        return gp_state_names[gs];
 538}
 539
 540/*
 541 * Send along grace-period-related data for rcutorture diagnostics.
 542 */
 543void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 544                            unsigned long *gp_seq)
 545{
 546        switch (test_type) {
 547        case RCU_FLAVOR:
 548                *flags = READ_ONCE(rcu_state.gp_flags);
 549                *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 550                break;
 551        default:
 552                break;
 553        }
 554}
 555EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 556
 557/*
 558 * Enter an RCU extended quiescent state, which can be either the
 559 * idle loop or adaptive-tickless usermode execution.
 560 *
 561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 562 * the possibility of usermode upcalls having messed up our count
 563 * of interrupt nesting level during the prior busy period.
 564 */
 565static void rcu_eqs_enter(bool user)
 566{
 567        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 568
 569        WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 570        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 571        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 572                     rdp->dynticks_nesting == 0);
 573        if (rdp->dynticks_nesting != 1) {
 574                rdp->dynticks_nesting--;
 575                return;
 576        }
 577
 578        lockdep_assert_irqs_disabled();
 579        trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
 580        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 581        rdp = this_cpu_ptr(&rcu_data);
 582        do_nocb_deferred_wakeup(rdp);
 583        rcu_prepare_for_idle();
 584        rcu_preempt_deferred_qs(current);
 585        WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 586        rcu_dynticks_eqs_enter();
 587        rcu_dynticks_task_enter();
 588}
 589
 590/**
 591 * rcu_idle_enter - inform RCU that current CPU is entering idle
 592 *
 593 * Enter idle mode, in other words, -leave- the mode in which RCU
 594 * read-side critical sections can occur.  (Though RCU read-side
 595 * critical sections can occur in irq handlers in idle, a possibility
 596 * handled by irq_enter() and irq_exit().)
 597 *
 598 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 599 * CONFIG_RCU_EQS_DEBUG=y.
 600 */
 601void rcu_idle_enter(void)
 602{
 603        lockdep_assert_irqs_disabled();
 604        rcu_eqs_enter(false);
 605}
 606
 607#ifdef CONFIG_NO_HZ_FULL
 608/**
 609 * rcu_user_enter - inform RCU that we are resuming userspace.
 610 *
 611 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 612 * is permitted between this call and rcu_user_exit(). This way the
 613 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 614 * when the CPU runs in userspace.
 615 *
 616 * If you add or remove a call to rcu_user_enter(), be sure to test with
 617 * CONFIG_RCU_EQS_DEBUG=y.
 618 */
 619void rcu_user_enter(void)
 620{
 621        lockdep_assert_irqs_disabled();
 622        rcu_eqs_enter(true);
 623}
 624#endif /* CONFIG_NO_HZ_FULL */
 625
 626/*
 627 * If we are returning from the outermost NMI handler that interrupted an
 628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 629 * to let the RCU grace-period handling know that the CPU is back to
 630 * being RCU-idle.
 631 *
 632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 633 * with CONFIG_RCU_EQS_DEBUG=y.
 634 */
 635static __always_inline void rcu_nmi_exit_common(bool irq)
 636{
 637        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 638
 639        /*
 640         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 641         * (We are exiting an NMI handler, so RCU better be paying attention
 642         * to us!)
 643         */
 644        WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 645        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 646
 647        /*
 648         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 649         * leave it in non-RCU-idle state.
 650         */
 651        if (rdp->dynticks_nmi_nesting != 1) {
 652                trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
 653                WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 654                           rdp->dynticks_nmi_nesting - 2);
 655                return;
 656        }
 657
 658        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 659        trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
 660        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 661
 662        if (irq)
 663                rcu_prepare_for_idle();
 664
 665        rcu_dynticks_eqs_enter();
 666
 667        if (irq)
 668                rcu_dynticks_task_enter();
 669}
 670
 671/**
 672 * rcu_nmi_exit - inform RCU of exit from NMI context
 673 *
 674 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 675 * with CONFIG_RCU_EQS_DEBUG=y.
 676 */
 677void rcu_nmi_exit(void)
 678{
 679        rcu_nmi_exit_common(false);
 680}
 681
 682/**
 683 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 684 *
 685 * Exit from an interrupt handler, which might possibly result in entering
 686 * idle mode, in other words, leaving the mode in which read-side critical
 687 * sections can occur.  The caller must have disabled interrupts.
 688 *
 689 * This code assumes that the idle loop never does anything that might
 690 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 691 * architecture's idle loop violates this assumption, RCU will give you what
 692 * you deserve, good and hard.  But very infrequently and irreproducibly.
 693 *
 694 * Use things like work queues to work around this limitation.
 695 *
 696 * You have been warned.
 697 *
 698 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 699 * CONFIG_RCU_EQS_DEBUG=y.
 700 */
 701void rcu_irq_exit(void)
 702{
 703        lockdep_assert_irqs_disabled();
 704        rcu_nmi_exit_common(true);
 705}
 706
 707/*
 708 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 709 *
 710 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 711 * with CONFIG_RCU_EQS_DEBUG=y.
 712 */
 713void rcu_irq_exit_irqson(void)
 714{
 715        unsigned long flags;
 716
 717        local_irq_save(flags);
 718        rcu_irq_exit();
 719        local_irq_restore(flags);
 720}
 721
 722/*
 723 * Exit an RCU extended quiescent state, which can be either the
 724 * idle loop or adaptive-tickless usermode execution.
 725 *
 726 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 727 * allow for the possibility of usermode upcalls messing up our count of
 728 * interrupt nesting level during the busy period that is just now starting.
 729 */
 730static void rcu_eqs_exit(bool user)
 731{
 732        struct rcu_data *rdp;
 733        long oldval;
 734
 735        lockdep_assert_irqs_disabled();
 736        rdp = this_cpu_ptr(&rcu_data);
 737        oldval = rdp->dynticks_nesting;
 738        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 739        if (oldval) {
 740                rdp->dynticks_nesting++;
 741                return;
 742        }
 743        rcu_dynticks_task_exit();
 744        rcu_dynticks_eqs_exit();
 745        rcu_cleanup_after_idle();
 746        trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
 747        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 748        WRITE_ONCE(rdp->dynticks_nesting, 1);
 749        WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 750        WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 751}
 752
 753/**
 754 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 755 *
 756 * Exit idle mode, in other words, -enter- the mode in which RCU
 757 * read-side critical sections can occur.
 758 *
 759 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 760 * CONFIG_RCU_EQS_DEBUG=y.
 761 */
 762void rcu_idle_exit(void)
 763{
 764        unsigned long flags;
 765
 766        local_irq_save(flags);
 767        rcu_eqs_exit(false);
 768        local_irq_restore(flags);
 769}
 770
 771#ifdef CONFIG_NO_HZ_FULL
 772/**
 773 * rcu_user_exit - inform RCU that we are exiting userspace.
 774 *
 775 * Exit RCU idle mode while entering the kernel because it can
 776 * run a RCU read side critical section anytime.
 777 *
 778 * If you add or remove a call to rcu_user_exit(), be sure to test with
 779 * CONFIG_RCU_EQS_DEBUG=y.
 780 */
 781void rcu_user_exit(void)
 782{
 783        rcu_eqs_exit(1);
 784}
 785#endif /* CONFIG_NO_HZ_FULL */
 786
 787/**
 788 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 789 * @irq: Is this call from rcu_irq_enter?
 790 *
 791 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 792 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 793 * that the CPU is active.  This implementation permits nested NMIs, as
 794 * long as the nesting level does not overflow an int.  (You will probably
 795 * run out of stack space first.)
 796 *
 797 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 798 * with CONFIG_RCU_EQS_DEBUG=y.
 799 */
 800static __always_inline void rcu_nmi_enter_common(bool irq)
 801{
 802        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 803        long incby = 2;
 804
 805        /* Complain about underflow. */
 806        WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 807
 808        /*
 809         * If idle from RCU viewpoint, atomically increment ->dynticks
 810         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 811         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 812         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 813         * to be in the outermost NMI handler that interrupted an RCU-idle
 814         * period (observation due to Andy Lutomirski).
 815         */
 816        if (rcu_dynticks_curr_cpu_in_eqs()) {
 817
 818                if (irq)
 819                        rcu_dynticks_task_exit();
 820
 821                rcu_dynticks_eqs_exit();
 822
 823                if (irq)
 824                        rcu_cleanup_after_idle();
 825
 826                incby = 1;
 827        }
 828        trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 829                          rdp->dynticks_nmi_nesting,
 830                          rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
 831        WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
 832                   rdp->dynticks_nmi_nesting + incby);
 833        barrier();
 834}
 835
 836/**
 837 * rcu_nmi_enter - inform RCU of entry to NMI context
 838 */
 839void rcu_nmi_enter(void)
 840{
 841        rcu_nmi_enter_common(false);
 842}
 843NOKPROBE_SYMBOL(rcu_nmi_enter);
 844
 845/**
 846 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 847 *
 848 * Enter an interrupt handler, which might possibly result in exiting
 849 * idle mode, in other words, entering the mode in which read-side critical
 850 * sections can occur.  The caller must have disabled interrupts.
 851 *
 852 * Note that the Linux kernel is fully capable of entering an interrupt
 853 * handler that it never exits, for example when doing upcalls to user mode!
 854 * This code assumes that the idle loop never does upcalls to user mode.
 855 * If your architecture's idle loop does do upcalls to user mode (or does
 856 * anything else that results in unbalanced calls to the irq_enter() and
 857 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 858 * But very infrequently and irreproducibly.
 859 *
 860 * Use things like work queues to work around this limitation.
 861 *
 862 * You have been warned.
 863 *
 864 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 865 * CONFIG_RCU_EQS_DEBUG=y.
 866 */
 867void rcu_irq_enter(void)
 868{
 869        lockdep_assert_irqs_disabled();
 870        rcu_nmi_enter_common(true);
 871}
 872
 873/*
 874 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 875 *
 876 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 877 * with CONFIG_RCU_EQS_DEBUG=y.
 878 */
 879void rcu_irq_enter_irqson(void)
 880{
 881        unsigned long flags;
 882
 883        local_irq_save(flags);
 884        rcu_irq_enter();
 885        local_irq_restore(flags);
 886}
 887
 888/**
 889 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 890 *
 891 * Return true if RCU is watching the running CPU, which means that this
 892 * CPU can safely enter RCU read-side critical sections.  In other words,
 893 * if the current CPU is not in its idle loop or is in an interrupt or
 894 * NMI handler, return true.
 895 */
 896bool notrace rcu_is_watching(void)
 897{
 898        bool ret;
 899
 900        preempt_disable_notrace();
 901        ret = !rcu_dynticks_curr_cpu_in_eqs();
 902        preempt_enable_notrace();
 903        return ret;
 904}
 905EXPORT_SYMBOL_GPL(rcu_is_watching);
 906
 907/*
 908 * If a holdout task is actually running, request an urgent quiescent
 909 * state from its CPU.  This is unsynchronized, so migrations can cause
 910 * the request to go to the wrong CPU.  Which is OK, all that will happen
 911 * is that the CPU's next context switch will be a bit slower and next
 912 * time around this task will generate another request.
 913 */
 914void rcu_request_urgent_qs_task(struct task_struct *t)
 915{
 916        int cpu;
 917
 918        barrier();
 919        cpu = task_cpu(t);
 920        if (!task_curr(t))
 921                return; /* This task is not running on that CPU. */
 922        smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 923}
 924
 925#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 926
 927/*
 928 * Is the current CPU online as far as RCU is concerned?
 929 *
 930 * Disable preemption to avoid false positives that could otherwise
 931 * happen due to the current CPU number being sampled, this task being
 932 * preempted, its old CPU being taken offline, resuming on some other CPU,
 933 * then determining that its old CPU is now offline.
 934 *
 935 * Disable checking if in an NMI handler because we cannot safely
 936 * report errors from NMI handlers anyway.  In addition, it is OK to use
 937 * RCU on an offline processor during initial boot, hence the check for
 938 * rcu_scheduler_fully_active.
 939 */
 940bool rcu_lockdep_current_cpu_online(void)
 941{
 942        struct rcu_data *rdp;
 943        struct rcu_node *rnp;
 944        bool ret = false;
 945
 946        if (in_nmi() || !rcu_scheduler_fully_active)
 947                return true;
 948        preempt_disable();
 949        rdp = this_cpu_ptr(&rcu_data);
 950        rnp = rdp->mynode;
 951        if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
 952                ret = true;
 953        preempt_enable();
 954        return ret;
 955}
 956EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 957
 958#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 959
 960/*
 961 * We are reporting a quiescent state on behalf of some other CPU, so
 962 * it is our responsibility to check for and handle potential overflow
 963 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 964 * After all, the CPU might be in deep idle state, and thus executing no
 965 * code whatsoever.
 966 */
 967static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 968{
 969        raw_lockdep_assert_held_rcu_node(rnp);
 970        if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 971                         rnp->gp_seq))
 972                WRITE_ONCE(rdp->gpwrap, true);
 973        if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 974                rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 975}
 976
 977/*
 978 * Snapshot the specified CPU's dynticks counter so that we can later
 979 * credit them with an implicit quiescent state.  Return 1 if this CPU
 980 * is in dynticks idle mode, which is an extended quiescent state.
 981 */
 982static int dyntick_save_progress_counter(struct rcu_data *rdp)
 983{
 984        rdp->dynticks_snap = rcu_dynticks_snap(rdp);
 985        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 986                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 987                rcu_gpnum_ovf(rdp->mynode, rdp);
 988                return 1;
 989        }
 990        return 0;
 991}
 992
 993/*
 994 * Return true if the specified CPU has passed through a quiescent
 995 * state by virtue of being in or having passed through an dynticks
 996 * idle state since the last call to dyntick_save_progress_counter()
 997 * for this same CPU, or by virtue of having been offline.
 998 */
 999static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1000{
1001        unsigned long jtsq;
1002        bool *rnhqp;
1003        bool *ruqp;
1004        struct rcu_node *rnp = rdp->mynode;
1005
1006        /*
1007         * If the CPU passed through or entered a dynticks idle phase with
1008         * no active irq/NMI handlers, then we can safely pretend that the CPU
1009         * already acknowledged the request to pass through a quiescent
1010         * state.  Either way, that CPU cannot possibly be in an RCU
1011         * read-side critical section that started before the beginning
1012         * of the current RCU grace period.
1013         */
1014        if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1015                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1016                rcu_gpnum_ovf(rnp, rdp);
1017                return 1;
1018        }
1019
1020        /* If waiting too long on an offline CPU, complain. */
1021        if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1022            time_after(jiffies, rcu_state.gp_start + HZ)) {
1023                bool onl;
1024                struct rcu_node *rnp1;
1025
1026                WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1027                pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1028                        __func__, rnp->grplo, rnp->grphi, rnp->level,
1029                        (long)rnp->gp_seq, (long)rnp->completedqs);
1030                for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1031                        pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1032                                __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1033                onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1034                pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1035                        __func__, rdp->cpu, ".o"[onl],
1036                        (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1037                        (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1038                return 1; /* Break things loose after complaining. */
1039        }
1040
1041        /*
1042         * A CPU running for an extended time within the kernel can
1043         * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1044         * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1045         * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1046         * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1047         * variable are safe because the assignments are repeated if this
1048         * CPU failed to pass through a quiescent state.  This code
1049         * also checks .jiffies_resched in case jiffies_to_sched_qs
1050         * is set way high.
1051         */
1052        jtsq = READ_ONCE(jiffies_to_sched_qs);
1053        ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1054        rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1055        if (!READ_ONCE(*rnhqp) &&
1056            (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1057             time_after(jiffies, rcu_state.jiffies_resched))) {
1058                WRITE_ONCE(*rnhqp, true);
1059                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1060                smp_store_release(ruqp, true);
1061        } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1062                WRITE_ONCE(*ruqp, true);
1063        }
1064
1065        /*
1066         * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1067         * The above code handles this, but only for straight cond_resched().
1068         * And some in-kernel loops check need_resched() before calling
1069         * cond_resched(), which defeats the above code for CPUs that are
1070         * running in-kernel with scheduling-clock interrupts disabled.
1071         * So hit them over the head with the resched_cpu() hammer!
1072         */
1073        if (tick_nohz_full_cpu(rdp->cpu) &&
1074                   time_after(jiffies,
1075                              READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1076                resched_cpu(rdp->cpu);
1077                WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1078        }
1079
1080        /*
1081         * If more than halfway to RCU CPU stall-warning time, invoke
1082         * resched_cpu() more frequently to try to loosen things up a bit.
1083         * Also check to see if the CPU is getting hammered with interrupts,
1084         * but only once per grace period, just to keep the IPIs down to
1085         * a dull roar.
1086         */
1087        if (time_after(jiffies, rcu_state.jiffies_resched)) {
1088                if (time_after(jiffies,
1089                               READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1090                        resched_cpu(rdp->cpu);
1091                        WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1092                }
1093                if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1094                    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1095                    (rnp->ffmask & rdp->grpmask)) {
1096                        init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1097                        rdp->rcu_iw_pending = true;
1098                        rdp->rcu_iw_gp_seq = rnp->gp_seq;
1099                        irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1100                }
1101        }
1102
1103        return 0;
1104}
1105
1106/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1107static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1108                              unsigned long gp_seq_req, const char *s)
1109{
1110        trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1111                                      rnp->level, rnp->grplo, rnp->grphi, s);
1112}
1113
1114/*
1115 * rcu_start_this_gp - Request the start of a particular grace period
1116 * @rnp_start: The leaf node of the CPU from which to start.
1117 * @rdp: The rcu_data corresponding to the CPU from which to start.
1118 * @gp_seq_req: The gp_seq of the grace period to start.
1119 *
1120 * Start the specified grace period, as needed to handle newly arrived
1121 * callbacks.  The required future grace periods are recorded in each
1122 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1123 * is reason to awaken the grace-period kthread.
1124 *
1125 * The caller must hold the specified rcu_node structure's ->lock, which
1126 * is why the caller is responsible for waking the grace-period kthread.
1127 *
1128 * Returns true if the GP thread needs to be awakened else false.
1129 */
1130static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1131                              unsigned long gp_seq_req)
1132{
1133        bool ret = false;
1134        struct rcu_node *rnp;
1135
1136        /*
1137         * Use funnel locking to either acquire the root rcu_node
1138         * structure's lock or bail out if the need for this grace period
1139         * has already been recorded -- or if that grace period has in
1140         * fact already started.  If there is already a grace period in
1141         * progress in a non-leaf node, no recording is needed because the
1142         * end of the grace period will scan the leaf rcu_node structures.
1143         * Note that rnp_start->lock must not be released.
1144         */
1145        raw_lockdep_assert_held_rcu_node(rnp_start);
1146        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1147        for (rnp = rnp_start; 1; rnp = rnp->parent) {
1148                if (rnp != rnp_start)
1149                        raw_spin_lock_rcu_node(rnp);
1150                if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1151                    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1152                    (rnp != rnp_start &&
1153                     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1154                        trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1155                                          TPS("Prestarted"));
1156                        goto unlock_out;
1157                }
1158                rnp->gp_seq_needed = gp_seq_req;
1159                if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1160                        /*
1161                         * We just marked the leaf or internal node, and a
1162                         * grace period is in progress, which means that
1163                         * rcu_gp_cleanup() will see the marking.  Bail to
1164                         * reduce contention.
1165                         */
1166                        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1167                                          TPS("Startedleaf"));
1168                        goto unlock_out;
1169                }
1170                if (rnp != rnp_start && rnp->parent != NULL)
1171                        raw_spin_unlock_rcu_node(rnp);
1172                if (!rnp->parent)
1173                        break;  /* At root, and perhaps also leaf. */
1174        }
1175
1176        /* If GP already in progress, just leave, otherwise start one. */
1177        if (rcu_gp_in_progress()) {
1178                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1179                goto unlock_out;
1180        }
1181        trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1182        WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1183        rcu_state.gp_req_activity = jiffies;
1184        if (!rcu_state.gp_kthread) {
1185                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1186                goto unlock_out;
1187        }
1188        trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1189        ret = true;  /* Caller must wake GP kthread. */
1190unlock_out:
1191        /* Push furthest requested GP to leaf node and rcu_data structure. */
1192        if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1193                rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1194                rdp->gp_seq_needed = rnp->gp_seq_needed;
1195        }
1196        if (rnp != rnp_start)
1197                raw_spin_unlock_rcu_node(rnp);
1198        return ret;
1199}
1200
1201/*
1202 * Clean up any old requests for the just-ended grace period.  Also return
1203 * whether any additional grace periods have been requested.
1204 */
1205static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1206{
1207        bool needmore;
1208        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1209
1210        needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1211        if (!needmore)
1212                rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1213        trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1214                          needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1215        return needmore;
1216}
1217
1218/*
1219 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1220 * an interrupt or softirq handler), and don't bother awakening when there
1221 * is nothing for the grace-period kthread to do (as in several CPUs raced
1222 * to awaken, and we lost), and finally don't try to awaken a kthread that
1223 * has not yet been created.  If all those checks are passed, track some
1224 * debug information and awaken.
1225 *
1226 * So why do the self-wakeup when in an interrupt or softirq handler
1227 * in the grace-period kthread's context?  Because the kthread might have
1228 * been interrupted just as it was going to sleep, and just after the final
1229 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1230 * is required, and is therefore supplied.
1231 */
1232static void rcu_gp_kthread_wake(void)
1233{
1234        if ((current == rcu_state.gp_kthread &&
1235             !in_irq() && !in_serving_softirq()) ||
1236            !READ_ONCE(rcu_state.gp_flags) ||
1237            !rcu_state.gp_kthread)
1238                return;
1239        WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1240        WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1241        swake_up_one(&rcu_state.gp_wq);
1242}
1243
1244/*
1245 * If there is room, assign a ->gp_seq number to any callbacks on this
1246 * CPU that have not already been assigned.  Also accelerate any callbacks
1247 * that were previously assigned a ->gp_seq number that has since proven
1248 * to be too conservative, which can happen if callbacks get assigned a
1249 * ->gp_seq number while RCU is idle, but with reference to a non-root
1250 * rcu_node structure.  This function is idempotent, so it does not hurt
1251 * to call it repeatedly.  Returns an flag saying that we should awaken
1252 * the RCU grace-period kthread.
1253 *
1254 * The caller must hold rnp->lock with interrupts disabled.
1255 */
1256static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1257{
1258        unsigned long gp_seq_req;
1259        bool ret = false;
1260
1261        rcu_lockdep_assert_cblist_protected(rdp);
1262        raw_lockdep_assert_held_rcu_node(rnp);
1263
1264        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1265        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1266                return false;
1267
1268        /*
1269         * Callbacks are often registered with incomplete grace-period
1270         * information.  Something about the fact that getting exact
1271         * information requires acquiring a global lock...  RCU therefore
1272         * makes a conservative estimate of the grace period number at which
1273         * a given callback will become ready to invoke.        The following
1274         * code checks this estimate and improves it when possible, thus
1275         * accelerating callback invocation to an earlier grace-period
1276         * number.
1277         */
1278        gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1279        if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1280                ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1281
1282        /* Trace depending on how much we were able to accelerate. */
1283        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1284                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1285        else
1286                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1287        return ret;
1288}
1289
1290/*
1291 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1292 * rcu_node structure's ->lock be held.  It consults the cached value
1293 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1294 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1295 * while holding the leaf rcu_node structure's ->lock.
1296 */
1297static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1298                                        struct rcu_data *rdp)
1299{
1300        unsigned long c;
1301        bool needwake;
1302
1303        rcu_lockdep_assert_cblist_protected(rdp);
1304        c = rcu_seq_snap(&rcu_state.gp_seq);
1305        if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1306                /* Old request still live, so mark recent callbacks. */
1307                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1308                return;
1309        }
1310        raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1311        needwake = rcu_accelerate_cbs(rnp, rdp);
1312        raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1313        if (needwake)
1314                rcu_gp_kthread_wake();
1315}
1316
1317/*
1318 * Move any callbacks whose grace period has completed to the
1319 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1320 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1321 * sublist.  This function is idempotent, so it does not hurt to
1322 * invoke it repeatedly.  As long as it is not invoked -too- often...
1323 * Returns true if the RCU grace-period kthread needs to be awakened.
1324 *
1325 * The caller must hold rnp->lock with interrupts disabled.
1326 */
1327static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1328{
1329        rcu_lockdep_assert_cblist_protected(rdp);
1330        raw_lockdep_assert_held_rcu_node(rnp);
1331
1332        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1333        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1334                return false;
1335
1336        /*
1337         * Find all callbacks whose ->gp_seq numbers indicate that they
1338         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1339         */
1340        rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1341
1342        /* Classify any remaining callbacks. */
1343        return rcu_accelerate_cbs(rnp, rdp);
1344}
1345
1346/*
1347 * Move and classify callbacks, but only if doing so won't require
1348 * that the RCU grace-period kthread be awakened.
1349 */
1350static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1351                                                  struct rcu_data *rdp)
1352{
1353        rcu_lockdep_assert_cblist_protected(rdp);
1354        if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1355            !raw_spin_trylock_rcu_node(rnp))
1356                return;
1357        WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1358        raw_spin_unlock_rcu_node(rnp);
1359}
1360
1361/*
1362 * Update CPU-local rcu_data state to record the beginnings and ends of
1363 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1364 * structure corresponding to the current CPU, and must have irqs disabled.
1365 * Returns true if the grace-period kthread needs to be awakened.
1366 */
1367static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1368{
1369        bool ret = false;
1370        bool need_gp;
1371        const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1372                               rcu_segcblist_is_offloaded(&rdp->cblist);
1373
1374        raw_lockdep_assert_held_rcu_node(rnp);
1375
1376        if (rdp->gp_seq == rnp->gp_seq)
1377                return false; /* Nothing to do. */
1378
1379        /* Handle the ends of any preceding grace periods first. */
1380        if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1381            unlikely(READ_ONCE(rdp->gpwrap))) {
1382                if (!offloaded)
1383                        ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1384                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1385        } else {
1386                if (!offloaded)
1387                        ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1388        }
1389
1390        /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1391        if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1392            unlikely(READ_ONCE(rdp->gpwrap))) {
1393                /*
1394                 * If the current grace period is waiting for this CPU,
1395                 * set up to detect a quiescent state, otherwise don't
1396                 * go looking for one.
1397                 */
1398                trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1399                need_gp = !!(rnp->qsmask & rdp->grpmask);
1400                rdp->cpu_no_qs.b.norm = need_gp;
1401                rdp->core_needs_qs = need_gp;
1402                zero_cpu_stall_ticks(rdp);
1403        }
1404        rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1405        if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1406                rdp->gp_seq_needed = rnp->gp_seq_needed;
1407        WRITE_ONCE(rdp->gpwrap, false);
1408        rcu_gpnum_ovf(rnp, rdp);
1409        return ret;
1410}
1411
1412static void note_gp_changes(struct rcu_data *rdp)
1413{
1414        unsigned long flags;
1415        bool needwake;
1416        struct rcu_node *rnp;
1417
1418        local_irq_save(flags);
1419        rnp = rdp->mynode;
1420        if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1421             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1422            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1423                local_irq_restore(flags);
1424                return;
1425        }
1426        needwake = __note_gp_changes(rnp, rdp);
1427        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428        if (needwake)
1429                rcu_gp_kthread_wake();
1430}
1431
1432static void rcu_gp_slow(int delay)
1433{
1434        if (delay > 0 &&
1435            !(rcu_seq_ctr(rcu_state.gp_seq) %
1436              (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1437                schedule_timeout_uninterruptible(delay);
1438}
1439
1440/*
1441 * Initialize a new grace period.  Return false if no grace period required.
1442 */
1443static bool rcu_gp_init(void)
1444{
1445        unsigned long flags;
1446        unsigned long oldmask;
1447        unsigned long mask;
1448        struct rcu_data *rdp;
1449        struct rcu_node *rnp = rcu_get_root();
1450
1451        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1452        raw_spin_lock_irq_rcu_node(rnp);
1453        if (!READ_ONCE(rcu_state.gp_flags)) {
1454                /* Spurious wakeup, tell caller to go back to sleep.  */
1455                raw_spin_unlock_irq_rcu_node(rnp);
1456                return false;
1457        }
1458        WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1459
1460        if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1461                /*
1462                 * Grace period already in progress, don't start another.
1463                 * Not supposed to be able to happen.
1464                 */
1465                raw_spin_unlock_irq_rcu_node(rnp);
1466                return false;
1467        }
1468
1469        /* Advance to a new grace period and initialize state. */
1470        record_gp_stall_check_time();
1471        /* Record GP times before starting GP, hence rcu_seq_start(). */
1472        rcu_seq_start(&rcu_state.gp_seq);
1473        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1474        raw_spin_unlock_irq_rcu_node(rnp);
1475
1476        /*
1477         * Apply per-leaf buffered online and offline operations to the
1478         * rcu_node tree.  Note that this new grace period need not wait
1479         * for subsequent online CPUs, and that quiescent-state forcing
1480         * will handle subsequent offline CPUs.
1481         */
1482        rcu_state.gp_state = RCU_GP_ONOFF;
1483        rcu_for_each_leaf_node(rnp) {
1484                raw_spin_lock(&rcu_state.ofl_lock);
1485                raw_spin_lock_irq_rcu_node(rnp);
1486                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1487                    !rnp->wait_blkd_tasks) {
1488                        /* Nothing to do on this leaf rcu_node structure. */
1489                        raw_spin_unlock_irq_rcu_node(rnp);
1490                        raw_spin_unlock(&rcu_state.ofl_lock);
1491                        continue;
1492                }
1493
1494                /* Record old state, apply changes to ->qsmaskinit field. */
1495                oldmask = rnp->qsmaskinit;
1496                rnp->qsmaskinit = rnp->qsmaskinitnext;
1497
1498                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499                if (!oldmask != !rnp->qsmaskinit) {
1500                        if (!oldmask) { /* First online CPU for rcu_node. */
1501                                if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502                                        rcu_init_new_rnp(rnp);
1503                        } else if (rcu_preempt_has_tasks(rnp)) {
1504                                rnp->wait_blkd_tasks = true; /* blocked tasks */
1505                        } else { /* Last offline CPU and can propagate. */
1506                                rcu_cleanup_dead_rnp(rnp);
1507                        }
1508                }
1509
1510                /*
1511                 * If all waited-on tasks from prior grace period are
1512                 * done, and if all this rcu_node structure's CPUs are
1513                 * still offline, propagate up the rcu_node tree and
1514                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1515                 * rcu_node structure's CPUs has since come back online,
1516                 * simply clear ->wait_blkd_tasks.
1517                 */
1518                if (rnp->wait_blkd_tasks &&
1519                    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520                        rnp->wait_blkd_tasks = false;
1521                        if (!rnp->qsmaskinit)
1522                                rcu_cleanup_dead_rnp(rnp);
1523                }
1524
1525                raw_spin_unlock_irq_rcu_node(rnp);
1526                raw_spin_unlock(&rcu_state.ofl_lock);
1527        }
1528        rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1529
1530        /*
1531         * Set the quiescent-state-needed bits in all the rcu_node
1532         * structures for all currently online CPUs in breadth-first
1533         * order, starting from the root rcu_node structure, relying on the
1534         * layout of the tree within the rcu_state.node[] array.  Note that
1535         * other CPUs will access only the leaves of the hierarchy, thus
1536         * seeing that no grace period is in progress, at least until the
1537         * corresponding leaf node has been initialized.
1538         *
1539         * The grace period cannot complete until the initialization
1540         * process finishes, because this kthread handles both.
1541         */
1542        rcu_state.gp_state = RCU_GP_INIT;
1543        rcu_for_each_node_breadth_first(rnp) {
1544                rcu_gp_slow(gp_init_delay);
1545                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1546                rdp = this_cpu_ptr(&rcu_data);
1547                rcu_preempt_check_blocked_tasks(rnp);
1548                rnp->qsmask = rnp->qsmaskinit;
1549                WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1550                if (rnp == rdp->mynode)
1551                        (void)__note_gp_changes(rnp, rdp);
1552                rcu_preempt_boost_start_gp(rnp);
1553                trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1554                                            rnp->level, rnp->grplo,
1555                                            rnp->grphi, rnp->qsmask);
1556                /* Quiescent states for tasks on any now-offline CPUs. */
1557                mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1558                rnp->rcu_gp_init_mask = mask;
1559                if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1560                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1561                else
1562                        raw_spin_unlock_irq_rcu_node(rnp);
1563                cond_resched_tasks_rcu_qs();
1564                WRITE_ONCE(rcu_state.gp_activity, jiffies);
1565        }
1566
1567        return true;
1568}
1569
1570/*
1571 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1572 * time.
1573 */
1574static bool rcu_gp_fqs_check_wake(int *gfp)
1575{
1576        struct rcu_node *rnp = rcu_get_root();
1577
1578        /* Someone like call_rcu() requested a force-quiescent-state scan. */
1579        *gfp = READ_ONCE(rcu_state.gp_flags);
1580        if (*gfp & RCU_GP_FLAG_FQS)
1581                return true;
1582
1583        /* The current grace period has completed. */
1584        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1585                return true;
1586
1587        return false;
1588}
1589
1590/*
1591 * Do one round of quiescent-state forcing.
1592 */
1593static void rcu_gp_fqs(bool first_time)
1594{
1595        struct rcu_node *rnp = rcu_get_root();
1596
1597        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1598        rcu_state.n_force_qs++;
1599        if (first_time) {
1600                /* Collect dyntick-idle snapshots. */
1601                force_qs_rnp(dyntick_save_progress_counter);
1602        } else {
1603                /* Handle dyntick-idle and offline CPUs. */
1604                force_qs_rnp(rcu_implicit_dynticks_qs);
1605        }
1606        /* Clear flag to prevent immediate re-entry. */
1607        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1608                raw_spin_lock_irq_rcu_node(rnp);
1609                WRITE_ONCE(rcu_state.gp_flags,
1610                           READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1611                raw_spin_unlock_irq_rcu_node(rnp);
1612        }
1613}
1614
1615/*
1616 * Loop doing repeated quiescent-state forcing until the grace period ends.
1617 */
1618static void rcu_gp_fqs_loop(void)
1619{
1620        bool first_gp_fqs;
1621        int gf;
1622        unsigned long j;
1623        int ret;
1624        struct rcu_node *rnp = rcu_get_root();
1625
1626        first_gp_fqs = true;
1627        j = READ_ONCE(jiffies_till_first_fqs);
1628        ret = 0;
1629        for (;;) {
1630                if (!ret) {
1631                        rcu_state.jiffies_force_qs = jiffies + j;
1632                        WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1633                                   jiffies + (j ? 3 * j : 2));
1634                }
1635                trace_rcu_grace_period(rcu_state.name,
1636                                       READ_ONCE(rcu_state.gp_seq),
1637                                       TPS("fqswait"));
1638                rcu_state.gp_state = RCU_GP_WAIT_FQS;
1639                ret = swait_event_idle_timeout_exclusive(
1640                                rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1641                rcu_state.gp_state = RCU_GP_DOING_FQS;
1642                /* Locking provides needed memory barriers. */
1643                /* If grace period done, leave loop. */
1644                if (!READ_ONCE(rnp->qsmask) &&
1645                    !rcu_preempt_blocked_readers_cgp(rnp))
1646                        break;
1647                /* If time for quiescent-state forcing, do it. */
1648                if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1649                    (gf & RCU_GP_FLAG_FQS)) {
1650                        trace_rcu_grace_period(rcu_state.name,
1651                                               READ_ONCE(rcu_state.gp_seq),
1652                                               TPS("fqsstart"));
1653                        rcu_gp_fqs(first_gp_fqs);
1654                        first_gp_fqs = false;
1655                        trace_rcu_grace_period(rcu_state.name,
1656                                               READ_ONCE(rcu_state.gp_seq),
1657                                               TPS("fqsend"));
1658                        cond_resched_tasks_rcu_qs();
1659                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1660                        ret = 0; /* Force full wait till next FQS. */
1661                        j = READ_ONCE(jiffies_till_next_fqs);
1662                } else {
1663                        /* Deal with stray signal. */
1664                        cond_resched_tasks_rcu_qs();
1665                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1666                        WARN_ON(signal_pending(current));
1667                        trace_rcu_grace_period(rcu_state.name,
1668                                               READ_ONCE(rcu_state.gp_seq),
1669                                               TPS("fqswaitsig"));
1670                        ret = 1; /* Keep old FQS timing. */
1671                        j = jiffies;
1672                        if (time_after(jiffies, rcu_state.jiffies_force_qs))
1673                                j = 1;
1674                        else
1675                                j = rcu_state.jiffies_force_qs - j;
1676                }
1677        }
1678}
1679
1680/*
1681 * Clean up after the old grace period.
1682 */
1683static void rcu_gp_cleanup(void)
1684{
1685        unsigned long gp_duration;
1686        bool needgp = false;
1687        unsigned long new_gp_seq;
1688        bool offloaded;
1689        struct rcu_data *rdp;
1690        struct rcu_node *rnp = rcu_get_root();
1691        struct swait_queue_head *sq;
1692
1693        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694        raw_spin_lock_irq_rcu_node(rnp);
1695        rcu_state.gp_end = jiffies;
1696        gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1697        if (gp_duration > rcu_state.gp_max)
1698                rcu_state.gp_max = gp_duration;
1699
1700        /*
1701         * We know the grace period is complete, but to everyone else
1702         * it appears to still be ongoing.  But it is also the case
1703         * that to everyone else it looks like there is nothing that
1704         * they can do to advance the grace period.  It is therefore
1705         * safe for us to drop the lock in order to mark the grace
1706         * period as completed in all of the rcu_node structures.
1707         */
1708        raw_spin_unlock_irq_rcu_node(rnp);
1709
1710        /*
1711         * Propagate new ->gp_seq value to rcu_node structures so that
1712         * other CPUs don't have to wait until the start of the next grace
1713         * period to process their callbacks.  This also avoids some nasty
1714         * RCU grace-period initialization races by forcing the end of
1715         * the current grace period to be completely recorded in all of
1716         * the rcu_node structures before the beginning of the next grace
1717         * period is recorded in any of the rcu_node structures.
1718         */
1719        new_gp_seq = rcu_state.gp_seq;
1720        rcu_seq_end(&new_gp_seq);
1721        rcu_for_each_node_breadth_first(rnp) {
1722                raw_spin_lock_irq_rcu_node(rnp);
1723                if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1724                        dump_blkd_tasks(rnp, 10);
1725                WARN_ON_ONCE(rnp->qsmask);
1726                WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1727                rdp = this_cpu_ptr(&rcu_data);
1728                if (rnp == rdp->mynode)
1729                        needgp = __note_gp_changes(rnp, rdp) || needgp;
1730                /* smp_mb() provided by prior unlock-lock pair. */
1731                needgp = rcu_future_gp_cleanup(rnp) || needgp;
1732                sq = rcu_nocb_gp_get(rnp);
1733                raw_spin_unlock_irq_rcu_node(rnp);
1734                rcu_nocb_gp_cleanup(sq);
1735                cond_resched_tasks_rcu_qs();
1736                WRITE_ONCE(rcu_state.gp_activity, jiffies);
1737                rcu_gp_slow(gp_cleanup_delay);
1738        }
1739        rnp = rcu_get_root();
1740        raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1741
1742        /* Declare grace period done, trace first to use old GP number. */
1743        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1744        rcu_seq_end(&rcu_state.gp_seq);
1745        rcu_state.gp_state = RCU_GP_IDLE;
1746        /* Check for GP requests since above loop. */
1747        rdp = this_cpu_ptr(&rcu_data);
1748        if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1749                trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1750                                  TPS("CleanupMore"));
1751                needgp = true;
1752        }
1753        /* Advance CBs to reduce false positives below. */
1754        offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1755                    rcu_segcblist_is_offloaded(&rdp->cblist);
1756        if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1757                WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1758                rcu_state.gp_req_activity = jiffies;
1759                trace_rcu_grace_period(rcu_state.name,
1760                                       READ_ONCE(rcu_state.gp_seq),
1761                                       TPS("newreq"));
1762        } else {
1763                WRITE_ONCE(rcu_state.gp_flags,
1764                           rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1765        }
1766        raw_spin_unlock_irq_rcu_node(rnp);
1767}
1768
1769/*
1770 * Body of kthread that handles grace periods.
1771 */
1772static int __noreturn rcu_gp_kthread(void *unused)
1773{
1774        rcu_bind_gp_kthread();
1775        for (;;) {
1776
1777                /* Handle grace-period start. */
1778                for (;;) {
1779                        trace_rcu_grace_period(rcu_state.name,
1780                                               READ_ONCE(rcu_state.gp_seq),
1781                                               TPS("reqwait"));
1782                        rcu_state.gp_state = RCU_GP_WAIT_GPS;
1783                        swait_event_idle_exclusive(rcu_state.gp_wq,
1784                                         READ_ONCE(rcu_state.gp_flags) &
1785                                         RCU_GP_FLAG_INIT);
1786                        rcu_state.gp_state = RCU_GP_DONE_GPS;
1787                        /* Locking provides needed memory barrier. */
1788                        if (rcu_gp_init())
1789                                break;
1790                        cond_resched_tasks_rcu_qs();
1791                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1792                        WARN_ON(signal_pending(current));
1793                        trace_rcu_grace_period(rcu_state.name,
1794                                               READ_ONCE(rcu_state.gp_seq),
1795                                               TPS("reqwaitsig"));
1796                }
1797
1798                /* Handle quiescent-state forcing. */
1799                rcu_gp_fqs_loop();
1800
1801                /* Handle grace-period end. */
1802                rcu_state.gp_state = RCU_GP_CLEANUP;
1803                rcu_gp_cleanup();
1804                rcu_state.gp_state = RCU_GP_CLEANED;
1805        }
1806}
1807
1808/*
1809 * Report a full set of quiescent states to the rcu_state data structure.
1810 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1811 * another grace period is required.  Whether we wake the grace-period
1812 * kthread or it awakens itself for the next round of quiescent-state
1813 * forcing, that kthread will clean up after the just-completed grace
1814 * period.  Note that the caller must hold rnp->lock, which is released
1815 * before return.
1816 */
1817static void rcu_report_qs_rsp(unsigned long flags)
1818        __releases(rcu_get_root()->lock)
1819{
1820        raw_lockdep_assert_held_rcu_node(rcu_get_root());
1821        WARN_ON_ONCE(!rcu_gp_in_progress());
1822        WRITE_ONCE(rcu_state.gp_flags,
1823                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1824        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1825        rcu_gp_kthread_wake();
1826}
1827
1828/*
1829 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1830 * Allows quiescent states for a group of CPUs to be reported at one go
1831 * to the specified rcu_node structure, though all the CPUs in the group
1832 * must be represented by the same rcu_node structure (which need not be a
1833 * leaf rcu_node structure, though it often will be).  The gps parameter
1834 * is the grace-period snapshot, which means that the quiescent states
1835 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1836 * must be held upon entry, and it is released before return.
1837 *
1838 * As a special case, if mask is zero, the bit-already-cleared check is
1839 * disabled.  This allows propagating quiescent state due to resumed tasks
1840 * during grace-period initialization.
1841 */
1842static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1843                              unsigned long gps, unsigned long flags)
1844        __releases(rnp->lock)
1845{
1846        unsigned long oldmask = 0;
1847        struct rcu_node *rnp_c;
1848
1849        raw_lockdep_assert_held_rcu_node(rnp);
1850
1851        /* Walk up the rcu_node hierarchy. */
1852        for (;;) {
1853                if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1854
1855                        /*
1856                         * Our bit has already been cleared, or the
1857                         * relevant grace period is already over, so done.
1858                         */
1859                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1860                        return;
1861                }
1862                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1863                WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1864                             rcu_preempt_blocked_readers_cgp(rnp));
1865                rnp->qsmask &= ~mask;
1866                trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1867                                                 mask, rnp->qsmask, rnp->level,
1868                                                 rnp->grplo, rnp->grphi,
1869                                                 !!rnp->gp_tasks);
1870                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1871
1872                        /* Other bits still set at this level, so done. */
1873                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1874                        return;
1875                }
1876                rnp->completedqs = rnp->gp_seq;
1877                mask = rnp->grpmask;
1878                if (rnp->parent == NULL) {
1879
1880                        /* No more levels.  Exit loop holding root lock. */
1881
1882                        break;
1883                }
1884                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1885                rnp_c = rnp;
1886                rnp = rnp->parent;
1887                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1888                oldmask = rnp_c->qsmask;
1889        }
1890
1891        /*
1892         * Get here if we are the last CPU to pass through a quiescent
1893         * state for this grace period.  Invoke rcu_report_qs_rsp()
1894         * to clean up and start the next grace period if one is needed.
1895         */
1896        rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1897}
1898
1899/*
1900 * Record a quiescent state for all tasks that were previously queued
1901 * on the specified rcu_node structure and that were blocking the current
1902 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1903 * irqs disabled, and this lock is released upon return, but irqs remain
1904 * disabled.
1905 */
1906static void __maybe_unused
1907rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1908        __releases(rnp->lock)
1909{
1910        unsigned long gps;
1911        unsigned long mask;
1912        struct rcu_node *rnp_p;
1913
1914        raw_lockdep_assert_held_rcu_node(rnp);
1915        if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1916            WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1917            rnp->qsmask != 0) {
1918                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919                return;  /* Still need more quiescent states! */
1920        }
1921
1922        rnp->completedqs = rnp->gp_seq;
1923        rnp_p = rnp->parent;
1924        if (rnp_p == NULL) {
1925                /*
1926                 * Only one rcu_node structure in the tree, so don't
1927                 * try to report up to its nonexistent parent!
1928                 */
1929                rcu_report_qs_rsp(flags);
1930                return;
1931        }
1932
1933        /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1934        gps = rnp->gp_seq;
1935        mask = rnp->grpmask;
1936        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
1937        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
1938        rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1939}
1940
1941/*
1942 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1943 * structure.  This must be called from the specified CPU.
1944 */
1945static void
1946rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1947{
1948        unsigned long flags;
1949        unsigned long mask;
1950        bool needwake = false;
1951        const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1952                               rcu_segcblist_is_offloaded(&rdp->cblist);
1953        struct rcu_node *rnp;
1954
1955        rnp = rdp->mynode;
1956        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1957        if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1958            rdp->gpwrap) {
1959
1960                /*
1961                 * The grace period in which this quiescent state was
1962                 * recorded has ended, so don't report it upwards.
1963                 * We will instead need a new quiescent state that lies
1964                 * within the current grace period.
1965                 */
1966                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
1967                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1968                return;
1969        }
1970        mask = rdp->grpmask;
1971        rdp->core_needs_qs = false;
1972        if ((rnp->qsmask & mask) == 0) {
1973                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974        } else {
1975                /*
1976                 * This GP can't end until cpu checks in, so all of our
1977                 * callbacks can be processed during the next GP.
1978                 */
1979                if (!offloaded)
1980                        needwake = rcu_accelerate_cbs(rnp, rdp);
1981
1982                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1983                /* ^^^ Released rnp->lock */
1984                if (needwake)
1985                        rcu_gp_kthread_wake();
1986        }
1987}
1988
1989/*
1990 * Check to see if there is a new grace period of which this CPU
1991 * is not yet aware, and if so, set up local rcu_data state for it.
1992 * Otherwise, see if this CPU has just passed through its first
1993 * quiescent state for this grace period, and record that fact if so.
1994 */
1995static void
1996rcu_check_quiescent_state(struct rcu_data *rdp)
1997{
1998        /* Check for grace-period ends and beginnings. */
1999        note_gp_changes(rdp);
2000
2001        /*
2002         * Does this CPU still need to do its part for current grace period?
2003         * If no, return and let the other CPUs do their part as well.
2004         */
2005        if (!rdp->core_needs_qs)
2006                return;
2007
2008        /*
2009         * Was there a quiescent state since the beginning of the grace
2010         * period? If no, then exit and wait for the next call.
2011         */
2012        if (rdp->cpu_no_qs.b.norm)
2013                return;
2014
2015        /*
2016         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2017         * judge of that).
2018         */
2019        rcu_report_qs_rdp(rdp->cpu, rdp);
2020}
2021
2022/*
2023 * Near the end of the offline process.  Trace the fact that this CPU
2024 * is going offline.
2025 */
2026int rcutree_dying_cpu(unsigned int cpu)
2027{
2028        bool blkd;
2029        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2030        struct rcu_node *rnp = rdp->mynode;
2031
2032        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2033                return 0;
2034
2035        blkd = !!(rnp->qsmask & rdp->grpmask);
2036        trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2037                               blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2038        return 0;
2039}
2040
2041/*
2042 * All CPUs for the specified rcu_node structure have gone offline,
2043 * and all tasks that were preempted within an RCU read-side critical
2044 * section while running on one of those CPUs have since exited their RCU
2045 * read-side critical section.  Some other CPU is reporting this fact with
2046 * the specified rcu_node structure's ->lock held and interrupts disabled.
2047 * This function therefore goes up the tree of rcu_node structures,
2048 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2049 * the leaf rcu_node structure's ->qsmaskinit field has already been
2050 * updated.
2051 *
2052 * This function does check that the specified rcu_node structure has
2053 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2054 * prematurely.  That said, invoking it after the fact will cost you
2055 * a needless lock acquisition.  So once it has done its work, don't
2056 * invoke it again.
2057 */
2058static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2059{
2060        long mask;
2061        struct rcu_node *rnp = rnp_leaf;
2062
2063        raw_lockdep_assert_held_rcu_node(rnp_leaf);
2064        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2065            WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2066            WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2067                return;
2068        for (;;) {
2069                mask = rnp->grpmask;
2070                rnp = rnp->parent;
2071                if (!rnp)
2072                        break;
2073                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2074                rnp->qsmaskinit &= ~mask;
2075                /* Between grace periods, so better already be zero! */
2076                WARN_ON_ONCE(rnp->qsmask);
2077                if (rnp->qsmaskinit) {
2078                        raw_spin_unlock_rcu_node(rnp);
2079                        /* irqs remain disabled. */
2080                        return;
2081                }
2082                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2083        }
2084}
2085
2086/*
2087 * The CPU has been completely removed, and some other CPU is reporting
2088 * this fact from process context.  Do the remainder of the cleanup.
2089 * There can only be one CPU hotplug operation at a time, so no need for
2090 * explicit locking.
2091 */
2092int rcutree_dead_cpu(unsigned int cpu)
2093{
2094        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2095        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2096
2097        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2098                return 0;
2099
2100        /* Adjust any no-longer-needed kthreads. */
2101        rcu_boost_kthread_setaffinity(rnp, -1);
2102        /* Do any needed no-CB deferred wakeups from this CPU. */
2103        do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2104        return 0;
2105}
2106
2107/*
2108 * Invoke any RCU callbacks that have made it to the end of their grace
2109 * period.  Thottle as specified by rdp->blimit.
2110 */
2111static void rcu_do_batch(struct rcu_data *rdp)
2112{
2113        unsigned long flags;
2114        const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2115                               rcu_segcblist_is_offloaded(&rdp->cblist);
2116        struct rcu_head *rhp;
2117        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2118        long bl, count;
2119        long pending, tlimit = 0;
2120
2121        /* If no callbacks are ready, just return. */
2122        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2123                trace_rcu_batch_start(rcu_state.name,
2124                                      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2125                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2126                trace_rcu_batch_end(rcu_state.name, 0,
2127                                    !rcu_segcblist_empty(&rdp->cblist),
2128                                    need_resched(), is_idle_task(current),
2129                                    rcu_is_callbacks_kthread());
2130                return;
2131        }
2132
2133        /*
2134         * Extract the list of ready callbacks, disabling to prevent
2135         * races with call_rcu() from interrupt handlers.  Leave the
2136         * callback counts, as rcu_barrier() needs to be conservative.
2137         */
2138        local_irq_save(flags);
2139        rcu_nocb_lock(rdp);
2140        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2141        pending = rcu_segcblist_n_cbs(&rdp->cblist);
2142        bl = max(rdp->blimit, pending >> rcu_divisor);
2143        if (unlikely(bl > 100))
2144                tlimit = local_clock() + rcu_resched_ns;
2145        trace_rcu_batch_start(rcu_state.name,
2146                              rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2147                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2148        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2149        if (offloaded)
2150                rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2151        rcu_nocb_unlock_irqrestore(rdp, flags);
2152
2153        /* Invoke callbacks. */
2154        rhp = rcu_cblist_dequeue(&rcl);
2155        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2156                debug_rcu_head_unqueue(rhp);
2157                if (__rcu_reclaim(rcu_state.name, rhp))
2158                        rcu_cblist_dequeued_lazy(&rcl);
2159                /*
2160                 * Stop only if limit reached and CPU has something to do.
2161                 * Note: The rcl structure counts down from zero.
2162                 */
2163                if (-rcl.len >= bl && !offloaded &&
2164                    (need_resched() ||
2165                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2166                        break;
2167                if (unlikely(tlimit)) {
2168                        /* only call local_clock() every 32 callbacks */
2169                        if (likely((-rcl.len & 31) || local_clock() < tlimit))
2170                                continue;
2171                        /* Exceeded the time limit, so leave. */
2172                        break;
2173                }
2174                if (offloaded) {
2175                        WARN_ON_ONCE(in_serving_softirq());
2176                        local_bh_enable();
2177                        lockdep_assert_irqs_enabled();
2178                        cond_resched_tasks_rcu_qs();
2179                        lockdep_assert_irqs_enabled();
2180                        local_bh_disable();
2181                }
2182        }
2183
2184        local_irq_save(flags);
2185        rcu_nocb_lock(rdp);
2186        count = -rcl.len;
2187        trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2188                            is_idle_task(current), rcu_is_callbacks_kthread());
2189
2190        /* Update counts and requeue any remaining callbacks. */
2191        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2192        smp_mb(); /* List handling before counting for rcu_barrier(). */
2193        rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2194
2195        /* Reinstate batch limit if we have worked down the excess. */
2196        count = rcu_segcblist_n_cbs(&rdp->cblist);
2197        if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2198                rdp->blimit = blimit;
2199
2200        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2201        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2202                rdp->qlen_last_fqs_check = 0;
2203                rdp->n_force_qs_snap = rcu_state.n_force_qs;
2204        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2205                rdp->qlen_last_fqs_check = count;
2206
2207        /*
2208         * The following usually indicates a double call_rcu().  To track
2209         * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2210         */
2211        WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2212        WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2213                     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2214
2215        rcu_nocb_unlock_irqrestore(rdp, flags);
2216
2217        /* Re-invoke RCU core processing if there are callbacks remaining. */
2218        if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2219                invoke_rcu_core();
2220}
2221
2222/*
2223 * This function is invoked from each scheduling-clock interrupt,
2224 * and checks to see if this CPU is in a non-context-switch quiescent
2225 * state, for example, user mode or idle loop.  It also schedules RCU
2226 * core processing.  If the current grace period has gone on too long,
2227 * it will ask the scheduler to manufacture a context switch for the sole
2228 * purpose of providing a providing the needed quiescent state.
2229 */
2230void rcu_sched_clock_irq(int user)
2231{
2232        trace_rcu_utilization(TPS("Start scheduler-tick"));
2233        raw_cpu_inc(rcu_data.ticks_this_gp);
2234        /* The load-acquire pairs with the store-release setting to true. */
2235        if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2236                /* Idle and userspace execution already are quiescent states. */
2237                if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2238                        set_tsk_need_resched(current);
2239                        set_preempt_need_resched();
2240                }
2241                __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2242        }
2243        rcu_flavor_sched_clock_irq(user);
2244        if (rcu_pending())
2245                invoke_rcu_core();
2246
2247        trace_rcu_utilization(TPS("End scheduler-tick"));
2248}
2249
2250/*
2251 * Scan the leaf rcu_node structures.  For each structure on which all
2252 * CPUs have reported a quiescent state and on which there are tasks
2253 * blocking the current grace period, initiate RCU priority boosting.
2254 * Otherwise, invoke the specified function to check dyntick state for
2255 * each CPU that has not yet reported a quiescent state.
2256 */
2257static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2258{
2259        int cpu;
2260        unsigned long flags;
2261        unsigned long mask;
2262        struct rcu_node *rnp;
2263
2264        rcu_for_each_leaf_node(rnp) {
2265                cond_resched_tasks_rcu_qs();
2266                mask = 0;
2267                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2268                if (rnp->qsmask == 0) {
2269                        if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2270                            rcu_preempt_blocked_readers_cgp(rnp)) {
2271                                /*
2272                                 * No point in scanning bits because they
2273                                 * are all zero.  But we might need to
2274                                 * priority-boost blocked readers.
2275                                 */
2276                                rcu_initiate_boost(rnp, flags);
2277                                /* rcu_initiate_boost() releases rnp->lock */
2278                                continue;
2279                        }
2280                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2281                        continue;
2282                }
2283                for_each_leaf_node_possible_cpu(rnp, cpu) {
2284                        unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2285                        if ((rnp->qsmask & bit) != 0) {
2286                                if (f(per_cpu_ptr(&rcu_data, cpu)))
2287                                        mask |= bit;
2288                        }
2289                }
2290                if (mask != 0) {
2291                        /* Idle/offline CPUs, report (releases rnp->lock). */
2292                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2293                } else {
2294                        /* Nothing to do here, so just drop the lock. */
2295                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2296                }
2297        }
2298}
2299
2300/*
2301 * Force quiescent states on reluctant CPUs, and also detect which
2302 * CPUs are in dyntick-idle mode.
2303 */
2304void rcu_force_quiescent_state(void)
2305{
2306        unsigned long flags;
2307        bool ret;
2308        struct rcu_node *rnp;
2309        struct rcu_node *rnp_old = NULL;
2310
2311        /* Funnel through hierarchy to reduce memory contention. */
2312        rnp = __this_cpu_read(rcu_data.mynode);
2313        for (; rnp != NULL; rnp = rnp->parent) {
2314                ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2315                      !raw_spin_trylock(&rnp->fqslock);
2316                if (rnp_old != NULL)
2317                        raw_spin_unlock(&rnp_old->fqslock);
2318                if (ret)
2319                        return;
2320                rnp_old = rnp;
2321        }
2322        /* rnp_old == rcu_get_root(), rnp == NULL. */
2323
2324        /* Reached the root of the rcu_node tree, acquire lock. */
2325        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2326        raw_spin_unlock(&rnp_old->fqslock);
2327        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2328                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2329                return;  /* Someone beat us to it. */
2330        }
2331        WRITE_ONCE(rcu_state.gp_flags,
2332                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2333        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2334        rcu_gp_kthread_wake();
2335}
2336EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2337
2338/* Perform RCU core processing work for the current CPU.  */
2339static __latent_entropy void rcu_core(void)
2340{
2341        unsigned long flags;
2342        struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2343        struct rcu_node *rnp = rdp->mynode;
2344        const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2345                               rcu_segcblist_is_offloaded(&rdp->cblist);
2346
2347        if (cpu_is_offline(smp_processor_id()))
2348                return;
2349        trace_rcu_utilization(TPS("Start RCU core"));
2350        WARN_ON_ONCE(!rdp->beenonline);
2351
2352        /* Report any deferred quiescent states if preemption enabled. */
2353        if (!(preempt_count() & PREEMPT_MASK)) {
2354                rcu_preempt_deferred_qs(current);
2355        } else if (rcu_preempt_need_deferred_qs(current)) {
2356                set_tsk_need_resched(current);
2357                set_preempt_need_resched();
2358        }
2359
2360        /* Update RCU state based on any recent quiescent states. */
2361        rcu_check_quiescent_state(rdp);
2362
2363        /* No grace period and unregistered callbacks? */
2364        if (!rcu_gp_in_progress() &&
2365            rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2366                local_irq_save(flags);
2367                if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2368                        rcu_accelerate_cbs_unlocked(rnp, rdp);
2369                local_irq_restore(flags);
2370        }
2371
2372        rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2373
2374        /* If there are callbacks ready, invoke them. */
2375        if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2376            likely(READ_ONCE(rcu_scheduler_fully_active)))
2377                rcu_do_batch(rdp);
2378
2379        /* Do any needed deferred wakeups of rcuo kthreads. */
2380        do_nocb_deferred_wakeup(rdp);
2381        trace_rcu_utilization(TPS("End RCU core"));
2382}
2383
2384static void rcu_core_si(struct softirq_action *h)
2385{
2386        rcu_core();
2387}
2388
2389static void rcu_wake_cond(struct task_struct *t, int status)
2390{
2391        /*
2392         * If the thread is yielding, only wake it when this
2393         * is invoked from idle
2394         */
2395        if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2396                wake_up_process(t);
2397}
2398
2399static void invoke_rcu_core_kthread(void)
2400{
2401        struct task_struct *t;
2402        unsigned long flags;
2403
2404        local_irq_save(flags);
2405        __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2406        t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2407        if (t != NULL && t != current)
2408                rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2409        local_irq_restore(flags);
2410}
2411
2412/*
2413 * Wake up this CPU's rcuc kthread to do RCU core processing.
2414 */
2415static void invoke_rcu_core(void)
2416{
2417        if (!cpu_online(smp_processor_id()))
2418                return;
2419        if (use_softirq)
2420                raise_softirq(RCU_SOFTIRQ);
2421        else
2422                invoke_rcu_core_kthread();
2423}
2424
2425static void rcu_cpu_kthread_park(unsigned int cpu)
2426{
2427        per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2428}
2429
2430static int rcu_cpu_kthread_should_run(unsigned int cpu)
2431{
2432        return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2433}
2434
2435/*
2436 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2437 * the RCU softirq used in configurations of RCU that do not support RCU
2438 * priority boosting.
2439 */
2440static void rcu_cpu_kthread(unsigned int cpu)
2441{
2442        unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2443        char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2444        int spincnt;
2445
2446        for (spincnt = 0; spincnt < 10; spincnt++) {
2447                trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2448                local_bh_disable();
2449                *statusp = RCU_KTHREAD_RUNNING;
2450                local_irq_disable();
2451                work = *workp;
2452                *workp = 0;
2453                local_irq_enable();
2454                if (work)
2455                        rcu_core();
2456                local_bh_enable();
2457                if (*workp == 0) {
2458                        trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2459                        *statusp = RCU_KTHREAD_WAITING;
2460                        return;
2461                }
2462        }
2463        *statusp = RCU_KTHREAD_YIELDING;
2464        trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2465        schedule_timeout_interruptible(2);
2466        trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2467        *statusp = RCU_KTHREAD_WAITING;
2468}
2469
2470static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2471        .store                  = &rcu_data.rcu_cpu_kthread_task,
2472        .thread_should_run      = rcu_cpu_kthread_should_run,
2473        .thread_fn              = rcu_cpu_kthread,
2474        .thread_comm            = "rcuc/%u",
2475        .setup                  = rcu_cpu_kthread_setup,
2476        .park                   = rcu_cpu_kthread_park,
2477};
2478
2479/*
2480 * Spawn per-CPU RCU core processing kthreads.
2481 */
2482static int __init rcu_spawn_core_kthreads(void)
2483{
2484        int cpu;
2485
2486        for_each_possible_cpu(cpu)
2487                per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2488        if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2489                return 0;
2490        WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2491                  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2492        return 0;
2493}
2494early_initcall(rcu_spawn_core_kthreads);
2495
2496/*
2497 * Handle any core-RCU processing required by a call_rcu() invocation.
2498 */
2499static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2500                            unsigned long flags)
2501{
2502        /*
2503         * If called from an extended quiescent state, invoke the RCU
2504         * core in order to force a re-evaluation of RCU's idleness.
2505         */
2506        if (!rcu_is_watching())
2507                invoke_rcu_core();
2508
2509        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2510        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2511                return;
2512
2513        /*
2514         * Force the grace period if too many callbacks or too long waiting.
2515         * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2516         * if some other CPU has recently done so.  Also, don't bother
2517         * invoking rcu_force_quiescent_state() if the newly enqueued callback
2518         * is the only one waiting for a grace period to complete.
2519         */
2520        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2521                     rdp->qlen_last_fqs_check + qhimark)) {
2522
2523                /* Are we ignoring a completed grace period? */
2524                note_gp_changes(rdp);
2525
2526                /* Start a new grace period if one not already started. */
2527                if (!rcu_gp_in_progress()) {
2528                        rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2529                } else {
2530                        /* Give the grace period a kick. */
2531                        rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2532                        if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2533                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2534                                rcu_force_quiescent_state();
2535                        rdp->n_force_qs_snap = rcu_state.n_force_qs;
2536                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2537                }
2538        }
2539}
2540
2541/*
2542 * RCU callback function to leak a callback.
2543 */
2544static void rcu_leak_callback(struct rcu_head *rhp)
2545{
2546}
2547
2548/*
2549 * Helper function for call_rcu() and friends.  The cpu argument will
2550 * normally be -1, indicating "currently running CPU".  It may specify
2551 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2552 * is expected to specify a CPU.
2553 */
2554static void
2555__call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2556{
2557        unsigned long flags;
2558        struct rcu_data *rdp;
2559        bool was_alldone;
2560
2561        /* Misaligned rcu_head! */
2562        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2563
2564        if (debug_rcu_head_queue(head)) {
2565                /*
2566                 * Probable double call_rcu(), so leak the callback.
2567                 * Use rcu:rcu_callback trace event to find the previous
2568                 * time callback was passed to __call_rcu().
2569                 */
2570                WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2571                          head, head->func);
2572                WRITE_ONCE(head->func, rcu_leak_callback);
2573                return;
2574        }
2575        head->func = func;
2576        head->next = NULL;
2577        local_irq_save(flags);
2578        rdp = this_cpu_ptr(&rcu_data);
2579
2580        /* Add the callback to our list. */
2581        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2582                // This can trigger due to call_rcu() from offline CPU:
2583                WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2584                WARN_ON_ONCE(!rcu_is_watching());
2585                // Very early boot, before rcu_init().  Initialize if needed
2586                // and then drop through to queue the callback.
2587                if (rcu_segcblist_empty(&rdp->cblist))
2588                        rcu_segcblist_init(&rdp->cblist);
2589        }
2590        if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2591                return; // Enqueued onto ->nocb_bypass, so just leave.
2592        /* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2593        rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2594        if (__is_kfree_rcu_offset((unsigned long)func))
2595                trace_rcu_kfree_callback(rcu_state.name, head,
2596                                         (unsigned long)func,
2597                                         rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2598                                         rcu_segcblist_n_cbs(&rdp->cblist));
2599        else
2600                trace_rcu_callback(rcu_state.name, head,
2601                                   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2602                                   rcu_segcblist_n_cbs(&rdp->cblist));
2603
2604        /* Go handle any RCU core processing required. */
2605        if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606            unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2607                __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2608        } else {
2609                __call_rcu_core(rdp, head, flags);
2610                local_irq_restore(flags);
2611        }
2612}
2613
2614/**
2615 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2616 * @head: structure to be used for queueing the RCU updates.
2617 * @func: actual callback function to be invoked after the grace period
2618 *
2619 * The callback function will be invoked some time after a full grace
2620 * period elapses, in other words after all pre-existing RCU read-side
2621 * critical sections have completed.  However, the callback function
2622 * might well execute concurrently with RCU read-side critical sections
2623 * that started after call_rcu() was invoked.  RCU read-side critical
2624 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2625 * may be nested.  In addition, regions of code across which interrupts,
2626 * preemption, or softirqs have been disabled also serve as RCU read-side
2627 * critical sections.  This includes hardware interrupt handlers, softirq
2628 * handlers, and NMI handlers.
2629 *
2630 * Note that all CPUs must agree that the grace period extended beyond
2631 * all pre-existing RCU read-side critical section.  On systems with more
2632 * than one CPU, this means that when "func()" is invoked, each CPU is
2633 * guaranteed to have executed a full memory barrier since the end of its
2634 * last RCU read-side critical section whose beginning preceded the call
2635 * to call_rcu().  It also means that each CPU executing an RCU read-side
2636 * critical section that continues beyond the start of "func()" must have
2637 * executed a memory barrier after the call_rcu() but before the beginning
2638 * of that RCU read-side critical section.  Note that these guarantees
2639 * include CPUs that are offline, idle, or executing in user mode, as
2640 * well as CPUs that are executing in the kernel.
2641 *
2642 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2643 * resulting RCU callback function "func()", then both CPU A and CPU B are
2644 * guaranteed to execute a full memory barrier during the time interval
2645 * between the call to call_rcu() and the invocation of "func()" -- even
2646 * if CPU A and CPU B are the same CPU (but again only if the system has
2647 * more than one CPU).
2648 */
2649void call_rcu(struct rcu_head *head, rcu_callback_t func)
2650{
2651        __call_rcu(head, func, 0);
2652}
2653EXPORT_SYMBOL_GPL(call_rcu);
2654
2655/*
2656 * Queue an RCU callback for lazy invocation after a grace period.
2657 * This will likely be later named something like "call_rcu_lazy()",
2658 * but this change will require some way of tagging the lazy RCU
2659 * callbacks in the list of pending callbacks. Until then, this
2660 * function may only be called from __kfree_rcu().
2661 */
2662void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2663{
2664        __call_rcu(head, func, 1);
2665}
2666EXPORT_SYMBOL_GPL(kfree_call_rcu);
2667
2668/*
2669 * During early boot, any blocking grace-period wait automatically
2670 * implies a grace period.  Later on, this is never the case for PREEMPT.
2671 *
2672 * Howevr, because a context switch is a grace period for !PREEMPT, any
2673 * blocking grace-period wait automatically implies a grace period if
2674 * there is only one CPU online at any point time during execution of
2675 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2676 * occasionally incorrectly indicate that there are multiple CPUs online
2677 * when there was in fact only one the whole time, as this just adds some
2678 * overhead: RCU still operates correctly.
2679 */
2680static int rcu_blocking_is_gp(void)
2681{
2682        int ret;
2683
2684        if (IS_ENABLED(CONFIG_PREEMPTION))
2685                return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2686        might_sleep();  /* Check for RCU read-side critical section. */
2687        preempt_disable();
2688        ret = num_online_cpus() <= 1;
2689        preempt_enable();
2690        return ret;
2691}
2692
2693/**
2694 * synchronize_rcu - wait until a grace period has elapsed.
2695 *
2696 * Control will return to the caller some time after a full grace
2697 * period has elapsed, in other words after all currently executing RCU
2698 * read-side critical sections have completed.  Note, however, that
2699 * upon return from synchronize_rcu(), the caller might well be executing
2700 * concurrently with new RCU read-side critical sections that began while
2701 * synchronize_rcu() was waiting.  RCU read-side critical sections are
2702 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2703 * In addition, regions of code across which interrupts, preemption, or
2704 * softirqs have been disabled also serve as RCU read-side critical
2705 * sections.  This includes hardware interrupt handlers, softirq handlers,
2706 * and NMI handlers.
2707 *
2708 * Note that this guarantee implies further memory-ordering guarantees.
2709 * On systems with more than one CPU, when synchronize_rcu() returns,
2710 * each CPU is guaranteed to have executed a full memory barrier since
2711 * the end of its last RCU read-side critical section whose beginning
2712 * preceded the call to synchronize_rcu().  In addition, each CPU having
2713 * an RCU read-side critical section that extends beyond the return from
2714 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2715 * after the beginning of synchronize_rcu() and before the beginning of
2716 * that RCU read-side critical section.  Note that these guarantees include
2717 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2718 * that are executing in the kernel.
2719 *
2720 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2721 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2722 * to have executed a full memory barrier during the execution of
2723 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2724 * again only if the system has more than one CPU).
2725 */
2726void synchronize_rcu(void)
2727{
2728        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2729                         lock_is_held(&rcu_lock_map) ||
2730                         lock_is_held(&rcu_sched_lock_map),
2731                         "Illegal synchronize_rcu() in RCU read-side critical section");
2732        if (rcu_blocking_is_gp())
2733                return;
2734        if (rcu_gp_is_expedited())
2735                synchronize_rcu_expedited();
2736        else
2737                wait_rcu_gp(call_rcu);
2738}
2739EXPORT_SYMBOL_GPL(synchronize_rcu);
2740
2741/**
2742 * get_state_synchronize_rcu - Snapshot current RCU state
2743 *
2744 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2745 * to determine whether or not a full grace period has elapsed in the
2746 * meantime.
2747 */
2748unsigned long get_state_synchronize_rcu(void)
2749{
2750        /*
2751         * Any prior manipulation of RCU-protected data must happen
2752         * before the load from ->gp_seq.
2753         */
2754        smp_mb();  /* ^^^ */
2755        return rcu_seq_snap(&rcu_state.gp_seq);
2756}
2757EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2758
2759/**
2760 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2761 *
2762 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2763 *
2764 * If a full RCU grace period has elapsed since the earlier call to
2765 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2766 * synchronize_rcu() to wait for a full grace period.
2767 *
2768 * Yes, this function does not take counter wrap into account.  But
2769 * counter wrap is harmless.  If the counter wraps, we have waited for
2770 * more than 2 billion grace periods (and way more on a 64-bit system!),
2771 * so waiting for one additional grace period should be just fine.
2772 */
2773void cond_synchronize_rcu(unsigned long oldstate)
2774{
2775        if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2776                synchronize_rcu();
2777        else
2778                smp_mb(); /* Ensure GP ends before subsequent accesses. */
2779}
2780EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2781
2782/*
2783 * Check to see if there is any immediate RCU-related work to be done by
2784 * the current CPU, returning 1 if so and zero otherwise.  The checks are
2785 * in order of increasing expense: checks that can be carried out against
2786 * CPU-local state are performed first.  However, we must check for CPU
2787 * stalls first, else we might not get a chance.
2788 */
2789static int rcu_pending(void)
2790{
2791        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2792        struct rcu_node *rnp = rdp->mynode;
2793
2794        /* Check for CPU stalls, if enabled. */
2795        check_cpu_stall(rdp);
2796
2797        /* Does this CPU need a deferred NOCB wakeup? */
2798        if (rcu_nocb_need_deferred_wakeup(rdp))
2799                return 1;
2800
2801        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2802        if (rcu_nohz_full_cpu())
2803                return 0;
2804
2805        /* Is the RCU core waiting for a quiescent state from this CPU? */
2806        if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2807                return 1;
2808
2809        /* Does this CPU have callbacks ready to invoke? */
2810        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2811                return 1;
2812
2813        /* Has RCU gone idle with this CPU needing another grace period? */
2814        if (!rcu_gp_in_progress() &&
2815            rcu_segcblist_is_enabled(&rdp->cblist) &&
2816            (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2817             !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2818            !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2819                return 1;
2820
2821        /* Have RCU grace period completed or started?  */
2822        if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2823            unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2824                return 1;
2825
2826        /* nothing to do */
2827        return 0;
2828}
2829
2830/*
2831 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2832 * the compiler is expected to optimize this away.
2833 */
2834static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2835{
2836        trace_rcu_barrier(rcu_state.name, s, cpu,
2837                          atomic_read(&rcu_state.barrier_cpu_count), done);
2838}
2839
2840/*
2841 * RCU callback function for rcu_barrier().  If we are last, wake
2842 * up the task executing rcu_barrier().
2843 */
2844static void rcu_barrier_callback(struct rcu_head *rhp)
2845{
2846        if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2847                rcu_barrier_trace(TPS("LastCB"), -1,
2848                                   rcu_state.barrier_sequence);
2849                complete(&rcu_state.barrier_completion);
2850        } else {
2851                rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2852        }
2853}
2854
2855/*
2856 * Called with preemption disabled, and from cross-cpu IRQ context.
2857 */
2858static void rcu_barrier_func(void *unused)
2859{
2860        struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2861
2862        rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2863        rdp->barrier_head.func = rcu_barrier_callback;
2864        debug_rcu_head_queue(&rdp->barrier_head);
2865        rcu_nocb_lock(rdp);
2866        WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2867        if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2868                atomic_inc(&rcu_state.barrier_cpu_count);
2869        } else {
2870                debug_rcu_head_unqueue(&rdp->barrier_head);
2871                rcu_barrier_trace(TPS("IRQNQ"), -1,
2872                                   rcu_state.barrier_sequence);
2873        }
2874        rcu_nocb_unlock(rdp);
2875}
2876
2877/**
2878 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2879 *
2880 * Note that this primitive does not necessarily wait for an RCU grace period
2881 * to complete.  For example, if there are no RCU callbacks queued anywhere
2882 * in the system, then rcu_barrier() is within its rights to return
2883 * immediately, without waiting for anything, much less an RCU grace period.
2884 */
2885void rcu_barrier(void)
2886{
2887        int cpu;
2888        struct rcu_data *rdp;
2889        unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2890
2891        rcu_barrier_trace(TPS("Begin"), -1, s);
2892
2893        /* Take mutex to serialize concurrent rcu_barrier() requests. */
2894        mutex_lock(&rcu_state.barrier_mutex);
2895
2896        /* Did someone else do our work for us? */
2897        if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2898                rcu_barrier_trace(TPS("EarlyExit"), -1,
2899                                   rcu_state.barrier_sequence);
2900                smp_mb(); /* caller's subsequent code after above check. */
2901                mutex_unlock(&rcu_state.barrier_mutex);
2902                return;
2903        }
2904
2905        /* Mark the start of the barrier operation. */
2906        rcu_seq_start(&rcu_state.barrier_sequence);
2907        rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2908
2909        /*
2910         * Initialize the count to one rather than to zero in order to
2911         * avoid a too-soon return to zero in case of a short grace period
2912         * (or preemption of this task).  Exclude CPU-hotplug operations
2913         * to ensure that no offline CPU has callbacks queued.
2914         */
2915        init_completion(&rcu_state.barrier_completion);
2916        atomic_set(&rcu_state.barrier_cpu_count, 1);
2917        get_online_cpus();
2918
2919        /*
2920         * Force each CPU with callbacks to register a new callback.
2921         * When that callback is invoked, we will know that all of the
2922         * corresponding CPU's preceding callbacks have been invoked.
2923         */
2924        for_each_possible_cpu(cpu) {
2925                rdp = per_cpu_ptr(&rcu_data, cpu);
2926                if (!cpu_online(cpu) &&
2927                    !rcu_segcblist_is_offloaded(&rdp->cblist))
2928                        continue;
2929                if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2930                        rcu_barrier_trace(TPS("OnlineQ"), cpu,
2931                                           rcu_state.barrier_sequence);
2932                        smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2933                } else {
2934                        rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2935                                           rcu_state.barrier_sequence);
2936                }
2937        }
2938        put_online_cpus();
2939
2940        /*
2941         * Now that we have an rcu_barrier_callback() callback on each
2942         * CPU, and thus each counted, remove the initial count.
2943         */
2944        if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2945                complete(&rcu_state.barrier_completion);
2946
2947        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2948        wait_for_completion(&rcu_state.barrier_completion);
2949
2950        /* Mark the end of the barrier operation. */
2951        rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2952        rcu_seq_end(&rcu_state.barrier_sequence);
2953
2954        /* Other rcu_barrier() invocations can now safely proceed. */
2955        mutex_unlock(&rcu_state.barrier_mutex);
2956}
2957EXPORT_SYMBOL_GPL(rcu_barrier);
2958
2959/*
2960 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2961 * first CPU in a given leaf rcu_node structure coming online.  The caller
2962 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2963 * disabled.
2964 */
2965static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2966{
2967        long mask;
2968        long oldmask;
2969        struct rcu_node *rnp = rnp_leaf;
2970
2971        raw_lockdep_assert_held_rcu_node(rnp_leaf);
2972        WARN_ON_ONCE(rnp->wait_blkd_tasks);
2973        for (;;) {
2974                mask = rnp->grpmask;
2975                rnp = rnp->parent;
2976                if (rnp == NULL)
2977                        return;
2978                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2979                oldmask = rnp->qsmaskinit;
2980                rnp->qsmaskinit |= mask;
2981                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2982                if (oldmask)
2983                        return;
2984        }
2985}
2986
2987/*
2988 * Do boot-time initialization of a CPU's per-CPU RCU data.
2989 */
2990static void __init
2991rcu_boot_init_percpu_data(int cpu)
2992{
2993        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2994
2995        /* Set up local state, ensuring consistent view of global state. */
2996        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2997        WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2998        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2999        rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3000        rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3001        rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3002        rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3003        rdp->cpu = cpu;
3004        rcu_boot_init_nocb_percpu_data(rdp);
3005}
3006
3007/*
3008 * Invoked early in the CPU-online process, when pretty much all services
3009 * are available.  The incoming CPU is not present.
3010 *
3011 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3012 * offline event can be happening at a given time.  Note also that we can
3013 * accept some slop in the rsp->gp_seq access due to the fact that this
3014 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3015 * And any offloaded callbacks are being numbered elsewhere.
3016 */
3017int rcutree_prepare_cpu(unsigned int cpu)
3018{
3019        unsigned long flags;
3020        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3021        struct rcu_node *rnp = rcu_get_root();
3022
3023        /* Set up local state, ensuring consistent view of global state. */
3024        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3025        rdp->qlen_last_fqs_check = 0;
3026        rdp->n_force_qs_snap = rcu_state.n_force_qs;
3027        rdp->blimit = blimit;
3028        if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3029            !rcu_segcblist_is_offloaded(&rdp->cblist))
3030                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3031        rdp->dynticks_nesting = 1;      /* CPU not up, no tearing. */
3032        rcu_dynticks_eqs_online();
3033        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
3034
3035        /*
3036         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3037         * propagation up the rcu_node tree will happen at the beginning
3038         * of the next grace period.
3039         */
3040        rnp = rdp->mynode;
3041        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
3042        rdp->beenonline = true;  /* We have now been online. */
3043        rdp->gp_seq = rnp->gp_seq;
3044        rdp->gp_seq_needed = rnp->gp_seq;
3045        rdp->cpu_no_qs.b.norm = true;
3046        rdp->core_needs_qs = false;
3047        rdp->rcu_iw_pending = false;
3048        rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3049        trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3050        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3051        rcu_prepare_kthreads(cpu);
3052        rcu_spawn_cpu_nocb_kthread(cpu);
3053
3054        return 0;
3055}
3056
3057/*
3058 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3059 */
3060static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3061{
3062        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3063
3064        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3065}
3066
3067/*
3068 * Near the end of the CPU-online process.  Pretty much all services
3069 * enabled, and the CPU is now very much alive.
3070 */
3071int rcutree_online_cpu(unsigned int cpu)
3072{
3073        unsigned long flags;
3074        struct rcu_data *rdp;
3075        struct rcu_node *rnp;
3076
3077        rdp = per_cpu_ptr(&rcu_data, cpu);
3078        rnp = rdp->mynode;
3079        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3080        rnp->ffmask |= rdp->grpmask;
3081        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3082        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3083                return 0; /* Too early in boot for scheduler work. */
3084        sync_sched_exp_online_cleanup(cpu);
3085        rcutree_affinity_setting(cpu, -1);
3086        return 0;
3087}
3088
3089/*
3090 * Near the beginning of the process.  The CPU is still very much alive
3091 * with pretty much all services enabled.
3092 */
3093int rcutree_offline_cpu(unsigned int cpu)
3094{
3095        unsigned long flags;
3096        struct rcu_data *rdp;
3097        struct rcu_node *rnp;
3098
3099        rdp = per_cpu_ptr(&rcu_data, cpu);
3100        rnp = rdp->mynode;
3101        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3102        rnp->ffmask &= ~rdp->grpmask;
3103        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3104
3105        rcutree_affinity_setting(cpu, cpu);
3106        return 0;
3107}
3108
3109static DEFINE_PER_CPU(int, rcu_cpu_started);
3110
3111/*
3112 * Mark the specified CPU as being online so that subsequent grace periods
3113 * (both expedited and normal) will wait on it.  Note that this means that
3114 * incoming CPUs are not allowed to use RCU read-side critical sections
3115 * until this function is called.  Failing to observe this restriction
3116 * will result in lockdep splats.
3117 *
3118 * Note that this function is special in that it is invoked directly
3119 * from the incoming CPU rather than from the cpuhp_step mechanism.
3120 * This is because this function must be invoked at a precise location.
3121 */
3122void rcu_cpu_starting(unsigned int cpu)
3123{
3124        unsigned long flags;
3125        unsigned long mask;
3126        int nbits;
3127        unsigned long oldmask;
3128        struct rcu_data *rdp;
3129        struct rcu_node *rnp;
3130
3131        if (per_cpu(rcu_cpu_started, cpu))
3132                return;
3133
3134        per_cpu(rcu_cpu_started, cpu) = 1;
3135
3136        rdp = per_cpu_ptr(&rcu_data, cpu);
3137        rnp = rdp->mynode;
3138        mask = rdp->grpmask;
3139        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3140        rnp->qsmaskinitnext |= mask;
3141        oldmask = rnp->expmaskinitnext;
3142        rnp->expmaskinitnext |= mask;
3143        oldmask ^= rnp->expmaskinitnext;
3144        nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3145        /* Allow lockless access for expedited grace periods. */
3146        smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3147        rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3148        rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3149        rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3150        if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3151                /* Report QS -after- changing ->qsmaskinitnext! */
3152                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3153        } else {
3154                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3155        }
3156        smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3157}
3158
3159#ifdef CONFIG_HOTPLUG_CPU
3160/*
3161 * The outgoing function has no further need of RCU, so remove it from
3162 * the rcu_node tree's ->qsmaskinitnext bit masks.
3163 *
3164 * Note that this function is special in that it is invoked directly
3165 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3166 * This is because this function must be invoked at a precise location.
3167 */
3168void rcu_report_dead(unsigned int cpu)
3169{
3170        unsigned long flags;
3171        unsigned long mask;
3172        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3173        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3174
3175        /* QS for any half-done expedited grace period. */
3176        preempt_disable();
3177        rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3178        preempt_enable();
3179        rcu_preempt_deferred_qs(current);
3180
3181        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3182        mask = rdp->grpmask;
3183        raw_spin_lock(&rcu_state.ofl_lock);
3184        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3185        rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3186        rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3187        if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3188                /* Report quiescent state -before- changing ->qsmaskinitnext! */
3189                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3190                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3191        }
3192        rnp->qsmaskinitnext &= ~mask;
3193        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3194        raw_spin_unlock(&rcu_state.ofl_lock);
3195
3196        per_cpu(rcu_cpu_started, cpu) = 0;
3197}
3198
3199/*
3200 * The outgoing CPU has just passed through the dying-idle state, and we
3201 * are being invoked from the CPU that was IPIed to continue the offline
3202 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3203 */
3204void rcutree_migrate_callbacks(int cpu)
3205{
3206        unsigned long flags;
3207        struct rcu_data *my_rdp;
3208        struct rcu_node *my_rnp;
3209        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3210        bool needwake;
3211
3212        if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3213            rcu_segcblist_empty(&rdp->cblist))
3214                return;  /* No callbacks to migrate. */
3215
3216        local_irq_save(flags);
3217        my_rdp = this_cpu_ptr(&rcu_data);
3218        my_rnp = my_rdp->mynode;
3219        rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3220        WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3221        raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3222        /* Leverage recent GPs and set GP for new callbacks. */
3223        needwake = rcu_advance_cbs(my_rnp, rdp) ||
3224                   rcu_advance_cbs(my_rnp, my_rdp);
3225        rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3226        needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3227        rcu_segcblist_disable(&rdp->cblist);
3228        WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3229                     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3230        if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3231                raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3232                __call_rcu_nocb_wake(my_rdp, true, flags);
3233        } else {
3234                rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3235                raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3236        }
3237        if (needwake)
3238                rcu_gp_kthread_wake();
3239        lockdep_assert_irqs_enabled();
3240        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3241                  !rcu_segcblist_empty(&rdp->cblist),
3242                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3243                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3244                  rcu_segcblist_first_cb(&rdp->cblist));
3245}
3246#endif
3247
3248/*
3249 * On non-huge systems, use expedited RCU grace periods to make suspend
3250 * and hibernation run faster.
3251 */
3252static int rcu_pm_notify(struct notifier_block *self,
3253                         unsigned long action, void *hcpu)
3254{
3255        switch (action) {
3256        case PM_HIBERNATION_PREPARE:
3257        case PM_SUSPEND_PREPARE:
3258                rcu_expedite_gp();
3259                break;
3260        case PM_POST_HIBERNATION:
3261        case PM_POST_SUSPEND:
3262                rcu_unexpedite_gp();
3263                break;
3264        default:
3265                break;
3266        }
3267        return NOTIFY_OK;
3268}
3269
3270/*
3271 * Spawn the kthreads that handle RCU's grace periods.
3272 */
3273static int __init rcu_spawn_gp_kthread(void)
3274{
3275        unsigned long flags;
3276        int kthread_prio_in = kthread_prio;
3277        struct rcu_node *rnp;
3278        struct sched_param sp;
3279        struct task_struct *t;
3280
3281        /* Force priority into range. */
3282        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3283            && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3284                kthread_prio = 2;
3285        else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3286                kthread_prio = 1;
3287        else if (kthread_prio < 0)
3288                kthread_prio = 0;
3289        else if (kthread_prio > 99)
3290                kthread_prio = 99;
3291
3292        if (kthread_prio != kthread_prio_in)
3293                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3294                         kthread_prio, kthread_prio_in);
3295
3296        rcu_scheduler_fully_active = 1;
3297        t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3298        if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3299                return 0;
3300        if (kthread_prio) {
3301                sp.sched_priority = kthread_prio;
3302                sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3303        }
3304        rnp = rcu_get_root();
3305        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3306        rcu_state.gp_kthread = t;
3307        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3308        wake_up_process(t);
3309        rcu_spawn_nocb_kthreads();
3310        rcu_spawn_boost_kthreads();
3311        return 0;
3312}
3313early_initcall(rcu_spawn_gp_kthread);
3314
3315/*
3316 * This function is invoked towards the end of the scheduler's
3317 * initialization process.  Before this is called, the idle task might
3318 * contain synchronous grace-period primitives (during which time, this idle
3319 * task is booting the system, and such primitives are no-ops).  After this
3320 * function is called, any synchronous grace-period primitives are run as
3321 * expedited, with the requesting task driving the grace period forward.
3322 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3323 * runtime RCU functionality.
3324 */
3325void rcu_scheduler_starting(void)
3326{
3327        WARN_ON(num_online_cpus() != 1);
3328        WARN_ON(nr_context_switches() > 0);
3329        rcu_test_sync_prims();
3330        rcu_scheduler_active = RCU_SCHEDULER_INIT;
3331        rcu_test_sync_prims();
3332}
3333
3334/*
3335 * Helper function for rcu_init() that initializes the rcu_state structure.
3336 */
3337static void __init rcu_init_one(void)
3338{
3339        static const char * const buf[] = RCU_NODE_NAME_INIT;
3340        static const char * const fqs[] = RCU_FQS_NAME_INIT;
3341        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3342        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3343
3344        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
3345        int cpustride = 1;
3346        int i;
3347        int j;
3348        struct rcu_node *rnp;
3349
3350        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3351
3352        /* Silence gcc 4.8 false positive about array index out of range. */
3353        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3354                panic("rcu_init_one: rcu_num_lvls out of range");
3355
3356        /* Initialize the level-tracking arrays. */
3357
3358        for (i = 1; i < rcu_num_lvls; i++)
3359                rcu_state.level[i] =
3360                        rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3361        rcu_init_levelspread(levelspread, num_rcu_lvl);
3362
3363        /* Initialize the elements themselves, starting from the leaves. */
3364
3365        for (i = rcu_num_lvls - 1; i >= 0; i--) {
3366                cpustride *= levelspread[i];
3367                rnp = rcu_state.level[i];
3368                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3369                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3370                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3371                                                   &rcu_node_class[i], buf[i]);
3372                        raw_spin_lock_init(&rnp->fqslock);
3373                        lockdep_set_class_and_name(&rnp->fqslock,
3374                                                   &rcu_fqs_class[i], fqs[i]);
3375                        rnp->gp_seq = rcu_state.gp_seq;
3376                        rnp->gp_seq_needed = rcu_state.gp_seq;
3377                        rnp->completedqs = rcu_state.gp_seq;
3378                        rnp->qsmask = 0;
3379                        rnp->qsmaskinit = 0;
3380                        rnp->grplo = j * cpustride;
3381                        rnp->grphi = (j + 1) * cpustride - 1;
3382                        if (rnp->grphi >= nr_cpu_ids)
3383                                rnp->grphi = nr_cpu_ids - 1;
3384                        if (i == 0) {
3385                                rnp->grpnum = 0;
3386                                rnp->grpmask = 0;
3387                                rnp->parent = NULL;
3388                        } else {
3389                                rnp->grpnum = j % levelspread[i - 1];
3390                                rnp->grpmask = BIT(rnp->grpnum);
3391                                rnp->parent = rcu_state.level[i - 1] +
3392                                              j / levelspread[i - 1];
3393                        }
3394                        rnp->level = i;
3395                        INIT_LIST_HEAD(&rnp->blkd_tasks);
3396                        rcu_init_one_nocb(rnp);
3397                        init_waitqueue_head(&rnp->exp_wq[0]);
3398                        init_waitqueue_head(&rnp->exp_wq[1]);
3399                        init_waitqueue_head(&rnp->exp_wq[2]);
3400                        init_waitqueue_head(&rnp->exp_wq[3]);
3401                        spin_lock_init(&rnp->exp_lock);
3402                }
3403        }
3404
3405        init_swait_queue_head(&rcu_state.gp_wq);
3406        init_swait_queue_head(&rcu_state.expedited_wq);
3407        rnp = rcu_first_leaf_node();
3408        for_each_possible_cpu(i) {
3409                while (i > rnp->grphi)
3410                        rnp++;
3411                per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3412                rcu_boot_init_percpu_data(i);
3413        }
3414}
3415
3416/*
3417 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3418 * replace the definitions in tree.h because those are needed to size
3419 * the ->node array in the rcu_state structure.
3420 */
3421static void __init rcu_init_geometry(void)
3422{
3423        ulong d;
3424        int i;
3425        int rcu_capacity[RCU_NUM_LVLS];
3426
3427        /*
3428         * Initialize any unspecified boot parameters.
3429         * The default values of jiffies_till_first_fqs and
3430         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3431         * value, which is a function of HZ, then adding one for each
3432         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3433         */
3434        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3435        if (jiffies_till_first_fqs == ULONG_MAX)
3436                jiffies_till_first_fqs = d;
3437        if (jiffies_till_next_fqs == ULONG_MAX)
3438                jiffies_till_next_fqs = d;
3439        adjust_jiffies_till_sched_qs();
3440
3441        /* If the compile-time values are accurate, just leave. */
3442        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3443            nr_cpu_ids == NR_CPUS)
3444                return;
3445        pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3446                rcu_fanout_leaf, nr_cpu_ids);
3447
3448        /*
3449         * The boot-time rcu_fanout_leaf parameter must be at least two
3450         * and cannot exceed the number of bits in the rcu_node masks.
3451         * Complain and fall back to the compile-time values if this
3452         * limit is exceeded.
3453         */
3454        if (rcu_fanout_leaf < 2 ||
3455            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3456                rcu_fanout_leaf = RCU_FANOUT_LEAF;
3457                WARN_ON(1);
3458                return;
3459        }
3460
3461        /*
3462         * Compute number of nodes that can be handled an rcu_node tree
3463         * with the given number of levels.
3464         */
3465        rcu_capacity[0] = rcu_fanout_leaf;
3466        for (i = 1; i < RCU_NUM_LVLS; i++)
3467                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3468
3469        /*
3470         * The tree must be able to accommodate the configured number of CPUs.
3471         * If this limit is exceeded, fall back to the compile-time values.
3472         */
3473        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3474                rcu_fanout_leaf = RCU_FANOUT_LEAF;
3475                WARN_ON(1);
3476                return;
3477        }
3478
3479        /* Calculate the number of levels in the tree. */
3480        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3481        }
3482        rcu_num_lvls = i + 1;
3483
3484        /* Calculate the number of rcu_nodes at each level of the tree. */
3485        for (i = 0; i < rcu_num_lvls; i++) {
3486                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3487                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3488        }
3489
3490        /* Calculate the total number of rcu_node structures. */
3491        rcu_num_nodes = 0;
3492        for (i = 0; i < rcu_num_lvls; i++)
3493                rcu_num_nodes += num_rcu_lvl[i];
3494}
3495
3496/*
3497 * Dump out the structure of the rcu_node combining tree associated
3498 * with the rcu_state structure.
3499 */
3500static void __init rcu_dump_rcu_node_tree(void)
3501{
3502        int level = 0;
3503        struct rcu_node *rnp;
3504
3505        pr_info("rcu_node tree layout dump\n");
3506        pr_info(" ");
3507        rcu_for_each_node_breadth_first(rnp) {
3508                if (rnp->level != level) {
3509                        pr_cont("\n");
3510                        pr_info(" ");
3511                        level = rnp->level;
3512                }
3513                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3514        }
3515        pr_cont("\n");
3516}
3517
3518struct workqueue_struct *rcu_gp_wq;
3519struct workqueue_struct *rcu_par_gp_wq;
3520
3521void __init rcu_init(void)
3522{
3523        int cpu;
3524
3525        rcu_early_boot_tests();
3526
3527        rcu_bootup_announce();
3528        rcu_init_geometry();
3529        rcu_init_one();
3530        if (dump_tree)
3531                rcu_dump_rcu_node_tree();
3532        if (use_softirq)
3533                open_softirq(RCU_SOFTIRQ, rcu_core_si);
3534
3535        /*
3536         * We don't need protection against CPU-hotplug here because
3537         * this is called early in boot, before either interrupts
3538         * or the scheduler are operational.
3539         */
3540        pm_notifier(rcu_pm_notify, 0);
3541        for_each_online_cpu(cpu) {
3542                rcutree_prepare_cpu(cpu);
3543                rcu_cpu_starting(cpu);
3544                rcutree_online_cpu(cpu);
3545        }
3546
3547        /* Create workqueue for expedited GPs and for Tree SRCU. */
3548        rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3549        WARN_ON(!rcu_gp_wq);
3550        rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3551        WARN_ON(!rcu_par_gp_wq);
3552        srcu_init();
3553}
3554
3555#include "tree_stall.h"
3556#include "tree_exp.h"
3557#include "tree_plugin.h"
3558