linux/kernel/relay.c
<<
>>
Prefs
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 *      (mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35        struct rchan_buf *buf = vma->vm_private_data;
  36        buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
  43{
  44        struct page *page;
  45        struct rchan_buf *buf = vmf->vma->vm_private_data;
  46        pgoff_t pgoff = vmf->pgoff;
  47
  48        if (!buf)
  49                return VM_FAULT_OOM;
  50
  51        page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52        if (!page)
  53                return VM_FAULT_SIGBUS;
  54        get_page(page);
  55        vmf->page = page;
  56
  57        return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64        .fault = relay_buf_fault,
  65        .close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73        const size_t pa_size = n_pages * sizeof(struct page *);
  74        if (pa_size > PAGE_SIZE)
  75                return vzalloc(pa_size);
  76        return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84        kvfree(array);
  85}
  86
  87/**
  88 *      relay_mmap_buf: - mmap channel buffer to process address space
  89 *      @buf: relay channel buffer
  90 *      @vma: vm_area_struct describing memory to be mapped
  91 *
  92 *      Returns 0 if ok, negative on error
  93 *
  94 *      Caller should already have grabbed mmap_sem.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98        unsigned long length = vma->vm_end - vma->vm_start;
  99        struct file *filp = vma->vm_file;
 100
 101        if (!buf)
 102                return -EBADF;
 103
 104        if (length != (unsigned long)buf->chan->alloc_size)
 105                return -EINVAL;
 106
 107        vma->vm_ops = &relay_file_mmap_ops;
 108        vma->vm_flags |= VM_DONTEXPAND;
 109        vma->vm_private_data = buf;
 110        buf->chan->cb->buf_mapped(buf, filp);
 111
 112        return 0;
 113}
 114
 115/**
 116 *      relay_alloc_buf - allocate a channel buffer
 117 *      @buf: the buffer struct
 118 *      @size: total size of the buffer
 119 *
 120 *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *      passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125        void *mem;
 126        unsigned int i, j, n_pages;
 127
 128        *size = PAGE_ALIGN(*size);
 129        n_pages = *size >> PAGE_SHIFT;
 130
 131        buf->page_array = relay_alloc_page_array(n_pages);
 132        if (!buf->page_array)
 133                return NULL;
 134
 135        for (i = 0; i < n_pages; i++) {
 136                buf->page_array[i] = alloc_page(GFP_KERNEL);
 137                if (unlikely(!buf->page_array[i]))
 138                        goto depopulate;
 139                set_page_private(buf->page_array[i], (unsigned long)buf);
 140        }
 141        mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142        if (!mem)
 143                goto depopulate;
 144
 145        memset(mem, 0, *size);
 146        buf->page_count = n_pages;
 147        return mem;
 148
 149depopulate:
 150        for (j = 0; j < i; j++)
 151                __free_page(buf->page_array[j]);
 152        relay_free_page_array(buf->page_array);
 153        return NULL;
 154}
 155
 156/**
 157 *      relay_create_buf - allocate and initialize a channel buffer
 158 *      @chan: the relay channel
 159 *
 160 *      Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164        struct rchan_buf *buf;
 165
 166        if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
 167                return NULL;
 168
 169        buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170        if (!buf)
 171                return NULL;
 172        buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
 173                                     GFP_KERNEL);
 174        if (!buf->padding)
 175                goto free_buf;
 176
 177        buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 178        if (!buf->start)
 179                goto free_buf;
 180
 181        buf->chan = chan;
 182        kref_get(&buf->chan->kref);
 183        return buf;
 184
 185free_buf:
 186        kfree(buf->padding);
 187        kfree(buf);
 188        return NULL;
 189}
 190
 191/**
 192 *      relay_destroy_channel - free the channel struct
 193 *      @kref: target kernel reference that contains the relay channel
 194 *
 195 *      Should only be called from kref_put().
 196 */
 197static void relay_destroy_channel(struct kref *kref)
 198{
 199        struct rchan *chan = container_of(kref, struct rchan, kref);
 200        kfree(chan);
 201}
 202
 203/**
 204 *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 205 *      @buf: the buffer struct
 206 */
 207static void relay_destroy_buf(struct rchan_buf *buf)
 208{
 209        struct rchan *chan = buf->chan;
 210        unsigned int i;
 211
 212        if (likely(buf->start)) {
 213                vunmap(buf->start);
 214                for (i = 0; i < buf->page_count; i++)
 215                        __free_page(buf->page_array[i]);
 216                relay_free_page_array(buf->page_array);
 217        }
 218        *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
 219        kfree(buf->padding);
 220        kfree(buf);
 221        kref_put(&chan->kref, relay_destroy_channel);
 222}
 223
 224/**
 225 *      relay_remove_buf - remove a channel buffer
 226 *      @kref: target kernel reference that contains the relay buffer
 227 *
 228 *      Removes the file from the filesystem, which also frees the
 229 *      rchan_buf_struct and the channel buffer.  Should only be called from
 230 *      kref_put().
 231 */
 232static void relay_remove_buf(struct kref *kref)
 233{
 234        struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 235        relay_destroy_buf(buf);
 236}
 237
 238/**
 239 *      relay_buf_empty - boolean, is the channel buffer empty?
 240 *      @buf: channel buffer
 241 *
 242 *      Returns 1 if the buffer is empty, 0 otherwise.
 243 */
 244static int relay_buf_empty(struct rchan_buf *buf)
 245{
 246        return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 247}
 248
 249/**
 250 *      relay_buf_full - boolean, is the channel buffer full?
 251 *      @buf: channel buffer
 252 *
 253 *      Returns 1 if the buffer is full, 0 otherwise.
 254 */
 255int relay_buf_full(struct rchan_buf *buf)
 256{
 257        size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 258        return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 259}
 260EXPORT_SYMBOL_GPL(relay_buf_full);
 261
 262/*
 263 * High-level relay kernel API and associated functions.
 264 */
 265
 266/*
 267 * rchan_callback implementations defining default channel behavior.  Used
 268 * in place of corresponding NULL values in client callback struct.
 269 */
 270
 271/*
 272 * subbuf_start() default callback.  Does nothing.
 273 */
 274static int subbuf_start_default_callback (struct rchan_buf *buf,
 275                                          void *subbuf,
 276                                          void *prev_subbuf,
 277                                          size_t prev_padding)
 278{
 279        if (relay_buf_full(buf))
 280                return 0;
 281
 282        return 1;
 283}
 284
 285/*
 286 * buf_mapped() default callback.  Does nothing.
 287 */
 288static void buf_mapped_default_callback(struct rchan_buf *buf,
 289                                        struct file *filp)
 290{
 291}
 292
 293/*
 294 * buf_unmapped() default callback.  Does nothing.
 295 */
 296static void buf_unmapped_default_callback(struct rchan_buf *buf,
 297                                          struct file *filp)
 298{
 299}
 300
 301/*
 302 * create_buf_file_create() default callback.  Does nothing.
 303 */
 304static struct dentry *create_buf_file_default_callback(const char *filename,
 305                                                       struct dentry *parent,
 306                                                       umode_t mode,
 307                                                       struct rchan_buf *buf,
 308                                                       int *is_global)
 309{
 310        return NULL;
 311}
 312
 313/*
 314 * remove_buf_file() default callback.  Does nothing.
 315 */
 316static int remove_buf_file_default_callback(struct dentry *dentry)
 317{
 318        return -EINVAL;
 319}
 320
 321/* relay channel default callbacks */
 322static struct rchan_callbacks default_channel_callbacks = {
 323        .subbuf_start = subbuf_start_default_callback,
 324        .buf_mapped = buf_mapped_default_callback,
 325        .buf_unmapped = buf_unmapped_default_callback,
 326        .create_buf_file = create_buf_file_default_callback,
 327        .remove_buf_file = remove_buf_file_default_callback,
 328};
 329
 330/**
 331 *      wakeup_readers - wake up readers waiting on a channel
 332 *      @work: contains the channel buffer
 333 *
 334 *      This is the function used to defer reader waking
 335 */
 336static void wakeup_readers(struct irq_work *work)
 337{
 338        struct rchan_buf *buf;
 339
 340        buf = container_of(work, struct rchan_buf, wakeup_work);
 341        wake_up_interruptible(&buf->read_wait);
 342}
 343
 344/**
 345 *      __relay_reset - reset a channel buffer
 346 *      @buf: the channel buffer
 347 *      @init: 1 if this is a first-time initialization
 348 *
 349 *      See relay_reset() for description of effect.
 350 */
 351static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 352{
 353        size_t i;
 354
 355        if (init) {
 356                init_waitqueue_head(&buf->read_wait);
 357                kref_init(&buf->kref);
 358                init_irq_work(&buf->wakeup_work, wakeup_readers);
 359        } else {
 360                irq_work_sync(&buf->wakeup_work);
 361        }
 362
 363        buf->subbufs_produced = 0;
 364        buf->subbufs_consumed = 0;
 365        buf->bytes_consumed = 0;
 366        buf->finalized = 0;
 367        buf->data = buf->start;
 368        buf->offset = 0;
 369
 370        for (i = 0; i < buf->chan->n_subbufs; i++)
 371                buf->padding[i] = 0;
 372
 373        buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 374}
 375
 376/**
 377 *      relay_reset - reset the channel
 378 *      @chan: the channel
 379 *
 380 *      This has the effect of erasing all data from all channel buffers
 381 *      and restarting the channel in its initial state.  The buffers
 382 *      are not freed, so any mappings are still in effect.
 383 *
 384 *      NOTE. Care should be taken that the channel isn't actually
 385 *      being used by anything when this call is made.
 386 */
 387void relay_reset(struct rchan *chan)
 388{
 389        struct rchan_buf *buf;
 390        unsigned int i;
 391
 392        if (!chan)
 393                return;
 394
 395        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 396                __relay_reset(buf, 0);
 397                return;
 398        }
 399
 400        mutex_lock(&relay_channels_mutex);
 401        for_each_possible_cpu(i)
 402                if ((buf = *per_cpu_ptr(chan->buf, i)))
 403                        __relay_reset(buf, 0);
 404        mutex_unlock(&relay_channels_mutex);
 405}
 406EXPORT_SYMBOL_GPL(relay_reset);
 407
 408static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 409                                        struct dentry *dentry)
 410{
 411        buf->dentry = dentry;
 412        d_inode(buf->dentry)->i_size = buf->early_bytes;
 413}
 414
 415static struct dentry *relay_create_buf_file(struct rchan *chan,
 416                                            struct rchan_buf *buf,
 417                                            unsigned int cpu)
 418{
 419        struct dentry *dentry;
 420        char *tmpname;
 421
 422        tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 423        if (!tmpname)
 424                return NULL;
 425        snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 426
 427        /* Create file in fs */
 428        dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 429                                           S_IRUSR, buf,
 430                                           &chan->is_global);
 431        if (IS_ERR(dentry))
 432                dentry = NULL;
 433
 434        kfree(tmpname);
 435
 436        return dentry;
 437}
 438
 439/*
 440 *      relay_open_buf - create a new relay channel buffer
 441 *
 442 *      used by relay_open() and CPU hotplug.
 443 */
 444static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 445{
 446        struct rchan_buf *buf = NULL;
 447        struct dentry *dentry;
 448
 449        if (chan->is_global)
 450                return *per_cpu_ptr(chan->buf, 0);
 451
 452        buf = relay_create_buf(chan);
 453        if (!buf)
 454                return NULL;
 455
 456        if (chan->has_base_filename) {
 457                dentry = relay_create_buf_file(chan, buf, cpu);
 458                if (!dentry)
 459                        goto free_buf;
 460                relay_set_buf_dentry(buf, dentry);
 461        } else {
 462                /* Only retrieve global info, nothing more, nothing less */
 463                dentry = chan->cb->create_buf_file(NULL, NULL,
 464                                                   S_IRUSR, buf,
 465                                                   &chan->is_global);
 466                if (IS_ERR_OR_NULL(dentry))
 467                        goto free_buf;
 468        }
 469
 470        buf->cpu = cpu;
 471        __relay_reset(buf, 1);
 472
 473        if(chan->is_global) {
 474                *per_cpu_ptr(chan->buf, 0) = buf;
 475                buf->cpu = 0;
 476        }
 477
 478        return buf;
 479
 480free_buf:
 481        relay_destroy_buf(buf);
 482        return NULL;
 483}
 484
 485/**
 486 *      relay_close_buf - close a channel buffer
 487 *      @buf: channel buffer
 488 *
 489 *      Marks the buffer finalized and restores the default callbacks.
 490 *      The channel buffer and channel buffer data structure are then freed
 491 *      automatically when the last reference is given up.
 492 */
 493static void relay_close_buf(struct rchan_buf *buf)
 494{
 495        buf->finalized = 1;
 496        irq_work_sync(&buf->wakeup_work);
 497        buf->chan->cb->remove_buf_file(buf->dentry);
 498        kref_put(&buf->kref, relay_remove_buf);
 499}
 500
 501static void setup_callbacks(struct rchan *chan,
 502                                   struct rchan_callbacks *cb)
 503{
 504        if (!cb) {
 505                chan->cb = &default_channel_callbacks;
 506                return;
 507        }
 508
 509        if (!cb->subbuf_start)
 510                cb->subbuf_start = subbuf_start_default_callback;
 511        if (!cb->buf_mapped)
 512                cb->buf_mapped = buf_mapped_default_callback;
 513        if (!cb->buf_unmapped)
 514                cb->buf_unmapped = buf_unmapped_default_callback;
 515        if (!cb->create_buf_file)
 516                cb->create_buf_file = create_buf_file_default_callback;
 517        if (!cb->remove_buf_file)
 518                cb->remove_buf_file = remove_buf_file_default_callback;
 519        chan->cb = cb;
 520}
 521
 522int relay_prepare_cpu(unsigned int cpu)
 523{
 524        struct rchan *chan;
 525        struct rchan_buf *buf;
 526
 527        mutex_lock(&relay_channels_mutex);
 528        list_for_each_entry(chan, &relay_channels, list) {
 529                if ((buf = *per_cpu_ptr(chan->buf, cpu)))
 530                        continue;
 531                buf = relay_open_buf(chan, cpu);
 532                if (!buf) {
 533                        pr_err("relay: cpu %d buffer creation failed\n", cpu);
 534                        mutex_unlock(&relay_channels_mutex);
 535                        return -ENOMEM;
 536                }
 537                *per_cpu_ptr(chan->buf, cpu) = buf;
 538        }
 539        mutex_unlock(&relay_channels_mutex);
 540        return 0;
 541}
 542
 543/**
 544 *      relay_open - create a new relay channel
 545 *      @base_filename: base name of files to create, %NULL for buffering only
 546 *      @parent: dentry of parent directory, %NULL for root directory or buffer
 547 *      @subbuf_size: size of sub-buffers
 548 *      @n_subbufs: number of sub-buffers
 549 *      @cb: client callback functions
 550 *      @private_data: user-defined data
 551 *
 552 *      Returns channel pointer if successful, %NULL otherwise.
 553 *
 554 *      Creates a channel buffer for each cpu using the sizes and
 555 *      attributes specified.  The created channel buffer files
 556 *      will be named base_filename0...base_filenameN-1.  File
 557 *      permissions will be %S_IRUSR.
 558 *
 559 *      If opening a buffer (@parent = NULL) that you later wish to register
 560 *      in a filesystem, call relay_late_setup_files() once the @parent dentry
 561 *      is available.
 562 */
 563struct rchan *relay_open(const char *base_filename,
 564                         struct dentry *parent,
 565                         size_t subbuf_size,
 566                         size_t n_subbufs,
 567                         struct rchan_callbacks *cb,
 568                         void *private_data)
 569{
 570        unsigned int i;
 571        struct rchan *chan;
 572        struct rchan_buf *buf;
 573
 574        if (!(subbuf_size && n_subbufs))
 575                return NULL;
 576        if (subbuf_size > UINT_MAX / n_subbufs)
 577                return NULL;
 578
 579        chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 580        if (!chan)
 581                return NULL;
 582
 583        chan->buf = alloc_percpu(struct rchan_buf *);
 584        chan->version = RELAYFS_CHANNEL_VERSION;
 585        chan->n_subbufs = n_subbufs;
 586        chan->subbuf_size = subbuf_size;
 587        chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 588        chan->parent = parent;
 589        chan->private_data = private_data;
 590        if (base_filename) {
 591                chan->has_base_filename = 1;
 592                strlcpy(chan->base_filename, base_filename, NAME_MAX);
 593        }
 594        setup_callbacks(chan, cb);
 595        kref_init(&chan->kref);
 596
 597        mutex_lock(&relay_channels_mutex);
 598        for_each_online_cpu(i) {
 599                buf = relay_open_buf(chan, i);
 600                if (!buf)
 601                        goto free_bufs;
 602                *per_cpu_ptr(chan->buf, i) = buf;
 603        }
 604        list_add(&chan->list, &relay_channels);
 605        mutex_unlock(&relay_channels_mutex);
 606
 607        return chan;
 608
 609free_bufs:
 610        for_each_possible_cpu(i) {
 611                if ((buf = *per_cpu_ptr(chan->buf, i)))
 612                        relay_close_buf(buf);
 613        }
 614
 615        kref_put(&chan->kref, relay_destroy_channel);
 616        mutex_unlock(&relay_channels_mutex);
 617        return NULL;
 618}
 619EXPORT_SYMBOL_GPL(relay_open);
 620
 621struct rchan_percpu_buf_dispatcher {
 622        struct rchan_buf *buf;
 623        struct dentry *dentry;
 624};
 625
 626/* Called in atomic context. */
 627static void __relay_set_buf_dentry(void *info)
 628{
 629        struct rchan_percpu_buf_dispatcher *p = info;
 630
 631        relay_set_buf_dentry(p->buf, p->dentry);
 632}
 633
 634/**
 635 *      relay_late_setup_files - triggers file creation
 636 *      @chan: channel to operate on
 637 *      @base_filename: base name of files to create
 638 *      @parent: dentry of parent directory, %NULL for root directory
 639 *
 640 *      Returns 0 if successful, non-zero otherwise.
 641 *
 642 *      Use to setup files for a previously buffer-only channel created
 643 *      by relay_open() with a NULL parent dentry.
 644 *
 645 *      For example, this is useful for perfomring early tracing in kernel,
 646 *      before VFS is up and then exposing the early results once the dentry
 647 *      is available.
 648 */
 649int relay_late_setup_files(struct rchan *chan,
 650                           const char *base_filename,
 651                           struct dentry *parent)
 652{
 653        int err = 0;
 654        unsigned int i, curr_cpu;
 655        unsigned long flags;
 656        struct dentry *dentry;
 657        struct rchan_buf *buf;
 658        struct rchan_percpu_buf_dispatcher disp;
 659
 660        if (!chan || !base_filename)
 661                return -EINVAL;
 662
 663        strlcpy(chan->base_filename, base_filename, NAME_MAX);
 664
 665        mutex_lock(&relay_channels_mutex);
 666        /* Is chan already set up? */
 667        if (unlikely(chan->has_base_filename)) {
 668                mutex_unlock(&relay_channels_mutex);
 669                return -EEXIST;
 670        }
 671        chan->has_base_filename = 1;
 672        chan->parent = parent;
 673
 674        if (chan->is_global) {
 675                err = -EINVAL;
 676                buf = *per_cpu_ptr(chan->buf, 0);
 677                if (!WARN_ON_ONCE(!buf)) {
 678                        dentry = relay_create_buf_file(chan, buf, 0);
 679                        if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
 680                                relay_set_buf_dentry(buf, dentry);
 681                                err = 0;
 682                        }
 683                }
 684                mutex_unlock(&relay_channels_mutex);
 685                return err;
 686        }
 687
 688        curr_cpu = get_cpu();
 689        /*
 690         * The CPU hotplug notifier ran before us and created buffers with
 691         * no files associated. So it's safe to call relay_setup_buf_file()
 692         * on all currently online CPUs.
 693         */
 694        for_each_online_cpu(i) {
 695                buf = *per_cpu_ptr(chan->buf, i);
 696                if (unlikely(!buf)) {
 697                        WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 698                        err = -EINVAL;
 699                        break;
 700                }
 701
 702                dentry = relay_create_buf_file(chan, buf, i);
 703                if (unlikely(!dentry)) {
 704                        err = -EINVAL;
 705                        break;
 706                }
 707
 708                if (curr_cpu == i) {
 709                        local_irq_save(flags);
 710                        relay_set_buf_dentry(buf, dentry);
 711                        local_irq_restore(flags);
 712                } else {
 713                        disp.buf = buf;
 714                        disp.dentry = dentry;
 715                        smp_mb();
 716                        /* relay_channels_mutex must be held, so wait. */
 717                        err = smp_call_function_single(i,
 718                                                       __relay_set_buf_dentry,
 719                                                       &disp, 1);
 720                }
 721                if (unlikely(err))
 722                        break;
 723        }
 724        put_cpu();
 725        mutex_unlock(&relay_channels_mutex);
 726
 727        return err;
 728}
 729EXPORT_SYMBOL_GPL(relay_late_setup_files);
 730
 731/**
 732 *      relay_switch_subbuf - switch to a new sub-buffer
 733 *      @buf: channel buffer
 734 *      @length: size of current event
 735 *
 736 *      Returns either the length passed in or 0 if full.
 737 *
 738 *      Performs sub-buffer-switch tasks such as invoking callbacks,
 739 *      updating padding counts, waking up readers, etc.
 740 */
 741size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 742{
 743        void *old, *new;
 744        size_t old_subbuf, new_subbuf;
 745
 746        if (unlikely(length > buf->chan->subbuf_size))
 747                goto toobig;
 748
 749        if (buf->offset != buf->chan->subbuf_size + 1) {
 750                buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 751                old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 752                buf->padding[old_subbuf] = buf->prev_padding;
 753                buf->subbufs_produced++;
 754                if (buf->dentry)
 755                        d_inode(buf->dentry)->i_size +=
 756                                buf->chan->subbuf_size -
 757                                buf->padding[old_subbuf];
 758                else
 759                        buf->early_bytes += buf->chan->subbuf_size -
 760                                            buf->padding[old_subbuf];
 761                smp_mb();
 762                if (waitqueue_active(&buf->read_wait)) {
 763                        /*
 764                         * Calling wake_up_interruptible() from here
 765                         * will deadlock if we happen to be logging
 766                         * from the scheduler (trying to re-grab
 767                         * rq->lock), so defer it.
 768                         */
 769                        irq_work_queue(&buf->wakeup_work);
 770                }
 771        }
 772
 773        old = buf->data;
 774        new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 775        new = buf->start + new_subbuf * buf->chan->subbuf_size;
 776        buf->offset = 0;
 777        if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 778                buf->offset = buf->chan->subbuf_size + 1;
 779                return 0;
 780        }
 781        buf->data = new;
 782        buf->padding[new_subbuf] = 0;
 783
 784        if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 785                goto toobig;
 786
 787        return length;
 788
 789toobig:
 790        buf->chan->last_toobig = length;
 791        return 0;
 792}
 793EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 794
 795/**
 796 *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 797 *      @chan: the channel
 798 *      @cpu: the cpu associated with the channel buffer to update
 799 *      @subbufs_consumed: number of sub-buffers to add to current buf's count
 800 *
 801 *      Adds to the channel buffer's consumed sub-buffer count.
 802 *      subbufs_consumed should be the number of sub-buffers newly consumed,
 803 *      not the total consumed.
 804 *
 805 *      NOTE. Kernel clients don't need to call this function if the channel
 806 *      mode is 'overwrite'.
 807 */
 808void relay_subbufs_consumed(struct rchan *chan,
 809                            unsigned int cpu,
 810                            size_t subbufs_consumed)
 811{
 812        struct rchan_buf *buf;
 813
 814        if (!chan || cpu >= NR_CPUS)
 815                return;
 816
 817        buf = *per_cpu_ptr(chan->buf, cpu);
 818        if (!buf || subbufs_consumed > chan->n_subbufs)
 819                return;
 820
 821        if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 822                buf->subbufs_consumed = buf->subbufs_produced;
 823        else
 824                buf->subbufs_consumed += subbufs_consumed;
 825}
 826EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 827
 828/**
 829 *      relay_close - close the channel
 830 *      @chan: the channel
 831 *
 832 *      Closes all channel buffers and frees the channel.
 833 */
 834void relay_close(struct rchan *chan)
 835{
 836        struct rchan_buf *buf;
 837        unsigned int i;
 838
 839        if (!chan)
 840                return;
 841
 842        mutex_lock(&relay_channels_mutex);
 843        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
 844                relay_close_buf(buf);
 845        else
 846                for_each_possible_cpu(i)
 847                        if ((buf = *per_cpu_ptr(chan->buf, i)))
 848                                relay_close_buf(buf);
 849
 850        if (chan->last_toobig)
 851                printk(KERN_WARNING "relay: one or more items not logged "
 852                       "[item size (%zd) > sub-buffer size (%zd)]\n",
 853                       chan->last_toobig, chan->subbuf_size);
 854
 855        list_del(&chan->list);
 856        kref_put(&chan->kref, relay_destroy_channel);
 857        mutex_unlock(&relay_channels_mutex);
 858}
 859EXPORT_SYMBOL_GPL(relay_close);
 860
 861/**
 862 *      relay_flush - close the channel
 863 *      @chan: the channel
 864 *
 865 *      Flushes all channel buffers, i.e. forces buffer switch.
 866 */
 867void relay_flush(struct rchan *chan)
 868{
 869        struct rchan_buf *buf;
 870        unsigned int i;
 871
 872        if (!chan)
 873                return;
 874
 875        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 876                relay_switch_subbuf(buf, 0);
 877                return;
 878        }
 879
 880        mutex_lock(&relay_channels_mutex);
 881        for_each_possible_cpu(i)
 882                if ((buf = *per_cpu_ptr(chan->buf, i)))
 883                        relay_switch_subbuf(buf, 0);
 884        mutex_unlock(&relay_channels_mutex);
 885}
 886EXPORT_SYMBOL_GPL(relay_flush);
 887
 888/**
 889 *      relay_file_open - open file op for relay files
 890 *      @inode: the inode
 891 *      @filp: the file
 892 *
 893 *      Increments the channel buffer refcount.
 894 */
 895static int relay_file_open(struct inode *inode, struct file *filp)
 896{
 897        struct rchan_buf *buf = inode->i_private;
 898        kref_get(&buf->kref);
 899        filp->private_data = buf;
 900
 901        return nonseekable_open(inode, filp);
 902}
 903
 904/**
 905 *      relay_file_mmap - mmap file op for relay files
 906 *      @filp: the file
 907 *      @vma: the vma describing what to map
 908 *
 909 *      Calls upon relay_mmap_buf() to map the file into user space.
 910 */
 911static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 912{
 913        struct rchan_buf *buf = filp->private_data;
 914        return relay_mmap_buf(buf, vma);
 915}
 916
 917/**
 918 *      relay_file_poll - poll file op for relay files
 919 *      @filp: the file
 920 *      @wait: poll table
 921 *
 922 *      Poll implemention.
 923 */
 924static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
 925{
 926        __poll_t mask = 0;
 927        struct rchan_buf *buf = filp->private_data;
 928
 929        if (buf->finalized)
 930                return EPOLLERR;
 931
 932        if (filp->f_mode & FMODE_READ) {
 933                poll_wait(filp, &buf->read_wait, wait);
 934                if (!relay_buf_empty(buf))
 935                        mask |= EPOLLIN | EPOLLRDNORM;
 936        }
 937
 938        return mask;
 939}
 940
 941/**
 942 *      relay_file_release - release file op for relay files
 943 *      @inode: the inode
 944 *      @filp: the file
 945 *
 946 *      Decrements the channel refcount, as the filesystem is
 947 *      no longer using it.
 948 */
 949static int relay_file_release(struct inode *inode, struct file *filp)
 950{
 951        struct rchan_buf *buf = filp->private_data;
 952        kref_put(&buf->kref, relay_remove_buf);
 953
 954        return 0;
 955}
 956
 957/*
 958 *      relay_file_read_consume - update the consumed count for the buffer
 959 */
 960static void relay_file_read_consume(struct rchan_buf *buf,
 961                                    size_t read_pos,
 962                                    size_t bytes_consumed)
 963{
 964        size_t subbuf_size = buf->chan->subbuf_size;
 965        size_t n_subbufs = buf->chan->n_subbufs;
 966        size_t read_subbuf;
 967
 968        if (buf->subbufs_produced == buf->subbufs_consumed &&
 969            buf->offset == buf->bytes_consumed)
 970                return;
 971
 972        if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 973                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 974                buf->bytes_consumed = 0;
 975        }
 976
 977        buf->bytes_consumed += bytes_consumed;
 978        if (!read_pos)
 979                read_subbuf = buf->subbufs_consumed % n_subbufs;
 980        else
 981                read_subbuf = read_pos / buf->chan->subbuf_size;
 982        if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 983                if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 984                    (buf->offset == subbuf_size))
 985                        return;
 986                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 987                buf->bytes_consumed = 0;
 988        }
 989}
 990
 991/*
 992 *      relay_file_read_avail - boolean, are there unconsumed bytes available?
 993 */
 994static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 995{
 996        size_t subbuf_size = buf->chan->subbuf_size;
 997        size_t n_subbufs = buf->chan->n_subbufs;
 998        size_t produced = buf->subbufs_produced;
 999        size_t consumed = buf->subbufs_consumed;
1000
1001        relay_file_read_consume(buf, read_pos, 0);
1002
1003        consumed = buf->subbufs_consumed;
1004
1005        if (unlikely(buf->offset > subbuf_size)) {
1006                if (produced == consumed)
1007                        return 0;
1008                return 1;
1009        }
1010
1011        if (unlikely(produced - consumed >= n_subbufs)) {
1012                consumed = produced - n_subbufs + 1;
1013                buf->subbufs_consumed = consumed;
1014                buf->bytes_consumed = 0;
1015        }
1016
1017        produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1018        consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1019
1020        if (consumed > produced)
1021                produced += n_subbufs * subbuf_size;
1022
1023        if (consumed == produced) {
1024                if (buf->offset == subbuf_size &&
1025                    buf->subbufs_produced > buf->subbufs_consumed)
1026                        return 1;
1027                return 0;
1028        }
1029
1030        return 1;
1031}
1032
1033/**
1034 *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1035 *      @read_pos: file read position
1036 *      @buf: relay channel buffer
1037 */
1038static size_t relay_file_read_subbuf_avail(size_t read_pos,
1039                                           struct rchan_buf *buf)
1040{
1041        size_t padding, avail = 0;
1042        size_t read_subbuf, read_offset, write_subbuf, write_offset;
1043        size_t subbuf_size = buf->chan->subbuf_size;
1044
1045        write_subbuf = (buf->data - buf->start) / subbuf_size;
1046        write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1047        read_subbuf = read_pos / subbuf_size;
1048        read_offset = read_pos % subbuf_size;
1049        padding = buf->padding[read_subbuf];
1050
1051        if (read_subbuf == write_subbuf) {
1052                if (read_offset + padding < write_offset)
1053                        avail = write_offset - (read_offset + padding);
1054        } else
1055                avail = (subbuf_size - padding) - read_offset;
1056
1057        return avail;
1058}
1059
1060/**
1061 *      relay_file_read_start_pos - find the first available byte to read
1062 *      @read_pos: file read position
1063 *      @buf: relay channel buffer
1064 *
1065 *      If the @read_pos is in the middle of padding, return the
1066 *      position of the first actually available byte, otherwise
1067 *      return the original value.
1068 */
1069static size_t relay_file_read_start_pos(size_t read_pos,
1070                                        struct rchan_buf *buf)
1071{
1072        size_t read_subbuf, padding, padding_start, padding_end;
1073        size_t subbuf_size = buf->chan->subbuf_size;
1074        size_t n_subbufs = buf->chan->n_subbufs;
1075        size_t consumed = buf->subbufs_consumed % n_subbufs;
1076
1077        if (!read_pos)
1078                read_pos = consumed * subbuf_size + buf->bytes_consumed;
1079        read_subbuf = read_pos / subbuf_size;
1080        padding = buf->padding[read_subbuf];
1081        padding_start = (read_subbuf + 1) * subbuf_size - padding;
1082        padding_end = (read_subbuf + 1) * subbuf_size;
1083        if (read_pos >= padding_start && read_pos < padding_end) {
1084                read_subbuf = (read_subbuf + 1) % n_subbufs;
1085                read_pos = read_subbuf * subbuf_size;
1086        }
1087
1088        return read_pos;
1089}
1090
1091/**
1092 *      relay_file_read_end_pos - return the new read position
1093 *      @read_pos: file read position
1094 *      @buf: relay channel buffer
1095 *      @count: number of bytes to be read
1096 */
1097static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1098                                      size_t read_pos,
1099                                      size_t count)
1100{
1101        size_t read_subbuf, padding, end_pos;
1102        size_t subbuf_size = buf->chan->subbuf_size;
1103        size_t n_subbufs = buf->chan->n_subbufs;
1104
1105        read_subbuf = read_pos / subbuf_size;
1106        padding = buf->padding[read_subbuf];
1107        if (read_pos % subbuf_size + count + padding == subbuf_size)
1108                end_pos = (read_subbuf + 1) * subbuf_size;
1109        else
1110                end_pos = read_pos + count;
1111        if (end_pos >= subbuf_size * n_subbufs)
1112                end_pos = 0;
1113
1114        return end_pos;
1115}
1116
1117static ssize_t relay_file_read(struct file *filp,
1118                               char __user *buffer,
1119                               size_t count,
1120                               loff_t *ppos)
1121{
1122        struct rchan_buf *buf = filp->private_data;
1123        size_t read_start, avail;
1124        size_t written = 0;
1125        int ret;
1126
1127        if (!count)
1128                return 0;
1129
1130        inode_lock(file_inode(filp));
1131        do {
1132                void *from;
1133
1134                if (!relay_file_read_avail(buf, *ppos))
1135                        break;
1136
1137                read_start = relay_file_read_start_pos(*ppos, buf);
1138                avail = relay_file_read_subbuf_avail(read_start, buf);
1139                if (!avail)
1140                        break;
1141
1142                avail = min(count, avail);
1143                from = buf->start + read_start;
1144                ret = avail;
1145                if (copy_to_user(buffer, from, avail))
1146                        break;
1147
1148                buffer += ret;
1149                written += ret;
1150                count -= ret;
1151
1152                relay_file_read_consume(buf, read_start, ret);
1153                *ppos = relay_file_read_end_pos(buf, read_start, ret);
1154        } while (count);
1155        inode_unlock(file_inode(filp));
1156
1157        return written;
1158}
1159
1160static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1161{
1162        rbuf->bytes_consumed += bytes_consumed;
1163
1164        if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1165                relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1166                rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1167        }
1168}
1169
1170static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1171                                   struct pipe_buffer *buf)
1172{
1173        struct rchan_buf *rbuf;
1174
1175        rbuf = (struct rchan_buf *)page_private(buf->page);
1176        relay_consume_bytes(rbuf, buf->private);
1177}
1178
1179static const struct pipe_buf_operations relay_pipe_buf_ops = {
1180        .confirm = generic_pipe_buf_confirm,
1181        .release = relay_pipe_buf_release,
1182        .steal = generic_pipe_buf_steal,
1183        .get = generic_pipe_buf_get,
1184};
1185
1186static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1187{
1188}
1189
1190/*
1191 *      subbuf_splice_actor - splice up to one subbuf's worth of data
1192 */
1193static ssize_t subbuf_splice_actor(struct file *in,
1194                               loff_t *ppos,
1195                               struct pipe_inode_info *pipe,
1196                               size_t len,
1197                               unsigned int flags,
1198                               int *nonpad_ret)
1199{
1200        unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1201        struct rchan_buf *rbuf = in->private_data;
1202        unsigned int subbuf_size = rbuf->chan->subbuf_size;
1203        uint64_t pos = (uint64_t) *ppos;
1204        uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1205        size_t read_start = (size_t) do_div(pos, alloc_size);
1206        size_t read_subbuf = read_start / subbuf_size;
1207        size_t padding = rbuf->padding[read_subbuf];
1208        size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1209        struct page *pages[PIPE_DEF_BUFFERS];
1210        struct partial_page partial[PIPE_DEF_BUFFERS];
1211        struct splice_pipe_desc spd = {
1212                .pages = pages,
1213                .nr_pages = 0,
1214                .nr_pages_max = PIPE_DEF_BUFFERS,
1215                .partial = partial,
1216                .ops = &relay_pipe_buf_ops,
1217                .spd_release = relay_page_release,
1218        };
1219        ssize_t ret;
1220
1221        if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1222                return 0;
1223        if (splice_grow_spd(pipe, &spd))
1224                return -ENOMEM;
1225
1226        /*
1227         * Adjust read len, if longer than what is available
1228         */
1229        if (len > (subbuf_size - read_start % subbuf_size))
1230                len = subbuf_size - read_start % subbuf_size;
1231
1232        subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1233        pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1234        poff = read_start & ~PAGE_MASK;
1235        nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1236
1237        for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1238                unsigned int this_len, this_end, private;
1239                unsigned int cur_pos = read_start + total_len;
1240
1241                if (!len)
1242                        break;
1243
1244                this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1245                private = this_len;
1246
1247                spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1248                spd.partial[spd.nr_pages].offset = poff;
1249
1250                this_end = cur_pos + this_len;
1251                if (this_end >= nonpad_end) {
1252                        this_len = nonpad_end - cur_pos;
1253                        private = this_len + padding;
1254                }
1255                spd.partial[spd.nr_pages].len = this_len;
1256                spd.partial[spd.nr_pages].private = private;
1257
1258                len -= this_len;
1259                total_len += this_len;
1260                poff = 0;
1261                pidx = (pidx + 1) % subbuf_pages;
1262
1263                if (this_end >= nonpad_end) {
1264                        spd.nr_pages++;
1265                        break;
1266                }
1267        }
1268
1269        ret = 0;
1270        if (!spd.nr_pages)
1271                goto out;
1272
1273        ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1274        if (ret < 0 || ret < total_len)
1275                goto out;
1276
1277        if (read_start + ret == nonpad_end)
1278                ret += padding;
1279
1280out:
1281        splice_shrink_spd(&spd);
1282        return ret;
1283}
1284
1285static ssize_t relay_file_splice_read(struct file *in,
1286                                      loff_t *ppos,
1287                                      struct pipe_inode_info *pipe,
1288                                      size_t len,
1289                                      unsigned int flags)
1290{
1291        ssize_t spliced;
1292        int ret;
1293        int nonpad_ret = 0;
1294
1295        ret = 0;
1296        spliced = 0;
1297
1298        while (len && !spliced) {
1299                ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1300                if (ret < 0)
1301                        break;
1302                else if (!ret) {
1303                        if (flags & SPLICE_F_NONBLOCK)
1304                                ret = -EAGAIN;
1305                        break;
1306                }
1307
1308                *ppos += ret;
1309                if (ret > len)
1310                        len = 0;
1311                else
1312                        len -= ret;
1313                spliced += nonpad_ret;
1314                nonpad_ret = 0;
1315        }
1316
1317        if (spliced)
1318                return spliced;
1319
1320        return ret;
1321}
1322
1323const struct file_operations relay_file_operations = {
1324        .open           = relay_file_open,
1325        .poll           = relay_file_poll,
1326        .mmap           = relay_file_mmap,
1327        .read           = relay_file_read,
1328        .llseek         = no_llseek,
1329        .release        = relay_file_release,
1330        .splice_read    = relay_file_splice_read,
1331};
1332EXPORT_SYMBOL_GPL(relay_file_operations);
1333