linux/kernel/sched/deadline.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25        return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30        return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35        struct task_struct *p = dl_task_of(dl_se);
  36        struct rq *rq = task_rq(p);
  37
  38        return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43        return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46#ifdef CONFIG_SMP
  47static inline struct dl_bw *dl_bw_of(int i)
  48{
  49        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  50                         "sched RCU must be held");
  51        return &cpu_rq(i)->rd->dl_bw;
  52}
  53
  54static inline int dl_bw_cpus(int i)
  55{
  56        struct root_domain *rd = cpu_rq(i)->rd;
  57        int cpus = 0;
  58
  59        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  60                         "sched RCU must be held");
  61        for_each_cpu_and(i, rd->span, cpu_active_mask)
  62                cpus++;
  63
  64        return cpus;
  65}
  66#else
  67static inline struct dl_bw *dl_bw_of(int i)
  68{
  69        return &cpu_rq(i)->dl.dl_bw;
  70}
  71
  72static inline int dl_bw_cpus(int i)
  73{
  74        return 1;
  75}
  76#endif
  77
  78static inline
  79void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  80{
  81        u64 old = dl_rq->running_bw;
  82
  83        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  84        dl_rq->running_bw += dl_bw;
  85        SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
  86        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
  87        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
  88        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
  89}
  90
  91static inline
  92void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  93{
  94        u64 old = dl_rq->running_bw;
  95
  96        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  97        dl_rq->running_bw -= dl_bw;
  98        SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
  99        if (dl_rq->running_bw > old)
 100                dl_rq->running_bw = 0;
 101        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
 102        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 103}
 104
 105static inline
 106void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 107{
 108        u64 old = dl_rq->this_bw;
 109
 110        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 111        dl_rq->this_bw += dl_bw;
 112        SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 113}
 114
 115static inline
 116void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 117{
 118        u64 old = dl_rq->this_bw;
 119
 120        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 121        dl_rq->this_bw -= dl_bw;
 122        SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 123        if (dl_rq->this_bw > old)
 124                dl_rq->this_bw = 0;
 125        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 126}
 127
 128static inline
 129void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 130{
 131        if (!dl_entity_is_special(dl_se))
 132                __add_rq_bw(dl_se->dl_bw, dl_rq);
 133}
 134
 135static inline
 136void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 137{
 138        if (!dl_entity_is_special(dl_se))
 139                __sub_rq_bw(dl_se->dl_bw, dl_rq);
 140}
 141
 142static inline
 143void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145        if (!dl_entity_is_special(dl_se))
 146                __add_running_bw(dl_se->dl_bw, dl_rq);
 147}
 148
 149static inline
 150void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 151{
 152        if (!dl_entity_is_special(dl_se))
 153                __sub_running_bw(dl_se->dl_bw, dl_rq);
 154}
 155
 156void dl_change_utilization(struct task_struct *p, u64 new_bw)
 157{
 158        struct rq *rq;
 159
 160        BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 161
 162        if (task_on_rq_queued(p))
 163                return;
 164
 165        rq = task_rq(p);
 166        if (p->dl.dl_non_contending) {
 167                sub_running_bw(&p->dl, &rq->dl);
 168                p->dl.dl_non_contending = 0;
 169                /*
 170                 * If the timer handler is currently running and the
 171                 * timer cannot be cancelled, inactive_task_timer()
 172                 * will see that dl_not_contending is not set, and
 173                 * will not touch the rq's active utilization,
 174                 * so we are still safe.
 175                 */
 176                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 177                        put_task_struct(p);
 178        }
 179        __sub_rq_bw(p->dl.dl_bw, &rq->dl);
 180        __add_rq_bw(new_bw, &rq->dl);
 181}
 182
 183/*
 184 * The utilization of a task cannot be immediately removed from
 185 * the rq active utilization (running_bw) when the task blocks.
 186 * Instead, we have to wait for the so called "0-lag time".
 187 *
 188 * If a task blocks before the "0-lag time", a timer (the inactive
 189 * timer) is armed, and running_bw is decreased when the timer
 190 * fires.
 191 *
 192 * If the task wakes up again before the inactive timer fires,
 193 * the timer is cancelled, whereas if the task wakes up after the
 194 * inactive timer fired (and running_bw has been decreased) the
 195 * task's utilization has to be added to running_bw again.
 196 * A flag in the deadline scheduling entity (dl_non_contending)
 197 * is used to avoid race conditions between the inactive timer handler
 198 * and task wakeups.
 199 *
 200 * The following diagram shows how running_bw is updated. A task is
 201 * "ACTIVE" when its utilization contributes to running_bw; an
 202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 205 * time already passed, which does not contribute to running_bw anymore.
 206 *                              +------------------+
 207 *             wakeup           |    ACTIVE        |
 208 *          +------------------>+   contending     |
 209 *          | add_running_bw    |                  |
 210 *          |                   +----+------+------+
 211 *          |                        |      ^
 212 *          |                dequeue |      |
 213 * +--------+-------+                |      |
 214 * |                |   t >= 0-lag   |      | wakeup
 215 * |    INACTIVE    |<---------------+      |
 216 * |                | sub_running_bw |      |
 217 * +--------+-------+                |      |
 218 *          ^                        |      |
 219 *          |              t < 0-lag |      |
 220 *          |                        |      |
 221 *          |                        V      |
 222 *          |                   +----+------+------+
 223 *          | sub_running_bw    |    ACTIVE        |
 224 *          +-------------------+                  |
 225 *            inactive timer    |  non contending  |
 226 *            fired             +------------------+
 227 *
 228 * The task_non_contending() function is invoked when a task
 229 * blocks, and checks if the 0-lag time already passed or
 230 * not (in the first case, it directly updates running_bw;
 231 * in the second case, it arms the inactive timer).
 232 *
 233 * The task_contending() function is invoked when a task wakes
 234 * up, and checks if the task is still in the "ACTIVE non contending"
 235 * state or not (in the second case, it updates running_bw).
 236 */
 237static void task_non_contending(struct task_struct *p)
 238{
 239        struct sched_dl_entity *dl_se = &p->dl;
 240        struct hrtimer *timer = &dl_se->inactive_timer;
 241        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 242        struct rq *rq = rq_of_dl_rq(dl_rq);
 243        s64 zerolag_time;
 244
 245        /*
 246         * If this is a non-deadline task that has been boosted,
 247         * do nothing
 248         */
 249        if (dl_se->dl_runtime == 0)
 250                return;
 251
 252        if (dl_entity_is_special(dl_se))
 253                return;
 254
 255        WARN_ON(dl_se->dl_non_contending);
 256
 257        zerolag_time = dl_se->deadline -
 258                 div64_long((dl_se->runtime * dl_se->dl_period),
 259                        dl_se->dl_runtime);
 260
 261        /*
 262         * Using relative times instead of the absolute "0-lag time"
 263         * allows to simplify the code
 264         */
 265        zerolag_time -= rq_clock(rq);
 266
 267        /*
 268         * If the "0-lag time" already passed, decrease the active
 269         * utilization now, instead of starting a timer
 270         */
 271        if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 272                if (dl_task(p))
 273                        sub_running_bw(dl_se, dl_rq);
 274                if (!dl_task(p) || p->state == TASK_DEAD) {
 275                        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 276
 277                        if (p->state == TASK_DEAD)
 278                                sub_rq_bw(&p->dl, &rq->dl);
 279                        raw_spin_lock(&dl_b->lock);
 280                        __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 281                        __dl_clear_params(p);
 282                        raw_spin_unlock(&dl_b->lock);
 283                }
 284
 285                return;
 286        }
 287
 288        dl_se->dl_non_contending = 1;
 289        get_task_struct(p);
 290        hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 291}
 292
 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
 294{
 295        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 296
 297        /*
 298         * If this is a non-deadline task that has been boosted,
 299         * do nothing
 300         */
 301        if (dl_se->dl_runtime == 0)
 302                return;
 303
 304        if (flags & ENQUEUE_MIGRATED)
 305                add_rq_bw(dl_se, dl_rq);
 306
 307        if (dl_se->dl_non_contending) {
 308                dl_se->dl_non_contending = 0;
 309                /*
 310                 * If the timer handler is currently running and the
 311                 * timer cannot be cancelled, inactive_task_timer()
 312                 * will see that dl_not_contending is not set, and
 313                 * will not touch the rq's active utilization,
 314                 * so we are still safe.
 315                 */
 316                if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 317                        put_task_struct(dl_task_of(dl_se));
 318        } else {
 319                /*
 320                 * Since "dl_non_contending" is not set, the
 321                 * task's utilization has already been removed from
 322                 * active utilization (either when the task blocked,
 323                 * when the "inactive timer" fired).
 324                 * So, add it back.
 325                 */
 326                add_running_bw(dl_se, dl_rq);
 327        }
 328}
 329
 330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 331{
 332        struct sched_dl_entity *dl_se = &p->dl;
 333
 334        return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 335}
 336
 337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 338{
 339        raw_spin_lock_init(&dl_b->dl_runtime_lock);
 340        dl_b->dl_period = period;
 341        dl_b->dl_runtime = runtime;
 342}
 343
 344void init_dl_bw(struct dl_bw *dl_b)
 345{
 346        raw_spin_lock_init(&dl_b->lock);
 347        raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 348        if (global_rt_runtime() == RUNTIME_INF)
 349                dl_b->bw = -1;
 350        else
 351                dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 352        raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 353        dl_b->total_bw = 0;
 354}
 355
 356void init_dl_rq(struct dl_rq *dl_rq)
 357{
 358        dl_rq->root = RB_ROOT_CACHED;
 359
 360#ifdef CONFIG_SMP
 361        /* zero means no -deadline tasks */
 362        dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 363
 364        dl_rq->dl_nr_migratory = 0;
 365        dl_rq->overloaded = 0;
 366        dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 367#else
 368        init_dl_bw(&dl_rq->dl_bw);
 369#endif
 370
 371        dl_rq->running_bw = 0;
 372        dl_rq->this_bw = 0;
 373        init_dl_rq_bw_ratio(dl_rq);
 374}
 375
 376#ifdef CONFIG_SMP
 377
 378static inline int dl_overloaded(struct rq *rq)
 379{
 380        return atomic_read(&rq->rd->dlo_count);
 381}
 382
 383static inline void dl_set_overload(struct rq *rq)
 384{
 385        if (!rq->online)
 386                return;
 387
 388        cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 389        /*
 390         * Must be visible before the overload count is
 391         * set (as in sched_rt.c).
 392         *
 393         * Matched by the barrier in pull_dl_task().
 394         */
 395        smp_wmb();
 396        atomic_inc(&rq->rd->dlo_count);
 397}
 398
 399static inline void dl_clear_overload(struct rq *rq)
 400{
 401        if (!rq->online)
 402                return;
 403
 404        atomic_dec(&rq->rd->dlo_count);
 405        cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 406}
 407
 408static void update_dl_migration(struct dl_rq *dl_rq)
 409{
 410        if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 411                if (!dl_rq->overloaded) {
 412                        dl_set_overload(rq_of_dl_rq(dl_rq));
 413                        dl_rq->overloaded = 1;
 414                }
 415        } else if (dl_rq->overloaded) {
 416                dl_clear_overload(rq_of_dl_rq(dl_rq));
 417                dl_rq->overloaded = 0;
 418        }
 419}
 420
 421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 422{
 423        struct task_struct *p = dl_task_of(dl_se);
 424
 425        if (p->nr_cpus_allowed > 1)
 426                dl_rq->dl_nr_migratory++;
 427
 428        update_dl_migration(dl_rq);
 429}
 430
 431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 432{
 433        struct task_struct *p = dl_task_of(dl_se);
 434
 435        if (p->nr_cpus_allowed > 1)
 436                dl_rq->dl_nr_migratory--;
 437
 438        update_dl_migration(dl_rq);
 439}
 440
 441/*
 442 * The list of pushable -deadline task is not a plist, like in
 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 444 */
 445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 446{
 447        struct dl_rq *dl_rq = &rq->dl;
 448        struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 449        struct rb_node *parent = NULL;
 450        struct task_struct *entry;
 451        bool leftmost = true;
 452
 453        BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 454
 455        while (*link) {
 456                parent = *link;
 457                entry = rb_entry(parent, struct task_struct,
 458                                 pushable_dl_tasks);
 459                if (dl_entity_preempt(&p->dl, &entry->dl))
 460                        link = &parent->rb_left;
 461                else {
 462                        link = &parent->rb_right;
 463                        leftmost = false;
 464                }
 465        }
 466
 467        if (leftmost)
 468                dl_rq->earliest_dl.next = p->dl.deadline;
 469
 470        rb_link_node(&p->pushable_dl_tasks, parent, link);
 471        rb_insert_color_cached(&p->pushable_dl_tasks,
 472                               &dl_rq->pushable_dl_tasks_root, leftmost);
 473}
 474
 475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 476{
 477        struct dl_rq *dl_rq = &rq->dl;
 478
 479        if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 480                return;
 481
 482        if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 483                struct rb_node *next_node;
 484
 485                next_node = rb_next(&p->pushable_dl_tasks);
 486                if (next_node) {
 487                        dl_rq->earliest_dl.next = rb_entry(next_node,
 488                                struct task_struct, pushable_dl_tasks)->dl.deadline;
 489                }
 490        }
 491
 492        rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 493        RB_CLEAR_NODE(&p->pushable_dl_tasks);
 494}
 495
 496static inline int has_pushable_dl_tasks(struct rq *rq)
 497{
 498        return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 499}
 500
 501static int push_dl_task(struct rq *rq);
 502
 503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 504{
 505        return dl_task(prev);
 506}
 507
 508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 510
 511static void push_dl_tasks(struct rq *);
 512static void pull_dl_task(struct rq *);
 513
 514static inline void deadline_queue_push_tasks(struct rq *rq)
 515{
 516        if (!has_pushable_dl_tasks(rq))
 517                return;
 518
 519        queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 520}
 521
 522static inline void deadline_queue_pull_task(struct rq *rq)
 523{
 524        queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 525}
 526
 527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 528
 529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 530{
 531        struct rq *later_rq = NULL;
 532        struct dl_bw *dl_b;
 533
 534        later_rq = find_lock_later_rq(p, rq);
 535        if (!later_rq) {
 536                int cpu;
 537
 538                /*
 539                 * If we cannot preempt any rq, fall back to pick any
 540                 * online CPU:
 541                 */
 542                cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 543                if (cpu >= nr_cpu_ids) {
 544                        /*
 545                         * Failed to find any suitable CPU.
 546                         * The task will never come back!
 547                         */
 548                        BUG_ON(dl_bandwidth_enabled());
 549
 550                        /*
 551                         * If admission control is disabled we
 552                         * try a little harder to let the task
 553                         * run.
 554                         */
 555                        cpu = cpumask_any(cpu_active_mask);
 556                }
 557                later_rq = cpu_rq(cpu);
 558                double_lock_balance(rq, later_rq);
 559        }
 560
 561        if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 562                /*
 563                 * Inactive timer is armed (or callback is running, but
 564                 * waiting for us to release rq locks). In any case, when it
 565                 * will fire (or continue), it will see running_bw of this
 566                 * task migrated to later_rq (and correctly handle it).
 567                 */
 568                sub_running_bw(&p->dl, &rq->dl);
 569                sub_rq_bw(&p->dl, &rq->dl);
 570
 571                add_rq_bw(&p->dl, &later_rq->dl);
 572                add_running_bw(&p->dl, &later_rq->dl);
 573        } else {
 574                sub_rq_bw(&p->dl, &rq->dl);
 575                add_rq_bw(&p->dl, &later_rq->dl);
 576        }
 577
 578        /*
 579         * And we finally need to fixup root_domain(s) bandwidth accounting,
 580         * since p is still hanging out in the old (now moved to default) root
 581         * domain.
 582         */
 583        dl_b = &rq->rd->dl_bw;
 584        raw_spin_lock(&dl_b->lock);
 585        __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 586        raw_spin_unlock(&dl_b->lock);
 587
 588        dl_b = &later_rq->rd->dl_bw;
 589        raw_spin_lock(&dl_b->lock);
 590        __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 591        raw_spin_unlock(&dl_b->lock);
 592
 593        set_task_cpu(p, later_rq->cpu);
 594        double_unlock_balance(later_rq, rq);
 595
 596        return later_rq;
 597}
 598
 599#else
 600
 601static inline
 602void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 603{
 604}
 605
 606static inline
 607void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 608{
 609}
 610
 611static inline
 612void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 613{
 614}
 615
 616static inline
 617void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 618{
 619}
 620
 621static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 622{
 623        return false;
 624}
 625
 626static inline void pull_dl_task(struct rq *rq)
 627{
 628}
 629
 630static inline void deadline_queue_push_tasks(struct rq *rq)
 631{
 632}
 633
 634static inline void deadline_queue_pull_task(struct rq *rq)
 635{
 636}
 637#endif /* CONFIG_SMP */
 638
 639static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 640static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 641static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 642
 643/*
 644 * We are being explicitly informed that a new instance is starting,
 645 * and this means that:
 646 *  - the absolute deadline of the entity has to be placed at
 647 *    current time + relative deadline;
 648 *  - the runtime of the entity has to be set to the maximum value.
 649 *
 650 * The capability of specifying such event is useful whenever a -deadline
 651 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 652 * one, and to (try to!) reconcile itself with its own scheduling
 653 * parameters.
 654 */
 655static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 656{
 657        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 658        struct rq *rq = rq_of_dl_rq(dl_rq);
 659
 660        WARN_ON(dl_se->dl_boosted);
 661        WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 662
 663        /*
 664         * We are racing with the deadline timer. So, do nothing because
 665         * the deadline timer handler will take care of properly recharging
 666         * the runtime and postponing the deadline
 667         */
 668        if (dl_se->dl_throttled)
 669                return;
 670
 671        /*
 672         * We use the regular wall clock time to set deadlines in the
 673         * future; in fact, we must consider execution overheads (time
 674         * spent on hardirq context, etc.).
 675         */
 676        dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 677        dl_se->runtime = dl_se->dl_runtime;
 678}
 679
 680/*
 681 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 682 * possibility of a entity lasting more than what it declared, and thus
 683 * exhausting its runtime.
 684 *
 685 * Here we are interested in making runtime overrun possible, but we do
 686 * not want a entity which is misbehaving to affect the scheduling of all
 687 * other entities.
 688 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 689 * is used, in order to confine each entity within its own bandwidth.
 690 *
 691 * This function deals exactly with that, and ensures that when the runtime
 692 * of a entity is replenished, its deadline is also postponed. That ensures
 693 * the overrunning entity can't interfere with other entity in the system and
 694 * can't make them miss their deadlines. Reasons why this kind of overruns
 695 * could happen are, typically, a entity voluntarily trying to overcome its
 696 * runtime, or it just underestimated it during sched_setattr().
 697 */
 698static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 699                                struct sched_dl_entity *pi_se)
 700{
 701        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 702        struct rq *rq = rq_of_dl_rq(dl_rq);
 703
 704        BUG_ON(pi_se->dl_runtime <= 0);
 705
 706        /*
 707         * This could be the case for a !-dl task that is boosted.
 708         * Just go with full inherited parameters.
 709         */
 710        if (dl_se->dl_deadline == 0) {
 711                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 712                dl_se->runtime = pi_se->dl_runtime;
 713        }
 714
 715        if (dl_se->dl_yielded && dl_se->runtime > 0)
 716                dl_se->runtime = 0;
 717
 718        /*
 719         * We keep moving the deadline away until we get some
 720         * available runtime for the entity. This ensures correct
 721         * handling of situations where the runtime overrun is
 722         * arbitrary large.
 723         */
 724        while (dl_se->runtime <= 0) {
 725                dl_se->deadline += pi_se->dl_period;
 726                dl_se->runtime += pi_se->dl_runtime;
 727        }
 728
 729        /*
 730         * At this point, the deadline really should be "in
 731         * the future" with respect to rq->clock. If it's
 732         * not, we are, for some reason, lagging too much!
 733         * Anyway, after having warn userspace abut that,
 734         * we still try to keep the things running by
 735         * resetting the deadline and the budget of the
 736         * entity.
 737         */
 738        if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 739                printk_deferred_once("sched: DL replenish lagged too much\n");
 740                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 741                dl_se->runtime = pi_se->dl_runtime;
 742        }
 743
 744        if (dl_se->dl_yielded)
 745                dl_se->dl_yielded = 0;
 746        if (dl_se->dl_throttled)
 747                dl_se->dl_throttled = 0;
 748}
 749
 750/*
 751 * Here we check if --at time t-- an entity (which is probably being
 752 * [re]activated or, in general, enqueued) can use its remaining runtime
 753 * and its current deadline _without_ exceeding the bandwidth it is
 754 * assigned (function returns true if it can't). We are in fact applying
 755 * one of the CBS rules: when a task wakes up, if the residual runtime
 756 * over residual deadline fits within the allocated bandwidth, then we
 757 * can keep the current (absolute) deadline and residual budget without
 758 * disrupting the schedulability of the system. Otherwise, we should
 759 * refill the runtime and set the deadline a period in the future,
 760 * because keeping the current (absolute) deadline of the task would
 761 * result in breaking guarantees promised to other tasks (refer to
 762 * Documentation/scheduler/sched-deadline.rst for more information).
 763 *
 764 * This function returns true if:
 765 *
 766 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 767 *
 768 * IOW we can't recycle current parameters.
 769 *
 770 * Notice that the bandwidth check is done against the deadline. For
 771 * task with deadline equal to period this is the same of using
 772 * dl_period instead of dl_deadline in the equation above.
 773 */
 774static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 775                               struct sched_dl_entity *pi_se, u64 t)
 776{
 777        u64 left, right;
 778
 779        /*
 780         * left and right are the two sides of the equation above,
 781         * after a bit of shuffling to use multiplications instead
 782         * of divisions.
 783         *
 784         * Note that none of the time values involved in the two
 785         * multiplications are absolute: dl_deadline and dl_runtime
 786         * are the relative deadline and the maximum runtime of each
 787         * instance, runtime is the runtime left for the last instance
 788         * and (deadline - t), since t is rq->clock, is the time left
 789         * to the (absolute) deadline. Even if overflowing the u64 type
 790         * is very unlikely to occur in both cases, here we scale down
 791         * as we want to avoid that risk at all. Scaling down by 10
 792         * means that we reduce granularity to 1us. We are fine with it,
 793         * since this is only a true/false check and, anyway, thinking
 794         * of anything below microseconds resolution is actually fiction
 795         * (but still we want to give the user that illusion >;).
 796         */
 797        left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 798        right = ((dl_se->deadline - t) >> DL_SCALE) *
 799                (pi_se->dl_runtime >> DL_SCALE);
 800
 801        return dl_time_before(right, left);
 802}
 803
 804/*
 805 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 806 * re-initializing task's runtime and deadline, the revised wakeup
 807 * rule adjusts the task's runtime to avoid the task to overrun its
 808 * density.
 809 *
 810 * Reasoning: a task may overrun the density if:
 811 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 812 *
 813 * Therefore, runtime can be adjusted to:
 814 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 815 *
 816 * In such way that runtime will be equal to the maximum density
 817 * the task can use without breaking any rule.
 818 *
 819 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 820 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 821 */
 822static void
 823update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 824{
 825        u64 laxity = dl_se->deadline - rq_clock(rq);
 826
 827        /*
 828         * If the task has deadline < period, and the deadline is in the past,
 829         * it should already be throttled before this check.
 830         *
 831         * See update_dl_entity() comments for further details.
 832         */
 833        WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 834
 835        dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 836}
 837
 838/*
 839 * Regarding the deadline, a task with implicit deadline has a relative
 840 * deadline == relative period. A task with constrained deadline has a
 841 * relative deadline <= relative period.
 842 *
 843 * We support constrained deadline tasks. However, there are some restrictions
 844 * applied only for tasks which do not have an implicit deadline. See
 845 * update_dl_entity() to know more about such restrictions.
 846 *
 847 * The dl_is_implicit() returns true if the task has an implicit deadline.
 848 */
 849static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 850{
 851        return dl_se->dl_deadline == dl_se->dl_period;
 852}
 853
 854/*
 855 * When a deadline entity is placed in the runqueue, its runtime and deadline
 856 * might need to be updated. This is done by a CBS wake up rule. There are two
 857 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 858 *
 859 * When the task is starting a new period, the Original CBS is used. In this
 860 * case, the runtime is replenished and a new absolute deadline is set.
 861 *
 862 * When a task is queued before the begin of the next period, using the
 863 * remaining runtime and deadline could make the entity to overflow, see
 864 * dl_entity_overflow() to find more about runtime overflow. When such case
 865 * is detected, the runtime and deadline need to be updated.
 866 *
 867 * If the task has an implicit deadline, i.e., deadline == period, the Original
 868 * CBS is applied. the runtime is replenished and a new absolute deadline is
 869 * set, as in the previous cases.
 870 *
 871 * However, the Original CBS does not work properly for tasks with
 872 * deadline < period, which are said to have a constrained deadline. By
 873 * applying the Original CBS, a constrained deadline task would be able to run
 874 * runtime/deadline in a period. With deadline < period, the task would
 875 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 876 *
 877 * In order to prevent this misbehave, the Revisited CBS is used for
 878 * constrained deadline tasks when a runtime overflow is detected. In the
 879 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 880 * the remaining runtime of the task is reduced to avoid runtime overflow.
 881 * Please refer to the comments update_dl_revised_wakeup() function to find
 882 * more about the Revised CBS rule.
 883 */
 884static void update_dl_entity(struct sched_dl_entity *dl_se,
 885                             struct sched_dl_entity *pi_se)
 886{
 887        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 888        struct rq *rq = rq_of_dl_rq(dl_rq);
 889
 890        if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 891            dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 892
 893                if (unlikely(!dl_is_implicit(dl_se) &&
 894                             !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 895                             !dl_se->dl_boosted)){
 896                        update_dl_revised_wakeup(dl_se, rq);
 897                        return;
 898                }
 899
 900                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 901                dl_se->runtime = pi_se->dl_runtime;
 902        }
 903}
 904
 905static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 906{
 907        return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 908}
 909
 910/*
 911 * If the entity depleted all its runtime, and if we want it to sleep
 912 * while waiting for some new execution time to become available, we
 913 * set the bandwidth replenishment timer to the replenishment instant
 914 * and try to activate it.
 915 *
 916 * Notice that it is important for the caller to know if the timer
 917 * actually started or not (i.e., the replenishment instant is in
 918 * the future or in the past).
 919 */
 920static int start_dl_timer(struct task_struct *p)
 921{
 922        struct sched_dl_entity *dl_se = &p->dl;
 923        struct hrtimer *timer = &dl_se->dl_timer;
 924        struct rq *rq = task_rq(p);
 925        ktime_t now, act;
 926        s64 delta;
 927
 928        lockdep_assert_held(&rq->lock);
 929
 930        /*
 931         * We want the timer to fire at the deadline, but considering
 932         * that it is actually coming from rq->clock and not from
 933         * hrtimer's time base reading.
 934         */
 935        act = ns_to_ktime(dl_next_period(dl_se));
 936        now = hrtimer_cb_get_time(timer);
 937        delta = ktime_to_ns(now) - rq_clock(rq);
 938        act = ktime_add_ns(act, delta);
 939
 940        /*
 941         * If the expiry time already passed, e.g., because the value
 942         * chosen as the deadline is too small, don't even try to
 943         * start the timer in the past!
 944         */
 945        if (ktime_us_delta(act, now) < 0)
 946                return 0;
 947
 948        /*
 949         * !enqueued will guarantee another callback; even if one is already in
 950         * progress. This ensures a balanced {get,put}_task_struct().
 951         *
 952         * The race against __run_timer() clearing the enqueued state is
 953         * harmless because we're holding task_rq()->lock, therefore the timer
 954         * expiring after we've done the check will wait on its task_rq_lock()
 955         * and observe our state.
 956         */
 957        if (!hrtimer_is_queued(timer)) {
 958                get_task_struct(p);
 959                hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
 960        }
 961
 962        return 1;
 963}
 964
 965/*
 966 * This is the bandwidth enforcement timer callback. If here, we know
 967 * a task is not on its dl_rq, since the fact that the timer was running
 968 * means the task is throttled and needs a runtime replenishment.
 969 *
 970 * However, what we actually do depends on the fact the task is active,
 971 * (it is on its rq) or has been removed from there by a call to
 972 * dequeue_task_dl(). In the former case we must issue the runtime
 973 * replenishment and add the task back to the dl_rq; in the latter, we just
 974 * do nothing but clearing dl_throttled, so that runtime and deadline
 975 * updating (and the queueing back to dl_rq) will be done by the
 976 * next call to enqueue_task_dl().
 977 */
 978static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 979{
 980        struct sched_dl_entity *dl_se = container_of(timer,
 981                                                     struct sched_dl_entity,
 982                                                     dl_timer);
 983        struct task_struct *p = dl_task_of(dl_se);
 984        struct rq_flags rf;
 985        struct rq *rq;
 986
 987        rq = task_rq_lock(p, &rf);
 988
 989        /*
 990         * The task might have changed its scheduling policy to something
 991         * different than SCHED_DEADLINE (through switched_from_dl()).
 992         */
 993        if (!dl_task(p))
 994                goto unlock;
 995
 996        /*
 997         * The task might have been boosted by someone else and might be in the
 998         * boosting/deboosting path, its not throttled.
 999         */
1000        if (dl_se->dl_boosted)
1001                goto unlock;
1002
1003        /*
1004         * Spurious timer due to start_dl_timer() race; or we already received
1005         * a replenishment from rt_mutex_setprio().
1006         */
1007        if (!dl_se->dl_throttled)
1008                goto unlock;
1009
1010        sched_clock_tick();
1011        update_rq_clock(rq);
1012
1013        /*
1014         * If the throttle happened during sched-out; like:
1015         *
1016         *   schedule()
1017         *     deactivate_task()
1018         *       dequeue_task_dl()
1019         *         update_curr_dl()
1020         *           start_dl_timer()
1021         *         __dequeue_task_dl()
1022         *     prev->on_rq = 0;
1023         *
1024         * We can be both throttled and !queued. Replenish the counter
1025         * but do not enqueue -- wait for our wakeup to do that.
1026         */
1027        if (!task_on_rq_queued(p)) {
1028                replenish_dl_entity(dl_se, dl_se);
1029                goto unlock;
1030        }
1031
1032#ifdef CONFIG_SMP
1033        if (unlikely(!rq->online)) {
1034                /*
1035                 * If the runqueue is no longer available, migrate the
1036                 * task elsewhere. This necessarily changes rq.
1037                 */
1038                lockdep_unpin_lock(&rq->lock, rf.cookie);
1039                rq = dl_task_offline_migration(rq, p);
1040                rf.cookie = lockdep_pin_lock(&rq->lock);
1041                update_rq_clock(rq);
1042
1043                /*
1044                 * Now that the task has been migrated to the new RQ and we
1045                 * have that locked, proceed as normal and enqueue the task
1046                 * there.
1047                 */
1048        }
1049#endif
1050
1051        enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1052        if (dl_task(rq->curr))
1053                check_preempt_curr_dl(rq, p, 0);
1054        else
1055                resched_curr(rq);
1056
1057#ifdef CONFIG_SMP
1058        /*
1059         * Queueing this task back might have overloaded rq, check if we need
1060         * to kick someone away.
1061         */
1062        if (has_pushable_dl_tasks(rq)) {
1063                /*
1064                 * Nothing relies on rq->lock after this, so its safe to drop
1065                 * rq->lock.
1066                 */
1067                rq_unpin_lock(rq, &rf);
1068                push_dl_task(rq);
1069                rq_repin_lock(rq, &rf);
1070        }
1071#endif
1072
1073unlock:
1074        task_rq_unlock(rq, p, &rf);
1075
1076        /*
1077         * This can free the task_struct, including this hrtimer, do not touch
1078         * anything related to that after this.
1079         */
1080        put_task_struct(p);
1081
1082        return HRTIMER_NORESTART;
1083}
1084
1085void init_dl_task_timer(struct sched_dl_entity *dl_se)
1086{
1087        struct hrtimer *timer = &dl_se->dl_timer;
1088
1089        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1090        timer->function = dl_task_timer;
1091}
1092
1093/*
1094 * During the activation, CBS checks if it can reuse the current task's
1095 * runtime and period. If the deadline of the task is in the past, CBS
1096 * cannot use the runtime, and so it replenishes the task. This rule
1097 * works fine for implicit deadline tasks (deadline == period), and the
1098 * CBS was designed for implicit deadline tasks. However, a task with
1099 * constrained deadline (deadine < period) might be awakened after the
1100 * deadline, but before the next period. In this case, replenishing the
1101 * task would allow it to run for runtime / deadline. As in this case
1102 * deadline < period, CBS enables a task to run for more than the
1103 * runtime / period. In a very loaded system, this can cause a domino
1104 * effect, making other tasks miss their deadlines.
1105 *
1106 * To avoid this problem, in the activation of a constrained deadline
1107 * task after the deadline but before the next period, throttle the
1108 * task and set the replenishing timer to the begin of the next period,
1109 * unless it is boosted.
1110 */
1111static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1112{
1113        struct task_struct *p = dl_task_of(dl_se);
1114        struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1115
1116        if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1117            dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1118                if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1119                        return;
1120                dl_se->dl_throttled = 1;
1121                if (dl_se->runtime > 0)
1122                        dl_se->runtime = 0;
1123        }
1124}
1125
1126static
1127int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1128{
1129        return (dl_se->runtime <= 0);
1130}
1131
1132extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1133
1134/*
1135 * This function implements the GRUB accounting rule:
1136 * according to the GRUB reclaiming algorithm, the runtime is
1137 * not decreased as "dq = -dt", but as
1138 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1139 * where u is the utilization of the task, Umax is the maximum reclaimable
1140 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1141 * as the difference between the "total runqueue utilization" and the
1142 * runqueue active utilization, and Uextra is the (per runqueue) extra
1143 * reclaimable utilization.
1144 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1145 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1146 * BW_SHIFT.
1147 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1148 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1149 * Since delta is a 64 bit variable, to have an overflow its value
1150 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1151 * So, overflow is not an issue here.
1152 */
1153static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1154{
1155        u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1156        u64 u_act;
1157        u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1158
1159        /*
1160         * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1161         * we compare u_inact + rq->dl.extra_bw with
1162         * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1163         * u_inact + rq->dl.extra_bw can be larger than
1164         * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1165         * leading to wrong results)
1166         */
1167        if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1168                u_act = u_act_min;
1169        else
1170                u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1171
1172        return (delta * u_act) >> BW_SHIFT;
1173}
1174
1175/*
1176 * Update the current task's runtime statistics (provided it is still
1177 * a -deadline task and has not been removed from the dl_rq).
1178 */
1179static void update_curr_dl(struct rq *rq)
1180{
1181        struct task_struct *curr = rq->curr;
1182        struct sched_dl_entity *dl_se = &curr->dl;
1183        u64 delta_exec, scaled_delta_exec;
1184        int cpu = cpu_of(rq);
1185        u64 now;
1186
1187        if (!dl_task(curr) || !on_dl_rq(dl_se))
1188                return;
1189
1190        /*
1191         * Consumed budget is computed considering the time as
1192         * observed by schedulable tasks (excluding time spent
1193         * in hardirq context, etc.). Deadlines are instead
1194         * computed using hard walltime. This seems to be the more
1195         * natural solution, but the full ramifications of this
1196         * approach need further study.
1197         */
1198        now = rq_clock_task(rq);
1199        delta_exec = now - curr->se.exec_start;
1200        if (unlikely((s64)delta_exec <= 0)) {
1201                if (unlikely(dl_se->dl_yielded))
1202                        goto throttle;
1203                return;
1204        }
1205
1206        schedstat_set(curr->se.statistics.exec_max,
1207                      max(curr->se.statistics.exec_max, delta_exec));
1208
1209        curr->se.sum_exec_runtime += delta_exec;
1210        account_group_exec_runtime(curr, delta_exec);
1211
1212        curr->se.exec_start = now;
1213        cgroup_account_cputime(curr, delta_exec);
1214
1215        if (dl_entity_is_special(dl_se))
1216                return;
1217
1218        /*
1219         * For tasks that participate in GRUB, we implement GRUB-PA: the
1220         * spare reclaimed bandwidth is used to clock down frequency.
1221         *
1222         * For the others, we still need to scale reservation parameters
1223         * according to current frequency and CPU maximum capacity.
1224         */
1225        if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1226                scaled_delta_exec = grub_reclaim(delta_exec,
1227                                                 rq,
1228                                                 &curr->dl);
1229        } else {
1230                unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1231                unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1232
1233                scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1234                scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1235        }
1236
1237        dl_se->runtime -= scaled_delta_exec;
1238
1239throttle:
1240        if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1241                dl_se->dl_throttled = 1;
1242
1243                /* If requested, inform the user about runtime overruns. */
1244                if (dl_runtime_exceeded(dl_se) &&
1245                    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1246                        dl_se->dl_overrun = 1;
1247
1248                __dequeue_task_dl(rq, curr, 0);
1249                if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1250                        enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1251
1252                if (!is_leftmost(curr, &rq->dl))
1253                        resched_curr(rq);
1254        }
1255
1256        /*
1257         * Because -- for now -- we share the rt bandwidth, we need to
1258         * account our runtime there too, otherwise actual rt tasks
1259         * would be able to exceed the shared quota.
1260         *
1261         * Account to the root rt group for now.
1262         *
1263         * The solution we're working towards is having the RT groups scheduled
1264         * using deadline servers -- however there's a few nasties to figure
1265         * out before that can happen.
1266         */
1267        if (rt_bandwidth_enabled()) {
1268                struct rt_rq *rt_rq = &rq->rt;
1269
1270                raw_spin_lock(&rt_rq->rt_runtime_lock);
1271                /*
1272                 * We'll let actual RT tasks worry about the overflow here, we
1273                 * have our own CBS to keep us inline; only account when RT
1274                 * bandwidth is relevant.
1275                 */
1276                if (sched_rt_bandwidth_account(rt_rq))
1277                        rt_rq->rt_time += delta_exec;
1278                raw_spin_unlock(&rt_rq->rt_runtime_lock);
1279        }
1280}
1281
1282static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1283{
1284        struct sched_dl_entity *dl_se = container_of(timer,
1285                                                     struct sched_dl_entity,
1286                                                     inactive_timer);
1287        struct task_struct *p = dl_task_of(dl_se);
1288        struct rq_flags rf;
1289        struct rq *rq;
1290
1291        rq = task_rq_lock(p, &rf);
1292
1293        sched_clock_tick();
1294        update_rq_clock(rq);
1295
1296        if (!dl_task(p) || p->state == TASK_DEAD) {
1297                struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1298
1299                if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1300                        sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1301                        sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1302                        dl_se->dl_non_contending = 0;
1303                }
1304
1305                raw_spin_lock(&dl_b->lock);
1306                __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1307                raw_spin_unlock(&dl_b->lock);
1308                __dl_clear_params(p);
1309
1310                goto unlock;
1311        }
1312        if (dl_se->dl_non_contending == 0)
1313                goto unlock;
1314
1315        sub_running_bw(dl_se, &rq->dl);
1316        dl_se->dl_non_contending = 0;
1317unlock:
1318        task_rq_unlock(rq, p, &rf);
1319        put_task_struct(p);
1320
1321        return HRTIMER_NORESTART;
1322}
1323
1324void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1325{
1326        struct hrtimer *timer = &dl_se->inactive_timer;
1327
1328        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1329        timer->function = inactive_task_timer;
1330}
1331
1332#ifdef CONFIG_SMP
1333
1334static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1335{
1336        struct rq *rq = rq_of_dl_rq(dl_rq);
1337
1338        if (dl_rq->earliest_dl.curr == 0 ||
1339            dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1340                dl_rq->earliest_dl.curr = deadline;
1341                cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1342        }
1343}
1344
1345static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1346{
1347        struct rq *rq = rq_of_dl_rq(dl_rq);
1348
1349        /*
1350         * Since we may have removed our earliest (and/or next earliest)
1351         * task we must recompute them.
1352         */
1353        if (!dl_rq->dl_nr_running) {
1354                dl_rq->earliest_dl.curr = 0;
1355                dl_rq->earliest_dl.next = 0;
1356                cpudl_clear(&rq->rd->cpudl, rq->cpu);
1357        } else {
1358                struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1359                struct sched_dl_entity *entry;
1360
1361                entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1362                dl_rq->earliest_dl.curr = entry->deadline;
1363                cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1364        }
1365}
1366
1367#else
1368
1369static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1370static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1371
1372#endif /* CONFIG_SMP */
1373
1374static inline
1375void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1376{
1377        int prio = dl_task_of(dl_se)->prio;
1378        u64 deadline = dl_se->deadline;
1379
1380        WARN_ON(!dl_prio(prio));
1381        dl_rq->dl_nr_running++;
1382        add_nr_running(rq_of_dl_rq(dl_rq), 1);
1383
1384        inc_dl_deadline(dl_rq, deadline);
1385        inc_dl_migration(dl_se, dl_rq);
1386}
1387
1388static inline
1389void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1390{
1391        int prio = dl_task_of(dl_se)->prio;
1392
1393        WARN_ON(!dl_prio(prio));
1394        WARN_ON(!dl_rq->dl_nr_running);
1395        dl_rq->dl_nr_running--;
1396        sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1397
1398        dec_dl_deadline(dl_rq, dl_se->deadline);
1399        dec_dl_migration(dl_se, dl_rq);
1400}
1401
1402static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1403{
1404        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1405        struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1406        struct rb_node *parent = NULL;
1407        struct sched_dl_entity *entry;
1408        int leftmost = 1;
1409
1410        BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1411
1412        while (*link) {
1413                parent = *link;
1414                entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1415                if (dl_time_before(dl_se->deadline, entry->deadline))
1416                        link = &parent->rb_left;
1417                else {
1418                        link = &parent->rb_right;
1419                        leftmost = 0;
1420                }
1421        }
1422
1423        rb_link_node(&dl_se->rb_node, parent, link);
1424        rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1425
1426        inc_dl_tasks(dl_se, dl_rq);
1427}
1428
1429static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1430{
1431        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1432
1433        if (RB_EMPTY_NODE(&dl_se->rb_node))
1434                return;
1435
1436        rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1437        RB_CLEAR_NODE(&dl_se->rb_node);
1438
1439        dec_dl_tasks(dl_se, dl_rq);
1440}
1441
1442static void
1443enqueue_dl_entity(struct sched_dl_entity *dl_se,
1444                  struct sched_dl_entity *pi_se, int flags)
1445{
1446        BUG_ON(on_dl_rq(dl_se));
1447
1448        /*
1449         * If this is a wakeup or a new instance, the scheduling
1450         * parameters of the task might need updating. Otherwise,
1451         * we want a replenishment of its runtime.
1452         */
1453        if (flags & ENQUEUE_WAKEUP) {
1454                task_contending(dl_se, flags);
1455                update_dl_entity(dl_se, pi_se);
1456        } else if (flags & ENQUEUE_REPLENISH) {
1457                replenish_dl_entity(dl_se, pi_se);
1458        } else if ((flags & ENQUEUE_RESTORE) &&
1459                  dl_time_before(dl_se->deadline,
1460                                 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1461                setup_new_dl_entity(dl_se);
1462        }
1463
1464        __enqueue_dl_entity(dl_se);
1465}
1466
1467static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1468{
1469        __dequeue_dl_entity(dl_se);
1470}
1471
1472static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1473{
1474        struct task_struct *pi_task = rt_mutex_get_top_task(p);
1475        struct sched_dl_entity *pi_se = &p->dl;
1476
1477        /*
1478         * Use the scheduling parameters of the top pi-waiter task if:
1479         * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1480         * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1481         *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1482         *   boosted due to a SCHED_DEADLINE pi-waiter).
1483         * Otherwise we keep our runtime and deadline.
1484         */
1485        if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1486                pi_se = &pi_task->dl;
1487        } else if (!dl_prio(p->normal_prio)) {
1488                /*
1489                 * Special case in which we have a !SCHED_DEADLINE task
1490                 * that is going to be deboosted, but exceeds its
1491                 * runtime while doing so. No point in replenishing
1492                 * it, as it's going to return back to its original
1493                 * scheduling class after this.
1494                 */
1495                BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1496                return;
1497        }
1498
1499        /*
1500         * Check if a constrained deadline task was activated
1501         * after the deadline but before the next period.
1502         * If that is the case, the task will be throttled and
1503         * the replenishment timer will be set to the next period.
1504         */
1505        if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1506                dl_check_constrained_dl(&p->dl);
1507
1508        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1509                add_rq_bw(&p->dl, &rq->dl);
1510                add_running_bw(&p->dl, &rq->dl);
1511        }
1512
1513        /*
1514         * If p is throttled, we do not enqueue it. In fact, if it exhausted
1515         * its budget it needs a replenishment and, since it now is on
1516         * its rq, the bandwidth timer callback (which clearly has not
1517         * run yet) will take care of this.
1518         * However, the active utilization does not depend on the fact
1519         * that the task is on the runqueue or not (but depends on the
1520         * task's state - in GRUB parlance, "inactive" vs "active contending").
1521         * In other words, even if a task is throttled its utilization must
1522         * be counted in the active utilization; hence, we need to call
1523         * add_running_bw().
1524         */
1525        if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1526                if (flags & ENQUEUE_WAKEUP)
1527                        task_contending(&p->dl, flags);
1528
1529                return;
1530        }
1531
1532        enqueue_dl_entity(&p->dl, pi_se, flags);
1533
1534        if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1535                enqueue_pushable_dl_task(rq, p);
1536}
1537
1538static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1539{
1540        dequeue_dl_entity(&p->dl);
1541        dequeue_pushable_dl_task(rq, p);
1542}
1543
1544static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1545{
1546        update_curr_dl(rq);
1547        __dequeue_task_dl(rq, p, flags);
1548
1549        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1550                sub_running_bw(&p->dl, &rq->dl);
1551                sub_rq_bw(&p->dl, &rq->dl);
1552        }
1553
1554        /*
1555         * This check allows to start the inactive timer (or to immediately
1556         * decrease the active utilization, if needed) in two cases:
1557         * when the task blocks and when it is terminating
1558         * (p->state == TASK_DEAD). We can handle the two cases in the same
1559         * way, because from GRUB's point of view the same thing is happening
1560         * (the task moves from "active contending" to "active non contending"
1561         * or "inactive")
1562         */
1563        if (flags & DEQUEUE_SLEEP)
1564                task_non_contending(p);
1565}
1566
1567/*
1568 * Yield task semantic for -deadline tasks is:
1569 *
1570 *   get off from the CPU until our next instance, with
1571 *   a new runtime. This is of little use now, since we
1572 *   don't have a bandwidth reclaiming mechanism. Anyway,
1573 *   bandwidth reclaiming is planned for the future, and
1574 *   yield_task_dl will indicate that some spare budget
1575 *   is available for other task instances to use it.
1576 */
1577static void yield_task_dl(struct rq *rq)
1578{
1579        /*
1580         * We make the task go to sleep until its current deadline by
1581         * forcing its runtime to zero. This way, update_curr_dl() stops
1582         * it and the bandwidth timer will wake it up and will give it
1583         * new scheduling parameters (thanks to dl_yielded=1).
1584         */
1585        rq->curr->dl.dl_yielded = 1;
1586
1587        update_rq_clock(rq);
1588        update_curr_dl(rq);
1589        /*
1590         * Tell update_rq_clock() that we've just updated,
1591         * so we don't do microscopic update in schedule()
1592         * and double the fastpath cost.
1593         */
1594        rq_clock_skip_update(rq);
1595}
1596
1597#ifdef CONFIG_SMP
1598
1599static int find_later_rq(struct task_struct *task);
1600
1601static int
1602select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1603{
1604        struct task_struct *curr;
1605        struct rq *rq;
1606
1607        if (sd_flag != SD_BALANCE_WAKE)
1608                goto out;
1609
1610        rq = cpu_rq(cpu);
1611
1612        rcu_read_lock();
1613        curr = READ_ONCE(rq->curr); /* unlocked access */
1614
1615        /*
1616         * If we are dealing with a -deadline task, we must
1617         * decide where to wake it up.
1618         * If it has a later deadline and the current task
1619         * on this rq can't move (provided the waking task
1620         * can!) we prefer to send it somewhere else. On the
1621         * other hand, if it has a shorter deadline, we
1622         * try to make it stay here, it might be important.
1623         */
1624        if (unlikely(dl_task(curr)) &&
1625            (curr->nr_cpus_allowed < 2 ||
1626             !dl_entity_preempt(&p->dl, &curr->dl)) &&
1627            (p->nr_cpus_allowed > 1)) {
1628                int target = find_later_rq(p);
1629
1630                if (target != -1 &&
1631                                (dl_time_before(p->dl.deadline,
1632                                        cpu_rq(target)->dl.earliest_dl.curr) ||
1633                                (cpu_rq(target)->dl.dl_nr_running == 0)))
1634                        cpu = target;
1635        }
1636        rcu_read_unlock();
1637
1638out:
1639        return cpu;
1640}
1641
1642static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1643{
1644        struct rq *rq;
1645
1646        if (p->state != TASK_WAKING)
1647                return;
1648
1649        rq = task_rq(p);
1650        /*
1651         * Since p->state == TASK_WAKING, set_task_cpu() has been called
1652         * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1653         * rq->lock is not... So, lock it
1654         */
1655        raw_spin_lock(&rq->lock);
1656        if (p->dl.dl_non_contending) {
1657                sub_running_bw(&p->dl, &rq->dl);
1658                p->dl.dl_non_contending = 0;
1659                /*
1660                 * If the timer handler is currently running and the
1661                 * timer cannot be cancelled, inactive_task_timer()
1662                 * will see that dl_not_contending is not set, and
1663                 * will not touch the rq's active utilization,
1664                 * so we are still safe.
1665                 */
1666                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1667                        put_task_struct(p);
1668        }
1669        sub_rq_bw(&p->dl, &rq->dl);
1670        raw_spin_unlock(&rq->lock);
1671}
1672
1673static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1674{
1675        /*
1676         * Current can't be migrated, useless to reschedule,
1677         * let's hope p can move out.
1678         */
1679        if (rq->curr->nr_cpus_allowed == 1 ||
1680            !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1681                return;
1682
1683        /*
1684         * p is migratable, so let's not schedule it and
1685         * see if it is pushed or pulled somewhere else.
1686         */
1687        if (p->nr_cpus_allowed != 1 &&
1688            cpudl_find(&rq->rd->cpudl, p, NULL))
1689                return;
1690
1691        resched_curr(rq);
1692}
1693
1694static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1695{
1696        if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1697                /*
1698                 * This is OK, because current is on_cpu, which avoids it being
1699                 * picked for load-balance and preemption/IRQs are still
1700                 * disabled avoiding further scheduler activity on it and we've
1701                 * not yet started the picking loop.
1702                 */
1703                rq_unpin_lock(rq, rf);
1704                pull_dl_task(rq);
1705                rq_repin_lock(rq, rf);
1706        }
1707
1708        return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1709}
1710#endif /* CONFIG_SMP */
1711
1712/*
1713 * Only called when both the current and waking task are -deadline
1714 * tasks.
1715 */
1716static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1717                                  int flags)
1718{
1719        if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1720                resched_curr(rq);
1721                return;
1722        }
1723
1724#ifdef CONFIG_SMP
1725        /*
1726         * In the unlikely case current and p have the same deadline
1727         * let us try to decide what's the best thing to do...
1728         */
1729        if ((p->dl.deadline == rq->curr->dl.deadline) &&
1730            !test_tsk_need_resched(rq->curr))
1731                check_preempt_equal_dl(rq, p);
1732#endif /* CONFIG_SMP */
1733}
1734
1735#ifdef CONFIG_SCHED_HRTICK
1736static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1737{
1738        hrtick_start(rq, p->dl.runtime);
1739}
1740#else /* !CONFIG_SCHED_HRTICK */
1741static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1742{
1743}
1744#endif
1745
1746static void set_next_task_dl(struct rq *rq, struct task_struct *p)
1747{
1748        p->se.exec_start = rq_clock_task(rq);
1749
1750        /* You can't push away the running task */
1751        dequeue_pushable_dl_task(rq, p);
1752
1753        if (hrtick_enabled(rq))
1754                start_hrtick_dl(rq, p);
1755
1756        if (rq->curr->sched_class != &dl_sched_class)
1757                update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1758
1759        deadline_queue_push_tasks(rq);
1760}
1761
1762static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1763                                                   struct dl_rq *dl_rq)
1764{
1765        struct rb_node *left = rb_first_cached(&dl_rq->root);
1766
1767        if (!left)
1768                return NULL;
1769
1770        return rb_entry(left, struct sched_dl_entity, rb_node);
1771}
1772
1773static struct task_struct *
1774pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1775{
1776        struct sched_dl_entity *dl_se;
1777        struct dl_rq *dl_rq = &rq->dl;
1778        struct task_struct *p;
1779
1780        WARN_ON_ONCE(prev || rf);
1781
1782        if (!sched_dl_runnable(rq))
1783                return NULL;
1784
1785        dl_se = pick_next_dl_entity(rq, dl_rq);
1786        BUG_ON(!dl_se);
1787        p = dl_task_of(dl_se);
1788        set_next_task_dl(rq, p);
1789        return p;
1790}
1791
1792static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1793{
1794        update_curr_dl(rq);
1795
1796        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1797        if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1798                enqueue_pushable_dl_task(rq, p);
1799}
1800
1801/*
1802 * scheduler tick hitting a task of our scheduling class.
1803 *
1804 * NOTE: This function can be called remotely by the tick offload that
1805 * goes along full dynticks. Therefore no local assumption can be made
1806 * and everything must be accessed through the @rq and @curr passed in
1807 * parameters.
1808 */
1809static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1810{
1811        update_curr_dl(rq);
1812
1813        update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1814        /*
1815         * Even when we have runtime, update_curr_dl() might have resulted in us
1816         * not being the leftmost task anymore. In that case NEED_RESCHED will
1817         * be set and schedule() will start a new hrtick for the next task.
1818         */
1819        if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1820            is_leftmost(p, &rq->dl))
1821                start_hrtick_dl(rq, p);
1822}
1823
1824static void task_fork_dl(struct task_struct *p)
1825{
1826        /*
1827         * SCHED_DEADLINE tasks cannot fork and this is achieved through
1828         * sched_fork()
1829         */
1830}
1831
1832#ifdef CONFIG_SMP
1833
1834/* Only try algorithms three times */
1835#define DL_MAX_TRIES 3
1836
1837static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1838{
1839        if (!task_running(rq, p) &&
1840            cpumask_test_cpu(cpu, p->cpus_ptr))
1841                return 1;
1842        return 0;
1843}
1844
1845/*
1846 * Return the earliest pushable rq's task, which is suitable to be executed
1847 * on the CPU, NULL otherwise:
1848 */
1849static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1850{
1851        struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1852        struct task_struct *p = NULL;
1853
1854        if (!has_pushable_dl_tasks(rq))
1855                return NULL;
1856
1857next_node:
1858        if (next_node) {
1859                p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1860
1861                if (pick_dl_task(rq, p, cpu))
1862                        return p;
1863
1864                next_node = rb_next(next_node);
1865                goto next_node;
1866        }
1867
1868        return NULL;
1869}
1870
1871static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1872
1873static int find_later_rq(struct task_struct *task)
1874{
1875        struct sched_domain *sd;
1876        struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1877        int this_cpu = smp_processor_id();
1878        int cpu = task_cpu(task);
1879
1880        /* Make sure the mask is initialized first */
1881        if (unlikely(!later_mask))
1882                return -1;
1883
1884        if (task->nr_cpus_allowed == 1)
1885                return -1;
1886
1887        /*
1888         * We have to consider system topology and task affinity
1889         * first, then we can look for a suitable CPU.
1890         */
1891        if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1892                return -1;
1893
1894        /*
1895         * If we are here, some targets have been found, including
1896         * the most suitable which is, among the runqueues where the
1897         * current tasks have later deadlines than the task's one, the
1898         * rq with the latest possible one.
1899         *
1900         * Now we check how well this matches with task's
1901         * affinity and system topology.
1902         *
1903         * The last CPU where the task run is our first
1904         * guess, since it is most likely cache-hot there.
1905         */
1906        if (cpumask_test_cpu(cpu, later_mask))
1907                return cpu;
1908        /*
1909         * Check if this_cpu is to be skipped (i.e., it is
1910         * not in the mask) or not.
1911         */
1912        if (!cpumask_test_cpu(this_cpu, later_mask))
1913                this_cpu = -1;
1914
1915        rcu_read_lock();
1916        for_each_domain(cpu, sd) {
1917                if (sd->flags & SD_WAKE_AFFINE) {
1918                        int best_cpu;
1919
1920                        /*
1921                         * If possible, preempting this_cpu is
1922                         * cheaper than migrating.
1923                         */
1924                        if (this_cpu != -1 &&
1925                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1926                                rcu_read_unlock();
1927                                return this_cpu;
1928                        }
1929
1930                        best_cpu = cpumask_first_and(later_mask,
1931                                                        sched_domain_span(sd));
1932                        /*
1933                         * Last chance: if a CPU being in both later_mask
1934                         * and current sd span is valid, that becomes our
1935                         * choice. Of course, the latest possible CPU is
1936                         * already under consideration through later_mask.
1937                         */
1938                        if (best_cpu < nr_cpu_ids) {
1939                                rcu_read_unlock();
1940                                return best_cpu;
1941                        }
1942                }
1943        }
1944        rcu_read_unlock();
1945
1946        /*
1947         * At this point, all our guesses failed, we just return
1948         * 'something', and let the caller sort the things out.
1949         */
1950        if (this_cpu != -1)
1951                return this_cpu;
1952
1953        cpu = cpumask_any(later_mask);
1954        if (cpu < nr_cpu_ids)
1955                return cpu;
1956
1957        return -1;
1958}
1959
1960/* Locks the rq it finds */
1961static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1962{
1963        struct rq *later_rq = NULL;
1964        int tries;
1965        int cpu;
1966
1967        for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1968                cpu = find_later_rq(task);
1969
1970                if ((cpu == -1) || (cpu == rq->cpu))
1971                        break;
1972
1973                later_rq = cpu_rq(cpu);
1974
1975                if (later_rq->dl.dl_nr_running &&
1976                    !dl_time_before(task->dl.deadline,
1977                                        later_rq->dl.earliest_dl.curr)) {
1978                        /*
1979                         * Target rq has tasks of equal or earlier deadline,
1980                         * retrying does not release any lock and is unlikely
1981                         * to yield a different result.
1982                         */
1983                        later_rq = NULL;
1984                        break;
1985                }
1986
1987                /* Retry if something changed. */
1988                if (double_lock_balance(rq, later_rq)) {
1989                        if (unlikely(task_rq(task) != rq ||
1990                                     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
1991                                     task_running(rq, task) ||
1992                                     !dl_task(task) ||
1993                                     !task_on_rq_queued(task))) {
1994                                double_unlock_balance(rq, later_rq);
1995                                later_rq = NULL;
1996                                break;
1997                        }
1998                }
1999
2000                /*
2001                 * If the rq we found has no -deadline task, or
2002                 * its earliest one has a later deadline than our
2003                 * task, the rq is a good one.
2004                 */
2005                if (!later_rq->dl.dl_nr_running ||
2006                    dl_time_before(task->dl.deadline,
2007                                   later_rq->dl.earliest_dl.curr))
2008                        break;
2009
2010                /* Otherwise we try again. */
2011                double_unlock_balance(rq, later_rq);
2012                later_rq = NULL;
2013        }
2014
2015        return later_rq;
2016}
2017
2018static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2019{
2020        struct task_struct *p;
2021
2022        if (!has_pushable_dl_tasks(rq))
2023                return NULL;
2024
2025        p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2026                     struct task_struct, pushable_dl_tasks);
2027
2028        BUG_ON(rq->cpu != task_cpu(p));
2029        BUG_ON(task_current(rq, p));
2030        BUG_ON(p->nr_cpus_allowed <= 1);
2031
2032        BUG_ON(!task_on_rq_queued(p));
2033        BUG_ON(!dl_task(p));
2034
2035        return p;
2036}
2037
2038/*
2039 * See if the non running -deadline tasks on this rq
2040 * can be sent to some other CPU where they can preempt
2041 * and start executing.
2042 */
2043static int push_dl_task(struct rq *rq)
2044{
2045        struct task_struct *next_task;
2046        struct rq *later_rq;
2047        int ret = 0;
2048
2049        if (!rq->dl.overloaded)
2050                return 0;
2051
2052        next_task = pick_next_pushable_dl_task(rq);
2053        if (!next_task)
2054                return 0;
2055
2056retry:
2057        if (WARN_ON(next_task == rq->curr))
2058                return 0;
2059
2060        /*
2061         * If next_task preempts rq->curr, and rq->curr
2062         * can move away, it makes sense to just reschedule
2063         * without going further in pushing next_task.
2064         */
2065        if (dl_task(rq->curr) &&
2066            dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2067            rq->curr->nr_cpus_allowed > 1) {
2068                resched_curr(rq);
2069                return 0;
2070        }
2071
2072        /* We might release rq lock */
2073        get_task_struct(next_task);
2074
2075        /* Will lock the rq it'll find */
2076        later_rq = find_lock_later_rq(next_task, rq);
2077        if (!later_rq) {
2078                struct task_struct *task;
2079
2080                /*
2081                 * We must check all this again, since
2082                 * find_lock_later_rq releases rq->lock and it is
2083                 * then possible that next_task has migrated.
2084                 */
2085                task = pick_next_pushable_dl_task(rq);
2086                if (task == next_task) {
2087                        /*
2088                         * The task is still there. We don't try
2089                         * again, some other CPU will pull it when ready.
2090                         */
2091                        goto out;
2092                }
2093
2094                if (!task)
2095                        /* No more tasks */
2096                        goto out;
2097
2098                put_task_struct(next_task);
2099                next_task = task;
2100                goto retry;
2101        }
2102
2103        deactivate_task(rq, next_task, 0);
2104        set_task_cpu(next_task, later_rq->cpu);
2105
2106        /*
2107         * Update the later_rq clock here, because the clock is used
2108         * by the cpufreq_update_util() inside __add_running_bw().
2109         */
2110        update_rq_clock(later_rq);
2111        activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2112        ret = 1;
2113
2114        resched_curr(later_rq);
2115
2116        double_unlock_balance(rq, later_rq);
2117
2118out:
2119        put_task_struct(next_task);
2120
2121        return ret;
2122}
2123
2124static void push_dl_tasks(struct rq *rq)
2125{
2126        /* push_dl_task() will return true if it moved a -deadline task */
2127        while (push_dl_task(rq))
2128                ;
2129}
2130
2131static void pull_dl_task(struct rq *this_rq)
2132{
2133        int this_cpu = this_rq->cpu, cpu;
2134        struct task_struct *p;
2135        bool resched = false;
2136        struct rq *src_rq;
2137        u64 dmin = LONG_MAX;
2138
2139        if (likely(!dl_overloaded(this_rq)))
2140                return;
2141
2142        /*
2143         * Match the barrier from dl_set_overloaded; this guarantees that if we
2144         * see overloaded we must also see the dlo_mask bit.
2145         */
2146        smp_rmb();
2147
2148        for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2149                if (this_cpu == cpu)
2150                        continue;
2151
2152                src_rq = cpu_rq(cpu);
2153
2154                /*
2155                 * It looks racy, abd it is! However, as in sched_rt.c,
2156                 * we are fine with this.
2157                 */
2158                if (this_rq->dl.dl_nr_running &&
2159                    dl_time_before(this_rq->dl.earliest_dl.curr,
2160                                   src_rq->dl.earliest_dl.next))
2161                        continue;
2162
2163                /* Might drop this_rq->lock */
2164                double_lock_balance(this_rq, src_rq);
2165
2166                /*
2167                 * If there are no more pullable tasks on the
2168                 * rq, we're done with it.
2169                 */
2170                if (src_rq->dl.dl_nr_running <= 1)
2171                        goto skip;
2172
2173                p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2174
2175                /*
2176                 * We found a task to be pulled if:
2177                 *  - it preempts our current (if there's one),
2178                 *  - it will preempt the last one we pulled (if any).
2179                 */
2180                if (p && dl_time_before(p->dl.deadline, dmin) &&
2181                    (!this_rq->dl.dl_nr_running ||
2182                     dl_time_before(p->dl.deadline,
2183                                    this_rq->dl.earliest_dl.curr))) {
2184                        WARN_ON(p == src_rq->curr);
2185                        WARN_ON(!task_on_rq_queued(p));
2186
2187                        /*
2188                         * Then we pull iff p has actually an earlier
2189                         * deadline than the current task of its runqueue.
2190                         */
2191                        if (dl_time_before(p->dl.deadline,
2192                                           src_rq->curr->dl.deadline))
2193                                goto skip;
2194
2195                        resched = true;
2196
2197                        deactivate_task(src_rq, p, 0);
2198                        set_task_cpu(p, this_cpu);
2199                        activate_task(this_rq, p, 0);
2200                        dmin = p->dl.deadline;
2201
2202                        /* Is there any other task even earlier? */
2203                }
2204skip:
2205                double_unlock_balance(this_rq, src_rq);
2206        }
2207
2208        if (resched)
2209                resched_curr(this_rq);
2210}
2211
2212/*
2213 * Since the task is not running and a reschedule is not going to happen
2214 * anytime soon on its runqueue, we try pushing it away now.
2215 */
2216static void task_woken_dl(struct rq *rq, struct task_struct *p)
2217{
2218        if (!task_running(rq, p) &&
2219            !test_tsk_need_resched(rq->curr) &&
2220            p->nr_cpus_allowed > 1 &&
2221            dl_task(rq->curr) &&
2222            (rq->curr->nr_cpus_allowed < 2 ||
2223             !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2224                push_dl_tasks(rq);
2225        }
2226}
2227
2228static void set_cpus_allowed_dl(struct task_struct *p,
2229                                const struct cpumask *new_mask)
2230{
2231        struct root_domain *src_rd;
2232        struct rq *rq;
2233
2234        BUG_ON(!dl_task(p));
2235
2236        rq = task_rq(p);
2237        src_rd = rq->rd;
2238        /*
2239         * Migrating a SCHED_DEADLINE task between exclusive
2240         * cpusets (different root_domains) entails a bandwidth
2241         * update. We already made space for us in the destination
2242         * domain (see cpuset_can_attach()).
2243         */
2244        if (!cpumask_intersects(src_rd->span, new_mask)) {
2245                struct dl_bw *src_dl_b;
2246
2247                src_dl_b = dl_bw_of(cpu_of(rq));
2248                /*
2249                 * We now free resources of the root_domain we are migrating
2250                 * off. In the worst case, sched_setattr() may temporary fail
2251                 * until we complete the update.
2252                 */
2253                raw_spin_lock(&src_dl_b->lock);
2254                __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2255                raw_spin_unlock(&src_dl_b->lock);
2256        }
2257
2258        set_cpus_allowed_common(p, new_mask);
2259}
2260
2261/* Assumes rq->lock is held */
2262static void rq_online_dl(struct rq *rq)
2263{
2264        if (rq->dl.overloaded)
2265                dl_set_overload(rq);
2266
2267        cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2268        if (rq->dl.dl_nr_running > 0)
2269                cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2270}
2271
2272/* Assumes rq->lock is held */
2273static void rq_offline_dl(struct rq *rq)
2274{
2275        if (rq->dl.overloaded)
2276                dl_clear_overload(rq);
2277
2278        cpudl_clear(&rq->rd->cpudl, rq->cpu);
2279        cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2280}
2281
2282void __init init_sched_dl_class(void)
2283{
2284        unsigned int i;
2285
2286        for_each_possible_cpu(i)
2287                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2288                                        GFP_KERNEL, cpu_to_node(i));
2289}
2290
2291void dl_add_task_root_domain(struct task_struct *p)
2292{
2293        struct rq_flags rf;
2294        struct rq *rq;
2295        struct dl_bw *dl_b;
2296
2297        rq = task_rq_lock(p, &rf);
2298        if (!dl_task(p))
2299                goto unlock;
2300
2301        dl_b = &rq->rd->dl_bw;
2302        raw_spin_lock(&dl_b->lock);
2303
2304        __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2305
2306        raw_spin_unlock(&dl_b->lock);
2307
2308unlock:
2309        task_rq_unlock(rq, p, &rf);
2310}
2311
2312void dl_clear_root_domain(struct root_domain *rd)
2313{
2314        unsigned long flags;
2315
2316        raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2317        rd->dl_bw.total_bw = 0;
2318        raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2319}
2320
2321#endif /* CONFIG_SMP */
2322
2323static void switched_from_dl(struct rq *rq, struct task_struct *p)
2324{
2325        /*
2326         * task_non_contending() can start the "inactive timer" (if the 0-lag
2327         * time is in the future). If the task switches back to dl before
2328         * the "inactive timer" fires, it can continue to consume its current
2329         * runtime using its current deadline. If it stays outside of
2330         * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2331         * will reset the task parameters.
2332         */
2333        if (task_on_rq_queued(p) && p->dl.dl_runtime)
2334                task_non_contending(p);
2335
2336        if (!task_on_rq_queued(p)) {
2337                /*
2338                 * Inactive timer is armed. However, p is leaving DEADLINE and
2339                 * might migrate away from this rq while continuing to run on
2340                 * some other class. We need to remove its contribution from
2341                 * this rq running_bw now, or sub_rq_bw (below) will complain.
2342                 */
2343                if (p->dl.dl_non_contending)
2344                        sub_running_bw(&p->dl, &rq->dl);
2345                sub_rq_bw(&p->dl, &rq->dl);
2346        }
2347
2348        /*
2349         * We cannot use inactive_task_timer() to invoke sub_running_bw()
2350         * at the 0-lag time, because the task could have been migrated
2351         * while SCHED_OTHER in the meanwhile.
2352         */
2353        if (p->dl.dl_non_contending)
2354                p->dl.dl_non_contending = 0;
2355
2356        /*
2357         * Since this might be the only -deadline task on the rq,
2358         * this is the right place to try to pull some other one
2359         * from an overloaded CPU, if any.
2360         */
2361        if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2362                return;
2363
2364        deadline_queue_pull_task(rq);
2365}
2366
2367/*
2368 * When switching to -deadline, we may overload the rq, then
2369 * we try to push someone off, if possible.
2370 */
2371static void switched_to_dl(struct rq *rq, struct task_struct *p)
2372{
2373        if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2374                put_task_struct(p);
2375
2376        /* If p is not queued we will update its parameters at next wakeup. */
2377        if (!task_on_rq_queued(p)) {
2378                add_rq_bw(&p->dl, &rq->dl);
2379
2380                return;
2381        }
2382
2383        if (rq->curr != p) {
2384#ifdef CONFIG_SMP
2385                if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2386                        deadline_queue_push_tasks(rq);
2387#endif
2388                if (dl_task(rq->curr))
2389                        check_preempt_curr_dl(rq, p, 0);
2390                else
2391                        resched_curr(rq);
2392        }
2393}
2394
2395/*
2396 * If the scheduling parameters of a -deadline task changed,
2397 * a push or pull operation might be needed.
2398 */
2399static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2400                            int oldprio)
2401{
2402        if (task_on_rq_queued(p) || rq->curr == p) {
2403#ifdef CONFIG_SMP
2404                /*
2405                 * This might be too much, but unfortunately
2406                 * we don't have the old deadline value, and
2407                 * we can't argue if the task is increasing
2408                 * or lowering its prio, so...
2409                 */
2410                if (!rq->dl.overloaded)
2411                        deadline_queue_pull_task(rq);
2412
2413                /*
2414                 * If we now have a earlier deadline task than p,
2415                 * then reschedule, provided p is still on this
2416                 * runqueue.
2417                 */
2418                if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2419                        resched_curr(rq);
2420#else
2421                /*
2422                 * Again, we don't know if p has a earlier
2423                 * or later deadline, so let's blindly set a
2424                 * (maybe not needed) rescheduling point.
2425                 */
2426                resched_curr(rq);
2427#endif /* CONFIG_SMP */
2428        }
2429}
2430
2431const struct sched_class dl_sched_class = {
2432        .next                   = &rt_sched_class,
2433        .enqueue_task           = enqueue_task_dl,
2434        .dequeue_task           = dequeue_task_dl,
2435        .yield_task             = yield_task_dl,
2436
2437        .check_preempt_curr     = check_preempt_curr_dl,
2438
2439        .pick_next_task         = pick_next_task_dl,
2440        .put_prev_task          = put_prev_task_dl,
2441        .set_next_task          = set_next_task_dl,
2442
2443#ifdef CONFIG_SMP
2444        .balance                = balance_dl,
2445        .select_task_rq         = select_task_rq_dl,
2446        .migrate_task_rq        = migrate_task_rq_dl,
2447        .set_cpus_allowed       = set_cpus_allowed_dl,
2448        .rq_online              = rq_online_dl,
2449        .rq_offline             = rq_offline_dl,
2450        .task_woken             = task_woken_dl,
2451#endif
2452
2453        .task_tick              = task_tick_dl,
2454        .task_fork              = task_fork_dl,
2455
2456        .prio_changed           = prio_changed_dl,
2457        .switched_from          = switched_from_dl,
2458        .switched_to            = switched_to_dl,
2459
2460        .update_curr            = update_curr_dl,
2461};
2462
2463int sched_dl_global_validate(void)
2464{
2465        u64 runtime = global_rt_runtime();
2466        u64 period = global_rt_period();
2467        u64 new_bw = to_ratio(period, runtime);
2468        struct dl_bw *dl_b;
2469        int cpu, ret = 0;
2470        unsigned long flags;
2471
2472        /*
2473         * Here we want to check the bandwidth not being set to some
2474         * value smaller than the currently allocated bandwidth in
2475         * any of the root_domains.
2476         *
2477         * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2478         * cycling on root_domains... Discussion on different/better
2479         * solutions is welcome!
2480         */
2481        for_each_possible_cpu(cpu) {
2482                rcu_read_lock_sched();
2483                dl_b = dl_bw_of(cpu);
2484
2485                raw_spin_lock_irqsave(&dl_b->lock, flags);
2486                if (new_bw < dl_b->total_bw)
2487                        ret = -EBUSY;
2488                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2489
2490                rcu_read_unlock_sched();
2491
2492                if (ret)
2493                        break;
2494        }
2495
2496        return ret;
2497}
2498
2499void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2500{
2501        if (global_rt_runtime() == RUNTIME_INF) {
2502                dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2503                dl_rq->extra_bw = 1 << BW_SHIFT;
2504        } else {
2505                dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2506                          global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2507                dl_rq->extra_bw = to_ratio(global_rt_period(),
2508                                                    global_rt_runtime());
2509        }
2510}
2511
2512void sched_dl_do_global(void)
2513{
2514        u64 new_bw = -1;
2515        struct dl_bw *dl_b;
2516        int cpu;
2517        unsigned long flags;
2518
2519        def_dl_bandwidth.dl_period = global_rt_period();
2520        def_dl_bandwidth.dl_runtime = global_rt_runtime();
2521
2522        if (global_rt_runtime() != RUNTIME_INF)
2523                new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2524
2525        /*
2526         * FIXME: As above...
2527         */
2528        for_each_possible_cpu(cpu) {
2529                rcu_read_lock_sched();
2530                dl_b = dl_bw_of(cpu);
2531
2532                raw_spin_lock_irqsave(&dl_b->lock, flags);
2533                dl_b->bw = new_bw;
2534                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2535
2536                rcu_read_unlock_sched();
2537                init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2538        }
2539}
2540
2541/*
2542 * We must be sure that accepting a new task (or allowing changing the
2543 * parameters of an existing one) is consistent with the bandwidth
2544 * constraints. If yes, this function also accordingly updates the currently
2545 * allocated bandwidth to reflect the new situation.
2546 *
2547 * This function is called while holding p's rq->lock.
2548 */
2549int sched_dl_overflow(struct task_struct *p, int policy,
2550                      const struct sched_attr *attr)
2551{
2552        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2553        u64 period = attr->sched_period ?: attr->sched_deadline;
2554        u64 runtime = attr->sched_runtime;
2555        u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2556        int cpus, err = -1;
2557
2558        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2559                return 0;
2560
2561        /* !deadline task may carry old deadline bandwidth */
2562        if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2563                return 0;
2564
2565        /*
2566         * Either if a task, enters, leave, or stays -deadline but changes
2567         * its parameters, we may need to update accordingly the total
2568         * allocated bandwidth of the container.
2569         */
2570        raw_spin_lock(&dl_b->lock);
2571        cpus = dl_bw_cpus(task_cpu(p));
2572        if (dl_policy(policy) && !task_has_dl_policy(p) &&
2573            !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2574                if (hrtimer_active(&p->dl.inactive_timer))
2575                        __dl_sub(dl_b, p->dl.dl_bw, cpus);
2576                __dl_add(dl_b, new_bw, cpus);
2577                err = 0;
2578        } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2579                   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2580                /*
2581                 * XXX this is slightly incorrect: when the task
2582                 * utilization decreases, we should delay the total
2583                 * utilization change until the task's 0-lag point.
2584                 * But this would require to set the task's "inactive
2585                 * timer" when the task is not inactive.
2586                 */
2587                __dl_sub(dl_b, p->dl.dl_bw, cpus);
2588                __dl_add(dl_b, new_bw, cpus);
2589                dl_change_utilization(p, new_bw);
2590                err = 0;
2591        } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2592                /*
2593                 * Do not decrease the total deadline utilization here,
2594                 * switched_from_dl() will take care to do it at the correct
2595                 * (0-lag) time.
2596                 */
2597                err = 0;
2598        }
2599        raw_spin_unlock(&dl_b->lock);
2600
2601        return err;
2602}
2603
2604/*
2605 * This function initializes the sched_dl_entity of a newly becoming
2606 * SCHED_DEADLINE task.
2607 *
2608 * Only the static values are considered here, the actual runtime and the
2609 * absolute deadline will be properly calculated when the task is enqueued
2610 * for the first time with its new policy.
2611 */
2612void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2613{
2614        struct sched_dl_entity *dl_se = &p->dl;
2615
2616        dl_se->dl_runtime = attr->sched_runtime;
2617        dl_se->dl_deadline = attr->sched_deadline;
2618        dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2619        dl_se->flags = attr->sched_flags;
2620        dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2621        dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2622}
2623
2624void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2625{
2626        struct sched_dl_entity *dl_se = &p->dl;
2627
2628        attr->sched_priority = p->rt_priority;
2629        attr->sched_runtime = dl_se->dl_runtime;
2630        attr->sched_deadline = dl_se->dl_deadline;
2631        attr->sched_period = dl_se->dl_period;
2632        attr->sched_flags = dl_se->flags;
2633}
2634
2635/*
2636 * This function validates the new parameters of a -deadline task.
2637 * We ask for the deadline not being zero, and greater or equal
2638 * than the runtime, as well as the period of being zero or
2639 * greater than deadline. Furthermore, we have to be sure that
2640 * user parameters are above the internal resolution of 1us (we
2641 * check sched_runtime only since it is always the smaller one) and
2642 * below 2^63 ns (we have to check both sched_deadline and
2643 * sched_period, as the latter can be zero).
2644 */
2645bool __checkparam_dl(const struct sched_attr *attr)
2646{
2647        /* special dl tasks don't actually use any parameter */
2648        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2649                return true;
2650
2651        /* deadline != 0 */
2652        if (attr->sched_deadline == 0)
2653                return false;
2654
2655        /*
2656         * Since we truncate DL_SCALE bits, make sure we're at least
2657         * that big.
2658         */
2659        if (attr->sched_runtime < (1ULL << DL_SCALE))
2660                return false;
2661
2662        /*
2663         * Since we use the MSB for wrap-around and sign issues, make
2664         * sure it's not set (mind that period can be equal to zero).
2665         */
2666        if (attr->sched_deadline & (1ULL << 63) ||
2667            attr->sched_period & (1ULL << 63))
2668                return false;
2669
2670        /* runtime <= deadline <= period (if period != 0) */
2671        if ((attr->sched_period != 0 &&
2672             attr->sched_period < attr->sched_deadline) ||
2673            attr->sched_deadline < attr->sched_runtime)
2674                return false;
2675
2676        return true;
2677}
2678
2679/*
2680 * This function clears the sched_dl_entity static params.
2681 */
2682void __dl_clear_params(struct task_struct *p)
2683{
2684        struct sched_dl_entity *dl_se = &p->dl;
2685
2686        dl_se->dl_runtime               = 0;
2687        dl_se->dl_deadline              = 0;
2688        dl_se->dl_period                = 0;
2689        dl_se->flags                    = 0;
2690        dl_se->dl_bw                    = 0;
2691        dl_se->dl_density               = 0;
2692
2693        dl_se->dl_throttled             = 0;
2694        dl_se->dl_yielded               = 0;
2695        dl_se->dl_non_contending        = 0;
2696        dl_se->dl_overrun               = 0;
2697}
2698
2699bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2700{
2701        struct sched_dl_entity *dl_se = &p->dl;
2702
2703        if (dl_se->dl_runtime != attr->sched_runtime ||
2704            dl_se->dl_deadline != attr->sched_deadline ||
2705            dl_se->dl_period != attr->sched_period ||
2706            dl_se->flags != attr->sched_flags)
2707                return true;
2708
2709        return false;
2710}
2711
2712#ifdef CONFIG_SMP
2713int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2714{
2715        unsigned int dest_cpu;
2716        struct dl_bw *dl_b;
2717        bool overflow;
2718        int cpus, ret;
2719        unsigned long flags;
2720
2721        dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2722
2723        rcu_read_lock_sched();
2724        dl_b = dl_bw_of(dest_cpu);
2725        raw_spin_lock_irqsave(&dl_b->lock, flags);
2726        cpus = dl_bw_cpus(dest_cpu);
2727        overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2728        if (overflow) {
2729                ret = -EBUSY;
2730        } else {
2731                /*
2732                 * We reserve space for this task in the destination
2733                 * root_domain, as we can't fail after this point.
2734                 * We will free resources in the source root_domain
2735                 * later on (see set_cpus_allowed_dl()).
2736                 */
2737                __dl_add(dl_b, p->dl.dl_bw, cpus);
2738                ret = 0;
2739        }
2740        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2741        rcu_read_unlock_sched();
2742
2743        return ret;
2744}
2745
2746int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2747                                 const struct cpumask *trial)
2748{
2749        int ret = 1, trial_cpus;
2750        struct dl_bw *cur_dl_b;
2751        unsigned long flags;
2752
2753        rcu_read_lock_sched();
2754        cur_dl_b = dl_bw_of(cpumask_any(cur));
2755        trial_cpus = cpumask_weight(trial);
2756
2757        raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2758        if (cur_dl_b->bw != -1 &&
2759            cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2760                ret = 0;
2761        raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2762        rcu_read_unlock_sched();
2763
2764        return ret;
2765}
2766
2767bool dl_cpu_busy(unsigned int cpu)
2768{
2769        unsigned long flags;
2770        struct dl_bw *dl_b;
2771        bool overflow;
2772        int cpus;
2773
2774        rcu_read_lock_sched();
2775        dl_b = dl_bw_of(cpu);
2776        raw_spin_lock_irqsave(&dl_b->lock, flags);
2777        cpus = dl_bw_cpus(cpu);
2778        overflow = __dl_overflow(dl_b, cpus, 0, 0);
2779        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2780        rcu_read_unlock_sched();
2781
2782        return overflow;
2783}
2784#endif
2785
2786#ifdef CONFIG_SCHED_DEBUG
2787void print_dl_stats(struct seq_file *m, int cpu)
2788{
2789        print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2790}
2791#endif /* CONFIG_SCHED_DEBUG */
2792