linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *      Based on the original timer wheel code
  17 *
  18 *      Help, testing, suggestions, bugfixes, improvements were
  19 *      provided by:
  20 *
  21 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *      et. al.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
  41#include <linux/timer.h>
  42#include <linux/freezer.h>
  43#include <linux/compat.h>
  44
  45#include <linux/uaccess.h>
  46
  47#include <trace/events/timer.h>
  48
  49#include "tick-internal.h"
  50
  51/*
  52 * Masks for selecting the soft and hard context timers from
  53 * cpu_base->active
  54 */
  55#define MASK_SHIFT              (HRTIMER_BASE_MONOTONIC_SOFT)
  56#define HRTIMER_ACTIVE_HARD     ((1U << MASK_SHIFT) - 1)
  57#define HRTIMER_ACTIVE_SOFT     (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  58#define HRTIMER_ACTIVE_ALL      (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  59
  60/*
  61 * The timer bases:
  62 *
  63 * There are more clockids than hrtimer bases. Thus, we index
  64 * into the timer bases by the hrtimer_base_type enum. When trying
  65 * to reach a base using a clockid, hrtimer_clockid_to_base()
  66 * is used to convert from clockid to the proper hrtimer_base_type.
  67 */
  68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  69{
  70        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93                {
  94                        .index = HRTIMER_BASE_MONOTONIC_SOFT,
  95                        .clockid = CLOCK_MONOTONIC,
  96                        .get_time = &ktime_get,
  97                },
  98                {
  99                        .index = HRTIMER_BASE_REALTIME_SOFT,
 100                        .clockid = CLOCK_REALTIME,
 101                        .get_time = &ktime_get_real,
 102                },
 103                {
 104                        .index = HRTIMER_BASE_BOOTTIME_SOFT,
 105                        .clockid = CLOCK_BOOTTIME,
 106                        .get_time = &ktime_get_boottime,
 107                },
 108                {
 109                        .index = HRTIMER_BASE_TAI_SOFT,
 110                        .clockid = CLOCK_TAI,
 111                        .get_time = &ktime_get_clocktai,
 112                },
 113        }
 114};
 115
 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 117        /* Make sure we catch unsupported clockids */
 118        [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
 119
 120        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 121        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 122        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 123        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 124};
 125
 126/*
 127 * Functions and macros which are different for UP/SMP systems are kept in a
 128 * single place
 129 */
 130#ifdef CONFIG_SMP
 131
 132/*
 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 134 * such that hrtimer_callback_running() can unconditionally dereference
 135 * timer->base->cpu_base
 136 */
 137static struct hrtimer_cpu_base migration_cpu_base = {
 138        .clock_base = { { .cpu_base = &migration_cpu_base, }, },
 139};
 140
 141#define migration_base  migration_cpu_base.clock_base[0]
 142
 143static inline bool is_migration_base(struct hrtimer_clock_base *base)
 144{
 145        return base == &migration_base;
 146}
 147
 148/*
 149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 150 * means that all timers which are tied to this base via timer->base are
 151 * locked, and the base itself is locked too.
 152 *
 153 * So __run_timers/migrate_timers can safely modify all timers which could
 154 * be found on the lists/queues.
 155 *
 156 * When the timer's base is locked, and the timer removed from list, it is
 157 * possible to set timer->base = &migration_base and drop the lock: the timer
 158 * remains locked.
 159 */
 160static
 161struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 162                                             unsigned long *flags)
 163{
 164        struct hrtimer_clock_base *base;
 165
 166        for (;;) {
 167                base = READ_ONCE(timer->base);
 168                if (likely(base != &migration_base)) {
 169                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 170                        if (likely(base == timer->base))
 171                                return base;
 172                        /* The timer has migrated to another CPU: */
 173                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 174                }
 175                cpu_relax();
 176        }
 177}
 178
 179/*
 180 * We do not migrate the timer when it is expiring before the next
 181 * event on the target cpu. When high resolution is enabled, we cannot
 182 * reprogram the target cpu hardware and we would cause it to fire
 183 * late. To keep it simple, we handle the high resolution enabled and
 184 * disabled case similar.
 185 *
 186 * Called with cpu_base->lock of target cpu held.
 187 */
 188static int
 189hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 190{
 191        ktime_t expires;
 192
 193        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 194        return expires < new_base->cpu_base->expires_next;
 195}
 196
 197static inline
 198struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 199                                         int pinned)
 200{
 201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 202        if (static_branch_likely(&timers_migration_enabled) && !pinned)
 203                return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 204#endif
 205        return base;
 206}
 207
 208/*
 209 * We switch the timer base to a power-optimized selected CPU target,
 210 * if:
 211 *      - NO_HZ_COMMON is enabled
 212 *      - timer migration is enabled
 213 *      - the timer callback is not running
 214 *      - the timer is not the first expiring timer on the new target
 215 *
 216 * If one of the above requirements is not fulfilled we move the timer
 217 * to the current CPU or leave it on the previously assigned CPU if
 218 * the timer callback is currently running.
 219 */
 220static inline struct hrtimer_clock_base *
 221switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 222                    int pinned)
 223{
 224        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 225        struct hrtimer_clock_base *new_base;
 226        int basenum = base->index;
 227
 228        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 229        new_cpu_base = get_target_base(this_cpu_base, pinned);
 230again:
 231        new_base = &new_cpu_base->clock_base[basenum];
 232
 233        if (base != new_base) {
 234                /*
 235                 * We are trying to move timer to new_base.
 236                 * However we can't change timer's base while it is running,
 237                 * so we keep it on the same CPU. No hassle vs. reprogramming
 238                 * the event source in the high resolution case. The softirq
 239                 * code will take care of this when the timer function has
 240                 * completed. There is no conflict as we hold the lock until
 241                 * the timer is enqueued.
 242                 */
 243                if (unlikely(hrtimer_callback_running(timer)))
 244                        return base;
 245
 246                /* See the comment in lock_hrtimer_base() */
 247                WRITE_ONCE(timer->base, &migration_base);
 248                raw_spin_unlock(&base->cpu_base->lock);
 249                raw_spin_lock(&new_base->cpu_base->lock);
 250
 251                if (new_cpu_base != this_cpu_base &&
 252                    hrtimer_check_target(timer, new_base)) {
 253                        raw_spin_unlock(&new_base->cpu_base->lock);
 254                        raw_spin_lock(&base->cpu_base->lock);
 255                        new_cpu_base = this_cpu_base;
 256                        WRITE_ONCE(timer->base, base);
 257                        goto again;
 258                }
 259                WRITE_ONCE(timer->base, new_base);
 260        } else {
 261                if (new_cpu_base != this_cpu_base &&
 262                    hrtimer_check_target(timer, new_base)) {
 263                        new_cpu_base = this_cpu_base;
 264                        goto again;
 265                }
 266        }
 267        return new_base;
 268}
 269
 270#else /* CONFIG_SMP */
 271
 272static inline bool is_migration_base(struct hrtimer_clock_base *base)
 273{
 274        return false;
 275}
 276
 277static inline struct hrtimer_clock_base *
 278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 279{
 280        struct hrtimer_clock_base *base = timer->base;
 281
 282        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 283
 284        return base;
 285}
 286
 287# define switch_hrtimer_base(t, b, p)   (b)
 288
 289#endif  /* !CONFIG_SMP */
 290
 291/*
 292 * Functions for the union type storage format of ktime_t which are
 293 * too large for inlining:
 294 */
 295#if BITS_PER_LONG < 64
 296/*
 297 * Divide a ktime value by a nanosecond value
 298 */
 299s64 __ktime_divns(const ktime_t kt, s64 div)
 300{
 301        int sft = 0;
 302        s64 dclc;
 303        u64 tmp;
 304
 305        dclc = ktime_to_ns(kt);
 306        tmp = dclc < 0 ? -dclc : dclc;
 307
 308        /* Make sure the divisor is less than 2^32: */
 309        while (div >> 32) {
 310                sft++;
 311                div >>= 1;
 312        }
 313        tmp >>= sft;
 314        do_div(tmp, (unsigned long) div);
 315        return dclc < 0 ? -tmp : tmp;
 316}
 317EXPORT_SYMBOL_GPL(__ktime_divns);
 318#endif /* BITS_PER_LONG >= 64 */
 319
 320/*
 321 * Add two ktime values and do a safety check for overflow:
 322 */
 323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 324{
 325        ktime_t res = ktime_add_unsafe(lhs, rhs);
 326
 327        /*
 328         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 329         * return to user space in a timespec:
 330         */
 331        if (res < 0 || res < lhs || res < rhs)
 332                res = ktime_set(KTIME_SEC_MAX, 0);
 333
 334        return res;
 335}
 336
 337EXPORT_SYMBOL_GPL(ktime_add_safe);
 338
 339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 340
 341static struct debug_obj_descr hrtimer_debug_descr;
 342
 343static void *hrtimer_debug_hint(void *addr)
 344{
 345        return ((struct hrtimer *) addr)->function;
 346}
 347
 348/*
 349 * fixup_init is called when:
 350 * - an active object is initialized
 351 */
 352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 353{
 354        struct hrtimer *timer = addr;
 355
 356        switch (state) {
 357        case ODEBUG_STATE_ACTIVE:
 358                hrtimer_cancel(timer);
 359                debug_object_init(timer, &hrtimer_debug_descr);
 360                return true;
 361        default:
 362                return false;
 363        }
 364}
 365
 366/*
 367 * fixup_activate is called when:
 368 * - an active object is activated
 369 * - an unknown non-static object is activated
 370 */
 371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 372{
 373        switch (state) {
 374        case ODEBUG_STATE_ACTIVE:
 375                WARN_ON(1);
 376                /* fall through */
 377        default:
 378                return false;
 379        }
 380}
 381
 382/*
 383 * fixup_free is called when:
 384 * - an active object is freed
 385 */
 386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 387{
 388        struct hrtimer *timer = addr;
 389
 390        switch (state) {
 391        case ODEBUG_STATE_ACTIVE:
 392                hrtimer_cancel(timer);
 393                debug_object_free(timer, &hrtimer_debug_descr);
 394                return true;
 395        default:
 396                return false;
 397        }
 398}
 399
 400static struct debug_obj_descr hrtimer_debug_descr = {
 401        .name           = "hrtimer",
 402        .debug_hint     = hrtimer_debug_hint,
 403        .fixup_init     = hrtimer_fixup_init,
 404        .fixup_activate = hrtimer_fixup_activate,
 405        .fixup_free     = hrtimer_fixup_free,
 406};
 407
 408static inline void debug_hrtimer_init(struct hrtimer *timer)
 409{
 410        debug_object_init(timer, &hrtimer_debug_descr);
 411}
 412
 413static inline void debug_hrtimer_activate(struct hrtimer *timer,
 414                                          enum hrtimer_mode mode)
 415{
 416        debug_object_activate(timer, &hrtimer_debug_descr);
 417}
 418
 419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 420{
 421        debug_object_deactivate(timer, &hrtimer_debug_descr);
 422}
 423
 424static inline void debug_hrtimer_free(struct hrtimer *timer)
 425{
 426        debug_object_free(timer, &hrtimer_debug_descr);
 427}
 428
 429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 430                           enum hrtimer_mode mode);
 431
 432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 433                           enum hrtimer_mode mode)
 434{
 435        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 436        __hrtimer_init(timer, clock_id, mode);
 437}
 438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 439
 440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
 441                                   clockid_t clock_id, enum hrtimer_mode mode);
 442
 443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
 444                                   clockid_t clock_id, enum hrtimer_mode mode)
 445{
 446        debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
 447        __hrtimer_init_sleeper(sl, clock_id, mode);
 448}
 449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
 450
 451void destroy_hrtimer_on_stack(struct hrtimer *timer)
 452{
 453        debug_object_free(timer, &hrtimer_debug_descr);
 454}
 455EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 456
 457#else
 458
 459static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 460static inline void debug_hrtimer_activate(struct hrtimer *timer,
 461                                          enum hrtimer_mode mode) { }
 462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 463#endif
 464
 465static inline void
 466debug_init(struct hrtimer *timer, clockid_t clockid,
 467           enum hrtimer_mode mode)
 468{
 469        debug_hrtimer_init(timer);
 470        trace_hrtimer_init(timer, clockid, mode);
 471}
 472
 473static inline void debug_activate(struct hrtimer *timer,
 474                                  enum hrtimer_mode mode)
 475{
 476        debug_hrtimer_activate(timer, mode);
 477        trace_hrtimer_start(timer, mode);
 478}
 479
 480static inline void debug_deactivate(struct hrtimer *timer)
 481{
 482        debug_hrtimer_deactivate(timer);
 483        trace_hrtimer_cancel(timer);
 484}
 485
 486static struct hrtimer_clock_base *
 487__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 488{
 489        unsigned int idx;
 490
 491        if (!*active)
 492                return NULL;
 493
 494        idx = __ffs(*active);
 495        *active &= ~(1U << idx);
 496
 497        return &cpu_base->clock_base[idx];
 498}
 499
 500#define for_each_active_base(base, cpu_base, active)    \
 501        while ((base = __next_base((cpu_base), &(active))))
 502
 503static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 504                                         const struct hrtimer *exclude,
 505                                         unsigned int active,
 506                                         ktime_t expires_next)
 507{
 508        struct hrtimer_clock_base *base;
 509        ktime_t expires;
 510
 511        for_each_active_base(base, cpu_base, active) {
 512                struct timerqueue_node *next;
 513                struct hrtimer *timer;
 514
 515                next = timerqueue_getnext(&base->active);
 516                timer = container_of(next, struct hrtimer, node);
 517                if (timer == exclude) {
 518                        /* Get to the next timer in the queue. */
 519                        next = timerqueue_iterate_next(next);
 520                        if (!next)
 521                                continue;
 522
 523                        timer = container_of(next, struct hrtimer, node);
 524                }
 525                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 526                if (expires < expires_next) {
 527                        expires_next = expires;
 528
 529                        /* Skip cpu_base update if a timer is being excluded. */
 530                        if (exclude)
 531                                continue;
 532
 533                        if (timer->is_soft)
 534                                cpu_base->softirq_next_timer = timer;
 535                        else
 536                                cpu_base->next_timer = timer;
 537                }
 538        }
 539        /*
 540         * clock_was_set() might have changed base->offset of any of
 541         * the clock bases so the result might be negative. Fix it up
 542         * to prevent a false positive in clockevents_program_event().
 543         */
 544        if (expires_next < 0)
 545                expires_next = 0;
 546        return expires_next;
 547}
 548
 549/*
 550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 552 *
 553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 554 * those timers will get run whenever the softirq gets handled, at the end of
 555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 556 *
 557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 560 *
 561 * @active_mask must be one of:
 562 *  - HRTIMER_ACTIVE_ALL,
 563 *  - HRTIMER_ACTIVE_SOFT, or
 564 *  - HRTIMER_ACTIVE_HARD.
 565 */
 566static ktime_t
 567__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 568{
 569        unsigned int active;
 570        struct hrtimer *next_timer = NULL;
 571        ktime_t expires_next = KTIME_MAX;
 572
 573        if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 574                active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 575                cpu_base->softirq_next_timer = NULL;
 576                expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 577                                                         active, KTIME_MAX);
 578
 579                next_timer = cpu_base->softirq_next_timer;
 580        }
 581
 582        if (active_mask & HRTIMER_ACTIVE_HARD) {
 583                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 584                cpu_base->next_timer = next_timer;
 585                expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 586                                                         expires_next);
 587        }
 588
 589        return expires_next;
 590}
 591
 592static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 593{
 594        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 595        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 596        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 597
 598        ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 599                                            offs_real, offs_boot, offs_tai);
 600
 601        base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 602        base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 603        base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 604
 605        return now;
 606}
 607
 608/*
 609 * Is the high resolution mode active ?
 610 */
 611static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 612{
 613        return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 614                cpu_base->hres_active : 0;
 615}
 616
 617static inline int hrtimer_hres_active(void)
 618{
 619        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 620}
 621
 622/*
 623 * Reprogram the event source with checking both queues for the
 624 * next event
 625 * Called with interrupts disabled and base->lock held
 626 */
 627static void
 628hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 629{
 630        ktime_t expires_next;
 631
 632        /*
 633         * Find the current next expiration time.
 634         */
 635        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
 636
 637        if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
 638                /*
 639                 * When the softirq is activated, hrtimer has to be
 640                 * programmed with the first hard hrtimer because soft
 641                 * timer interrupt could occur too late.
 642                 */
 643                if (cpu_base->softirq_activated)
 644                        expires_next = __hrtimer_get_next_event(cpu_base,
 645                                                                HRTIMER_ACTIVE_HARD);
 646                else
 647                        cpu_base->softirq_expires_next = expires_next;
 648        }
 649
 650        if (skip_equal && expires_next == cpu_base->expires_next)
 651                return;
 652
 653        cpu_base->expires_next = expires_next;
 654
 655        /*
 656         * If hres is not active, hardware does not have to be
 657         * reprogrammed yet.
 658         *
 659         * If a hang was detected in the last timer interrupt then we
 660         * leave the hang delay active in the hardware. We want the
 661         * system to make progress. That also prevents the following
 662         * scenario:
 663         * T1 expires 50ms from now
 664         * T2 expires 5s from now
 665         *
 666         * T1 is removed, so this code is called and would reprogram
 667         * the hardware to 5s from now. Any hrtimer_start after that
 668         * will not reprogram the hardware due to hang_detected being
 669         * set. So we'd effectivly block all timers until the T2 event
 670         * fires.
 671         */
 672        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 673                return;
 674
 675        tick_program_event(cpu_base->expires_next, 1);
 676}
 677
 678/* High resolution timer related functions */
 679#ifdef CONFIG_HIGH_RES_TIMERS
 680
 681/*
 682 * High resolution timer enabled ?
 683 */
 684static bool hrtimer_hres_enabled __read_mostly  = true;
 685unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 686EXPORT_SYMBOL_GPL(hrtimer_resolution);
 687
 688/*
 689 * Enable / Disable high resolution mode
 690 */
 691static int __init setup_hrtimer_hres(char *str)
 692{
 693        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 694}
 695
 696__setup("highres=", setup_hrtimer_hres);
 697
 698/*
 699 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 700 */
 701static inline int hrtimer_is_hres_enabled(void)
 702{
 703        return hrtimer_hres_enabled;
 704}
 705
 706/*
 707 * Retrigger next event is called after clock was set
 708 *
 709 * Called with interrupts disabled via on_each_cpu()
 710 */
 711static void retrigger_next_event(void *arg)
 712{
 713        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 714
 715        if (!__hrtimer_hres_active(base))
 716                return;
 717
 718        raw_spin_lock(&base->lock);
 719        hrtimer_update_base(base);
 720        hrtimer_force_reprogram(base, 0);
 721        raw_spin_unlock(&base->lock);
 722}
 723
 724/*
 725 * Switch to high resolution mode
 726 */
 727static void hrtimer_switch_to_hres(void)
 728{
 729        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 730
 731        if (tick_init_highres()) {
 732                pr_warn("Could not switch to high resolution mode on CPU %u\n",
 733                        base->cpu);
 734                return;
 735        }
 736        base->hres_active = 1;
 737        hrtimer_resolution = HIGH_RES_NSEC;
 738
 739        tick_setup_sched_timer();
 740        /* "Retrigger" the interrupt to get things going */
 741        retrigger_next_event(NULL);
 742}
 743
 744static void clock_was_set_work(struct work_struct *work)
 745{
 746        clock_was_set();
 747}
 748
 749static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 750
 751/*
 752 * Called from timekeeping and resume code to reprogram the hrtimer
 753 * interrupt device on all cpus.
 754 */
 755void clock_was_set_delayed(void)
 756{
 757        schedule_work(&hrtimer_work);
 758}
 759
 760#else
 761
 762static inline int hrtimer_is_hres_enabled(void) { return 0; }
 763static inline void hrtimer_switch_to_hres(void) { }
 764static inline void retrigger_next_event(void *arg) { }
 765
 766#endif /* CONFIG_HIGH_RES_TIMERS */
 767
 768/*
 769 * When a timer is enqueued and expires earlier than the already enqueued
 770 * timers, we have to check, whether it expires earlier than the timer for
 771 * which the clock event device was armed.
 772 *
 773 * Called with interrupts disabled and base->cpu_base.lock held
 774 */
 775static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 776{
 777        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 778        struct hrtimer_clock_base *base = timer->base;
 779        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 780
 781        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 782
 783        /*
 784         * CLOCK_REALTIME timer might be requested with an absolute
 785         * expiry time which is less than base->offset. Set it to 0.
 786         */
 787        if (expires < 0)
 788                expires = 0;
 789
 790        if (timer->is_soft) {
 791                /*
 792                 * soft hrtimer could be started on a remote CPU. In this
 793                 * case softirq_expires_next needs to be updated on the
 794                 * remote CPU. The soft hrtimer will not expire before the
 795                 * first hard hrtimer on the remote CPU -
 796                 * hrtimer_check_target() prevents this case.
 797                 */
 798                struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 799
 800                if (timer_cpu_base->softirq_activated)
 801                        return;
 802
 803                if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 804                        return;
 805
 806                timer_cpu_base->softirq_next_timer = timer;
 807                timer_cpu_base->softirq_expires_next = expires;
 808
 809                if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 810                    !reprogram)
 811                        return;
 812        }
 813
 814        /*
 815         * If the timer is not on the current cpu, we cannot reprogram
 816         * the other cpus clock event device.
 817         */
 818        if (base->cpu_base != cpu_base)
 819                return;
 820
 821        /*
 822         * If the hrtimer interrupt is running, then it will
 823         * reevaluate the clock bases and reprogram the clock event
 824         * device. The callbacks are always executed in hard interrupt
 825         * context so we don't need an extra check for a running
 826         * callback.
 827         */
 828        if (cpu_base->in_hrtirq)
 829                return;
 830
 831        if (expires >= cpu_base->expires_next)
 832                return;
 833
 834        /* Update the pointer to the next expiring timer */
 835        cpu_base->next_timer = timer;
 836        cpu_base->expires_next = expires;
 837
 838        /*
 839         * If hres is not active, hardware does not have to be
 840         * programmed yet.
 841         *
 842         * If a hang was detected in the last timer interrupt then we
 843         * do not schedule a timer which is earlier than the expiry
 844         * which we enforced in the hang detection. We want the system
 845         * to make progress.
 846         */
 847        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 848                return;
 849
 850        /*
 851         * Program the timer hardware. We enforce the expiry for
 852         * events which are already in the past.
 853         */
 854        tick_program_event(expires, 1);
 855}
 856
 857/*
 858 * Clock realtime was set
 859 *
 860 * Change the offset of the realtime clock vs. the monotonic
 861 * clock.
 862 *
 863 * We might have to reprogram the high resolution timer interrupt. On
 864 * SMP we call the architecture specific code to retrigger _all_ high
 865 * resolution timer interrupts. On UP we just disable interrupts and
 866 * call the high resolution interrupt code.
 867 */
 868void clock_was_set(void)
 869{
 870#ifdef CONFIG_HIGH_RES_TIMERS
 871        /* Retrigger the CPU local events everywhere */
 872        on_each_cpu(retrigger_next_event, NULL, 1);
 873#endif
 874        timerfd_clock_was_set();
 875}
 876
 877/*
 878 * During resume we might have to reprogram the high resolution timer
 879 * interrupt on all online CPUs.  However, all other CPUs will be
 880 * stopped with IRQs interrupts disabled so the clock_was_set() call
 881 * must be deferred.
 882 */
 883void hrtimers_resume(void)
 884{
 885        lockdep_assert_irqs_disabled();
 886        /* Retrigger on the local CPU */
 887        retrigger_next_event(NULL);
 888        /* And schedule a retrigger for all others */
 889        clock_was_set_delayed();
 890}
 891
 892/*
 893 * Counterpart to lock_hrtimer_base above:
 894 */
 895static inline
 896void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 897{
 898        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 899}
 900
 901/**
 902 * hrtimer_forward - forward the timer expiry
 903 * @timer:      hrtimer to forward
 904 * @now:        forward past this time
 905 * @interval:   the interval to forward
 906 *
 907 * Forward the timer expiry so it will expire in the future.
 908 * Returns the number of overruns.
 909 *
 910 * Can be safely called from the callback function of @timer. If
 911 * called from other contexts @timer must neither be enqueued nor
 912 * running the callback and the caller needs to take care of
 913 * serialization.
 914 *
 915 * Note: This only updates the timer expiry value and does not requeue
 916 * the timer.
 917 */
 918u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 919{
 920        u64 orun = 1;
 921        ktime_t delta;
 922
 923        delta = ktime_sub(now, hrtimer_get_expires(timer));
 924
 925        if (delta < 0)
 926                return 0;
 927
 928        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 929                return 0;
 930
 931        if (interval < hrtimer_resolution)
 932                interval = hrtimer_resolution;
 933
 934        if (unlikely(delta >= interval)) {
 935                s64 incr = ktime_to_ns(interval);
 936
 937                orun = ktime_divns(delta, incr);
 938                hrtimer_add_expires_ns(timer, incr * orun);
 939                if (hrtimer_get_expires_tv64(timer) > now)
 940                        return orun;
 941                /*
 942                 * This (and the ktime_add() below) is the
 943                 * correction for exact:
 944                 */
 945                orun++;
 946        }
 947        hrtimer_add_expires(timer, interval);
 948
 949        return orun;
 950}
 951EXPORT_SYMBOL_GPL(hrtimer_forward);
 952
 953/*
 954 * enqueue_hrtimer - internal function to (re)start a timer
 955 *
 956 * The timer is inserted in expiry order. Insertion into the
 957 * red black tree is O(log(n)). Must hold the base lock.
 958 *
 959 * Returns 1 when the new timer is the leftmost timer in the tree.
 960 */
 961static int enqueue_hrtimer(struct hrtimer *timer,
 962                           struct hrtimer_clock_base *base,
 963                           enum hrtimer_mode mode)
 964{
 965        debug_activate(timer, mode);
 966
 967        base->cpu_base->active_bases |= 1 << base->index;
 968
 969        timer->state = HRTIMER_STATE_ENQUEUED;
 970
 971        return timerqueue_add(&base->active, &timer->node);
 972}
 973
 974/*
 975 * __remove_hrtimer - internal function to remove a timer
 976 *
 977 * Caller must hold the base lock.
 978 *
 979 * High resolution timer mode reprograms the clock event device when the
 980 * timer is the one which expires next. The caller can disable this by setting
 981 * reprogram to zero. This is useful, when the context does a reprogramming
 982 * anyway (e.g. timer interrupt)
 983 */
 984static void __remove_hrtimer(struct hrtimer *timer,
 985                             struct hrtimer_clock_base *base,
 986                             u8 newstate, int reprogram)
 987{
 988        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 989        u8 state = timer->state;
 990
 991        timer->state = newstate;
 992        if (!(state & HRTIMER_STATE_ENQUEUED))
 993                return;
 994
 995        if (!timerqueue_del(&base->active, &timer->node))
 996                cpu_base->active_bases &= ~(1 << base->index);
 997
 998        /*
 999         * Note: If reprogram is false we do not update
1000         * cpu_base->next_timer. This happens when we remove the first
1001         * timer on a remote cpu. No harm as we never dereference
1002         * cpu_base->next_timer. So the worst thing what can happen is
1003         * an superflous call to hrtimer_force_reprogram() on the
1004         * remote cpu later on if the same timer gets enqueued again.
1005         */
1006        if (reprogram && timer == cpu_base->next_timer)
1007                hrtimer_force_reprogram(cpu_base, 1);
1008}
1009
1010/*
1011 * remove hrtimer, called with base lock held
1012 */
1013static inline int
1014remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1015{
1016        if (hrtimer_is_queued(timer)) {
1017                u8 state = timer->state;
1018                int reprogram;
1019
1020                /*
1021                 * Remove the timer and force reprogramming when high
1022                 * resolution mode is active and the timer is on the current
1023                 * CPU. If we remove a timer on another CPU, reprogramming is
1024                 * skipped. The interrupt event on this CPU is fired and
1025                 * reprogramming happens in the interrupt handler. This is a
1026                 * rare case and less expensive than a smp call.
1027                 */
1028                debug_deactivate(timer);
1029                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1030
1031                if (!restart)
1032                        state = HRTIMER_STATE_INACTIVE;
1033
1034                __remove_hrtimer(timer, base, state, reprogram);
1035                return 1;
1036        }
1037        return 0;
1038}
1039
1040static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1041                                            const enum hrtimer_mode mode)
1042{
1043#ifdef CONFIG_TIME_LOW_RES
1044        /*
1045         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1046         * granular time values. For relative timers we add hrtimer_resolution
1047         * (i.e. one jiffie) to prevent short timeouts.
1048         */
1049        timer->is_rel = mode & HRTIMER_MODE_REL;
1050        if (timer->is_rel)
1051                tim = ktime_add_safe(tim, hrtimer_resolution);
1052#endif
1053        return tim;
1054}
1055
1056static void
1057hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1058{
1059        ktime_t expires;
1060
1061        /*
1062         * Find the next SOFT expiration.
1063         */
1064        expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1065
1066        /*
1067         * reprogramming needs to be triggered, even if the next soft
1068         * hrtimer expires at the same time than the next hard
1069         * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1070         */
1071        if (expires == KTIME_MAX)
1072                return;
1073
1074        /*
1075         * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1076         * cpu_base->*expires_next is only set by hrtimer_reprogram()
1077         */
1078        hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1079}
1080
1081static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1082                                    u64 delta_ns, const enum hrtimer_mode mode,
1083                                    struct hrtimer_clock_base *base)
1084{
1085        struct hrtimer_clock_base *new_base;
1086
1087        /* Remove an active timer from the queue: */
1088        remove_hrtimer(timer, base, true);
1089
1090        if (mode & HRTIMER_MODE_REL)
1091                tim = ktime_add_safe(tim, base->get_time());
1092
1093        tim = hrtimer_update_lowres(timer, tim, mode);
1094
1095        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1096
1097        /* Switch the timer base, if necessary: */
1098        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1099
1100        return enqueue_hrtimer(timer, new_base, mode);
1101}
1102
1103/**
1104 * hrtimer_start_range_ns - (re)start an hrtimer
1105 * @timer:      the timer to be added
1106 * @tim:        expiry time
1107 * @delta_ns:   "slack" range for the timer
1108 * @mode:       timer mode: absolute (HRTIMER_MODE_ABS) or
1109 *              relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1110 *              softirq based mode is considered for debug purpose only!
1111 */
1112void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1113                            u64 delta_ns, const enum hrtimer_mode mode)
1114{
1115        struct hrtimer_clock_base *base;
1116        unsigned long flags;
1117
1118        /*
1119         * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1120         * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1121         * expiry mode because unmarked timers are moved to softirq expiry.
1122         */
1123        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1124                WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1125        else
1126                WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1127
1128        base = lock_hrtimer_base(timer, &flags);
1129
1130        if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1131                hrtimer_reprogram(timer, true);
1132
1133        unlock_hrtimer_base(timer, &flags);
1134}
1135EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1136
1137/**
1138 * hrtimer_try_to_cancel - try to deactivate a timer
1139 * @timer:      hrtimer to stop
1140 *
1141 * Returns:
1142 *
1143 *  *  0 when the timer was not active
1144 *  *  1 when the timer was active
1145 *  * -1 when the timer is currently executing the callback function and
1146 *    cannot be stopped
1147 */
1148int hrtimer_try_to_cancel(struct hrtimer *timer)
1149{
1150        struct hrtimer_clock_base *base;
1151        unsigned long flags;
1152        int ret = -1;
1153
1154        /*
1155         * Check lockless first. If the timer is not active (neither
1156         * enqueued nor running the callback, nothing to do here.  The
1157         * base lock does not serialize against a concurrent enqueue,
1158         * so we can avoid taking it.
1159         */
1160        if (!hrtimer_active(timer))
1161                return 0;
1162
1163        base = lock_hrtimer_base(timer, &flags);
1164
1165        if (!hrtimer_callback_running(timer))
1166                ret = remove_hrtimer(timer, base, false);
1167
1168        unlock_hrtimer_base(timer, &flags);
1169
1170        return ret;
1171
1172}
1173EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1174
1175#ifdef CONFIG_PREEMPT_RT
1176static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1177{
1178        spin_lock_init(&base->softirq_expiry_lock);
1179}
1180
1181static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1182{
1183        spin_lock(&base->softirq_expiry_lock);
1184}
1185
1186static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1187{
1188        spin_unlock(&base->softirq_expiry_lock);
1189}
1190
1191/*
1192 * The counterpart to hrtimer_cancel_wait_running().
1193 *
1194 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1195 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1196 * allows the waiter to acquire the lock and make progress.
1197 */
1198static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1199                                      unsigned long flags)
1200{
1201        if (atomic_read(&cpu_base->timer_waiters)) {
1202                raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203                spin_unlock(&cpu_base->softirq_expiry_lock);
1204                spin_lock(&cpu_base->softirq_expiry_lock);
1205                raw_spin_lock_irq(&cpu_base->lock);
1206        }
1207}
1208
1209/*
1210 * This function is called on PREEMPT_RT kernels when the fast path
1211 * deletion of a timer failed because the timer callback function was
1212 * running.
1213 *
1214 * This prevents priority inversion: if the soft irq thread is preempted
1215 * in the middle of a timer callback, then calling del_timer_sync() can
1216 * lead to two issues:
1217 *
1218 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1219 *    handler to complete. This can result in unbound priority inversion.
1220 *
1221 *  - If the caller originates from the task which preempted the timer
1222 *    handler on the same CPU, then spin waiting for the timer handler to
1223 *    complete is never going to end.
1224 */
1225void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1226{
1227        /* Lockless read. Prevent the compiler from reloading it below */
1228        struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1229
1230        /*
1231         * Just relax if the timer expires in hard interrupt context or if
1232         * it is currently on the migration base.
1233         */
1234        if (!timer->is_soft || is_migration_base(base)) {
1235                cpu_relax();
1236                return;
1237        }
1238
1239        /*
1240         * Mark the base as contended and grab the expiry lock, which is
1241         * held by the softirq across the timer callback. Drop the lock
1242         * immediately so the softirq can expire the next timer. In theory
1243         * the timer could already be running again, but that's more than
1244         * unlikely and just causes another wait loop.
1245         */
1246        atomic_inc(&base->cpu_base->timer_waiters);
1247        spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1248        atomic_dec(&base->cpu_base->timer_waiters);
1249        spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1250}
1251#else
1252static inline void
1253hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1254static inline void
1255hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1256static inline void
1257hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1258static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1259                                             unsigned long flags) { }
1260#endif
1261
1262/**
1263 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1264 * @timer:      the timer to be cancelled
1265 *
1266 * Returns:
1267 *  0 when the timer was not active
1268 *  1 when the timer was active
1269 */
1270int hrtimer_cancel(struct hrtimer *timer)
1271{
1272        int ret;
1273
1274        do {
1275                ret = hrtimer_try_to_cancel(timer);
1276
1277                if (ret < 0)
1278                        hrtimer_cancel_wait_running(timer);
1279        } while (ret < 0);
1280        return ret;
1281}
1282EXPORT_SYMBOL_GPL(hrtimer_cancel);
1283
1284/**
1285 * hrtimer_get_remaining - get remaining time for the timer
1286 * @timer:      the timer to read
1287 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1288 */
1289ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1290{
1291        unsigned long flags;
1292        ktime_t rem;
1293
1294        lock_hrtimer_base(timer, &flags);
1295        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1296                rem = hrtimer_expires_remaining_adjusted(timer);
1297        else
1298                rem = hrtimer_expires_remaining(timer);
1299        unlock_hrtimer_base(timer, &flags);
1300
1301        return rem;
1302}
1303EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1304
1305#ifdef CONFIG_NO_HZ_COMMON
1306/**
1307 * hrtimer_get_next_event - get the time until next expiry event
1308 *
1309 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1310 */
1311u64 hrtimer_get_next_event(void)
1312{
1313        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1314        u64 expires = KTIME_MAX;
1315        unsigned long flags;
1316
1317        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1318
1319        if (!__hrtimer_hres_active(cpu_base))
1320                expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1321
1322        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1323
1324        return expires;
1325}
1326
1327/**
1328 * hrtimer_next_event_without - time until next expiry event w/o one timer
1329 * @exclude:    timer to exclude
1330 *
1331 * Returns the next expiry time over all timers except for the @exclude one or
1332 * KTIME_MAX if none of them is pending.
1333 */
1334u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1335{
1336        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1337        u64 expires = KTIME_MAX;
1338        unsigned long flags;
1339
1340        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1341
1342        if (__hrtimer_hres_active(cpu_base)) {
1343                unsigned int active;
1344
1345                if (!cpu_base->softirq_activated) {
1346                        active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1347                        expires = __hrtimer_next_event_base(cpu_base, exclude,
1348                                                            active, KTIME_MAX);
1349                }
1350                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1351                expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1352                                                    expires);
1353        }
1354
1355        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1356
1357        return expires;
1358}
1359#endif
1360
1361static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1362{
1363        if (likely(clock_id < MAX_CLOCKS)) {
1364                int base = hrtimer_clock_to_base_table[clock_id];
1365
1366                if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1367                        return base;
1368        }
1369        WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1370        return HRTIMER_BASE_MONOTONIC;
1371}
1372
1373static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1374                           enum hrtimer_mode mode)
1375{
1376        bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1377        struct hrtimer_cpu_base *cpu_base;
1378        int base;
1379
1380        /*
1381         * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1382         * marked for hard interrupt expiry mode are moved into soft
1383         * interrupt context for latency reasons and because the callbacks
1384         * can invoke functions which might sleep on RT, e.g. spin_lock().
1385         */
1386        if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1387                softtimer = true;
1388
1389        memset(timer, 0, sizeof(struct hrtimer));
1390
1391        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1392
1393        /*
1394         * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1395         * clock modifications, so they needs to become CLOCK_MONOTONIC to
1396         * ensure POSIX compliance.
1397         */
1398        if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1399                clock_id = CLOCK_MONOTONIC;
1400
1401        base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1402        base += hrtimer_clockid_to_base(clock_id);
1403        timer->is_soft = softtimer;
1404        timer->is_hard = !softtimer;
1405        timer->base = &cpu_base->clock_base[base];
1406        timerqueue_init(&timer->node);
1407}
1408
1409/**
1410 * hrtimer_init - initialize a timer to the given clock
1411 * @timer:      the timer to be initialized
1412 * @clock_id:   the clock to be used
1413 * @mode:       The modes which are relevant for intitialization:
1414 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1415 *              HRTIMER_MODE_REL_SOFT
1416 *
1417 *              The PINNED variants of the above can be handed in,
1418 *              but the PINNED bit is ignored as pinning happens
1419 *              when the hrtimer is started
1420 */
1421void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1422                  enum hrtimer_mode mode)
1423{
1424        debug_init(timer, clock_id, mode);
1425        __hrtimer_init(timer, clock_id, mode);
1426}
1427EXPORT_SYMBOL_GPL(hrtimer_init);
1428
1429/*
1430 * A timer is active, when it is enqueued into the rbtree or the
1431 * callback function is running or it's in the state of being migrated
1432 * to another cpu.
1433 *
1434 * It is important for this function to not return a false negative.
1435 */
1436bool hrtimer_active(const struct hrtimer *timer)
1437{
1438        struct hrtimer_clock_base *base;
1439        unsigned int seq;
1440
1441        do {
1442                base = READ_ONCE(timer->base);
1443                seq = raw_read_seqcount_begin(&base->seq);
1444
1445                if (timer->state != HRTIMER_STATE_INACTIVE ||
1446                    base->running == timer)
1447                        return true;
1448
1449        } while (read_seqcount_retry(&base->seq, seq) ||
1450                 base != READ_ONCE(timer->base));
1451
1452        return false;
1453}
1454EXPORT_SYMBOL_GPL(hrtimer_active);
1455
1456/*
1457 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1458 * distinct sections:
1459 *
1460 *  - queued:   the timer is queued
1461 *  - callback: the timer is being ran
1462 *  - post:     the timer is inactive or (re)queued
1463 *
1464 * On the read side we ensure we observe timer->state and cpu_base->running
1465 * from the same section, if anything changed while we looked at it, we retry.
1466 * This includes timer->base changing because sequence numbers alone are
1467 * insufficient for that.
1468 *
1469 * The sequence numbers are required because otherwise we could still observe
1470 * a false negative if the read side got smeared over multiple consequtive
1471 * __run_hrtimer() invocations.
1472 */
1473
1474static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1475                          struct hrtimer_clock_base *base,
1476                          struct hrtimer *timer, ktime_t *now,
1477                          unsigned long flags)
1478{
1479        enum hrtimer_restart (*fn)(struct hrtimer *);
1480        int restart;
1481
1482        lockdep_assert_held(&cpu_base->lock);
1483
1484        debug_deactivate(timer);
1485        base->running = timer;
1486
1487        /*
1488         * Separate the ->running assignment from the ->state assignment.
1489         *
1490         * As with a regular write barrier, this ensures the read side in
1491         * hrtimer_active() cannot observe base->running == NULL &&
1492         * timer->state == INACTIVE.
1493         */
1494        raw_write_seqcount_barrier(&base->seq);
1495
1496        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1497        fn = timer->function;
1498
1499        /*
1500         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1501         * timer is restarted with a period then it becomes an absolute
1502         * timer. If its not restarted it does not matter.
1503         */
1504        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1505                timer->is_rel = false;
1506
1507        /*
1508         * The timer is marked as running in the CPU base, so it is
1509         * protected against migration to a different CPU even if the lock
1510         * is dropped.
1511         */
1512        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1513        trace_hrtimer_expire_entry(timer, now);
1514        restart = fn(timer);
1515        trace_hrtimer_expire_exit(timer);
1516        raw_spin_lock_irq(&cpu_base->lock);
1517
1518        /*
1519         * Note: We clear the running state after enqueue_hrtimer and
1520         * we do not reprogram the event hardware. Happens either in
1521         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1522         *
1523         * Note: Because we dropped the cpu_base->lock above,
1524         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1525         * for us already.
1526         */
1527        if (restart != HRTIMER_NORESTART &&
1528            !(timer->state & HRTIMER_STATE_ENQUEUED))
1529                enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1530
1531        /*
1532         * Separate the ->running assignment from the ->state assignment.
1533         *
1534         * As with a regular write barrier, this ensures the read side in
1535         * hrtimer_active() cannot observe base->running.timer == NULL &&
1536         * timer->state == INACTIVE.
1537         */
1538        raw_write_seqcount_barrier(&base->seq);
1539
1540        WARN_ON_ONCE(base->running != timer);
1541        base->running = NULL;
1542}
1543
1544static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1545                                 unsigned long flags, unsigned int active_mask)
1546{
1547        struct hrtimer_clock_base *base;
1548        unsigned int active = cpu_base->active_bases & active_mask;
1549
1550        for_each_active_base(base, cpu_base, active) {
1551                struct timerqueue_node *node;
1552                ktime_t basenow;
1553
1554                basenow = ktime_add(now, base->offset);
1555
1556                while ((node = timerqueue_getnext(&base->active))) {
1557                        struct hrtimer *timer;
1558
1559                        timer = container_of(node, struct hrtimer, node);
1560
1561                        /*
1562                         * The immediate goal for using the softexpires is
1563                         * minimizing wakeups, not running timers at the
1564                         * earliest interrupt after their soft expiration.
1565                         * This allows us to avoid using a Priority Search
1566                         * Tree, which can answer a stabbing querry for
1567                         * overlapping intervals and instead use the simple
1568                         * BST we already have.
1569                         * We don't add extra wakeups by delaying timers that
1570                         * are right-of a not yet expired timer, because that
1571                         * timer will have to trigger a wakeup anyway.
1572                         */
1573                        if (basenow < hrtimer_get_softexpires_tv64(timer))
1574                                break;
1575
1576                        __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1577                        if (active_mask == HRTIMER_ACTIVE_SOFT)
1578                                hrtimer_sync_wait_running(cpu_base, flags);
1579                }
1580        }
1581}
1582
1583static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1584{
1585        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1586        unsigned long flags;
1587        ktime_t now;
1588
1589        hrtimer_cpu_base_lock_expiry(cpu_base);
1590        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1591
1592        now = hrtimer_update_base(cpu_base);
1593        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1594
1595        cpu_base->softirq_activated = 0;
1596        hrtimer_update_softirq_timer(cpu_base, true);
1597
1598        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1599        hrtimer_cpu_base_unlock_expiry(cpu_base);
1600}
1601
1602#ifdef CONFIG_HIGH_RES_TIMERS
1603
1604/*
1605 * High resolution timer interrupt
1606 * Called with interrupts disabled
1607 */
1608void hrtimer_interrupt(struct clock_event_device *dev)
1609{
1610        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611        ktime_t expires_next, now, entry_time, delta;
1612        unsigned long flags;
1613        int retries = 0;
1614
1615        BUG_ON(!cpu_base->hres_active);
1616        cpu_base->nr_events++;
1617        dev->next_event = KTIME_MAX;
1618
1619        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1620        entry_time = now = hrtimer_update_base(cpu_base);
1621retry:
1622        cpu_base->in_hrtirq = 1;
1623        /*
1624         * We set expires_next to KTIME_MAX here with cpu_base->lock
1625         * held to prevent that a timer is enqueued in our queue via
1626         * the migration code. This does not affect enqueueing of
1627         * timers which run their callback and need to be requeued on
1628         * this CPU.
1629         */
1630        cpu_base->expires_next = KTIME_MAX;
1631
1632        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1633                cpu_base->softirq_expires_next = KTIME_MAX;
1634                cpu_base->softirq_activated = 1;
1635                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1636        }
1637
1638        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1639
1640        /* Reevaluate the clock bases for the next expiry */
1641        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1642        /*
1643         * Store the new expiry value so the migration code can verify
1644         * against it.
1645         */
1646        cpu_base->expires_next = expires_next;
1647        cpu_base->in_hrtirq = 0;
1648        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1649
1650        /* Reprogramming necessary ? */
1651        if (!tick_program_event(expires_next, 0)) {
1652                cpu_base->hang_detected = 0;
1653                return;
1654        }
1655
1656        /*
1657         * The next timer was already expired due to:
1658         * - tracing
1659         * - long lasting callbacks
1660         * - being scheduled away when running in a VM
1661         *
1662         * We need to prevent that we loop forever in the hrtimer
1663         * interrupt routine. We give it 3 attempts to avoid
1664         * overreacting on some spurious event.
1665         *
1666         * Acquire base lock for updating the offsets and retrieving
1667         * the current time.
1668         */
1669        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1670        now = hrtimer_update_base(cpu_base);
1671        cpu_base->nr_retries++;
1672        if (++retries < 3)
1673                goto retry;
1674        /*
1675         * Give the system a chance to do something else than looping
1676         * here. We stored the entry time, so we know exactly how long
1677         * we spent here. We schedule the next event this amount of
1678         * time away.
1679         */
1680        cpu_base->nr_hangs++;
1681        cpu_base->hang_detected = 1;
1682        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1683
1684        delta = ktime_sub(now, entry_time);
1685        if ((unsigned int)delta > cpu_base->max_hang_time)
1686                cpu_base->max_hang_time = (unsigned int) delta;
1687        /*
1688         * Limit it to a sensible value as we enforce a longer
1689         * delay. Give the CPU at least 100ms to catch up.
1690         */
1691        if (delta > 100 * NSEC_PER_MSEC)
1692                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1693        else
1694                expires_next = ktime_add(now, delta);
1695        tick_program_event(expires_next, 1);
1696        pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1697}
1698
1699/* called with interrupts disabled */
1700static inline void __hrtimer_peek_ahead_timers(void)
1701{
1702        struct tick_device *td;
1703
1704        if (!hrtimer_hres_active())
1705                return;
1706
1707        td = this_cpu_ptr(&tick_cpu_device);
1708        if (td && td->evtdev)
1709                hrtimer_interrupt(td->evtdev);
1710}
1711
1712#else /* CONFIG_HIGH_RES_TIMERS */
1713
1714static inline void __hrtimer_peek_ahead_timers(void) { }
1715
1716#endif  /* !CONFIG_HIGH_RES_TIMERS */
1717
1718/*
1719 * Called from run_local_timers in hardirq context every jiffy
1720 */
1721void hrtimer_run_queues(void)
1722{
1723        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1724        unsigned long flags;
1725        ktime_t now;
1726
1727        if (__hrtimer_hres_active(cpu_base))
1728                return;
1729
1730        /*
1731         * This _is_ ugly: We have to check periodically, whether we
1732         * can switch to highres and / or nohz mode. The clocksource
1733         * switch happens with xtime_lock held. Notification from
1734         * there only sets the check bit in the tick_oneshot code,
1735         * otherwise we might deadlock vs. xtime_lock.
1736         */
1737        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1738                hrtimer_switch_to_hres();
1739                return;
1740        }
1741
1742        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1743        now = hrtimer_update_base(cpu_base);
1744
1745        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1746                cpu_base->softirq_expires_next = KTIME_MAX;
1747                cpu_base->softirq_activated = 1;
1748                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1749        }
1750
1751        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1752        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1753}
1754
1755/*
1756 * Sleep related functions:
1757 */
1758static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1759{
1760        struct hrtimer_sleeper *t =
1761                container_of(timer, struct hrtimer_sleeper, timer);
1762        struct task_struct *task = t->task;
1763
1764        t->task = NULL;
1765        if (task)
1766                wake_up_process(task);
1767
1768        return HRTIMER_NORESTART;
1769}
1770
1771/**
1772 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1773 * @sl:         sleeper to be started
1774 * @mode:       timer mode abs/rel
1775 *
1776 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1777 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1778 */
1779void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1780                                   enum hrtimer_mode mode)
1781{
1782        /*
1783         * Make the enqueue delivery mode check work on RT. If the sleeper
1784         * was initialized for hard interrupt delivery, force the mode bit.
1785         * This is a special case for hrtimer_sleepers because
1786         * hrtimer_init_sleeper() determines the delivery mode on RT so the
1787         * fiddling with this decision is avoided at the call sites.
1788         */
1789        if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1790                mode |= HRTIMER_MODE_HARD;
1791
1792        hrtimer_start_expires(&sl->timer, mode);
1793}
1794EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1795
1796static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1797                                   clockid_t clock_id, enum hrtimer_mode mode)
1798{
1799        /*
1800         * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1801         * marked for hard interrupt expiry mode are moved into soft
1802         * interrupt context either for latency reasons or because the
1803         * hrtimer callback takes regular spinlocks or invokes other
1804         * functions which are not suitable for hard interrupt context on
1805         * PREEMPT_RT.
1806         *
1807         * The hrtimer_sleeper callback is RT compatible in hard interrupt
1808         * context, but there is a latency concern: Untrusted userspace can
1809         * spawn many threads which arm timers for the same expiry time on
1810         * the same CPU. That causes a latency spike due to the wakeup of
1811         * a gazillion threads.
1812         *
1813         * OTOH, priviledged real-time user space applications rely on the
1814         * low latency of hard interrupt wakeups. If the current task is in
1815         * a real-time scheduling class, mark the mode for hard interrupt
1816         * expiry.
1817         */
1818        if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1819                if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1820                        mode |= HRTIMER_MODE_HARD;
1821        }
1822
1823        __hrtimer_init(&sl->timer, clock_id, mode);
1824        sl->timer.function = hrtimer_wakeup;
1825        sl->task = current;
1826}
1827
1828/**
1829 * hrtimer_init_sleeper - initialize sleeper to the given clock
1830 * @sl:         sleeper to be initialized
1831 * @clock_id:   the clock to be used
1832 * @mode:       timer mode abs/rel
1833 */
1834void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1835                          enum hrtimer_mode mode)
1836{
1837        debug_init(&sl->timer, clock_id, mode);
1838        __hrtimer_init_sleeper(sl, clock_id, mode);
1839
1840}
1841EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1842
1843int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1844{
1845        switch(restart->nanosleep.type) {
1846#ifdef CONFIG_COMPAT_32BIT_TIME
1847        case TT_COMPAT:
1848                if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1849                        return -EFAULT;
1850                break;
1851#endif
1852        case TT_NATIVE:
1853                if (put_timespec64(ts, restart->nanosleep.rmtp))
1854                        return -EFAULT;
1855                break;
1856        default:
1857                BUG();
1858        }
1859        return -ERESTART_RESTARTBLOCK;
1860}
1861
1862static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1863{
1864        struct restart_block *restart;
1865
1866        do {
1867                set_current_state(TASK_INTERRUPTIBLE);
1868                hrtimer_sleeper_start_expires(t, mode);
1869
1870                if (likely(t->task))
1871                        freezable_schedule();
1872
1873                hrtimer_cancel(&t->timer);
1874                mode = HRTIMER_MODE_ABS;
1875
1876        } while (t->task && !signal_pending(current));
1877
1878        __set_current_state(TASK_RUNNING);
1879
1880        if (!t->task)
1881                return 0;
1882
1883        restart = &current->restart_block;
1884        if (restart->nanosleep.type != TT_NONE) {
1885                ktime_t rem = hrtimer_expires_remaining(&t->timer);
1886                struct timespec64 rmt;
1887
1888                if (rem <= 0)
1889                        return 0;
1890                rmt = ktime_to_timespec64(rem);
1891
1892                return nanosleep_copyout(restart, &rmt);
1893        }
1894        return -ERESTART_RESTARTBLOCK;
1895}
1896
1897static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1898{
1899        struct hrtimer_sleeper t;
1900        int ret;
1901
1902        hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1903                                      HRTIMER_MODE_ABS);
1904        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1905        ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1906        destroy_hrtimer_on_stack(&t.timer);
1907        return ret;
1908}
1909
1910long hrtimer_nanosleep(const struct timespec64 *rqtp,
1911                       const enum hrtimer_mode mode, const clockid_t clockid)
1912{
1913        struct restart_block *restart;
1914        struct hrtimer_sleeper t;
1915        int ret = 0;
1916        u64 slack;
1917
1918        slack = current->timer_slack_ns;
1919        if (dl_task(current) || rt_task(current))
1920                slack = 0;
1921
1922        hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1923        hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1924        ret = do_nanosleep(&t, mode);
1925        if (ret != -ERESTART_RESTARTBLOCK)
1926                goto out;
1927
1928        /* Absolute timers do not update the rmtp value and restart: */
1929        if (mode == HRTIMER_MODE_ABS) {
1930                ret = -ERESTARTNOHAND;
1931                goto out;
1932        }
1933
1934        restart = &current->restart_block;
1935        restart->fn = hrtimer_nanosleep_restart;
1936        restart->nanosleep.clockid = t.timer.base->clockid;
1937        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1938out:
1939        destroy_hrtimer_on_stack(&t.timer);
1940        return ret;
1941}
1942
1943#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1944
1945SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1946                struct __kernel_timespec __user *, rmtp)
1947{
1948        struct timespec64 tu;
1949
1950        if (get_timespec64(&tu, rqtp))
1951                return -EFAULT;
1952
1953        if (!timespec64_valid(&tu))
1954                return -EINVAL;
1955
1956        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1957        current->restart_block.nanosleep.rmtp = rmtp;
1958        return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1959}
1960
1961#endif
1962
1963#ifdef CONFIG_COMPAT_32BIT_TIME
1964
1965SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1966                       struct old_timespec32 __user *, rmtp)
1967{
1968        struct timespec64 tu;
1969
1970        if (get_old_timespec32(&tu, rqtp))
1971                return -EFAULT;
1972
1973        if (!timespec64_valid(&tu))
1974                return -EINVAL;
1975
1976        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1977        current->restart_block.nanosleep.compat_rmtp = rmtp;
1978        return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1979}
1980#endif
1981
1982/*
1983 * Functions related to boot-time initialization:
1984 */
1985int hrtimers_prepare_cpu(unsigned int cpu)
1986{
1987        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1988        int i;
1989
1990        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1991                cpu_base->clock_base[i].cpu_base = cpu_base;
1992                timerqueue_init_head(&cpu_base->clock_base[i].active);
1993        }
1994
1995        cpu_base->cpu = cpu;
1996        cpu_base->active_bases = 0;
1997        cpu_base->hres_active = 0;
1998        cpu_base->hang_detected = 0;
1999        cpu_base->next_timer = NULL;
2000        cpu_base->softirq_next_timer = NULL;
2001        cpu_base->expires_next = KTIME_MAX;
2002        cpu_base->softirq_expires_next = KTIME_MAX;
2003        hrtimer_cpu_base_init_expiry_lock(cpu_base);
2004        return 0;
2005}
2006
2007#ifdef CONFIG_HOTPLUG_CPU
2008
2009static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2010                                struct hrtimer_clock_base *new_base)
2011{
2012        struct hrtimer *timer;
2013        struct timerqueue_node *node;
2014
2015        while ((node = timerqueue_getnext(&old_base->active))) {
2016                timer = container_of(node, struct hrtimer, node);
2017                BUG_ON(hrtimer_callback_running(timer));
2018                debug_deactivate(timer);
2019
2020                /*
2021                 * Mark it as ENQUEUED not INACTIVE otherwise the
2022                 * timer could be seen as !active and just vanish away
2023                 * under us on another CPU
2024                 */
2025                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2026                timer->base = new_base;
2027                /*
2028                 * Enqueue the timers on the new cpu. This does not
2029                 * reprogram the event device in case the timer
2030                 * expires before the earliest on this CPU, but we run
2031                 * hrtimer_interrupt after we migrated everything to
2032                 * sort out already expired timers and reprogram the
2033                 * event device.
2034                 */
2035                enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2036        }
2037}
2038
2039int hrtimers_dead_cpu(unsigned int scpu)
2040{
2041        struct hrtimer_cpu_base *old_base, *new_base;
2042        int i;
2043
2044        BUG_ON(cpu_online(scpu));
2045        tick_cancel_sched_timer(scpu);
2046
2047        /*
2048         * this BH disable ensures that raise_softirq_irqoff() does
2049         * not wakeup ksoftirqd (and acquire the pi-lock) while
2050         * holding the cpu_base lock
2051         */
2052        local_bh_disable();
2053        local_irq_disable();
2054        old_base = &per_cpu(hrtimer_bases, scpu);
2055        new_base = this_cpu_ptr(&hrtimer_bases);
2056        /*
2057         * The caller is globally serialized and nobody else
2058         * takes two locks at once, deadlock is not possible.
2059         */
2060        raw_spin_lock(&new_base->lock);
2061        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2062
2063        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2064                migrate_hrtimer_list(&old_base->clock_base[i],
2065                                     &new_base->clock_base[i]);
2066        }
2067
2068        /*
2069         * The migration might have changed the first expiring softirq
2070         * timer on this CPU. Update it.
2071         */
2072        hrtimer_update_softirq_timer(new_base, false);
2073
2074        raw_spin_unlock(&old_base->lock);
2075        raw_spin_unlock(&new_base->lock);
2076
2077        /* Check, if we got expired work to do */
2078        __hrtimer_peek_ahead_timers();
2079        local_irq_enable();
2080        local_bh_enable();
2081        return 0;
2082}
2083
2084#endif /* CONFIG_HOTPLUG_CPU */
2085
2086void __init hrtimers_init(void)
2087{
2088        hrtimers_prepare_cpu(smp_processor_id());
2089        open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2090}
2091
2092/**
2093 * schedule_hrtimeout_range_clock - sleep until timeout
2094 * @expires:    timeout value (ktime_t)
2095 * @delta:      slack in expires timeout (ktime_t)
2096 * @mode:       timer mode
2097 * @clock_id:   timer clock to be used
2098 */
2099int __sched
2100schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2101                               const enum hrtimer_mode mode, clockid_t clock_id)
2102{
2103        struct hrtimer_sleeper t;
2104
2105        /*
2106         * Optimize when a zero timeout value is given. It does not
2107         * matter whether this is an absolute or a relative time.
2108         */
2109        if (expires && *expires == 0) {
2110                __set_current_state(TASK_RUNNING);
2111                return 0;
2112        }
2113
2114        /*
2115         * A NULL parameter means "infinite"
2116         */
2117        if (!expires) {
2118                schedule();
2119                return -EINTR;
2120        }
2121
2122        hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2123        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2124        hrtimer_sleeper_start_expires(&t, mode);
2125
2126        if (likely(t.task))
2127                schedule();
2128
2129        hrtimer_cancel(&t.timer);
2130        destroy_hrtimer_on_stack(&t.timer);
2131
2132        __set_current_state(TASK_RUNNING);
2133
2134        return !t.task ? 0 : -EINTR;
2135}
2136
2137/**
2138 * schedule_hrtimeout_range - sleep until timeout
2139 * @expires:    timeout value (ktime_t)
2140 * @delta:      slack in expires timeout (ktime_t)
2141 * @mode:       timer mode
2142 *
2143 * Make the current task sleep until the given expiry time has
2144 * elapsed. The routine will return immediately unless
2145 * the current task state has been set (see set_current_state()).
2146 *
2147 * The @delta argument gives the kernel the freedom to schedule the
2148 * actual wakeup to a time that is both power and performance friendly.
2149 * The kernel give the normal best effort behavior for "@expires+@delta",
2150 * but may decide to fire the timer earlier, but no earlier than @expires.
2151 *
2152 * You can set the task state as follows -
2153 *
2154 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2155 * pass before the routine returns unless the current task is explicitly
2156 * woken up, (e.g. by wake_up_process()).
2157 *
2158 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2159 * delivered to the current task or the current task is explicitly woken
2160 * up.
2161 *
2162 * The current task state is guaranteed to be TASK_RUNNING when this
2163 * routine returns.
2164 *
2165 * Returns 0 when the timer has expired. If the task was woken before the
2166 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2167 * by an explicit wakeup, it returns -EINTR.
2168 */
2169int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2170                                     const enum hrtimer_mode mode)
2171{
2172        return schedule_hrtimeout_range_clock(expires, delta, mode,
2173                                              CLOCK_MONOTONIC);
2174}
2175EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2176
2177/**
2178 * schedule_hrtimeout - sleep until timeout
2179 * @expires:    timeout value (ktime_t)
2180 * @mode:       timer mode
2181 *
2182 * Make the current task sleep until the given expiry time has
2183 * elapsed. The routine will return immediately unless
2184 * the current task state has been set (see set_current_state()).
2185 *
2186 * You can set the task state as follows -
2187 *
2188 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2189 * pass before the routine returns unless the current task is explicitly
2190 * woken up, (e.g. by wake_up_process()).
2191 *
2192 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2193 * delivered to the current task or the current task is explicitly woken
2194 * up.
2195 *
2196 * The current task state is guaranteed to be TASK_RUNNING when this
2197 * routine returns.
2198 *
2199 * Returns 0 when the timer has expired. If the task was woken before the
2200 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2201 * by an explicit wakeup, it returns -EINTR.
2202 */
2203int __sched schedule_hrtimeout(ktime_t *expires,
2204                               const enum hrtimer_mode mode)
2205{
2206        return schedule_hrtimeout_range(expires, 0, mode);
2207}
2208EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2209