linux/mm/memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *              Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *              (Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73#include <linux/numa.h>
  74
  75#include <asm/io.h>
  76#include <asm/mmu_context.h>
  77#include <asm/pgalloc.h>
  78#include <linux/uaccess.h>
  79#include <asm/tlb.h>
  80#include <asm/tlbflush.h>
  81#include <asm/pgtable.h>
  82
  83#include "internal.h"
  84
  85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  87#endif
  88
  89#ifndef CONFIG_NEED_MULTIPLE_NODES
  90/* use the per-pgdat data instead for discontigmem - mbligh */
  91unsigned long max_mapnr;
  92EXPORT_SYMBOL(max_mapnr);
  93
  94struct page *mem_map;
  95EXPORT_SYMBOL(mem_map);
  96#endif
  97
  98/*
  99 * A number of key systems in x86 including ioremap() rely on the assumption
 100 * that high_memory defines the upper bound on direct map memory, then end
 101 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 103 * and ZONE_HIGHMEM.
 104 */
 105void *high_memory;
 106EXPORT_SYMBOL(high_memory);
 107
 108/*
 109 * Randomize the address space (stacks, mmaps, brk, etc.).
 110 *
 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 112 *   as ancient (libc5 based) binaries can segfault. )
 113 */
 114int randomize_va_space __read_mostly =
 115#ifdef CONFIG_COMPAT_BRK
 116                                        1;
 117#else
 118                                        2;
 119#endif
 120
 121static int __init disable_randmaps(char *s)
 122{
 123        randomize_va_space = 0;
 124        return 1;
 125}
 126__setup("norandmaps", disable_randmaps);
 127
 128unsigned long zero_pfn __read_mostly;
 129EXPORT_SYMBOL(zero_pfn);
 130
 131unsigned long highest_memmap_pfn __read_mostly;
 132
 133/*
 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 135 */
 136static int __init init_zero_pfn(void)
 137{
 138        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 139        return 0;
 140}
 141core_initcall(init_zero_pfn);
 142
 143
 144#if defined(SPLIT_RSS_COUNTING)
 145
 146void sync_mm_rss(struct mm_struct *mm)
 147{
 148        int i;
 149
 150        for (i = 0; i < NR_MM_COUNTERS; i++) {
 151                if (current->rss_stat.count[i]) {
 152                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 153                        current->rss_stat.count[i] = 0;
 154                }
 155        }
 156        current->rss_stat.events = 0;
 157}
 158
 159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 160{
 161        struct task_struct *task = current;
 162
 163        if (likely(task->mm == mm))
 164                task->rss_stat.count[member] += val;
 165        else
 166                add_mm_counter(mm, member, val);
 167}
 168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 170
 171/* sync counter once per 64 page faults */
 172#define TASK_RSS_EVENTS_THRESH  (64)
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175        if (unlikely(task != current))
 176                return;
 177        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 178                sync_mm_rss(task->mm);
 179}
 180#else /* SPLIT_RSS_COUNTING */
 181
 182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 184
 185static void check_sync_rss_stat(struct task_struct *task)
 186{
 187}
 188
 189#endif /* SPLIT_RSS_COUNTING */
 190
 191/*
 192 * Note: this doesn't free the actual pages themselves. That
 193 * has been handled earlier when unmapping all the memory regions.
 194 */
 195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 196                           unsigned long addr)
 197{
 198        pgtable_t token = pmd_pgtable(*pmd);
 199        pmd_clear(pmd);
 200        pte_free_tlb(tlb, token, addr);
 201        mm_dec_nr_ptes(tlb->mm);
 202}
 203
 204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 205                                unsigned long addr, unsigned long end,
 206                                unsigned long floor, unsigned long ceiling)
 207{
 208        pmd_t *pmd;
 209        unsigned long next;
 210        unsigned long start;
 211
 212        start = addr;
 213        pmd = pmd_offset(pud, addr);
 214        do {
 215                next = pmd_addr_end(addr, end);
 216                if (pmd_none_or_clear_bad(pmd))
 217                        continue;
 218                free_pte_range(tlb, pmd, addr);
 219        } while (pmd++, addr = next, addr != end);
 220
 221        start &= PUD_MASK;
 222        if (start < floor)
 223                return;
 224        if (ceiling) {
 225                ceiling &= PUD_MASK;
 226                if (!ceiling)
 227                        return;
 228        }
 229        if (end - 1 > ceiling - 1)
 230                return;
 231
 232        pmd = pmd_offset(pud, start);
 233        pud_clear(pud);
 234        pmd_free_tlb(tlb, pmd, start);
 235        mm_dec_nr_pmds(tlb->mm);
 236}
 237
 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 239                                unsigned long addr, unsigned long end,
 240                                unsigned long floor, unsigned long ceiling)
 241{
 242        pud_t *pud;
 243        unsigned long next;
 244        unsigned long start;
 245
 246        start = addr;
 247        pud = pud_offset(p4d, addr);
 248        do {
 249                next = pud_addr_end(addr, end);
 250                if (pud_none_or_clear_bad(pud))
 251                        continue;
 252                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 253        } while (pud++, addr = next, addr != end);
 254
 255        start &= P4D_MASK;
 256        if (start < floor)
 257                return;
 258        if (ceiling) {
 259                ceiling &= P4D_MASK;
 260                if (!ceiling)
 261                        return;
 262        }
 263        if (end - 1 > ceiling - 1)
 264                return;
 265
 266        pud = pud_offset(p4d, start);
 267        p4d_clear(p4d);
 268        pud_free_tlb(tlb, pud, start);
 269        mm_dec_nr_puds(tlb->mm);
 270}
 271
 272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 273                                unsigned long addr, unsigned long end,
 274                                unsigned long floor, unsigned long ceiling)
 275{
 276        p4d_t *p4d;
 277        unsigned long next;
 278        unsigned long start;
 279
 280        start = addr;
 281        p4d = p4d_offset(pgd, addr);
 282        do {
 283                next = p4d_addr_end(addr, end);
 284                if (p4d_none_or_clear_bad(p4d))
 285                        continue;
 286                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 287        } while (p4d++, addr = next, addr != end);
 288
 289        start &= PGDIR_MASK;
 290        if (start < floor)
 291                return;
 292        if (ceiling) {
 293                ceiling &= PGDIR_MASK;
 294                if (!ceiling)
 295                        return;
 296        }
 297        if (end - 1 > ceiling - 1)
 298                return;
 299
 300        p4d = p4d_offset(pgd, start);
 301        pgd_clear(pgd);
 302        p4d_free_tlb(tlb, p4d, start);
 303}
 304
 305/*
 306 * This function frees user-level page tables of a process.
 307 */
 308void free_pgd_range(struct mmu_gather *tlb,
 309                        unsigned long addr, unsigned long end,
 310                        unsigned long floor, unsigned long ceiling)
 311{
 312        pgd_t *pgd;
 313        unsigned long next;
 314
 315        /*
 316         * The next few lines have given us lots of grief...
 317         *
 318         * Why are we testing PMD* at this top level?  Because often
 319         * there will be no work to do at all, and we'd prefer not to
 320         * go all the way down to the bottom just to discover that.
 321         *
 322         * Why all these "- 1"s?  Because 0 represents both the bottom
 323         * of the address space and the top of it (using -1 for the
 324         * top wouldn't help much: the masks would do the wrong thing).
 325         * The rule is that addr 0 and floor 0 refer to the bottom of
 326         * the address space, but end 0 and ceiling 0 refer to the top
 327         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 328         * that end 0 case should be mythical).
 329         *
 330         * Wherever addr is brought up or ceiling brought down, we must
 331         * be careful to reject "the opposite 0" before it confuses the
 332         * subsequent tests.  But what about where end is brought down
 333         * by PMD_SIZE below? no, end can't go down to 0 there.
 334         *
 335         * Whereas we round start (addr) and ceiling down, by different
 336         * masks at different levels, in order to test whether a table
 337         * now has no other vmas using it, so can be freed, we don't
 338         * bother to round floor or end up - the tests don't need that.
 339         */
 340
 341        addr &= PMD_MASK;
 342        if (addr < floor) {
 343                addr += PMD_SIZE;
 344                if (!addr)
 345                        return;
 346        }
 347        if (ceiling) {
 348                ceiling &= PMD_MASK;
 349                if (!ceiling)
 350                        return;
 351        }
 352        if (end - 1 > ceiling - 1)
 353                end -= PMD_SIZE;
 354        if (addr > end - 1)
 355                return;
 356        /*
 357         * We add page table cache pages with PAGE_SIZE,
 358         * (see pte_free_tlb()), flush the tlb if we need
 359         */
 360        tlb_change_page_size(tlb, PAGE_SIZE);
 361        pgd = pgd_offset(tlb->mm, addr);
 362        do {
 363                next = pgd_addr_end(addr, end);
 364                if (pgd_none_or_clear_bad(pgd))
 365                        continue;
 366                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 367        } while (pgd++, addr = next, addr != end);
 368}
 369
 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 371                unsigned long floor, unsigned long ceiling)
 372{
 373        while (vma) {
 374                struct vm_area_struct *next = vma->vm_next;
 375                unsigned long addr = vma->vm_start;
 376
 377                /*
 378                 * Hide vma from rmap and truncate_pagecache before freeing
 379                 * pgtables
 380                 */
 381                unlink_anon_vmas(vma);
 382                unlink_file_vma(vma);
 383
 384                if (is_vm_hugetlb_page(vma)) {
 385                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 386                                floor, next ? next->vm_start : ceiling);
 387                } else {
 388                        /*
 389                         * Optimization: gather nearby vmas into one call down
 390                         */
 391                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 392                               && !is_vm_hugetlb_page(next)) {
 393                                vma = next;
 394                                next = vma->vm_next;
 395                                unlink_anon_vmas(vma);
 396                                unlink_file_vma(vma);
 397                        }
 398                        free_pgd_range(tlb, addr, vma->vm_end,
 399                                floor, next ? next->vm_start : ceiling);
 400                }
 401                vma = next;
 402        }
 403}
 404
 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 406{
 407        spinlock_t *ptl;
 408        pgtable_t new = pte_alloc_one(mm);
 409        if (!new)
 410                return -ENOMEM;
 411
 412        /*
 413         * Ensure all pte setup (eg. pte page lock and page clearing) are
 414         * visible before the pte is made visible to other CPUs by being
 415         * put into page tables.
 416         *
 417         * The other side of the story is the pointer chasing in the page
 418         * table walking code (when walking the page table without locking;
 419         * ie. most of the time). Fortunately, these data accesses consist
 420         * of a chain of data-dependent loads, meaning most CPUs (alpha
 421         * being the notable exception) will already guarantee loads are
 422         * seen in-order. See the alpha page table accessors for the
 423         * smp_read_barrier_depends() barriers in page table walking code.
 424         */
 425        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 426
 427        ptl = pmd_lock(mm, pmd);
 428        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 429                mm_inc_nr_ptes(mm);
 430                pmd_populate(mm, pmd, new);
 431                new = NULL;
 432        }
 433        spin_unlock(ptl);
 434        if (new)
 435                pte_free(mm, new);
 436        return 0;
 437}
 438
 439int __pte_alloc_kernel(pmd_t *pmd)
 440{
 441        pte_t *new = pte_alloc_one_kernel(&init_mm);
 442        if (!new)
 443                return -ENOMEM;
 444
 445        smp_wmb(); /* See comment in __pte_alloc */
 446
 447        spin_lock(&init_mm.page_table_lock);
 448        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 449                pmd_populate_kernel(&init_mm, pmd, new);
 450                new = NULL;
 451        }
 452        spin_unlock(&init_mm.page_table_lock);
 453        if (new)
 454                pte_free_kernel(&init_mm, new);
 455        return 0;
 456}
 457
 458static inline void init_rss_vec(int *rss)
 459{
 460        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 461}
 462
 463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 464{
 465        int i;
 466
 467        if (current->mm == mm)
 468                sync_mm_rss(mm);
 469        for (i = 0; i < NR_MM_COUNTERS; i++)
 470                if (rss[i])
 471                        add_mm_counter(mm, i, rss[i]);
 472}
 473
 474/*
 475 * This function is called to print an error when a bad pte
 476 * is found. For example, we might have a PFN-mapped pte in
 477 * a region that doesn't allow it.
 478 *
 479 * The calling function must still handle the error.
 480 */
 481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 482                          pte_t pte, struct page *page)
 483{
 484        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 485        p4d_t *p4d = p4d_offset(pgd, addr);
 486        pud_t *pud = pud_offset(p4d, addr);
 487        pmd_t *pmd = pmd_offset(pud, addr);
 488        struct address_space *mapping;
 489        pgoff_t index;
 490        static unsigned long resume;
 491        static unsigned long nr_shown;
 492        static unsigned long nr_unshown;
 493
 494        /*
 495         * Allow a burst of 60 reports, then keep quiet for that minute;
 496         * or allow a steady drip of one report per second.
 497         */
 498        if (nr_shown == 60) {
 499                if (time_before(jiffies, resume)) {
 500                        nr_unshown++;
 501                        return;
 502                }
 503                if (nr_unshown) {
 504                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 505                                 nr_unshown);
 506                        nr_unshown = 0;
 507                }
 508                nr_shown = 0;
 509        }
 510        if (nr_shown++ == 0)
 511                resume = jiffies + 60 * HZ;
 512
 513        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 514        index = linear_page_index(vma, addr);
 515
 516        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 517                 current->comm,
 518                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 519        if (page)
 520                dump_page(page, "bad pte");
 521        pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 522                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 523        pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 524                 vma->vm_file,
 525                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 526                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 527                 mapping ? mapping->a_ops->readpage : NULL);
 528        dump_stack();
 529        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 530}
 531
 532/*
 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 534 *
 535 * "Special" mappings do not wish to be associated with a "struct page" (either
 536 * it doesn't exist, or it exists but they don't want to touch it). In this
 537 * case, NULL is returned here. "Normal" mappings do have a struct page.
 538 *
 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 540 * pte bit, in which case this function is trivial. Secondly, an architecture
 541 * may not have a spare pte bit, which requires a more complicated scheme,
 542 * described below.
 543 *
 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 545 * special mapping (even if there are underlying and valid "struct pages").
 546 * COWed pages of a VM_PFNMAP are always normal.
 547 *
 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 551 * mapping will always honor the rule
 552 *
 553 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 554 *
 555 * And for normal mappings this is false.
 556 *
 557 * This restricts such mappings to be a linear translation from virtual address
 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 559 * as the vma is not a COW mapping; in that case, we know that all ptes are
 560 * special (because none can have been COWed).
 561 *
 562 *
 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 564 *
 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 566 * page" backing, however the difference is that _all_ pages with a struct
 567 * page (that is, those where pfn_valid is true) are refcounted and considered
 568 * normal pages by the VM. The disadvantage is that pages are refcounted
 569 * (which can be slower and simply not an option for some PFNMAP users). The
 570 * advantage is that we don't have to follow the strict linearity rule of
 571 * PFNMAP mappings in order to support COWable mappings.
 572 *
 573 */
 574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 575                            pte_t pte)
 576{
 577        unsigned long pfn = pte_pfn(pte);
 578
 579        if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 580                if (likely(!pte_special(pte)))
 581                        goto check_pfn;
 582                if (vma->vm_ops && vma->vm_ops->find_special_page)
 583                        return vma->vm_ops->find_special_page(vma, addr);
 584                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 585                        return NULL;
 586                if (is_zero_pfn(pfn))
 587                        return NULL;
 588                if (pte_devmap(pte))
 589                        return NULL;
 590
 591                print_bad_pte(vma, addr, pte, NULL);
 592                return NULL;
 593        }
 594
 595        /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 596
 597        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 598                if (vma->vm_flags & VM_MIXEDMAP) {
 599                        if (!pfn_valid(pfn))
 600                                return NULL;
 601                        goto out;
 602                } else {
 603                        unsigned long off;
 604                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 605                        if (pfn == vma->vm_pgoff + off)
 606                                return NULL;
 607                        if (!is_cow_mapping(vma->vm_flags))
 608                                return NULL;
 609                }
 610        }
 611
 612        if (is_zero_pfn(pfn))
 613                return NULL;
 614
 615check_pfn:
 616        if (unlikely(pfn > highest_memmap_pfn)) {
 617                print_bad_pte(vma, addr, pte, NULL);
 618                return NULL;
 619        }
 620
 621        /*
 622         * NOTE! We still have PageReserved() pages in the page tables.
 623         * eg. VDSO mappings can cause them to exist.
 624         */
 625out:
 626        return pfn_to_page(pfn);
 627}
 628
 629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 631                                pmd_t pmd)
 632{
 633        unsigned long pfn = pmd_pfn(pmd);
 634
 635        /*
 636         * There is no pmd_special() but there may be special pmds, e.g.
 637         * in a direct-access (dax) mapping, so let's just replicate the
 638         * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 639         */
 640        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 641                if (vma->vm_flags & VM_MIXEDMAP) {
 642                        if (!pfn_valid(pfn))
 643                                return NULL;
 644                        goto out;
 645                } else {
 646                        unsigned long off;
 647                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 648                        if (pfn == vma->vm_pgoff + off)
 649                                return NULL;
 650                        if (!is_cow_mapping(vma->vm_flags))
 651                                return NULL;
 652                }
 653        }
 654
 655        if (pmd_devmap(pmd))
 656                return NULL;
 657        if (is_zero_pfn(pfn))
 658                return NULL;
 659        if (unlikely(pfn > highest_memmap_pfn))
 660                return NULL;
 661
 662        /*
 663         * NOTE! We still have PageReserved() pages in the page tables.
 664         * eg. VDSO mappings can cause them to exist.
 665         */
 666out:
 667        return pfn_to_page(pfn);
 668}
 669#endif
 670
 671/*
 672 * copy one vm_area from one task to the other. Assumes the page tables
 673 * already present in the new task to be cleared in the whole range
 674 * covered by this vma.
 675 */
 676
 677static inline unsigned long
 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 679                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 680                unsigned long addr, int *rss)
 681{
 682        unsigned long vm_flags = vma->vm_flags;
 683        pte_t pte = *src_pte;
 684        struct page *page;
 685
 686        /* pte contains position in swap or file, so copy. */
 687        if (unlikely(!pte_present(pte))) {
 688                swp_entry_t entry = pte_to_swp_entry(pte);
 689
 690                if (likely(!non_swap_entry(entry))) {
 691                        if (swap_duplicate(entry) < 0)
 692                                return entry.val;
 693
 694                        /* make sure dst_mm is on swapoff's mmlist. */
 695                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 696                                spin_lock(&mmlist_lock);
 697                                if (list_empty(&dst_mm->mmlist))
 698                                        list_add(&dst_mm->mmlist,
 699                                                        &src_mm->mmlist);
 700                                spin_unlock(&mmlist_lock);
 701                        }
 702                        rss[MM_SWAPENTS]++;
 703                } else if (is_migration_entry(entry)) {
 704                        page = migration_entry_to_page(entry);
 705
 706                        rss[mm_counter(page)]++;
 707
 708                        if (is_write_migration_entry(entry) &&
 709                                        is_cow_mapping(vm_flags)) {
 710                                /*
 711                                 * COW mappings require pages in both
 712                                 * parent and child to be set to read.
 713                                 */
 714                                make_migration_entry_read(&entry);
 715                                pte = swp_entry_to_pte(entry);
 716                                if (pte_swp_soft_dirty(*src_pte))
 717                                        pte = pte_swp_mksoft_dirty(pte);
 718                                set_pte_at(src_mm, addr, src_pte, pte);
 719                        }
 720                } else if (is_device_private_entry(entry)) {
 721                        page = device_private_entry_to_page(entry);
 722
 723                        /*
 724                         * Update rss count even for unaddressable pages, as
 725                         * they should treated just like normal pages in this
 726                         * respect.
 727                         *
 728                         * We will likely want to have some new rss counters
 729                         * for unaddressable pages, at some point. But for now
 730                         * keep things as they are.
 731                         */
 732                        get_page(page);
 733                        rss[mm_counter(page)]++;
 734                        page_dup_rmap(page, false);
 735
 736                        /*
 737                         * We do not preserve soft-dirty information, because so
 738                         * far, checkpoint/restore is the only feature that
 739                         * requires that. And checkpoint/restore does not work
 740                         * when a device driver is involved (you cannot easily
 741                         * save and restore device driver state).
 742                         */
 743                        if (is_write_device_private_entry(entry) &&
 744                            is_cow_mapping(vm_flags)) {
 745                                make_device_private_entry_read(&entry);
 746                                pte = swp_entry_to_pte(entry);
 747                                set_pte_at(src_mm, addr, src_pte, pte);
 748                        }
 749                }
 750                goto out_set_pte;
 751        }
 752
 753        /*
 754         * If it's a COW mapping, write protect it both
 755         * in the parent and the child
 756         */
 757        if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 758                ptep_set_wrprotect(src_mm, addr, src_pte);
 759                pte = pte_wrprotect(pte);
 760        }
 761
 762        /*
 763         * If it's a shared mapping, mark it clean in
 764         * the child
 765         */
 766        if (vm_flags & VM_SHARED)
 767                pte = pte_mkclean(pte);
 768        pte = pte_mkold(pte);
 769
 770        page = vm_normal_page(vma, addr, pte);
 771        if (page) {
 772                get_page(page);
 773                page_dup_rmap(page, false);
 774                rss[mm_counter(page)]++;
 775        } else if (pte_devmap(pte)) {
 776                page = pte_page(pte);
 777        }
 778
 779out_set_pte:
 780        set_pte_at(dst_mm, addr, dst_pte, pte);
 781        return 0;
 782}
 783
 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 785                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 786                   unsigned long addr, unsigned long end)
 787{
 788        pte_t *orig_src_pte, *orig_dst_pte;
 789        pte_t *src_pte, *dst_pte;
 790        spinlock_t *src_ptl, *dst_ptl;
 791        int progress = 0;
 792        int rss[NR_MM_COUNTERS];
 793        swp_entry_t entry = (swp_entry_t){0};
 794
 795again:
 796        init_rss_vec(rss);
 797
 798        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 799        if (!dst_pte)
 800                return -ENOMEM;
 801        src_pte = pte_offset_map(src_pmd, addr);
 802        src_ptl = pte_lockptr(src_mm, src_pmd);
 803        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 804        orig_src_pte = src_pte;
 805        orig_dst_pte = dst_pte;
 806        arch_enter_lazy_mmu_mode();
 807
 808        do {
 809                /*
 810                 * We are holding two locks at this point - either of them
 811                 * could generate latencies in another task on another CPU.
 812                 */
 813                if (progress >= 32) {
 814                        progress = 0;
 815                        if (need_resched() ||
 816                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 817                                break;
 818                }
 819                if (pte_none(*src_pte)) {
 820                        progress++;
 821                        continue;
 822                }
 823                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 824                                                        vma, addr, rss);
 825                if (entry.val)
 826                        break;
 827                progress += 8;
 828        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 829
 830        arch_leave_lazy_mmu_mode();
 831        spin_unlock(src_ptl);
 832        pte_unmap(orig_src_pte);
 833        add_mm_rss_vec(dst_mm, rss);
 834        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 835        cond_resched();
 836
 837        if (entry.val) {
 838                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 839                        return -ENOMEM;
 840                progress = 0;
 841        }
 842        if (addr != end)
 843                goto again;
 844        return 0;
 845}
 846
 847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 848                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 849                unsigned long addr, unsigned long end)
 850{
 851        pmd_t *src_pmd, *dst_pmd;
 852        unsigned long next;
 853
 854        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 855        if (!dst_pmd)
 856                return -ENOMEM;
 857        src_pmd = pmd_offset(src_pud, addr);
 858        do {
 859                next = pmd_addr_end(addr, end);
 860                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 861                        || pmd_devmap(*src_pmd)) {
 862                        int err;
 863                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
 864                        err = copy_huge_pmd(dst_mm, src_mm,
 865                                            dst_pmd, src_pmd, addr, vma);
 866                        if (err == -ENOMEM)
 867                                return -ENOMEM;
 868                        if (!err)
 869                                continue;
 870                        /* fall through */
 871                }
 872                if (pmd_none_or_clear_bad(src_pmd))
 873                        continue;
 874                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 875                                                vma, addr, next))
 876                        return -ENOMEM;
 877        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 878        return 0;
 879}
 880
 881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 882                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
 883                unsigned long addr, unsigned long end)
 884{
 885        pud_t *src_pud, *dst_pud;
 886        unsigned long next;
 887
 888        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
 889        if (!dst_pud)
 890                return -ENOMEM;
 891        src_pud = pud_offset(src_p4d, addr);
 892        do {
 893                next = pud_addr_end(addr, end);
 894                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 895                        int err;
 896
 897                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
 898                        err = copy_huge_pud(dst_mm, src_mm,
 899                                            dst_pud, src_pud, addr, vma);
 900                        if (err == -ENOMEM)
 901                                return -ENOMEM;
 902                        if (!err)
 903                                continue;
 904                        /* fall through */
 905                }
 906                if (pud_none_or_clear_bad(src_pud))
 907                        continue;
 908                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 909                                                vma, addr, next))
 910                        return -ENOMEM;
 911        } while (dst_pud++, src_pud++, addr = next, addr != end);
 912        return 0;
 913}
 914
 915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 916                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 917                unsigned long addr, unsigned long end)
 918{
 919        p4d_t *src_p4d, *dst_p4d;
 920        unsigned long next;
 921
 922        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
 923        if (!dst_p4d)
 924                return -ENOMEM;
 925        src_p4d = p4d_offset(src_pgd, addr);
 926        do {
 927                next = p4d_addr_end(addr, end);
 928                if (p4d_none_or_clear_bad(src_p4d))
 929                        continue;
 930                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
 931                                                vma, addr, next))
 932                        return -ENOMEM;
 933        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
 934        return 0;
 935}
 936
 937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 938                struct vm_area_struct *vma)
 939{
 940        pgd_t *src_pgd, *dst_pgd;
 941        unsigned long next;
 942        unsigned long addr = vma->vm_start;
 943        unsigned long end = vma->vm_end;
 944        struct mmu_notifier_range range;
 945        bool is_cow;
 946        int ret;
 947
 948        /*
 949         * Don't copy ptes where a page fault will fill them correctly.
 950         * Fork becomes much lighter when there are big shared or private
 951         * readonly mappings. The tradeoff is that copy_page_range is more
 952         * efficient than faulting.
 953         */
 954        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
 955                        !vma->anon_vma)
 956                return 0;
 957
 958        if (is_vm_hugetlb_page(vma))
 959                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 960
 961        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 962                /*
 963                 * We do not free on error cases below as remove_vma
 964                 * gets called on error from higher level routine
 965                 */
 966                ret = track_pfn_copy(vma);
 967                if (ret)
 968                        return ret;
 969        }
 970
 971        /*
 972         * We need to invalidate the secondary MMU mappings only when
 973         * there could be a permission downgrade on the ptes of the
 974         * parent mm. And a permission downgrade will only happen if
 975         * is_cow_mapping() returns true.
 976         */
 977        is_cow = is_cow_mapping(vma->vm_flags);
 978
 979        if (is_cow) {
 980                mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 981                                        0, vma, src_mm, addr, end);
 982                mmu_notifier_invalidate_range_start(&range);
 983        }
 984
 985        ret = 0;
 986        dst_pgd = pgd_offset(dst_mm, addr);
 987        src_pgd = pgd_offset(src_mm, addr);
 988        do {
 989                next = pgd_addr_end(addr, end);
 990                if (pgd_none_or_clear_bad(src_pgd))
 991                        continue;
 992                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
 993                                            vma, addr, next))) {
 994                        ret = -ENOMEM;
 995                        break;
 996                }
 997        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
 998
 999        if (is_cow)
1000                mmu_notifier_invalidate_range_end(&range);
1001        return ret;
1002}
1003
1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005                                struct vm_area_struct *vma, pmd_t *pmd,
1006                                unsigned long addr, unsigned long end,
1007                                struct zap_details *details)
1008{
1009        struct mm_struct *mm = tlb->mm;
1010        int force_flush = 0;
1011        int rss[NR_MM_COUNTERS];
1012        spinlock_t *ptl;
1013        pte_t *start_pte;
1014        pte_t *pte;
1015        swp_entry_t entry;
1016
1017        tlb_change_page_size(tlb, PAGE_SIZE);
1018again:
1019        init_rss_vec(rss);
1020        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021        pte = start_pte;
1022        flush_tlb_batched_pending(mm);
1023        arch_enter_lazy_mmu_mode();
1024        do {
1025                pte_t ptent = *pte;
1026                if (pte_none(ptent))
1027                        continue;
1028
1029                if (need_resched())
1030                        break;
1031
1032                if (pte_present(ptent)) {
1033                        struct page *page;
1034
1035                        page = vm_normal_page(vma, addr, ptent);
1036                        if (unlikely(details) && page) {
1037                                /*
1038                                 * unmap_shared_mapping_pages() wants to
1039                                 * invalidate cache without truncating:
1040                                 * unmap shared but keep private pages.
1041                                 */
1042                                if (details->check_mapping &&
1043                                    details->check_mapping != page_rmapping(page))
1044                                        continue;
1045                        }
1046                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1047                                                        tlb->fullmm);
1048                        tlb_remove_tlb_entry(tlb, pte, addr);
1049                        if (unlikely(!page))
1050                                continue;
1051
1052                        if (!PageAnon(page)) {
1053                                if (pte_dirty(ptent)) {
1054                                        force_flush = 1;
1055                                        set_page_dirty(page);
1056                                }
1057                                if (pte_young(ptent) &&
1058                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1059                                        mark_page_accessed(page);
1060                        }
1061                        rss[mm_counter(page)]--;
1062                        page_remove_rmap(page, false);
1063                        if (unlikely(page_mapcount(page) < 0))
1064                                print_bad_pte(vma, addr, ptent, page);
1065                        if (unlikely(__tlb_remove_page(tlb, page))) {
1066                                force_flush = 1;
1067                                addr += PAGE_SIZE;
1068                                break;
1069                        }
1070                        continue;
1071                }
1072
1073                entry = pte_to_swp_entry(ptent);
1074                if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075                        struct page *page = device_private_entry_to_page(entry);
1076
1077                        if (unlikely(details && details->check_mapping)) {
1078                                /*
1079                                 * unmap_shared_mapping_pages() wants to
1080                                 * invalidate cache without truncating:
1081                                 * unmap shared but keep private pages.
1082                                 */
1083                                if (details->check_mapping !=
1084                                    page_rmapping(page))
1085                                        continue;
1086                        }
1087
1088                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089                        rss[mm_counter(page)]--;
1090                        page_remove_rmap(page, false);
1091                        put_page(page);
1092                        continue;
1093                }
1094
1095                /* If details->check_mapping, we leave swap entries. */
1096                if (unlikely(details))
1097                        continue;
1098
1099                if (!non_swap_entry(entry))
1100                        rss[MM_SWAPENTS]--;
1101                else if (is_migration_entry(entry)) {
1102                        struct page *page;
1103
1104                        page = migration_entry_to_page(entry);
1105                        rss[mm_counter(page)]--;
1106                }
1107                if (unlikely(!free_swap_and_cache(entry)))
1108                        print_bad_pte(vma, addr, ptent, NULL);
1109                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110        } while (pte++, addr += PAGE_SIZE, addr != end);
1111
1112        add_mm_rss_vec(mm, rss);
1113        arch_leave_lazy_mmu_mode();
1114
1115        /* Do the actual TLB flush before dropping ptl */
1116        if (force_flush)
1117                tlb_flush_mmu_tlbonly(tlb);
1118        pte_unmap_unlock(start_pte, ptl);
1119
1120        /*
1121         * If we forced a TLB flush (either due to running out of
1122         * batch buffers or because we needed to flush dirty TLB
1123         * entries before releasing the ptl), free the batched
1124         * memory too. Restart if we didn't do everything.
1125         */
1126        if (force_flush) {
1127                force_flush = 0;
1128                tlb_flush_mmu(tlb);
1129        }
1130
1131        if (addr != end) {
1132                cond_resched();
1133                goto again;
1134        }
1135
1136        return addr;
1137}
1138
1139static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140                                struct vm_area_struct *vma, pud_t *pud,
1141                                unsigned long addr, unsigned long end,
1142                                struct zap_details *details)
1143{
1144        pmd_t *pmd;
1145        unsigned long next;
1146
1147        pmd = pmd_offset(pud, addr);
1148        do {
1149                next = pmd_addr_end(addr, end);
1150                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151                        if (next - addr != HPAGE_PMD_SIZE)
1152                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1153                        else if (zap_huge_pmd(tlb, vma, pmd, addr))
1154                                goto next;
1155                        /* fall through */
1156                }
1157                /*
1158                 * Here there can be other concurrent MADV_DONTNEED or
1159                 * trans huge page faults running, and if the pmd is
1160                 * none or trans huge it can change under us. This is
1161                 * because MADV_DONTNEED holds the mmap_sem in read
1162                 * mode.
1163                 */
1164                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165                        goto next;
1166                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167next:
1168                cond_resched();
1169        } while (pmd++, addr = next, addr != end);
1170
1171        return addr;
1172}
1173
1174static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175                                struct vm_area_struct *vma, p4d_t *p4d,
1176                                unsigned long addr, unsigned long end,
1177                                struct zap_details *details)
1178{
1179        pud_t *pud;
1180        unsigned long next;
1181
1182        pud = pud_offset(p4d, addr);
1183        do {
1184                next = pud_addr_end(addr, end);
1185                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186                        if (next - addr != HPAGE_PUD_SIZE) {
1187                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188                                split_huge_pud(vma, pud, addr);
1189                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1190                                goto next;
1191                        /* fall through */
1192                }
1193                if (pud_none_or_clear_bad(pud))
1194                        continue;
1195                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196next:
1197                cond_resched();
1198        } while (pud++, addr = next, addr != end);
1199
1200        return addr;
1201}
1202
1203static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204                                struct vm_area_struct *vma, pgd_t *pgd,
1205                                unsigned long addr, unsigned long end,
1206                                struct zap_details *details)
1207{
1208        p4d_t *p4d;
1209        unsigned long next;
1210
1211        p4d = p4d_offset(pgd, addr);
1212        do {
1213                next = p4d_addr_end(addr, end);
1214                if (p4d_none_or_clear_bad(p4d))
1215                        continue;
1216                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217        } while (p4d++, addr = next, addr != end);
1218
1219        return addr;
1220}
1221
1222void unmap_page_range(struct mmu_gather *tlb,
1223                             struct vm_area_struct *vma,
1224                             unsigned long addr, unsigned long end,
1225                             struct zap_details *details)
1226{
1227        pgd_t *pgd;
1228        unsigned long next;
1229
1230        BUG_ON(addr >= end);
1231        tlb_start_vma(tlb, vma);
1232        pgd = pgd_offset(vma->vm_mm, addr);
1233        do {
1234                next = pgd_addr_end(addr, end);
1235                if (pgd_none_or_clear_bad(pgd))
1236                        continue;
1237                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238        } while (pgd++, addr = next, addr != end);
1239        tlb_end_vma(tlb, vma);
1240}
1241
1242
1243static void unmap_single_vma(struct mmu_gather *tlb,
1244                struct vm_area_struct *vma, unsigned long start_addr,
1245                unsigned long end_addr,
1246                struct zap_details *details)
1247{
1248        unsigned long start = max(vma->vm_start, start_addr);
1249        unsigned long end;
1250
1251        if (start >= vma->vm_end)
1252                return;
1253        end = min(vma->vm_end, end_addr);
1254        if (end <= vma->vm_start)
1255                return;
1256
1257        if (vma->vm_file)
1258                uprobe_munmap(vma, start, end);
1259
1260        if (unlikely(vma->vm_flags & VM_PFNMAP))
1261                untrack_pfn(vma, 0, 0);
1262
1263        if (start != end) {
1264                if (unlikely(is_vm_hugetlb_page(vma))) {
1265                        /*
1266                         * It is undesirable to test vma->vm_file as it
1267                         * should be non-null for valid hugetlb area.
1268                         * However, vm_file will be NULL in the error
1269                         * cleanup path of mmap_region. When
1270                         * hugetlbfs ->mmap method fails,
1271                         * mmap_region() nullifies vma->vm_file
1272                         * before calling this function to clean up.
1273                         * Since no pte has actually been setup, it is
1274                         * safe to do nothing in this case.
1275                         */
1276                        if (vma->vm_file) {
1277                                i_mmap_lock_write(vma->vm_file->f_mapping);
1278                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1280                        }
1281                } else
1282                        unmap_page_range(tlb, vma, start, end, details);
1283        }
1284}
1285
1286/**
1287 * unmap_vmas - unmap a range of memory covered by a list of vma's
1288 * @tlb: address of the caller's struct mmu_gather
1289 * @vma: the starting vma
1290 * @start_addr: virtual address at which to start unmapping
1291 * @end_addr: virtual address at which to end unmapping
1292 *
1293 * Unmap all pages in the vma list.
1294 *
1295 * Only addresses between `start' and `end' will be unmapped.
1296 *
1297 * The VMA list must be sorted in ascending virtual address order.
1298 *
1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300 * range after unmap_vmas() returns.  So the only responsibility here is to
1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302 * drops the lock and schedules.
1303 */
1304void unmap_vmas(struct mmu_gather *tlb,
1305                struct vm_area_struct *vma, unsigned long start_addr,
1306                unsigned long end_addr)
1307{
1308        struct mmu_notifier_range range;
1309
1310        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311                                start_addr, end_addr);
1312        mmu_notifier_invalidate_range_start(&range);
1313        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315        mmu_notifier_invalidate_range_end(&range);
1316}
1317
1318/**
1319 * zap_page_range - remove user pages in a given range
1320 * @vma: vm_area_struct holding the applicable pages
1321 * @start: starting address of pages to zap
1322 * @size: number of bytes to zap
1323 *
1324 * Caller must protect the VMA list
1325 */
1326void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327                unsigned long size)
1328{
1329        struct mmu_notifier_range range;
1330        struct mmu_gather tlb;
1331
1332        lru_add_drain();
1333        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334                                start, start + size);
1335        tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336        update_hiwater_rss(vma->vm_mm);
1337        mmu_notifier_invalidate_range_start(&range);
1338        for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339                unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340        mmu_notifier_invalidate_range_end(&range);
1341        tlb_finish_mmu(&tlb, start, range.end);
1342}
1343
1344/**
1345 * zap_page_range_single - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @address: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * The range must fit into one VMA.
1352 */
1353static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354                unsigned long size, struct zap_details *details)
1355{
1356        struct mmu_notifier_range range;
1357        struct mmu_gather tlb;
1358
1359        lru_add_drain();
1360        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361                                address, address + size);
1362        tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363        update_hiwater_rss(vma->vm_mm);
1364        mmu_notifier_invalidate_range_start(&range);
1365        unmap_single_vma(&tlb, vma, address, range.end, details);
1366        mmu_notifier_invalidate_range_end(&range);
1367        tlb_finish_mmu(&tlb, address, range.end);
1368}
1369
1370/**
1371 * zap_vma_ptes - remove ptes mapping the vma
1372 * @vma: vm_area_struct holding ptes to be zapped
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 *
1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377 *
1378 * The entire address range must be fully contained within the vma.
1379 *
1380 */
1381void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382                unsigned long size)
1383{
1384        if (address < vma->vm_start || address + size > vma->vm_end ||
1385                        !(vma->vm_flags & VM_PFNMAP))
1386                return;
1387
1388        zap_page_range_single(vma, address, size, NULL);
1389}
1390EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391
1392pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393                        spinlock_t **ptl)
1394{
1395        pgd_t *pgd;
1396        p4d_t *p4d;
1397        pud_t *pud;
1398        pmd_t *pmd;
1399
1400        pgd = pgd_offset(mm, addr);
1401        p4d = p4d_alloc(mm, pgd, addr);
1402        if (!p4d)
1403                return NULL;
1404        pud = pud_alloc(mm, p4d, addr);
1405        if (!pud)
1406                return NULL;
1407        pmd = pmd_alloc(mm, pud, addr);
1408        if (!pmd)
1409                return NULL;
1410
1411        VM_BUG_ON(pmd_trans_huge(*pmd));
1412        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413}
1414
1415/*
1416 * This is the old fallback for page remapping.
1417 *
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1421 */
1422static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423                        struct page *page, pgprot_t prot)
1424{
1425        struct mm_struct *mm = vma->vm_mm;
1426        int retval;
1427        pte_t *pte;
1428        spinlock_t *ptl;
1429
1430        retval = -EINVAL;
1431        if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432                goto out;
1433        retval = -ENOMEM;
1434        flush_dcache_page(page);
1435        pte = get_locked_pte(mm, addr, &ptl);
1436        if (!pte)
1437                goto out;
1438        retval = -EBUSY;
1439        if (!pte_none(*pte))
1440                goto out_unlock;
1441
1442        /* Ok, finally just insert the thing.. */
1443        get_page(page);
1444        inc_mm_counter_fast(mm, mm_counter_file(page));
1445        page_add_file_rmap(page, false);
1446        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448        retval = 0;
1449out_unlock:
1450        pte_unmap_unlock(pte, ptl);
1451out:
1452        return retval;
1453}
1454
1455/**
1456 * vm_insert_page - insert single page into user vma
1457 * @vma: user vma to map to
1458 * @addr: target user address of this page
1459 * @page: source kernel page
1460 *
1461 * This allows drivers to insert individual pages they've allocated
1462 * into a user vma.
1463 *
1464 * The page has to be a nice clean _individual_ kernel allocation.
1465 * If you allocate a compound page, you need to have marked it as
1466 * such (__GFP_COMP), or manually just split the page up yourself
1467 * (see split_page()).
1468 *
1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470 * took an arbitrary page protection parameter. This doesn't allow
1471 * that. Your vma protection will have to be set up correctly, which
1472 * means that if you want a shared writable mapping, you'd better
1473 * ask for a shared writable mapping!
1474 *
1475 * The page does not need to be reserved.
1476 *
1477 * Usually this function is called from f_op->mmap() handler
1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480 * function from other places, for example from page-fault handler.
1481 *
1482 * Return: %0 on success, negative error code otherwise.
1483 */
1484int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485                        struct page *page)
1486{
1487        if (addr < vma->vm_start || addr >= vma->vm_end)
1488                return -EFAULT;
1489        if (!page_count(page))
1490                return -EINVAL;
1491        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493                BUG_ON(vma->vm_flags & VM_PFNMAP);
1494                vma->vm_flags |= VM_MIXEDMAP;
1495        }
1496        return insert_page(vma, addr, page, vma->vm_page_prot);
1497}
1498EXPORT_SYMBOL(vm_insert_page);
1499
1500/*
1501 * __vm_map_pages - maps range of kernel pages into user vma
1502 * @vma: user vma to map to
1503 * @pages: pointer to array of source kernel pages
1504 * @num: number of pages in page array
1505 * @offset: user's requested vm_pgoff
1506 *
1507 * This allows drivers to map range of kernel pages into a user vma.
1508 *
1509 * Return: 0 on success and error code otherwise.
1510 */
1511static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512                                unsigned long num, unsigned long offset)
1513{
1514        unsigned long count = vma_pages(vma);
1515        unsigned long uaddr = vma->vm_start;
1516        int ret, i;
1517
1518        /* Fail if the user requested offset is beyond the end of the object */
1519        if (offset >= num)
1520                return -ENXIO;
1521
1522        /* Fail if the user requested size exceeds available object size */
1523        if (count > num - offset)
1524                return -ENXIO;
1525
1526        for (i = 0; i < count; i++) {
1527                ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528                if (ret < 0)
1529                        return ret;
1530                uaddr += PAGE_SIZE;
1531        }
1532
1533        return 0;
1534}
1535
1536/**
1537 * vm_map_pages - maps range of kernel pages starts with non zero offset
1538 * @vma: user vma to map to
1539 * @pages: pointer to array of source kernel pages
1540 * @num: number of pages in page array
1541 *
1542 * Maps an object consisting of @num pages, catering for the user's
1543 * requested vm_pgoff
1544 *
1545 * If we fail to insert any page into the vma, the function will return
1546 * immediately leaving any previously inserted pages present.  Callers
1547 * from the mmap handler may immediately return the error as their caller
1548 * will destroy the vma, removing any successfully inserted pages. Other
1549 * callers should make their own arrangements for calling unmap_region().
1550 *
1551 * Context: Process context. Called by mmap handlers.
1552 * Return: 0 on success and error code otherwise.
1553 */
1554int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555                                unsigned long num)
1556{
1557        return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558}
1559EXPORT_SYMBOL(vm_map_pages);
1560
1561/**
1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563 * @vma: user vma to map to
1564 * @pages: pointer to array of source kernel pages
1565 * @num: number of pages in page array
1566 *
1567 * Similar to vm_map_pages(), except that it explicitly sets the offset
1568 * to 0. This function is intended for the drivers that did not consider
1569 * vm_pgoff.
1570 *
1571 * Context: Process context. Called by mmap handlers.
1572 * Return: 0 on success and error code otherwise.
1573 */
1574int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575                                unsigned long num)
1576{
1577        return __vm_map_pages(vma, pages, num, 0);
1578}
1579EXPORT_SYMBOL(vm_map_pages_zero);
1580
1581static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582                        pfn_t pfn, pgprot_t prot, bool mkwrite)
1583{
1584        struct mm_struct *mm = vma->vm_mm;
1585        pte_t *pte, entry;
1586        spinlock_t *ptl;
1587
1588        pte = get_locked_pte(mm, addr, &ptl);
1589        if (!pte)
1590                return VM_FAULT_OOM;
1591        if (!pte_none(*pte)) {
1592                if (mkwrite) {
1593                        /*
1594                         * For read faults on private mappings the PFN passed
1595                         * in may not match the PFN we have mapped if the
1596                         * mapped PFN is a writeable COW page.  In the mkwrite
1597                         * case we are creating a writable PTE for a shared
1598                         * mapping and we expect the PFNs to match. If they
1599                         * don't match, we are likely racing with block
1600                         * allocation and mapping invalidation so just skip the
1601                         * update.
1602                         */
1603                        if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604                                WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605                                goto out_unlock;
1606                        }
1607                        entry = pte_mkyoung(*pte);
1608                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609                        if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610                                update_mmu_cache(vma, addr, pte);
1611                }
1612                goto out_unlock;
1613        }
1614
1615        /* Ok, finally just insert the thing.. */
1616        if (pfn_t_devmap(pfn))
1617                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618        else
1619                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1620
1621        if (mkwrite) {
1622                entry = pte_mkyoung(entry);
1623                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624        }
1625
1626        set_pte_at(mm, addr, pte, entry);
1627        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1628
1629out_unlock:
1630        pte_unmap_unlock(pte, ptl);
1631        return VM_FAULT_NOPAGE;
1632}
1633
1634/**
1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @pfn: source kernel pfn
1639 * @pgprot: pgprot flags for the inserted page
1640 *
1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642 * to override pgprot on a per-page basis.
1643 *
1644 * This only makes sense for IO mappings, and it makes no sense for
1645 * COW mappings.  In general, using multiple vmas is preferable;
1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647 * impractical.
1648 *
1649 * Context: Process context.  May allocate using %GFP_KERNEL.
1650 * Return: vm_fault_t value.
1651 */
1652vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653                        unsigned long pfn, pgprot_t pgprot)
1654{
1655        /*
1656         * Technically, architectures with pte_special can avoid all these
1657         * restrictions (same for remap_pfn_range).  However we would like
1658         * consistency in testing and feature parity among all, so we should
1659         * try to keep these invariants in place for everybody.
1660         */
1661        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663                                                (VM_PFNMAP|VM_MIXEDMAP));
1664        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666
1667        if (addr < vma->vm_start || addr >= vma->vm_end)
1668                return VM_FAULT_SIGBUS;
1669
1670        if (!pfn_modify_allowed(pfn, pgprot))
1671                return VM_FAULT_SIGBUS;
1672
1673        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1674
1675        return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676                        false);
1677}
1678EXPORT_SYMBOL(vmf_insert_pfn_prot);
1679
1680/**
1681 * vmf_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1685 *
1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
1687 * they've allocated into a user vma. Same comments apply.
1688 *
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return the result of this function.
1691 *
1692 * vma cannot be a COW mapping.
1693 *
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
1696 *
1697 * Context: Process context.  May allocate using %GFP_KERNEL.
1698 * Return: vm_fault_t value.
1699 */
1700vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701                        unsigned long pfn)
1702{
1703        return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704}
1705EXPORT_SYMBOL(vmf_insert_pfn);
1706
1707static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708{
1709        /* these checks mirror the abort conditions in vm_normal_page */
1710        if (vma->vm_flags & VM_MIXEDMAP)
1711                return true;
1712        if (pfn_t_devmap(pfn))
1713                return true;
1714        if (pfn_t_special(pfn))
1715                return true;
1716        if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717                return true;
1718        return false;
1719}
1720
1721static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722                unsigned long addr, pfn_t pfn, bool mkwrite)
1723{
1724        pgprot_t pgprot = vma->vm_page_prot;
1725        int err;
1726
1727        BUG_ON(!vm_mixed_ok(vma, pfn));
1728
1729        if (addr < vma->vm_start || addr >= vma->vm_end)
1730                return VM_FAULT_SIGBUS;
1731
1732        track_pfn_insert(vma, &pgprot, pfn);
1733
1734        if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735                return VM_FAULT_SIGBUS;
1736
1737        /*
1738         * If we don't have pte special, then we have to use the pfn_valid()
1739         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740         * refcount the page if pfn_valid is true (hence insert_page rather
1741         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1742         * without pte special, it would there be refcounted as a normal page.
1743         */
1744        if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745            !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746                struct page *page;
1747
1748                /*
1749                 * At this point we are committed to insert_page()
1750                 * regardless of whether the caller specified flags that
1751                 * result in pfn_t_has_page() == false.
1752                 */
1753                page = pfn_to_page(pfn_t_to_pfn(pfn));
1754                err = insert_page(vma, addr, page, pgprot);
1755        } else {
1756                return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1757        }
1758
1759        if (err == -ENOMEM)
1760                return VM_FAULT_OOM;
1761        if (err < 0 && err != -EBUSY)
1762                return VM_FAULT_SIGBUS;
1763
1764        return VM_FAULT_NOPAGE;
1765}
1766
1767vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768                pfn_t pfn)
1769{
1770        return __vm_insert_mixed(vma, addr, pfn, false);
1771}
1772EXPORT_SYMBOL(vmf_insert_mixed);
1773
1774/*
1775 *  If the insertion of PTE failed because someone else already added a
1776 *  different entry in the mean time, we treat that as success as we assume
1777 *  the same entry was actually inserted.
1778 */
1779vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780                unsigned long addr, pfn_t pfn)
1781{
1782        return __vm_insert_mixed(vma, addr, pfn, true);
1783}
1784EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1785
1786/*
1787 * maps a range of physical memory into the requested pages. the old
1788 * mappings are removed. any references to nonexistent pages results
1789 * in null mappings (currently treated as "copy-on-access")
1790 */
1791static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792                        unsigned long addr, unsigned long end,
1793                        unsigned long pfn, pgprot_t prot)
1794{
1795        pte_t *pte;
1796        spinlock_t *ptl;
1797        int err = 0;
1798
1799        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800        if (!pte)
1801                return -ENOMEM;
1802        arch_enter_lazy_mmu_mode();
1803        do {
1804                BUG_ON(!pte_none(*pte));
1805                if (!pfn_modify_allowed(pfn, prot)) {
1806                        err = -EACCES;
1807                        break;
1808                }
1809                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810                pfn++;
1811        } while (pte++, addr += PAGE_SIZE, addr != end);
1812        arch_leave_lazy_mmu_mode();
1813        pte_unmap_unlock(pte - 1, ptl);
1814        return err;
1815}
1816
1817static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818                        unsigned long addr, unsigned long end,
1819                        unsigned long pfn, pgprot_t prot)
1820{
1821        pmd_t *pmd;
1822        unsigned long next;
1823        int err;
1824
1825        pfn -= addr >> PAGE_SHIFT;
1826        pmd = pmd_alloc(mm, pud, addr);
1827        if (!pmd)
1828                return -ENOMEM;
1829        VM_BUG_ON(pmd_trans_huge(*pmd));
1830        do {
1831                next = pmd_addr_end(addr, end);
1832                err = remap_pte_range(mm, pmd, addr, next,
1833                                pfn + (addr >> PAGE_SHIFT), prot);
1834                if (err)
1835                        return err;
1836        } while (pmd++, addr = next, addr != end);
1837        return 0;
1838}
1839
1840static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841                        unsigned long addr, unsigned long end,
1842                        unsigned long pfn, pgprot_t prot)
1843{
1844        pud_t *pud;
1845        unsigned long next;
1846        int err;
1847
1848        pfn -= addr >> PAGE_SHIFT;
1849        pud = pud_alloc(mm, p4d, addr);
1850        if (!pud)
1851                return -ENOMEM;
1852        do {
1853                next = pud_addr_end(addr, end);
1854                err = remap_pmd_range(mm, pud, addr, next,
1855                                pfn + (addr >> PAGE_SHIFT), prot);
1856                if (err)
1857                        return err;
1858        } while (pud++, addr = next, addr != end);
1859        return 0;
1860}
1861
1862static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863                        unsigned long addr, unsigned long end,
1864                        unsigned long pfn, pgprot_t prot)
1865{
1866        p4d_t *p4d;
1867        unsigned long next;
1868        int err;
1869
1870        pfn -= addr >> PAGE_SHIFT;
1871        p4d = p4d_alloc(mm, pgd, addr);
1872        if (!p4d)
1873                return -ENOMEM;
1874        do {
1875                next = p4d_addr_end(addr, end);
1876                err = remap_pud_range(mm, p4d, addr, next,
1877                                pfn + (addr >> PAGE_SHIFT), prot);
1878                if (err)
1879                        return err;
1880        } while (p4d++, addr = next, addr != end);
1881        return 0;
1882}
1883
1884/**
1885 * remap_pfn_range - remap kernel memory to userspace
1886 * @vma: user vma to map to
1887 * @addr: target user address to start at
1888 * @pfn: physical address of kernel memory
1889 * @size: size of map area
1890 * @prot: page protection flags for this mapping
1891 *
1892 * Note: this is only safe if the mm semaphore is held when called.
1893 *
1894 * Return: %0 on success, negative error code otherwise.
1895 */
1896int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897                    unsigned long pfn, unsigned long size, pgprot_t prot)
1898{
1899        pgd_t *pgd;
1900        unsigned long next;
1901        unsigned long end = addr + PAGE_ALIGN(size);
1902        struct mm_struct *mm = vma->vm_mm;
1903        unsigned long remap_pfn = pfn;
1904        int err;
1905
1906        /*
1907         * Physically remapped pages are special. Tell the
1908         * rest of the world about it:
1909         *   VM_IO tells people not to look at these pages
1910         *      (accesses can have side effects).
1911         *   VM_PFNMAP tells the core MM that the base pages are just
1912         *      raw PFN mappings, and do not have a "struct page" associated
1913         *      with them.
1914         *   VM_DONTEXPAND
1915         *      Disable vma merging and expanding with mremap().
1916         *   VM_DONTDUMP
1917         *      Omit vma from core dump, even when VM_IO turned off.
1918         *
1919         * There's a horrible special case to handle copy-on-write
1920         * behaviour that some programs depend on. We mark the "original"
1921         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922         * See vm_normal_page() for details.
1923         */
1924        if (is_cow_mapping(vma->vm_flags)) {
1925                if (addr != vma->vm_start || end != vma->vm_end)
1926                        return -EINVAL;
1927                vma->vm_pgoff = pfn;
1928        }
1929
1930        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931        if (err)
1932                return -EINVAL;
1933
1934        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1935
1936        BUG_ON(addr >= end);
1937        pfn -= addr >> PAGE_SHIFT;
1938        pgd = pgd_offset(mm, addr);
1939        flush_cache_range(vma, addr, end);
1940        do {
1941                next = pgd_addr_end(addr, end);
1942                err = remap_p4d_range(mm, pgd, addr, next,
1943                                pfn + (addr >> PAGE_SHIFT), prot);
1944                if (err)
1945                        break;
1946        } while (pgd++, addr = next, addr != end);
1947
1948        if (err)
1949                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1950
1951        return err;
1952}
1953EXPORT_SYMBOL(remap_pfn_range);
1954
1955/**
1956 * vm_iomap_memory - remap memory to userspace
1957 * @vma: user vma to map to
1958 * @start: start of area
1959 * @len: size of area
1960 *
1961 * This is a simplified io_remap_pfn_range() for common driver use. The
1962 * driver just needs to give us the physical memory range to be mapped,
1963 * we'll figure out the rest from the vma information.
1964 *
1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966 * whatever write-combining details or similar.
1967 *
1968 * Return: %0 on success, negative error code otherwise.
1969 */
1970int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971{
1972        unsigned long vm_len, pfn, pages;
1973
1974        /* Check that the physical memory area passed in looks valid */
1975        if (start + len < start)
1976                return -EINVAL;
1977        /*
1978         * You *really* shouldn't map things that aren't page-aligned,
1979         * but we've historically allowed it because IO memory might
1980         * just have smaller alignment.
1981         */
1982        len += start & ~PAGE_MASK;
1983        pfn = start >> PAGE_SHIFT;
1984        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985        if (pfn + pages < pfn)
1986                return -EINVAL;
1987
1988        /* We start the mapping 'vm_pgoff' pages into the area */
1989        if (vma->vm_pgoff > pages)
1990                return -EINVAL;
1991        pfn += vma->vm_pgoff;
1992        pages -= vma->vm_pgoff;
1993
1994        /* Can we fit all of the mapping? */
1995        vm_len = vma->vm_end - vma->vm_start;
1996        if (vm_len >> PAGE_SHIFT > pages)
1997                return -EINVAL;
1998
1999        /* Ok, let it rip */
2000        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001}
2002EXPORT_SYMBOL(vm_iomap_memory);
2003
2004static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005                                     unsigned long addr, unsigned long end,
2006                                     pte_fn_t fn, void *data)
2007{
2008        pte_t *pte;
2009        int err;
2010        spinlock_t *uninitialized_var(ptl);
2011
2012        pte = (mm == &init_mm) ?
2013                pte_alloc_kernel(pmd, addr) :
2014                pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015        if (!pte)
2016                return -ENOMEM;
2017
2018        BUG_ON(pmd_huge(*pmd));
2019
2020        arch_enter_lazy_mmu_mode();
2021
2022        do {
2023                err = fn(pte++, addr, data);
2024                if (err)
2025                        break;
2026        } while (addr += PAGE_SIZE, addr != end);
2027
2028        arch_leave_lazy_mmu_mode();
2029
2030        if (mm != &init_mm)
2031                pte_unmap_unlock(pte-1, ptl);
2032        return err;
2033}
2034
2035static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036                                     unsigned long addr, unsigned long end,
2037                                     pte_fn_t fn, void *data)
2038{
2039        pmd_t *pmd;
2040        unsigned long next;
2041        int err;
2042
2043        BUG_ON(pud_huge(*pud));
2044
2045        pmd = pmd_alloc(mm, pud, addr);
2046        if (!pmd)
2047                return -ENOMEM;
2048        do {
2049                next = pmd_addr_end(addr, end);
2050                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051                if (err)
2052                        break;
2053        } while (pmd++, addr = next, addr != end);
2054        return err;
2055}
2056
2057static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058                                     unsigned long addr, unsigned long end,
2059                                     pte_fn_t fn, void *data)
2060{
2061        pud_t *pud;
2062        unsigned long next;
2063        int err;
2064
2065        pud = pud_alloc(mm, p4d, addr);
2066        if (!pud)
2067                return -ENOMEM;
2068        do {
2069                next = pud_addr_end(addr, end);
2070                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071                if (err)
2072                        break;
2073        } while (pud++, addr = next, addr != end);
2074        return err;
2075}
2076
2077static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078                                     unsigned long addr, unsigned long end,
2079                                     pte_fn_t fn, void *data)
2080{
2081        p4d_t *p4d;
2082        unsigned long next;
2083        int err;
2084
2085        p4d = p4d_alloc(mm, pgd, addr);
2086        if (!p4d)
2087                return -ENOMEM;
2088        do {
2089                next = p4d_addr_end(addr, end);
2090                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091                if (err)
2092                        break;
2093        } while (p4d++, addr = next, addr != end);
2094        return err;
2095}
2096
2097/*
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2100 */
2101int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102                        unsigned long size, pte_fn_t fn, void *data)
2103{
2104        pgd_t *pgd;
2105        unsigned long next;
2106        unsigned long end = addr + size;
2107        int err;
2108
2109        if (WARN_ON(addr >= end))
2110                return -EINVAL;
2111
2112        pgd = pgd_offset(mm, addr);
2113        do {
2114                next = pgd_addr_end(addr, end);
2115                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116                if (err)
2117                        break;
2118        } while (pgd++, addr = next, addr != end);
2119
2120        return err;
2121}
2122EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
2124/*
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically.  Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
2130 * and do_anonymous_page can safely check later on).
2131 */
2132static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133                                pte_t *page_table, pte_t orig_pte)
2134{
2135        int same = 1;
2136#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137        if (sizeof(pte_t) > sizeof(unsigned long)) {
2138                spinlock_t *ptl = pte_lockptr(mm, pmd);
2139                spin_lock(ptl);
2140                same = pte_same(*page_table, orig_pte);
2141                spin_unlock(ptl);
2142        }
2143#endif
2144        pte_unmap(page_table);
2145        return same;
2146}
2147
2148static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2149{
2150        debug_dma_assert_idle(src);
2151
2152        /*
2153         * If the source page was a PFN mapping, we don't have
2154         * a "struct page" for it. We do a best-effort copy by
2155         * just copying from the original user address. If that
2156         * fails, we just zero-fill it. Live with it.
2157         */
2158        if (unlikely(!src)) {
2159                void *kaddr = kmap_atomic(dst);
2160                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162                /*
2163                 * This really shouldn't fail, because the page is there
2164                 * in the page tables. But it might just be unreadable,
2165                 * in which case we just give up and fill the result with
2166                 * zeroes.
2167                 */
2168                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169                        clear_page(kaddr);
2170                kunmap_atomic(kaddr);
2171                flush_dcache_page(dst);
2172        } else
2173                copy_user_highpage(dst, src, va, vma);
2174}
2175
2176static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177{
2178        struct file *vm_file = vma->vm_file;
2179
2180        if (vm_file)
2181                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182
2183        /*
2184         * Special mappings (e.g. VDSO) do not have any file so fake
2185         * a default GFP_KERNEL for them.
2186         */
2187        return GFP_KERNEL;
2188}
2189
2190/*
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2193 *
2194 * We do this without the lock held, so that it can sleep if it needs to.
2195 */
2196static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2197{
2198        vm_fault_t ret;
2199        struct page *page = vmf->page;
2200        unsigned int old_flags = vmf->flags;
2201
2202        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2203
2204        if (vmf->vma->vm_file &&
2205            IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206                return VM_FAULT_SIGBUS;
2207
2208        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209        /* Restore original flags so that caller is not surprised */
2210        vmf->flags = old_flags;
2211        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212                return ret;
2213        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214                lock_page(page);
2215                if (!page->mapping) {
2216                        unlock_page(page);
2217                        return 0; /* retry */
2218                }
2219                ret |= VM_FAULT_LOCKED;
2220        } else
2221                VM_BUG_ON_PAGE(!PageLocked(page), page);
2222        return ret;
2223}
2224
2225/*
2226 * Handle dirtying of a page in shared file mapping on a write fault.
2227 *
2228 * The function expects the page to be locked and unlocks it.
2229 */
2230static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231                                    struct page *page)
2232{
2233        struct address_space *mapping;
2234        bool dirtied;
2235        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2236
2237        dirtied = set_page_dirty(page);
2238        VM_BUG_ON_PAGE(PageAnon(page), page);
2239        /*
2240         * Take a local copy of the address_space - page.mapping may be zeroed
2241         * by truncate after unlock_page().   The address_space itself remains
2242         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2243         * release semantics to prevent the compiler from undoing this copying.
2244         */
2245        mapping = page_rmapping(page);
2246        unlock_page(page);
2247
2248        if ((dirtied || page_mkwrite) && mapping) {
2249                /*
2250                 * Some device drivers do not set page.mapping
2251                 * but still dirty their pages
2252                 */
2253                balance_dirty_pages_ratelimited(mapping);
2254        }
2255
2256        if (!page_mkwrite)
2257                file_update_time(vma->vm_file);
2258}
2259
2260/*
2261 * Handle write page faults for pages that can be reused in the current vma
2262 *
2263 * This can happen either due to the mapping being with the VM_SHARED flag,
2264 * or due to us being the last reference standing to the page. In either
2265 * case, all we need to do here is to mark the page as writable and update
2266 * any related book-keeping.
2267 */
2268static inline void wp_page_reuse(struct vm_fault *vmf)
2269        __releases(vmf->ptl)
2270{
2271        struct vm_area_struct *vma = vmf->vma;
2272        struct page *page = vmf->page;
2273        pte_t entry;
2274        /*
2275         * Clear the pages cpupid information as the existing
2276         * information potentially belongs to a now completely
2277         * unrelated process.
2278         */
2279        if (page)
2280                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281
2282        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283        entry = pte_mkyoung(vmf->orig_pte);
2284        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286                update_mmu_cache(vma, vmf->address, vmf->pte);
2287        pte_unmap_unlock(vmf->pte, vmf->ptl);
2288}
2289
2290/*
2291 * Handle the case of a page which we actually need to copy to a new page.
2292 *
2293 * Called with mmap_sem locked and the old page referenced, but
2294 * without the ptl held.
2295 *
2296 * High level logic flow:
2297 *
2298 * - Allocate a page, copy the content of the old page to the new one.
2299 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300 * - Take the PTL. If the pte changed, bail out and release the allocated page
2301 * - If the pte is still the way we remember it, update the page table and all
2302 *   relevant references. This includes dropping the reference the page-table
2303 *   held to the old page, as well as updating the rmap.
2304 * - In any case, unlock the PTL and drop the reference we took to the old page.
2305 */
2306static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2307{
2308        struct vm_area_struct *vma = vmf->vma;
2309        struct mm_struct *mm = vma->vm_mm;
2310        struct page *old_page = vmf->page;
2311        struct page *new_page = NULL;
2312        pte_t entry;
2313        int page_copied = 0;
2314        struct mem_cgroup *memcg;
2315        struct mmu_notifier_range range;
2316
2317        if (unlikely(anon_vma_prepare(vma)))
2318                goto oom;
2319
2320        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2321                new_page = alloc_zeroed_user_highpage_movable(vma,
2322                                                              vmf->address);
2323                if (!new_page)
2324                        goto oom;
2325        } else {
2326                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2327                                vmf->address);
2328                if (!new_page)
2329                        goto oom;
2330                cow_user_page(new_page, old_page, vmf->address, vma);
2331        }
2332
2333        if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2334                goto oom_free_new;
2335
2336        __SetPageUptodate(new_page);
2337
2338        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2339                                vmf->address & PAGE_MASK,
2340                                (vmf->address & PAGE_MASK) + PAGE_SIZE);
2341        mmu_notifier_invalidate_range_start(&range);
2342
2343        /*
2344         * Re-check the pte - we dropped the lock
2345         */
2346        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2347        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2348                if (old_page) {
2349                        if (!PageAnon(old_page)) {
2350                                dec_mm_counter_fast(mm,
2351                                                mm_counter_file(old_page));
2352                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2353                        }
2354                } else {
2355                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2356                }
2357                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2358                entry = mk_pte(new_page, vma->vm_page_prot);
2359                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360                /*
2361                 * Clear the pte entry and flush it first, before updating the
2362                 * pte with the new entry. This will avoid a race condition
2363                 * seen in the presence of one thread doing SMC and another
2364                 * thread doing COW.
2365                 */
2366                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2368                mem_cgroup_commit_charge(new_page, memcg, false, false);
2369                lru_cache_add_active_or_unevictable(new_page, vma);
2370                /*
2371                 * We call the notify macro here because, when using secondary
2372                 * mmu page tables (such as kvm shadow page tables), we want the
2373                 * new page to be mapped directly into the secondary page table.
2374                 */
2375                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376                update_mmu_cache(vma, vmf->address, vmf->pte);
2377                if (old_page) {
2378                        /*
2379                         * Only after switching the pte to the new page may
2380                         * we remove the mapcount here. Otherwise another
2381                         * process may come and find the rmap count decremented
2382                         * before the pte is switched to the new page, and
2383                         * "reuse" the old page writing into it while our pte
2384                         * here still points into it and can be read by other
2385                         * threads.
2386                         *
2387                         * The critical issue is to order this
2388                         * page_remove_rmap with the ptp_clear_flush above.
2389                         * Those stores are ordered by (if nothing else,)
2390                         * the barrier present in the atomic_add_negative
2391                         * in page_remove_rmap.
2392                         *
2393                         * Then the TLB flush in ptep_clear_flush ensures that
2394                         * no process can access the old page before the
2395                         * decremented mapcount is visible. And the old page
2396                         * cannot be reused until after the decremented
2397                         * mapcount is visible. So transitively, TLBs to
2398                         * old page will be flushed before it can be reused.
2399                         */
2400                        page_remove_rmap(old_page, false);
2401                }
2402
2403                /* Free the old page.. */
2404                new_page = old_page;
2405                page_copied = 1;
2406        } else {
2407                mem_cgroup_cancel_charge(new_page, memcg, false);
2408        }
2409
2410        if (new_page)
2411                put_page(new_page);
2412
2413        pte_unmap_unlock(vmf->pte, vmf->ptl);
2414        /*
2415         * No need to double call mmu_notifier->invalidate_range() callback as
2416         * the above ptep_clear_flush_notify() did already call it.
2417         */
2418        mmu_notifier_invalidate_range_only_end(&range);
2419        if (old_page) {
2420                /*
2421                 * Don't let another task, with possibly unlocked vma,
2422                 * keep the mlocked page.
2423                 */
2424                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425                        lock_page(old_page);    /* LRU manipulation */
2426                        if (PageMlocked(old_page))
2427                                munlock_vma_page(old_page);
2428                        unlock_page(old_page);
2429                }
2430                put_page(old_page);
2431        }
2432        return page_copied ? VM_FAULT_WRITE : 0;
2433oom_free_new:
2434        put_page(new_page);
2435oom:
2436        if (old_page)
2437                put_page(old_page);
2438        return VM_FAULT_OOM;
2439}
2440
2441/**
2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443 *                        writeable once the page is prepared
2444 *
2445 * @vmf: structure describing the fault
2446 *
2447 * This function handles all that is needed to finish a write page fault in a
2448 * shared mapping due to PTE being read-only once the mapped page is prepared.
2449 * It handles locking of PTE and modifying it.
2450 *
2451 * The function expects the page to be locked or other protection against
2452 * concurrent faults / writeback (such as DAX radix tree locks).
2453 *
2454 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455 * we acquired PTE lock.
2456 */
2457vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2458{
2459        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461                                       &vmf->ptl);
2462        /*
2463         * We might have raced with another page fault while we released the
2464         * pte_offset_map_lock.
2465         */
2466        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467                pte_unmap_unlock(vmf->pte, vmf->ptl);
2468                return VM_FAULT_NOPAGE;
2469        }
2470        wp_page_reuse(vmf);
2471        return 0;
2472}
2473
2474/*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2478static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2479{
2480        struct vm_area_struct *vma = vmf->vma;
2481
2482        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483                vm_fault_t ret;
2484
2485                pte_unmap_unlock(vmf->pte, vmf->ptl);
2486                vmf->flags |= FAULT_FLAG_MKWRITE;
2487                ret = vma->vm_ops->pfn_mkwrite(vmf);
2488                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489                        return ret;
2490                return finish_mkwrite_fault(vmf);
2491        }
2492        wp_page_reuse(vmf);
2493        return VM_FAULT_WRITE;
2494}
2495
2496static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2497        __releases(vmf->ptl)
2498{
2499        struct vm_area_struct *vma = vmf->vma;
2500
2501        get_page(vmf->page);
2502
2503        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504                vm_fault_t tmp;
2505
2506                pte_unmap_unlock(vmf->pte, vmf->ptl);
2507                tmp = do_page_mkwrite(vmf);
2508                if (unlikely(!tmp || (tmp &
2509                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510                        put_page(vmf->page);
2511                        return tmp;
2512                }
2513                tmp = finish_mkwrite_fault(vmf);
2514                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515                        unlock_page(vmf->page);
2516                        put_page(vmf->page);
2517                        return tmp;
2518                }
2519        } else {
2520                wp_page_reuse(vmf);
2521                lock_page(vmf->page);
2522        }
2523        fault_dirty_shared_page(vma, vmf->page);
2524        put_page(vmf->page);
2525
2526        return VM_FAULT_WRITE;
2527}
2528
2529/*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2546 */
2547static vm_fault_t do_wp_page(struct vm_fault *vmf)
2548        __releases(vmf->ptl)
2549{
2550        struct vm_area_struct *vma = vmf->vma;
2551
2552        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553        if (!vmf->page) {
2554                /*
2555                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556                 * VM_PFNMAP VMA.
2557                 *
2558                 * We should not cow pages in a shared writeable mapping.
2559                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560                 */
2561                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562                                     (VM_WRITE|VM_SHARED))
2563                        return wp_pfn_shared(vmf);
2564
2565                pte_unmap_unlock(vmf->pte, vmf->ptl);
2566                return wp_page_copy(vmf);
2567        }
2568
2569        /*
2570         * Take out anonymous pages first, anonymous shared vmas are
2571         * not dirty accountable.
2572         */
2573        if (PageAnon(vmf->page)) {
2574                int total_map_swapcount;
2575                if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576                                           page_count(vmf->page) != 1))
2577                        goto copy;
2578                if (!trylock_page(vmf->page)) {
2579                        get_page(vmf->page);
2580                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2581                        lock_page(vmf->page);
2582                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583                                        vmf->address, &vmf->ptl);
2584                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2585                                unlock_page(vmf->page);
2586                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2587                                put_page(vmf->page);
2588                                return 0;
2589                        }
2590                        put_page(vmf->page);
2591                }
2592                if (PageKsm(vmf->page)) {
2593                        bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594                                                     vmf->address);
2595                        unlock_page(vmf->page);
2596                        if (!reused)
2597                                goto copy;
2598                        wp_page_reuse(vmf);
2599                        return VM_FAULT_WRITE;
2600                }
2601                if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602                        if (total_map_swapcount == 1) {
2603                                /*
2604                                 * The page is all ours. Move it to
2605                                 * our anon_vma so the rmap code will
2606                                 * not search our parent or siblings.
2607                                 * Protected against the rmap code by
2608                                 * the page lock.
2609                                 */
2610                                page_move_anon_rmap(vmf->page, vma);
2611                        }
2612                        unlock_page(vmf->page);
2613                        wp_page_reuse(vmf);
2614                        return VM_FAULT_WRITE;
2615                }
2616                unlock_page(vmf->page);
2617        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2618                                        (VM_WRITE|VM_SHARED))) {
2619                return wp_page_shared(vmf);
2620        }
2621copy:
2622        /*
2623         * Ok, we need to copy. Oh, well..
2624         */
2625        get_page(vmf->page);
2626
2627        pte_unmap_unlock(vmf->pte, vmf->ptl);
2628        return wp_page_copy(vmf);
2629}
2630
2631static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2632                unsigned long start_addr, unsigned long end_addr,
2633                struct zap_details *details)
2634{
2635        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2636}
2637
2638static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2639                                            struct zap_details *details)
2640{
2641        struct vm_area_struct *vma;
2642        pgoff_t vba, vea, zba, zea;
2643
2644        vma_interval_tree_foreach(vma, root,
2645                        details->first_index, details->last_index) {
2646
2647                vba = vma->vm_pgoff;
2648                vea = vba + vma_pages(vma) - 1;
2649                zba = details->first_index;
2650                if (zba < vba)
2651                        zba = vba;
2652                zea = details->last_index;
2653                if (zea > vea)
2654                        zea = vea;
2655
2656                unmap_mapping_range_vma(vma,
2657                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2659                                details);
2660        }
2661}
2662
2663/**
2664 * unmap_mapping_pages() - Unmap pages from processes.
2665 * @mapping: The address space containing pages to be unmapped.
2666 * @start: Index of first page to be unmapped.
2667 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2668 * @even_cows: Whether to unmap even private COWed pages.
2669 *
2670 * Unmap the pages in this address space from any userspace process which
2671 * has them mmaped.  Generally, you want to remove COWed pages as well when
2672 * a file is being truncated, but not when invalidating pages from the page
2673 * cache.
2674 */
2675void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676                pgoff_t nr, bool even_cows)
2677{
2678        struct zap_details details = { };
2679
2680        details.check_mapping = even_cows ? NULL : mapping;
2681        details.first_index = start;
2682        details.last_index = start + nr - 1;
2683        if (details.last_index < details.first_index)
2684                details.last_index = ULONG_MAX;
2685
2686        i_mmap_lock_write(mapping);
2687        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689        i_mmap_unlock_write(mapping);
2690}
2691
2692/**
2693 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2694 * address_space corresponding to the specified byte range in the underlying
2695 * file.
2696 *
2697 * @mapping: the address space containing mmaps to be unmapped.
2698 * @holebegin: byte in first page to unmap, relative to the start of
2699 * the underlying file.  This will be rounded down to a PAGE_SIZE
2700 * boundary.  Note that this is different from truncate_pagecache(), which
2701 * must keep the partial page.  In contrast, we must get rid of
2702 * partial pages.
2703 * @holelen: size of prospective hole in bytes.  This will be rounded
2704 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2705 * end of the file.
2706 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707 * but 0 when invalidating pagecache, don't throw away private data.
2708 */
2709void unmap_mapping_range(struct address_space *mapping,
2710                loff_t const holebegin, loff_t const holelen, int even_cows)
2711{
2712        pgoff_t hba = holebegin >> PAGE_SHIFT;
2713        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714
2715        /* Check for overflow. */
2716        if (sizeof(holelen) > sizeof(hlen)) {
2717                long long holeend =
2718                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719                if (holeend & ~(long long)ULONG_MAX)
2720                        hlen = ULONG_MAX - hba + 1;
2721        }
2722
2723        unmap_mapping_pages(mapping, hba, hlen, even_cows);
2724}
2725EXPORT_SYMBOL(unmap_mapping_range);
2726
2727/*
2728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729 * but allow concurrent faults), and pte mapped but not yet locked.
2730 * We return with pte unmapped and unlocked.
2731 *
2732 * We return with the mmap_sem locked or unlocked in the same cases
2733 * as does filemap_fault().
2734 */
2735vm_fault_t do_swap_page(struct vm_fault *vmf)
2736{
2737        struct vm_area_struct *vma = vmf->vma;
2738        struct page *page = NULL, *swapcache;
2739        struct mem_cgroup *memcg;
2740        swp_entry_t entry;
2741        pte_t pte;
2742        int locked;
2743        int exclusive = 0;
2744        vm_fault_t ret = 0;
2745
2746        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2747                goto out;
2748
2749        entry = pte_to_swp_entry(vmf->orig_pte);
2750        if (unlikely(non_swap_entry(entry))) {
2751                if (is_migration_entry(entry)) {
2752                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2753                                             vmf->address);
2754                } else if (is_device_private_entry(entry)) {
2755                        vmf->page = device_private_entry_to_page(entry);
2756                        ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2757                } else if (is_hwpoison_entry(entry)) {
2758                        ret = VM_FAULT_HWPOISON;
2759                } else {
2760                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2761                        ret = VM_FAULT_SIGBUS;
2762                }
2763                goto out;
2764        }
2765
2766
2767        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768        page = lookup_swap_cache(entry, vma, vmf->address);
2769        swapcache = page;
2770
2771        if (!page) {
2772                struct swap_info_struct *si = swp_swap_info(entry);
2773
2774                if (si->flags & SWP_SYNCHRONOUS_IO &&
2775                                __swap_count(entry) == 1) {
2776                        /* skip swapcache */
2777                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778                                                        vmf->address);
2779                        if (page) {
2780                                __SetPageLocked(page);
2781                                __SetPageSwapBacked(page);
2782                                set_page_private(page, entry.val);
2783                                lru_cache_add_anon(page);
2784                                swap_readpage(page, true);
2785                        }
2786                } else {
2787                        page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788                                                vmf);
2789                        swapcache = page;
2790                }
2791
2792                if (!page) {
2793                        /*
2794                         * Back out if somebody else faulted in this pte
2795                         * while we released the pte lock.
2796                         */
2797                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798                                        vmf->address, &vmf->ptl);
2799                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2800                                ret = VM_FAULT_OOM;
2801                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2802                        goto unlock;
2803                }
2804
2805                /* Had to read the page from swap area: Major fault */
2806                ret = VM_FAULT_MAJOR;
2807                count_vm_event(PGMAJFAULT);
2808                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2809        } else if (PageHWPoison(page)) {
2810                /*
2811                 * hwpoisoned dirty swapcache pages are kept for killing
2812                 * owner processes (which may be unknown at hwpoison time)
2813                 */
2814                ret = VM_FAULT_HWPOISON;
2815                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2816                goto out_release;
2817        }
2818
2819        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2820
2821        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2822        if (!locked) {
2823                ret |= VM_FAULT_RETRY;
2824                goto out_release;
2825        }
2826
2827        /*
2828         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829         * release the swapcache from under us.  The page pin, and pte_same
2830         * test below, are not enough to exclude that.  Even if it is still
2831         * swapcache, we need to check that the page's swap has not changed.
2832         */
2833        if (unlikely((!PageSwapCache(page) ||
2834                        page_private(page) != entry.val)) && swapcache)
2835                goto out_page;
2836
2837        page = ksm_might_need_to_copy(page, vma, vmf->address);
2838        if (unlikely(!page)) {
2839                ret = VM_FAULT_OOM;
2840                page = swapcache;
2841                goto out_page;
2842        }
2843
2844        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845                                        &memcg, false)) {
2846                ret = VM_FAULT_OOM;
2847                goto out_page;
2848        }
2849
2850        /*
2851         * Back out if somebody else already faulted in this pte.
2852         */
2853        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854                        &vmf->ptl);
2855        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2856                goto out_nomap;
2857
2858        if (unlikely(!PageUptodate(page))) {
2859                ret = VM_FAULT_SIGBUS;
2860                goto out_nomap;
2861        }
2862
2863        /*
2864         * The page isn't present yet, go ahead with the fault.
2865         *
2866         * Be careful about the sequence of operations here.
2867         * To get its accounting right, reuse_swap_page() must be called
2868         * while the page is counted on swap but not yet in mapcount i.e.
2869         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870         * must be called after the swap_free(), or it will never succeed.
2871         */
2872
2873        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2875        pte = mk_pte(page, vma->vm_page_prot);
2876        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2877                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2878                vmf->flags &= ~FAULT_FLAG_WRITE;
2879                ret |= VM_FAULT_WRITE;
2880                exclusive = RMAP_EXCLUSIVE;
2881        }
2882        flush_icache_page(vma, page);
2883        if (pte_swp_soft_dirty(vmf->orig_pte))
2884                pte = pte_mksoft_dirty(pte);
2885        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2886        arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2887        vmf->orig_pte = pte;
2888
2889        /* ksm created a completely new copy */
2890        if (unlikely(page != swapcache && swapcache)) {
2891                page_add_new_anon_rmap(page, vma, vmf->address, false);
2892                mem_cgroup_commit_charge(page, memcg, false, false);
2893                lru_cache_add_active_or_unevictable(page, vma);
2894        } else {
2895                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896                mem_cgroup_commit_charge(page, memcg, true, false);
2897                activate_page(page);
2898        }
2899
2900        swap_free(entry);
2901        if (mem_cgroup_swap_full(page) ||
2902            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2903                try_to_free_swap(page);
2904        unlock_page(page);
2905        if (page != swapcache && swapcache) {
2906                /*
2907                 * Hold the lock to avoid the swap entry to be reused
2908                 * until we take the PT lock for the pte_same() check
2909                 * (to avoid false positives from pte_same). For
2910                 * further safety release the lock after the swap_free
2911                 * so that the swap count won't change under a
2912                 * parallel locked swapcache.
2913                 */
2914                unlock_page(swapcache);
2915                put_page(swapcache);
2916        }
2917
2918        if (vmf->flags & FAULT_FLAG_WRITE) {
2919                ret |= do_wp_page(vmf);
2920                if (ret & VM_FAULT_ERROR)
2921                        ret &= VM_FAULT_ERROR;
2922                goto out;
2923        }
2924
2925        /* No need to invalidate - it was non-present before */
2926        update_mmu_cache(vma, vmf->address, vmf->pte);
2927unlock:
2928        pte_unmap_unlock(vmf->pte, vmf->ptl);
2929out:
2930        return ret;
2931out_nomap:
2932        mem_cgroup_cancel_charge(page, memcg, false);
2933        pte_unmap_unlock(vmf->pte, vmf->ptl);
2934out_page:
2935        unlock_page(page);
2936out_release:
2937        put_page(page);
2938        if (page != swapcache && swapcache) {
2939                unlock_page(swapcache);
2940                put_page(swapcache);
2941        }
2942        return ret;
2943}
2944
2945/*
2946 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947 * but allow concurrent faults), and pte mapped but not yet locked.
2948 * We return with mmap_sem still held, but pte unmapped and unlocked.
2949 */
2950static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2951{
2952        struct vm_area_struct *vma = vmf->vma;
2953        struct mem_cgroup *memcg;
2954        struct page *page;
2955        vm_fault_t ret = 0;
2956        pte_t entry;
2957
2958        /* File mapping without ->vm_ops ? */
2959        if (vma->vm_flags & VM_SHARED)
2960                return VM_FAULT_SIGBUS;
2961
2962        /*
2963         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2964         * pte_offset_map() on pmds where a huge pmd might be created
2965         * from a different thread.
2966         *
2967         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968         * parallel threads are excluded by other means.
2969         *
2970         * Here we only have down_read(mmap_sem).
2971         */
2972        if (pte_alloc(vma->vm_mm, vmf->pmd))
2973                return VM_FAULT_OOM;
2974
2975        /* See the comment in pte_alloc_one_map() */
2976        if (unlikely(pmd_trans_unstable(vmf->pmd)))
2977                return 0;
2978
2979        /* Use the zero-page for reads */
2980        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2981                        !mm_forbids_zeropage(vma->vm_mm)) {
2982                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2983                                                vma->vm_page_prot));
2984                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985                                vmf->address, &vmf->ptl);
2986                if (!pte_none(*vmf->pte))
2987                        goto unlock;
2988                ret = check_stable_address_space(vma->vm_mm);
2989                if (ret)
2990                        goto unlock;
2991                /* Deliver the page fault to userland, check inside PT lock */
2992                if (userfaultfd_missing(vma)) {
2993                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2994                        return handle_userfault(vmf, VM_UFFD_MISSING);
2995                }
2996                goto setpte;
2997        }
2998
2999        /* Allocate our own private page. */
3000        if (unlikely(anon_vma_prepare(vma)))
3001                goto oom;
3002        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3003        if (!page)
3004                goto oom;
3005
3006        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007                                        false))
3008                goto oom_free_page;
3009
3010        /*
3011         * The memory barrier inside __SetPageUptodate makes sure that
3012         * preceeding stores to the page contents become visible before
3013         * the set_pte_at() write.
3014         */
3015        __SetPageUptodate(page);
3016
3017        entry = mk_pte(page, vma->vm_page_prot);
3018        if (vma->vm_flags & VM_WRITE)
3019                entry = pte_mkwrite(pte_mkdirty(entry));
3020
3021        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022                        &vmf->ptl);
3023        if (!pte_none(*vmf->pte))
3024                goto release;
3025
3026        ret = check_stable_address_space(vma->vm_mm);
3027        if (ret)
3028                goto release;
3029
3030        /* Deliver the page fault to userland, check inside PT lock */
3031        if (userfaultfd_missing(vma)) {
3032                pte_unmap_unlock(vmf->pte, vmf->ptl);
3033                mem_cgroup_cancel_charge(page, memcg, false);
3034                put_page(page);
3035                return handle_userfault(vmf, VM_UFFD_MISSING);
3036        }
3037
3038        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3039        page_add_new_anon_rmap(page, vma, vmf->address, false);
3040        mem_cgroup_commit_charge(page, memcg, false, false);
3041        lru_cache_add_active_or_unevictable(page, vma);
3042setpte:
3043        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3044
3045        /* No need to invalidate - it was non-present before */
3046        update_mmu_cache(vma, vmf->address, vmf->pte);
3047unlock:
3048        pte_unmap_unlock(vmf->pte, vmf->ptl);
3049        return ret;
3050release:
3051        mem_cgroup_cancel_charge(page, memcg, false);
3052        put_page(page);
3053        goto unlock;
3054oom_free_page:
3055        put_page(page);
3056oom:
3057        return VM_FAULT_OOM;
3058}
3059
3060/*
3061 * The mmap_sem must have been held on entry, and may have been
3062 * released depending on flags and vma->vm_ops->fault() return value.
3063 * See filemap_fault() and __lock_page_retry().
3064 */
3065static vm_fault_t __do_fault(struct vm_fault *vmf)
3066{
3067        struct vm_area_struct *vma = vmf->vma;
3068        vm_fault_t ret;
3069
3070        /*
3071         * Preallocate pte before we take page_lock because this might lead to
3072         * deadlocks for memcg reclaim which waits for pages under writeback:
3073         *                              lock_page(A)
3074         *                              SetPageWriteback(A)
3075         *                              unlock_page(A)
3076         * lock_page(B)
3077         *                              lock_page(B)
3078         * pte_alloc_pne
3079         *   shrink_page_list
3080         *     wait_on_page_writeback(A)
3081         *                              SetPageWriteback(B)
3082         *                              unlock_page(B)
3083         *                              # flush A, B to clear the writeback
3084         */
3085        if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087                if (!vmf->prealloc_pte)
3088                        return VM_FAULT_OOM;
3089                smp_wmb(); /* See comment in __pte_alloc() */
3090        }
3091
3092        ret = vma->vm_ops->fault(vmf);
3093        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3094                            VM_FAULT_DONE_COW)))
3095                return ret;
3096
3097        if (unlikely(PageHWPoison(vmf->page))) {
3098                if (ret & VM_FAULT_LOCKED)
3099                        unlock_page(vmf->page);
3100                put_page(vmf->page);
3101                vmf->page = NULL;
3102                return VM_FAULT_HWPOISON;
3103        }
3104
3105        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3106                lock_page(vmf->page);
3107        else
3108                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3109
3110        return ret;
3111}
3112
3113/*
3114 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118 */
3119static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120{
3121        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122}
3123
3124static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3125{
3126        struct vm_area_struct *vma = vmf->vma;
3127
3128        if (!pmd_none(*vmf->pmd))
3129                goto map_pte;
3130        if (vmf->prealloc_pte) {
3131                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132                if (unlikely(!pmd_none(*vmf->pmd))) {
3133                        spin_unlock(vmf->ptl);
3134                        goto map_pte;
3135                }
3136
3137                mm_inc_nr_ptes(vma->vm_mm);
3138                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139                spin_unlock(vmf->ptl);
3140                vmf->prealloc_pte = NULL;
3141        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3142                return VM_FAULT_OOM;
3143        }
3144map_pte:
3145        /*
3146         * If a huge pmd materialized under us just retry later.  Use
3147         * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148         * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149         * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150         * running immediately after a huge pmd fault in a different thread of
3151         * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152         * All we have to ensure is that it is a regular pmd that we can walk
3153         * with pte_offset_map() and we can do that through an atomic read in
3154         * C, which is what pmd_trans_unstable() provides.
3155         */
3156        if (pmd_devmap_trans_unstable(vmf->pmd))
3157                return VM_FAULT_NOPAGE;
3158
3159        /*
3160         * At this point we know that our vmf->pmd points to a page of ptes
3161         * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162         * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3163         * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164         * be valid and we will re-check to make sure the vmf->pte isn't
3165         * pte_none() under vmf->ptl protection when we return to
3166         * alloc_set_pte().
3167         */
3168        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169                        &vmf->ptl);
3170        return 0;
3171}
3172
3173#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3174static void deposit_prealloc_pte(struct vm_fault *vmf)
3175{
3176        struct vm_area_struct *vma = vmf->vma;
3177
3178        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3179        /*
3180         * We are going to consume the prealloc table,
3181         * count that as nr_ptes.
3182         */
3183        mm_inc_nr_ptes(vma->vm_mm);
3184        vmf->prealloc_pte = NULL;
3185}
3186
3187static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3188{
3189        struct vm_area_struct *vma = vmf->vma;
3190        bool write = vmf->flags & FAULT_FLAG_WRITE;
3191        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3192        pmd_t entry;
3193        int i;
3194        vm_fault_t ret;
3195
3196        if (!transhuge_vma_suitable(vma, haddr))
3197                return VM_FAULT_FALLBACK;
3198
3199        ret = VM_FAULT_FALLBACK;
3200        page = compound_head(page);
3201
3202        /*
3203         * Archs like ppc64 need additonal space to store information
3204         * related to pte entry. Use the preallocated table for that.
3205         */
3206        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3207                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3208                if (!vmf->prealloc_pte)
3209                        return VM_FAULT_OOM;
3210                smp_wmb(); /* See comment in __pte_alloc() */
3211        }
3212
3213        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214        if (unlikely(!pmd_none(*vmf->pmd)))
3215                goto out;
3216
3217        for (i = 0; i < HPAGE_PMD_NR; i++)
3218                flush_icache_page(vma, page + i);
3219
3220        entry = mk_huge_pmd(page, vma->vm_page_prot);
3221        if (write)
3222                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3223
3224        add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3225        page_add_file_rmap(page, true);
3226        /*
3227         * deposit and withdraw with pmd lock held
3228         */
3229        if (arch_needs_pgtable_deposit())
3230                deposit_prealloc_pte(vmf);
3231
3232        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3233
3234        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3235
3236        /* fault is handled */
3237        ret = 0;
3238        count_vm_event(THP_FILE_MAPPED);
3239out:
3240        spin_unlock(vmf->ptl);
3241        return ret;
3242}
3243#else
3244static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3245{
3246        BUILD_BUG();
3247        return 0;
3248}
3249#endif
3250
3251/**
3252 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3254 *
3255 * @vmf: fault environment
3256 * @memcg: memcg to charge page (only for private mappings)
3257 * @page: page to map
3258 *
3259 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260 * return.
3261 *
3262 * Target users are page handler itself and implementations of
3263 * vm_ops->map_pages.
3264 *
3265 * Return: %0 on success, %VM_FAULT_ code in case of error.
3266 */
3267vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3268                struct page *page)
3269{
3270        struct vm_area_struct *vma = vmf->vma;
3271        bool write = vmf->flags & FAULT_FLAG_WRITE;
3272        pte_t entry;
3273        vm_fault_t ret;
3274
3275        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3276                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3277                /* THP on COW? */
3278                VM_BUG_ON_PAGE(memcg, page);
3279
3280                ret = do_set_pmd(vmf, page);
3281                if (ret != VM_FAULT_FALLBACK)
3282                        return ret;
3283        }
3284
3285        if (!vmf->pte) {
3286                ret = pte_alloc_one_map(vmf);
3287                if (ret)
3288                        return ret;
3289        }
3290
3291        /* Re-check under ptl */
3292        if (unlikely(!pte_none(*vmf->pte)))
3293                return VM_FAULT_NOPAGE;
3294
3295        flush_icache_page(vma, page);
3296        entry = mk_pte(page, vma->vm_page_prot);
3297        if (write)
3298                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3299        /* copy-on-write page */
3300        if (write && !(vma->vm_flags & VM_SHARED)) {
3301                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3302                page_add_new_anon_rmap(page, vma, vmf->address, false);
3303                mem_cgroup_commit_charge(page, memcg, false, false);
3304                lru_cache_add_active_or_unevictable(page, vma);
3305        } else {
3306                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3307                page_add_file_rmap(page, false);
3308        }
3309        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3310
3311        /* no need to invalidate: a not-present page won't be cached */
3312        update_mmu_cache(vma, vmf->address, vmf->pte);
3313
3314        return 0;
3315}
3316
3317
3318/**
3319 * finish_fault - finish page fault once we have prepared the page to fault
3320 *
3321 * @vmf: structure describing the fault
3322 *
3323 * This function handles all that is needed to finish a page fault once the
3324 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325 * given page, adds reverse page mapping, handles memcg charges and LRU
3326 * addition.
3327 *
3328 * The function expects the page to be locked and on success it consumes a
3329 * reference of a page being mapped (for the PTE which maps it).
3330 *
3331 * Return: %0 on success, %VM_FAULT_ code in case of error.
3332 */
3333vm_fault_t finish_fault(struct vm_fault *vmf)
3334{
3335        struct page *page;
3336        vm_fault_t ret = 0;
3337
3338        /* Did we COW the page? */
3339        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340            !(vmf->vma->vm_flags & VM_SHARED))
3341                page = vmf->cow_page;
3342        else
3343                page = vmf->page;
3344
3345        /*
3346         * check even for read faults because we might have lost our CoWed
3347         * page
3348         */
3349        if (!(vmf->vma->vm_flags & VM_SHARED))
3350                ret = check_stable_address_space(vmf->vma->vm_mm);
3351        if (!ret)
3352                ret = alloc_set_pte(vmf, vmf->memcg, page);
3353        if (vmf->pte)
3354                pte_unmap_unlock(vmf->pte, vmf->ptl);
3355        return ret;
3356}
3357
3358static unsigned long fault_around_bytes __read_mostly =
3359        rounddown_pow_of_two(65536);
3360
3361#ifdef CONFIG_DEBUG_FS
3362static int fault_around_bytes_get(void *data, u64 *val)
3363{
3364        *val = fault_around_bytes;
3365        return 0;
3366}
3367
3368/*
3369 * fault_around_bytes must be rounded down to the nearest page order as it's
3370 * what do_fault_around() expects to see.
3371 */
3372static int fault_around_bytes_set(void *data, u64 val)
3373{
3374        if (val / PAGE_SIZE > PTRS_PER_PTE)
3375                return -EINVAL;
3376        if (val > PAGE_SIZE)
3377                fault_around_bytes = rounddown_pow_of_two(val);
3378        else
3379                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3380        return 0;
3381}
3382DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3383                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3384
3385static int __init fault_around_debugfs(void)
3386{
3387        debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388                                   &fault_around_bytes_fops);
3389        return 0;
3390}
3391late_initcall(fault_around_debugfs);
3392#endif
3393
3394/*
3395 * do_fault_around() tries to map few pages around the fault address. The hope
3396 * is that the pages will be needed soon and this will lower the number of
3397 * faults to handle.
3398 *
3399 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400 * not ready to be mapped: not up-to-date, locked, etc.
3401 *
3402 * This function is called with the page table lock taken. In the split ptlock
3403 * case the page table lock only protects only those entries which belong to
3404 * the page table corresponding to the fault address.
3405 *
3406 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407 * only once.
3408 *
3409 * fault_around_bytes defines how many bytes we'll try to map.
3410 * do_fault_around() expects it to be set to a power of two less than or equal
3411 * to PTRS_PER_PTE.
3412 *
3413 * The virtual address of the area that we map is naturally aligned to
3414 * fault_around_bytes rounded down to the machine page size
3415 * (and therefore to page order).  This way it's easier to guarantee
3416 * that we don't cross page table boundaries.
3417 */
3418static vm_fault_t do_fault_around(struct vm_fault *vmf)
3419{
3420        unsigned long address = vmf->address, nr_pages, mask;
3421        pgoff_t start_pgoff = vmf->pgoff;
3422        pgoff_t end_pgoff;
3423        int off;
3424        vm_fault_t ret = 0;
3425
3426        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3427        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428
3429        vmf->address = max(address & mask, vmf->vma->vm_start);
3430        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3431        start_pgoff -= off;
3432
3433        /*
3434         *  end_pgoff is either the end of the page table, the end of
3435         *  the vma or nr_pages from start_pgoff, depending what is nearest.
3436         */
3437        end_pgoff = start_pgoff -
3438                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3439                PTRS_PER_PTE - 1;
3440        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3441                        start_pgoff + nr_pages - 1);
3442
3443        if (pmd_none(*vmf->pmd)) {
3444                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445                if (!vmf->prealloc_pte)
3446                        goto out;
3447                smp_wmb(); /* See comment in __pte_alloc() */
3448        }
3449
3450        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3451
3452        /* Huge page is mapped? Page fault is solved */
3453        if (pmd_trans_huge(*vmf->pmd)) {
3454                ret = VM_FAULT_NOPAGE;
3455                goto out;
3456        }
3457
3458        /* ->map_pages() haven't done anything useful. Cold page cache? */
3459        if (!vmf->pte)
3460                goto out;
3461
3462        /* check if the page fault is solved */
3463        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464        if (!pte_none(*vmf->pte))
3465                ret = VM_FAULT_NOPAGE;
3466        pte_unmap_unlock(vmf->pte, vmf->ptl);
3467out:
3468        vmf->address = address;
3469        vmf->pte = NULL;
3470        return ret;
3471}
3472
3473static vm_fault_t do_read_fault(struct vm_fault *vmf)
3474{
3475        struct vm_area_struct *vma = vmf->vma;
3476        vm_fault_t ret = 0;
3477
3478        /*
3479         * Let's call ->map_pages() first and use ->fault() as fallback
3480         * if page by the offset is not ready to be mapped (cold cache or
3481         * something).
3482         */
3483        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3484                ret = do_fault_around(vmf);
3485                if (ret)
3486                        return ret;
3487        }
3488
3489        ret = __do_fault(vmf);
3490        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491                return ret;
3492
3493        ret |= finish_fault(vmf);
3494        unlock_page(vmf->page);
3495        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3496                put_page(vmf->page);
3497        return ret;
3498}
3499
3500static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3501{
3502        struct vm_area_struct *vma = vmf->vma;
3503        vm_fault_t ret;
3504
3505        if (unlikely(anon_vma_prepare(vma)))
3506                return VM_FAULT_OOM;
3507
3508        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509        if (!vmf->cow_page)
3510                return VM_FAULT_OOM;
3511
3512        if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3513                                &vmf->memcg, false)) {
3514                put_page(vmf->cow_page);
3515                return VM_FAULT_OOM;
3516        }
3517
3518        ret = __do_fault(vmf);
3519        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520                goto uncharge_out;
3521        if (ret & VM_FAULT_DONE_COW)
3522                return ret;
3523
3524        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3525        __SetPageUptodate(vmf->cow_page);
3526
3527        ret |= finish_fault(vmf);
3528        unlock_page(vmf->page);
3529        put_page(vmf->page);
3530        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531                goto uncharge_out;
3532        return ret;
3533uncharge_out:
3534        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3535        put_page(vmf->cow_page);
3536        return ret;
3537}
3538
3539static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3540{
3541        struct vm_area_struct *vma = vmf->vma;
3542        vm_fault_t ret, tmp;
3543
3544        ret = __do_fault(vmf);
3545        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3546                return ret;
3547
3548        /*
3549         * Check if the backing address space wants to know that the page is
3550         * about to become writable
3551         */
3552        if (vma->vm_ops->page_mkwrite) {
3553                unlock_page(vmf->page);
3554                tmp = do_page_mkwrite(vmf);
3555                if (unlikely(!tmp ||
3556                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3557                        put_page(vmf->page);
3558                        return tmp;
3559                }
3560        }
3561
3562        ret |= finish_fault(vmf);
3563        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564                                        VM_FAULT_RETRY))) {
3565                unlock_page(vmf->page);
3566                put_page(vmf->page);
3567                return ret;
3568        }
3569
3570        fault_dirty_shared_page(vma, vmf->page);
3571        return ret;
3572}
3573
3574/*
3575 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576 * but allow concurrent faults).
3577 * The mmap_sem may have been released depending on flags and our
3578 * return value.  See filemap_fault() and __lock_page_or_retry().
3579 * If mmap_sem is released, vma may become invalid (for example
3580 * by other thread calling munmap()).
3581 */
3582static vm_fault_t do_fault(struct vm_fault *vmf)
3583{
3584        struct vm_area_struct *vma = vmf->vma;
3585        struct mm_struct *vm_mm = vma->vm_mm;
3586        vm_fault_t ret;
3587
3588        /*
3589         * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590         */
3591        if (!vma->vm_ops->fault) {
3592                /*
3593                 * If we find a migration pmd entry or a none pmd entry, which
3594                 * should never happen, return SIGBUS
3595                 */
3596                if (unlikely(!pmd_present(*vmf->pmd)))
3597                        ret = VM_FAULT_SIGBUS;
3598                else {
3599                        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600                                                       vmf->pmd,
3601                                                       vmf->address,
3602                                                       &vmf->ptl);
3603                        /*
3604                         * Make sure this is not a temporary clearing of pte
3605                         * by holding ptl and checking again. A R/M/W update
3606                         * of pte involves: take ptl, clearing the pte so that
3607                         * we don't have concurrent modification by hardware
3608                         * followed by an update.
3609                         */
3610                        if (unlikely(pte_none(*vmf->pte)))
3611                                ret = VM_FAULT_SIGBUS;
3612                        else
3613                                ret = VM_FAULT_NOPAGE;
3614
3615                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3616                }
3617        } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3618                ret = do_read_fault(vmf);
3619        else if (!(vma->vm_flags & VM_SHARED))
3620                ret = do_cow_fault(vmf);
3621        else
3622                ret = do_shared_fault(vmf);
3623
3624        /* preallocated pagetable is unused: free it */
3625        if (vmf->prealloc_pte) {
3626                pte_free(vm_mm, vmf->prealloc_pte);
3627                vmf->prealloc_pte = NULL;
3628        }
3629        return ret;
3630}
3631
3632static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3633                                unsigned long addr, int page_nid,
3634                                int *flags)
3635{
3636        get_page(page);
3637
3638        count_vm_numa_event(NUMA_HINT_FAULTS);
3639        if (page_nid == numa_node_id()) {
3640                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3641                *flags |= TNF_FAULT_LOCAL;
3642        }
3643
3644        return mpol_misplaced(page, vma, addr);
3645}
3646
3647static vm_fault_t do_numa_page(struct vm_fault *vmf)
3648{
3649        struct vm_area_struct *vma = vmf->vma;
3650        struct page *page = NULL;
3651        int page_nid = NUMA_NO_NODE;
3652        int last_cpupid;
3653        int target_nid;
3654        bool migrated = false;
3655        pte_t pte, old_pte;
3656        bool was_writable = pte_savedwrite(vmf->orig_pte);
3657        int flags = 0;
3658
3659        /*
3660         * The "pte" at this point cannot be used safely without
3661         * validation through pte_unmap_same(). It's of NUMA type but
3662         * the pfn may be screwed if the read is non atomic.
3663         */
3664        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665        spin_lock(vmf->ptl);
3666        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3667                pte_unmap_unlock(vmf->pte, vmf->ptl);
3668                goto out;
3669        }
3670
3671        /*
3672         * Make it present again, Depending on how arch implementes non
3673         * accessible ptes, some can allow access by kernel mode.
3674         */
3675        old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676        pte = pte_modify(old_pte, vma->vm_page_prot);
3677        pte = pte_mkyoung(pte);
3678        if (was_writable)
3679                pte = pte_mkwrite(pte);
3680        ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3681        update_mmu_cache(vma, vmf->address, vmf->pte);
3682
3683        page = vm_normal_page(vma, vmf->address, pte);
3684        if (!page) {
3685                pte_unmap_unlock(vmf->pte, vmf->ptl);
3686                return 0;
3687        }
3688
3689        /* TODO: handle PTE-mapped THP */
3690        if (PageCompound(page)) {
3691                pte_unmap_unlock(vmf->pte, vmf->ptl);
3692                return 0;
3693        }
3694
3695        /*
3696         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697         * much anyway since they can be in shared cache state. This misses
3698         * the case where a mapping is writable but the process never writes
3699         * to it but pte_write gets cleared during protection updates and
3700         * pte_dirty has unpredictable behaviour between PTE scan updates,
3701         * background writeback, dirty balancing and application behaviour.
3702         */
3703        if (!pte_write(pte))
3704                flags |= TNF_NO_GROUP;
3705
3706        /*
3707         * Flag if the page is shared between multiple address spaces. This
3708         * is later used when determining whether to group tasks together
3709         */
3710        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711                flags |= TNF_SHARED;
3712
3713        last_cpupid = page_cpupid_last(page);
3714        page_nid = page_to_nid(page);
3715        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3716                        &flags);
3717        pte_unmap_unlock(vmf->pte, vmf->ptl);
3718        if (target_nid == NUMA_NO_NODE) {
3719                put_page(page);
3720                goto out;
3721        }
3722
3723        /* Migrate to the requested node */
3724        migrated = migrate_misplaced_page(page, vma, target_nid);
3725        if (migrated) {
3726                page_nid = target_nid;
3727                flags |= TNF_MIGRATED;
3728        } else
3729                flags |= TNF_MIGRATE_FAIL;
3730
3731out:
3732        if (page_nid != NUMA_NO_NODE)
3733                task_numa_fault(last_cpupid, page_nid, 1, flags);
3734        return 0;
3735}
3736
3737static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3738{
3739        if (vma_is_anonymous(vmf->vma))
3740                return do_huge_pmd_anonymous_page(vmf);
3741        if (vmf->vma->vm_ops->huge_fault)
3742                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3743        return VM_FAULT_FALLBACK;
3744}
3745
3746/* `inline' is required to avoid gcc 4.1.2 build error */
3747static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3748{
3749        if (vma_is_anonymous(vmf->vma))
3750                return do_huge_pmd_wp_page(vmf, orig_pmd);
3751        if (vmf->vma->vm_ops->huge_fault)
3752                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3753
3754        /* COW handled on pte level: split pmd */
3755        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3757
3758        return VM_FAULT_FALLBACK;
3759}
3760
3761static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762{
3763        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764}
3765
3766static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3767{
3768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769        /* No support for anonymous transparent PUD pages yet */
3770        if (vma_is_anonymous(vmf->vma))
3771                return VM_FAULT_FALLBACK;
3772        if (vmf->vma->vm_ops->huge_fault)
3773                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3774#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775        return VM_FAULT_FALLBACK;
3776}
3777
3778static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3779{
3780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781        /* No support for anonymous transparent PUD pages yet */
3782        if (vma_is_anonymous(vmf->vma))
3783                return VM_FAULT_FALLBACK;
3784        if (vmf->vma->vm_ops->huge_fault)
3785                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3786#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787        return VM_FAULT_FALLBACK;
3788}
3789
3790/*
3791 * These routines also need to handle stuff like marking pages dirty
3792 * and/or accessed for architectures that don't do it in hardware (most
3793 * RISC architectures).  The early dirtying is also good on the i386.
3794 *
3795 * There is also a hook called "update_mmu_cache()" that architectures
3796 * with external mmu caches can use to update those (ie the Sparc or
3797 * PowerPC hashed page tables that act as extended TLBs).
3798 *
3799 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800 * concurrent faults).
3801 *
3802 * The mmap_sem may have been released depending on flags and our return value.
3803 * See filemap_fault() and __lock_page_or_retry().
3804 */
3805static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3806{
3807        pte_t entry;
3808
3809        if (unlikely(pmd_none(*vmf->pmd))) {
3810                /*
3811                 * Leave __pte_alloc() until later: because vm_ops->fault may
3812                 * want to allocate huge page, and if we expose page table
3813                 * for an instant, it will be difficult to retract from
3814                 * concurrent faults and from rmap lookups.
3815                 */
3816                vmf->pte = NULL;
3817        } else {
3818                /* See comment in pte_alloc_one_map() */
3819                if (pmd_devmap_trans_unstable(vmf->pmd))
3820                        return 0;
3821                /*
3822                 * A regular pmd is established and it can't morph into a huge
3823                 * pmd from under us anymore at this point because we hold the
3824                 * mmap_sem read mode and khugepaged takes it in write mode.
3825                 * So now it's safe to run pte_offset_map().
3826                 */
3827                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3828                vmf->orig_pte = *vmf->pte;
3829
3830                /*
3831                 * some architectures can have larger ptes than wordsize,
3832                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3833                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834                 * accesses.  The code below just needs a consistent view
3835                 * for the ifs and we later double check anyway with the
3836                 * ptl lock held. So here a barrier will do.
3837                 */
3838                barrier();
3839                if (pte_none(vmf->orig_pte)) {
3840                        pte_unmap(vmf->pte);
3841                        vmf->pte = NULL;
3842                }
3843        }
3844
3845        if (!vmf->pte) {
3846                if (vma_is_anonymous(vmf->vma))
3847                        return do_anonymous_page(vmf);
3848                else
3849                        return do_fault(vmf);
3850        }
3851
3852        if (!pte_present(vmf->orig_pte))
3853                return do_swap_page(vmf);
3854
3855        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856                return do_numa_page(vmf);
3857
3858        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859        spin_lock(vmf->ptl);
3860        entry = vmf->orig_pte;
3861        if (unlikely(!pte_same(*vmf->pte, entry)))
3862                goto unlock;
3863        if (vmf->flags & FAULT_FLAG_WRITE) {
3864                if (!pte_write(entry))
3865                        return do_wp_page(vmf);
3866                entry = pte_mkdirty(entry);
3867        }
3868        entry = pte_mkyoung(entry);
3869        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870                                vmf->flags & FAULT_FLAG_WRITE)) {
3871                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3872        } else {
3873                /*
3874                 * This is needed only for protection faults but the arch code
3875                 * is not yet telling us if this is a protection fault or not.
3876                 * This still avoids useless tlb flushes for .text page faults
3877                 * with threads.
3878                 */
3879                if (vmf->flags & FAULT_FLAG_WRITE)
3880                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3881        }
3882unlock:
3883        pte_unmap_unlock(vmf->pte, vmf->ptl);
3884        return 0;
3885}
3886
3887/*
3888 * By the time we get here, we already hold the mm semaphore
3889 *
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value.  See filemap_fault() and __lock_page_or_retry().
3892 */
3893static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894                unsigned long address, unsigned int flags)
3895{
3896        struct vm_fault vmf = {
3897                .vma = vma,
3898                .address = address & PAGE_MASK,
3899                .flags = flags,
3900                .pgoff = linear_page_index(vma, address),
3901                .gfp_mask = __get_fault_gfp_mask(vma),
3902        };
3903        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3904        struct mm_struct *mm = vma->vm_mm;
3905        pgd_t *pgd;
3906        p4d_t *p4d;
3907        vm_fault_t ret;
3908
3909        pgd = pgd_offset(mm, address);
3910        p4d = p4d_alloc(mm, pgd, address);
3911        if (!p4d)
3912                return VM_FAULT_OOM;
3913
3914        vmf.pud = pud_alloc(mm, p4d, address);
3915        if (!vmf.pud)
3916                return VM_FAULT_OOM;
3917        if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3918                ret = create_huge_pud(&vmf);
3919                if (!(ret & VM_FAULT_FALLBACK))
3920                        return ret;
3921        } else {
3922                pud_t orig_pud = *vmf.pud;
3923
3924                barrier();
3925                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3926
3927                        /* NUMA case for anonymous PUDs would go here */
3928
3929                        if (dirty && !pud_write(orig_pud)) {
3930                                ret = wp_huge_pud(&vmf, orig_pud);
3931                                if (!(ret & VM_FAULT_FALLBACK))
3932                                        return ret;
3933                        } else {
3934                                huge_pud_set_accessed(&vmf, orig_pud);
3935                                return 0;
3936                        }
3937                }
3938        }
3939
3940        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3941        if (!vmf.pmd)
3942                return VM_FAULT_OOM;
3943        if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3944                ret = create_huge_pmd(&vmf);
3945                if (!(ret & VM_FAULT_FALLBACK))
3946                        return ret;
3947        } else {
3948                pmd_t orig_pmd = *vmf.pmd;
3949
3950                barrier();
3951                if (unlikely(is_swap_pmd(orig_pmd))) {
3952                        VM_BUG_ON(thp_migration_supported() &&
3953                                          !is_pmd_migration_entry(orig_pmd));
3954                        if (is_pmd_migration_entry(orig_pmd))
3955                                pmd_migration_entry_wait(mm, vmf.pmd);
3956                        return 0;
3957                }
3958                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3959                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3960                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
3961
3962                        if (dirty && !pmd_write(orig_pmd)) {
3963                                ret = wp_huge_pmd(&vmf, orig_pmd);
3964                                if (!(ret & VM_FAULT_FALLBACK))
3965                                        return ret;
3966                        } else {
3967                                huge_pmd_set_accessed(&vmf, orig_pmd);
3968                                return 0;
3969                        }
3970                }
3971        }
3972
3973        return handle_pte_fault(&vmf);
3974}
3975
3976/*
3977 * By the time we get here, we already hold the mm semaphore
3978 *
3979 * The mmap_sem may have been released depending on flags and our
3980 * return value.  See filemap_fault() and __lock_page_or_retry().
3981 */
3982vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3983                unsigned int flags)
3984{
3985        vm_fault_t ret;
3986
3987        __set_current_state(TASK_RUNNING);
3988
3989        count_vm_event(PGFAULT);
3990        count_memcg_event_mm(vma->vm_mm, PGFAULT);
3991
3992        /* do counter updates before entering really critical section. */
3993        check_sync_rss_stat(current);
3994
3995        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996                                            flags & FAULT_FLAG_INSTRUCTION,
3997                                            flags & FAULT_FLAG_REMOTE))
3998                return VM_FAULT_SIGSEGV;
3999
4000        /*
4001         * Enable the memcg OOM handling for faults triggered in user
4002         * space.  Kernel faults are handled more gracefully.
4003         */
4004        if (flags & FAULT_FLAG_USER)
4005                mem_cgroup_enter_user_fault();
4006
4007        if (unlikely(is_vm_hugetlb_page(vma)))
4008                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009        else
4010                ret = __handle_mm_fault(vma, address, flags);
4011
4012        if (flags & FAULT_FLAG_USER) {
4013                mem_cgroup_exit_user_fault();
4014                /*
4015                 * The task may have entered a memcg OOM situation but
4016                 * if the allocation error was handled gracefully (no
4017                 * VM_FAULT_OOM), there is no need to kill anything.
4018                 * Just clean up the OOM state peacefully.
4019                 */
4020                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021                        mem_cgroup_oom_synchronize(false);
4022        }
4023
4024        return ret;
4025}
4026EXPORT_SYMBOL_GPL(handle_mm_fault);
4027
4028#ifndef __PAGETABLE_P4D_FOLDED
4029/*
4030 * Allocate p4d page table.
4031 * We've already handled the fast-path in-line.
4032 */
4033int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034{
4035        p4d_t *new = p4d_alloc_one(mm, address);
4036        if (!new)
4037                return -ENOMEM;
4038
4039        smp_wmb(); /* See comment in __pte_alloc */
4040
4041        spin_lock(&mm->page_table_lock);
4042        if (pgd_present(*pgd))          /* Another has populated it */
4043                p4d_free(mm, new);
4044        else
4045                pgd_populate(mm, pgd, new);
4046        spin_unlock(&mm->page_table_lock);
4047        return 0;
4048}
4049#endif /* __PAGETABLE_P4D_FOLDED */
4050
4051#ifndef __PAGETABLE_PUD_FOLDED
4052/*
4053 * Allocate page upper directory.
4054 * We've already handled the fast-path in-line.
4055 */
4056int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4057{
4058        pud_t *new = pud_alloc_one(mm, address);
4059        if (!new)
4060                return -ENOMEM;
4061
4062        smp_wmb(); /* See comment in __pte_alloc */
4063
4064        spin_lock(&mm->page_table_lock);
4065#ifndef __ARCH_HAS_5LEVEL_HACK
4066        if (!p4d_present(*p4d)) {
4067                mm_inc_nr_puds(mm);
4068                p4d_populate(mm, p4d, new);
4069        } else  /* Another has populated it */
4070                pud_free(mm, new);
4071#else
4072        if (!pgd_present(*p4d)) {
4073                mm_inc_nr_puds(mm);
4074                pgd_populate(mm, p4d, new);
4075        } else  /* Another has populated it */
4076                pud_free(mm, new);
4077#endif /* __ARCH_HAS_5LEVEL_HACK */
4078        spin_unlock(&mm->page_table_lock);
4079        return 0;
4080}
4081#endif /* __PAGETABLE_PUD_FOLDED */
4082
4083#ifndef __PAGETABLE_PMD_FOLDED
4084/*
4085 * Allocate page middle directory.
4086 * We've already handled the fast-path in-line.
4087 */
4088int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4089{
4090        spinlock_t *ptl;
4091        pmd_t *new = pmd_alloc_one(mm, address);
4092        if (!new)
4093                return -ENOMEM;
4094
4095        smp_wmb(); /* See comment in __pte_alloc */
4096
4097        ptl = pud_lock(mm, pud);
4098#ifndef __ARCH_HAS_4LEVEL_HACK
4099        if (!pud_present(*pud)) {
4100                mm_inc_nr_pmds(mm);
4101                pud_populate(mm, pud, new);
4102        } else  /* Another has populated it */
4103                pmd_free(mm, new);
4104#else
4105        if (!pgd_present(*pud)) {
4106                mm_inc_nr_pmds(mm);
4107                pgd_populate(mm, pud, new);
4108        } else /* Another has populated it */
4109                pmd_free(mm, new);
4110#endif /* __ARCH_HAS_4LEVEL_HACK */
4111        spin_unlock(ptl);
4112        return 0;
4113}
4114#endif /* __PAGETABLE_PMD_FOLDED */
4115
4116static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4117                            struct mmu_notifier_range *range,
4118                            pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4119{
4120        pgd_t *pgd;
4121        p4d_t *p4d;
4122        pud_t *pud;
4123        pmd_t *pmd;
4124        pte_t *ptep;
4125
4126        pgd = pgd_offset(mm, address);
4127        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128                goto out;
4129
4130        p4d = p4d_offset(pgd, address);
4131        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132                goto out;
4133
4134        pud = pud_offset(p4d, address);
4135        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136                goto out;
4137
4138        pmd = pmd_offset(pud, address);
4139        VM_BUG_ON(pmd_trans_huge(*pmd));
4140
4141        if (pmd_huge(*pmd)) {
4142                if (!pmdpp)
4143                        goto out;
4144
4145                if (range) {
4146                        mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4147                                                NULL, mm, address & PMD_MASK,
4148                                                (address & PMD_MASK) + PMD_SIZE);
4149                        mmu_notifier_invalidate_range_start(range);
4150                }
4151                *ptlp = pmd_lock(mm, pmd);
4152                if (pmd_huge(*pmd)) {
4153                        *pmdpp = pmd;
4154                        return 0;
4155                }
4156                spin_unlock(*ptlp);
4157                if (range)
4158                        mmu_notifier_invalidate_range_end(range);
4159        }
4160
4161        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4162                goto out;
4163
4164        if (range) {
4165                mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4166                                        address & PAGE_MASK,
4167                                        (address & PAGE_MASK) + PAGE_SIZE);
4168                mmu_notifier_invalidate_range_start(range);
4169        }
4170        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4171        if (!pte_present(*ptep))
4172                goto unlock;
4173        *ptepp = ptep;
4174        return 0;
4175unlock:
4176        pte_unmap_unlock(ptep, *ptlp);
4177        if (range)
4178                mmu_notifier_invalidate_range_end(range);
4179out:
4180        return -EINVAL;
4181}
4182
4183static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184                             pte_t **ptepp, spinlock_t **ptlp)
4185{
4186        int res;
4187
4188        /* (void) is needed to make gcc happy */
4189        (void) __cond_lock(*ptlp,
4190                           !(res = __follow_pte_pmd(mm, address, NULL,
4191                                                    ptepp, NULL, ptlp)));
4192        return res;
4193}
4194
4195int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4196                   struct mmu_notifier_range *range,
4197                   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4198{
4199        int res;
4200
4201        /* (void) is needed to make gcc happy */
4202        (void) __cond_lock(*ptlp,
4203                           !(res = __follow_pte_pmd(mm, address, range,
4204                                                    ptepp, pmdpp, ptlp)));
4205        return res;
4206}
4207EXPORT_SYMBOL(follow_pte_pmd);
4208
4209/**
4210 * follow_pfn - look up PFN at a user virtual address
4211 * @vma: memory mapping
4212 * @address: user virtual address
4213 * @pfn: location to store found PFN
4214 *
4215 * Only IO mappings and raw PFN mappings are allowed.
4216 *
4217 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4218 */
4219int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220        unsigned long *pfn)
4221{
4222        int ret = -EINVAL;
4223        spinlock_t *ptl;
4224        pte_t *ptep;
4225
4226        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227                return ret;
4228
4229        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230        if (ret)
4231                return ret;
4232        *pfn = pte_pfn(*ptep);
4233        pte_unmap_unlock(ptep, ptl);
4234        return 0;
4235}
4236EXPORT_SYMBOL(follow_pfn);
4237
4238#ifdef CONFIG_HAVE_IOREMAP_PROT
4239int follow_phys(struct vm_area_struct *vma,
4240                unsigned long address, unsigned int flags,
4241                unsigned long *prot, resource_size_t *phys)
4242{
4243        int ret = -EINVAL;
4244        pte_t *ptep, pte;
4245        spinlock_t *ptl;
4246
4247        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248                goto out;
4249
4250        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4251                goto out;
4252        pte = *ptep;
4253
4254        if ((flags & FOLL_WRITE) && !pte_write(pte))
4255                goto unlock;
4256
4257        *prot = pgprot_val(pte_pgprot(pte));
4258        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4259
4260        ret = 0;
4261unlock:
4262        pte_unmap_unlock(ptep, ptl);
4263out:
4264        return ret;
4265}
4266
4267int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268                        void *buf, int len, int write)
4269{
4270        resource_size_t phys_addr;
4271        unsigned long prot = 0;
4272        void __iomem *maddr;
4273        int offset = addr & (PAGE_SIZE-1);
4274
4275        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4276                return -EINVAL;
4277
4278        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4279        if (!maddr)
4280                return -ENOMEM;
4281
4282        if (write)
4283                memcpy_toio(maddr + offset, buf, len);
4284        else
4285                memcpy_fromio(buf, maddr + offset, len);
4286        iounmap(maddr);
4287
4288        return len;
4289}
4290EXPORT_SYMBOL_GPL(generic_access_phys);
4291#endif
4292
4293/*
4294 * Access another process' address space as given in mm.  If non-NULL, use the
4295 * given task for page fault accounting.
4296 */
4297int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4298                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4299{
4300        struct vm_area_struct *vma;
4301        void *old_buf = buf;
4302        int write = gup_flags & FOLL_WRITE;
4303
4304        if (down_read_killable(&mm->mmap_sem))
4305                return 0;
4306
4307        /* ignore errors, just check how much was successfully transferred */
4308        while (len) {
4309                int bytes, ret, offset;
4310                void *maddr;
4311                struct page *page = NULL;
4312
4313                ret = get_user_pages_remote(tsk, mm, addr, 1,
4314                                gup_flags, &page, &vma, NULL);
4315                if (ret <= 0) {
4316#ifndef CONFIG_HAVE_IOREMAP_PROT
4317                        break;
4318#else
4319                        /*
4320                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321                         * we can access using slightly different code.
4322                         */
4323                        vma = find_vma(mm, addr);
4324                        if (!vma || vma->vm_start > addr)
4325                                break;
4326                        if (vma->vm_ops && vma->vm_ops->access)
4327                                ret = vma->vm_ops->access(vma, addr, buf,
4328                                                          len, write);
4329                        if (ret <= 0)
4330                                break;
4331                        bytes = ret;
4332#endif
4333                } else {
4334                        bytes = len;
4335                        offset = addr & (PAGE_SIZE-1);
4336                        if (bytes > PAGE_SIZE-offset)
4337                                bytes = PAGE_SIZE-offset;
4338
4339                        maddr = kmap(page);
4340                        if (write) {
4341                                copy_to_user_page(vma, page, addr,
4342                                                  maddr + offset, buf, bytes);
4343                                set_page_dirty_lock(page);
4344                        } else {
4345                                copy_from_user_page(vma, page, addr,
4346                                                    buf, maddr + offset, bytes);
4347                        }
4348                        kunmap(page);
4349                        put_page(page);
4350                }
4351                len -= bytes;
4352                buf += bytes;
4353                addr += bytes;
4354        }
4355        up_read(&mm->mmap_sem);
4356
4357        return buf - old_buf;
4358}
4359
4360/**
4361 * access_remote_vm - access another process' address space
4362 * @mm:         the mm_struct of the target address space
4363 * @addr:       start address to access
4364 * @buf:        source or destination buffer
4365 * @len:        number of bytes to transfer
4366 * @gup_flags:  flags modifying lookup behaviour
4367 *
4368 * The caller must hold a reference on @mm.
4369 *
4370 * Return: number of bytes copied from source to destination.
4371 */
4372int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4373                void *buf, int len, unsigned int gup_flags)
4374{
4375        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4376}
4377
4378/*
4379 * Access another process' address space.
4380 * Source/target buffer must be kernel space,
4381 * Do not walk the page table directly, use get_user_pages
4382 */
4383int access_process_vm(struct task_struct *tsk, unsigned long addr,
4384                void *buf, int len, unsigned int gup_flags)
4385{
4386        struct mm_struct *mm;
4387        int ret;
4388
4389        mm = get_task_mm(tsk);
4390        if (!mm)
4391                return 0;
4392
4393        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4394
4395        mmput(mm);
4396
4397        return ret;
4398}
4399EXPORT_SYMBOL_GPL(access_process_vm);
4400
4401/*
4402 * Print the name of a VMA.
4403 */
4404void print_vma_addr(char *prefix, unsigned long ip)
4405{
4406        struct mm_struct *mm = current->mm;
4407        struct vm_area_struct *vma;
4408
4409        /*
4410         * we might be running from an atomic context so we cannot sleep
4411         */
4412        if (!down_read_trylock(&mm->mmap_sem))
4413                return;
4414
4415        vma = find_vma(mm, ip);
4416        if (vma && vma->vm_file) {
4417                struct file *f = vma->vm_file;
4418                char *buf = (char *)__get_free_page(GFP_NOWAIT);
4419                if (buf) {
4420                        char *p;
4421
4422                        p = file_path(f, buf, PAGE_SIZE);
4423                        if (IS_ERR(p))
4424                                p = "?";
4425                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4426                                        vma->vm_start,
4427                                        vma->vm_end - vma->vm_start);
4428                        free_page((unsigned long)buf);
4429                }
4430        }
4431        up_read(&mm->mmap_sem);
4432}
4433
4434#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4435void __might_fault(const char *file, int line)
4436{
4437        /*
4438         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439         * holding the mmap_sem, this is safe because kernel memory doesn't
4440         * get paged out, therefore we'll never actually fault, and the
4441         * below annotations will generate false positives.
4442         */
4443        if (uaccess_kernel())
4444                return;
4445        if (pagefault_disabled())
4446                return;
4447        __might_sleep(file, line, 0);
4448#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4449        if (current->mm)
4450                might_lock_read(&current->mm->mmap_sem);
4451#endif
4452}
4453EXPORT_SYMBOL(__might_fault);
4454#endif
4455
4456#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4457/*
4458 * Process all subpages of the specified huge page with the specified
4459 * operation.  The target subpage will be processed last to keep its
4460 * cache lines hot.
4461 */
4462static inline void process_huge_page(
4463        unsigned long addr_hint, unsigned int pages_per_huge_page,
4464        void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465        void *arg)
4466{
4467        int i, n, base, l;
4468        unsigned long addr = addr_hint &
4469                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470
4471        /* Process target subpage last to keep its cache lines hot */
4472        might_sleep();
4473        n = (addr_hint - addr) / PAGE_SIZE;
4474        if (2 * n <= pages_per_huge_page) {
4475                /* If target subpage in first half of huge page */
4476                base = 0;
4477                l = n;
4478                /* Process subpages at the end of huge page */
4479                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480                        cond_resched();
4481                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4482                }
4483        } else {
4484                /* If target subpage in second half of huge page */
4485                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486                l = pages_per_huge_page - n;
4487                /* Process subpages at the begin of huge page */
4488                for (i = 0; i < base; i++) {
4489                        cond_resched();
4490                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4491                }
4492        }
4493        /*
4494         * Process remaining subpages in left-right-left-right pattern
4495         * towards the target subpage
4496         */
4497        for (i = 0; i < l; i++) {
4498                int left_idx = base + i;
4499                int right_idx = base + 2 * l - 1 - i;
4500
4501                cond_resched();
4502                process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4503                cond_resched();
4504                process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4505        }
4506}
4507
4508static void clear_gigantic_page(struct page *page,
4509                                unsigned long addr,
4510                                unsigned int pages_per_huge_page)
4511{
4512        int i;
4513        struct page *p = page;
4514
4515        might_sleep();
4516        for (i = 0; i < pages_per_huge_page;
4517             i++, p = mem_map_next(p, page, i)) {
4518                cond_resched();
4519                clear_user_highpage(p, addr + i * PAGE_SIZE);
4520        }
4521}
4522
4523static void clear_subpage(unsigned long addr, int idx, void *arg)
4524{
4525        struct page *page = arg;
4526
4527        clear_user_highpage(page + idx, addr);
4528}
4529
4530void clear_huge_page(struct page *page,
4531                     unsigned long addr_hint, unsigned int pages_per_huge_page)
4532{
4533        unsigned long addr = addr_hint &
4534                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535
4536        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537                clear_gigantic_page(page, addr, pages_per_huge_page);
4538                return;
4539        }
4540
4541        process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4542}
4543
4544static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545                                    unsigned long addr,
4546                                    struct vm_area_struct *vma,
4547                                    unsigned int pages_per_huge_page)
4548{
4549        int i;
4550        struct page *dst_base = dst;
4551        struct page *src_base = src;
4552
4553        for (i = 0; i < pages_per_huge_page; ) {
4554                cond_resched();
4555                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556
4557                i++;
4558                dst = mem_map_next(dst, dst_base, i);
4559                src = mem_map_next(src, src_base, i);
4560        }
4561}
4562
4563struct copy_subpage_arg {
4564        struct page *dst;
4565        struct page *src;
4566        struct vm_area_struct *vma;
4567};
4568
4569static void copy_subpage(unsigned long addr, int idx, void *arg)
4570{
4571        struct copy_subpage_arg *copy_arg = arg;
4572
4573        copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574                           addr, copy_arg->vma);
4575}
4576
4577void copy_user_huge_page(struct page *dst, struct page *src,
4578                         unsigned long addr_hint, struct vm_area_struct *vma,
4579                         unsigned int pages_per_huge_page)
4580{
4581        unsigned long addr = addr_hint &
4582                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583        struct copy_subpage_arg arg = {
4584                .dst = dst,
4585                .src = src,
4586                .vma = vma,
4587        };
4588
4589        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590                copy_user_gigantic_page(dst, src, addr, vma,
4591                                        pages_per_huge_page);
4592                return;
4593        }
4594
4595        process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4596}
4597
4598long copy_huge_page_from_user(struct page *dst_page,
4599                                const void __user *usr_src,
4600                                unsigned int pages_per_huge_page,
4601                                bool allow_pagefault)
4602{
4603        void *src = (void *)usr_src;
4604        void *page_kaddr;
4605        unsigned long i, rc = 0;
4606        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607
4608        for (i = 0; i < pages_per_huge_page; i++) {
4609                if (allow_pagefault)
4610                        page_kaddr = kmap(dst_page + i);
4611                else
4612                        page_kaddr = kmap_atomic(dst_page + i);
4613                rc = copy_from_user(page_kaddr,
4614                                (const void __user *)(src + i * PAGE_SIZE),
4615                                PAGE_SIZE);
4616                if (allow_pagefault)
4617                        kunmap(dst_page + i);
4618                else
4619                        kunmap_atomic(page_kaddr);
4620
4621                ret_val -= (PAGE_SIZE - rc);
4622                if (rc)
4623                        break;
4624
4625                cond_resched();
4626        }
4627        return ret_val;
4628}
4629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4630
4631#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4632
4633static struct kmem_cache *page_ptl_cachep;
4634
4635void __init ptlock_cache_init(void)
4636{
4637        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638                        SLAB_PANIC, NULL);
4639}
4640
4641bool ptlock_alloc(struct page *page)
4642{
4643        spinlock_t *ptl;
4644
4645        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4646        if (!ptl)
4647                return false;
4648        page->ptl = ptl;
4649        return true;
4650}
4651
4652void ptlock_free(struct page *page)
4653{
4654        kmem_cache_free(page_ptl_cachep, page->ptl);
4655}
4656#endif
4657