linux/mm/readahead.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/readahead.c - address_space-level file readahead.
   4 *
   5 * Copyright (C) 2002, Linus Torvalds
   6 *
   7 * 09Apr2002    Andrew Morton
   8 *              Initial version.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/dax.h>
  13#include <linux/gfp.h>
  14#include <linux/export.h>
  15#include <linux/blkdev.h>
  16#include <linux/backing-dev.h>
  17#include <linux/task_io_accounting_ops.h>
  18#include <linux/pagevec.h>
  19#include <linux/pagemap.h>
  20#include <linux/syscalls.h>
  21#include <linux/file.h>
  22#include <linux/mm_inline.h>
  23#include <linux/blk-cgroup.h>
  24#include <linux/fadvise.h>
  25
  26#include "internal.h"
  27
  28/*
  29 * Initialise a struct file's readahead state.  Assumes that the caller has
  30 * memset *ra to zero.
  31 */
  32void
  33file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  34{
  35        ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
  36        ra->prev_pos = -1;
  37}
  38EXPORT_SYMBOL_GPL(file_ra_state_init);
  39
  40/*
  41 * see if a page needs releasing upon read_cache_pages() failure
  42 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  43 *   before calling, such as the NFS fs marking pages that are cached locally
  44 *   on disk, thus we need to give the fs a chance to clean up in the event of
  45 *   an error
  46 */
  47static void read_cache_pages_invalidate_page(struct address_space *mapping,
  48                                             struct page *page)
  49{
  50        if (page_has_private(page)) {
  51                if (!trylock_page(page))
  52                        BUG();
  53                page->mapping = mapping;
  54                do_invalidatepage(page, 0, PAGE_SIZE);
  55                page->mapping = NULL;
  56                unlock_page(page);
  57        }
  58        put_page(page);
  59}
  60
  61/*
  62 * release a list of pages, invalidating them first if need be
  63 */
  64static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  65                                              struct list_head *pages)
  66{
  67        struct page *victim;
  68
  69        while (!list_empty(pages)) {
  70                victim = lru_to_page(pages);
  71                list_del(&victim->lru);
  72                read_cache_pages_invalidate_page(mapping, victim);
  73        }
  74}
  75
  76/**
  77 * read_cache_pages - populate an address space with some pages & start reads against them
  78 * @mapping: the address_space
  79 * @pages: The address of a list_head which contains the target pages.  These
  80 *   pages have their ->index populated and are otherwise uninitialised.
  81 * @filler: callback routine for filling a single page.
  82 * @data: private data for the callback routine.
  83 *
  84 * Hides the details of the LRU cache etc from the filesystems.
  85 *
  86 * Returns: %0 on success, error return by @filler otherwise
  87 */
  88int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  89                        int (*filler)(void *, struct page *), void *data)
  90{
  91        struct page *page;
  92        int ret = 0;
  93
  94        while (!list_empty(pages)) {
  95                page = lru_to_page(pages);
  96                list_del(&page->lru);
  97                if (add_to_page_cache_lru(page, mapping, page->index,
  98                                readahead_gfp_mask(mapping))) {
  99                        read_cache_pages_invalidate_page(mapping, page);
 100                        continue;
 101                }
 102                put_page(page);
 103
 104                ret = filler(data, page);
 105                if (unlikely(ret)) {
 106                        read_cache_pages_invalidate_pages(mapping, pages);
 107                        break;
 108                }
 109                task_io_account_read(PAGE_SIZE);
 110        }
 111        return ret;
 112}
 113
 114EXPORT_SYMBOL(read_cache_pages);
 115
 116static int read_pages(struct address_space *mapping, struct file *filp,
 117                struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
 118{
 119        struct blk_plug plug;
 120        unsigned page_idx;
 121        int ret;
 122
 123        blk_start_plug(&plug);
 124
 125        if (mapping->a_ops->readpages) {
 126                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 127                /* Clean up the remaining pages */
 128                put_pages_list(pages);
 129                goto out;
 130        }
 131
 132        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 133                struct page *page = lru_to_page(pages);
 134                list_del(&page->lru);
 135                if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
 136                        mapping->a_ops->readpage(filp, page);
 137                put_page(page);
 138        }
 139        ret = 0;
 140
 141out:
 142        blk_finish_plug(&plug);
 143
 144        return ret;
 145}
 146
 147/*
 148 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
 149 * the pages first, then submits them for I/O. This avoids the very bad
 150 * behaviour which would occur if page allocations are causing VM writeback.
 151 * We really don't want to intermingle reads and writes like that.
 152 *
 153 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 154 */
 155unsigned int __do_page_cache_readahead(struct address_space *mapping,
 156                struct file *filp, pgoff_t offset, unsigned long nr_to_read,
 157                unsigned long lookahead_size)
 158{
 159        struct inode *inode = mapping->host;
 160        struct page *page;
 161        unsigned long end_index;        /* The last page we want to read */
 162        LIST_HEAD(page_pool);
 163        int page_idx;
 164        unsigned int nr_pages = 0;
 165        loff_t isize = i_size_read(inode);
 166        gfp_t gfp_mask = readahead_gfp_mask(mapping);
 167
 168        if (isize == 0)
 169                goto out;
 170
 171        end_index = ((isize - 1) >> PAGE_SHIFT);
 172
 173        /*
 174         * Preallocate as many pages as we will need.
 175         */
 176        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
 177                pgoff_t page_offset = offset + page_idx;
 178
 179                if (page_offset > end_index)
 180                        break;
 181
 182                page = xa_load(&mapping->i_pages, page_offset);
 183                if (page && !xa_is_value(page)) {
 184                        /*
 185                         * Page already present?  Kick off the current batch of
 186                         * contiguous pages before continuing with the next
 187                         * batch.
 188                         */
 189                        if (nr_pages)
 190                                read_pages(mapping, filp, &page_pool, nr_pages,
 191                                                gfp_mask);
 192                        nr_pages = 0;
 193                        continue;
 194                }
 195
 196                page = __page_cache_alloc(gfp_mask);
 197                if (!page)
 198                        break;
 199                page->index = page_offset;
 200                list_add(&page->lru, &page_pool);
 201                if (page_idx == nr_to_read - lookahead_size)
 202                        SetPageReadahead(page);
 203                nr_pages++;
 204        }
 205
 206        /*
 207         * Now start the IO.  We ignore I/O errors - if the page is not
 208         * uptodate then the caller will launch readpage again, and
 209         * will then handle the error.
 210         */
 211        if (nr_pages)
 212                read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
 213        BUG_ON(!list_empty(&page_pool));
 214out:
 215        return nr_pages;
 216}
 217
 218/*
 219 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 220 * memory at once.
 221 */
 222int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 223                               pgoff_t offset, unsigned long nr_to_read)
 224{
 225        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 226        struct file_ra_state *ra = &filp->f_ra;
 227        unsigned long max_pages;
 228
 229        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
 230                return -EINVAL;
 231
 232        /*
 233         * If the request exceeds the readahead window, allow the read to
 234         * be up to the optimal hardware IO size
 235         */
 236        max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
 237        nr_to_read = min(nr_to_read, max_pages);
 238        while (nr_to_read) {
 239                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
 240
 241                if (this_chunk > nr_to_read)
 242                        this_chunk = nr_to_read;
 243                __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
 244
 245                offset += this_chunk;
 246                nr_to_read -= this_chunk;
 247        }
 248        return 0;
 249}
 250
 251/*
 252 * Set the initial window size, round to next power of 2 and square
 253 * for small size, x 4 for medium, and x 2 for large
 254 * for 128k (32 page) max ra
 255 * 1-8 page = 32k initial, > 8 page = 128k initial
 256 */
 257static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
 258{
 259        unsigned long newsize = roundup_pow_of_two(size);
 260
 261        if (newsize <= max / 32)
 262                newsize = newsize * 4;
 263        else if (newsize <= max / 4)
 264                newsize = newsize * 2;
 265        else
 266                newsize = max;
 267
 268        return newsize;
 269}
 270
 271/*
 272 *  Get the previous window size, ramp it up, and
 273 *  return it as the new window size.
 274 */
 275static unsigned long get_next_ra_size(struct file_ra_state *ra,
 276                                      unsigned long max)
 277{
 278        unsigned long cur = ra->size;
 279
 280        if (cur < max / 16)
 281                return 4 * cur;
 282        if (cur <= max / 2)
 283                return 2 * cur;
 284        return max;
 285}
 286
 287/*
 288 * On-demand readahead design.
 289 *
 290 * The fields in struct file_ra_state represent the most-recently-executed
 291 * readahead attempt:
 292 *
 293 *                        |<----- async_size ---------|
 294 *     |------------------- size -------------------->|
 295 *     |==================#===========================|
 296 *     ^start             ^page marked with PG_readahead
 297 *
 298 * To overlap application thinking time and disk I/O time, we do
 299 * `readahead pipelining': Do not wait until the application consumed all
 300 * readahead pages and stalled on the missing page at readahead_index;
 301 * Instead, submit an asynchronous readahead I/O as soon as there are
 302 * only async_size pages left in the readahead window. Normally async_size
 303 * will be equal to size, for maximum pipelining.
 304 *
 305 * In interleaved sequential reads, concurrent streams on the same fd can
 306 * be invalidating each other's readahead state. So we flag the new readahead
 307 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 308 * indicator. The flag won't be set on already cached pages, to avoid the
 309 * readahead-for-nothing fuss, saving pointless page cache lookups.
 310 *
 311 * prev_pos tracks the last visited byte in the _previous_ read request.
 312 * It should be maintained by the caller, and will be used for detecting
 313 * small random reads. Note that the readahead algorithm checks loosely
 314 * for sequential patterns. Hence interleaved reads might be served as
 315 * sequential ones.
 316 *
 317 * There is a special-case: if the first page which the application tries to
 318 * read happens to be the first page of the file, it is assumed that a linear
 319 * read is about to happen and the window is immediately set to the initial size
 320 * based on I/O request size and the max_readahead.
 321 *
 322 * The code ramps up the readahead size aggressively at first, but slow down as
 323 * it approaches max_readhead.
 324 */
 325
 326/*
 327 * Count contiguously cached pages from @offset-1 to @offset-@max,
 328 * this count is a conservative estimation of
 329 *      - length of the sequential read sequence, or
 330 *      - thrashing threshold in memory tight systems
 331 */
 332static pgoff_t count_history_pages(struct address_space *mapping,
 333                                   pgoff_t offset, unsigned long max)
 334{
 335        pgoff_t head;
 336
 337        rcu_read_lock();
 338        head = page_cache_prev_miss(mapping, offset - 1, max);
 339        rcu_read_unlock();
 340
 341        return offset - 1 - head;
 342}
 343
 344/*
 345 * page cache context based read-ahead
 346 */
 347static int try_context_readahead(struct address_space *mapping,
 348                                 struct file_ra_state *ra,
 349                                 pgoff_t offset,
 350                                 unsigned long req_size,
 351                                 unsigned long max)
 352{
 353        pgoff_t size;
 354
 355        size = count_history_pages(mapping, offset, max);
 356
 357        /*
 358         * not enough history pages:
 359         * it could be a random read
 360         */
 361        if (size <= req_size)
 362                return 0;
 363
 364        /*
 365         * starts from beginning of file:
 366         * it is a strong indication of long-run stream (or whole-file-read)
 367         */
 368        if (size >= offset)
 369                size *= 2;
 370
 371        ra->start = offset;
 372        ra->size = min(size + req_size, max);
 373        ra->async_size = 1;
 374
 375        return 1;
 376}
 377
 378/*
 379 * A minimal readahead algorithm for trivial sequential/random reads.
 380 */
 381static unsigned long
 382ondemand_readahead(struct address_space *mapping,
 383                   struct file_ra_state *ra, struct file *filp,
 384                   bool hit_readahead_marker, pgoff_t offset,
 385                   unsigned long req_size)
 386{
 387        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 388        unsigned long max_pages = ra->ra_pages;
 389        unsigned long add_pages;
 390        pgoff_t prev_offset;
 391
 392        /*
 393         * If the request exceeds the readahead window, allow the read to
 394         * be up to the optimal hardware IO size
 395         */
 396        if (req_size > max_pages && bdi->io_pages > max_pages)
 397                max_pages = min(req_size, bdi->io_pages);
 398
 399        /*
 400         * start of file
 401         */
 402        if (!offset)
 403                goto initial_readahead;
 404
 405        /*
 406         * It's the expected callback offset, assume sequential access.
 407         * Ramp up sizes, and push forward the readahead window.
 408         */
 409        if ((offset == (ra->start + ra->size - ra->async_size) ||
 410             offset == (ra->start + ra->size))) {
 411                ra->start += ra->size;
 412                ra->size = get_next_ra_size(ra, max_pages);
 413                ra->async_size = ra->size;
 414                goto readit;
 415        }
 416
 417        /*
 418         * Hit a marked page without valid readahead state.
 419         * E.g. interleaved reads.
 420         * Query the pagecache for async_size, which normally equals to
 421         * readahead size. Ramp it up and use it as the new readahead size.
 422         */
 423        if (hit_readahead_marker) {
 424                pgoff_t start;
 425
 426                rcu_read_lock();
 427                start = page_cache_next_miss(mapping, offset + 1, max_pages);
 428                rcu_read_unlock();
 429
 430                if (!start || start - offset > max_pages)
 431                        return 0;
 432
 433                ra->start = start;
 434                ra->size = start - offset;      /* old async_size */
 435                ra->size += req_size;
 436                ra->size = get_next_ra_size(ra, max_pages);
 437                ra->async_size = ra->size;
 438                goto readit;
 439        }
 440
 441        /*
 442         * oversize read
 443         */
 444        if (req_size > max_pages)
 445                goto initial_readahead;
 446
 447        /*
 448         * sequential cache miss
 449         * trivial case: (offset - prev_offset) == 1
 450         * unaligned reads: (offset - prev_offset) == 0
 451         */
 452        prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
 453        if (offset - prev_offset <= 1UL)
 454                goto initial_readahead;
 455
 456        /*
 457         * Query the page cache and look for the traces(cached history pages)
 458         * that a sequential stream would leave behind.
 459         */
 460        if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
 461                goto readit;
 462
 463        /*
 464         * standalone, small random read
 465         * Read as is, and do not pollute the readahead state.
 466         */
 467        return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 468
 469initial_readahead:
 470        ra->start = offset;
 471        ra->size = get_init_ra_size(req_size, max_pages);
 472        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 473
 474readit:
 475        /*
 476         * Will this read hit the readahead marker made by itself?
 477         * If so, trigger the readahead marker hit now, and merge
 478         * the resulted next readahead window into the current one.
 479         * Take care of maximum IO pages as above.
 480         */
 481        if (offset == ra->start && ra->size == ra->async_size) {
 482                add_pages = get_next_ra_size(ra, max_pages);
 483                if (ra->size + add_pages <= max_pages) {
 484                        ra->async_size = add_pages;
 485                        ra->size += add_pages;
 486                } else {
 487                        ra->size = max_pages;
 488                        ra->async_size = max_pages >> 1;
 489                }
 490        }
 491
 492        return ra_submit(ra, mapping, filp);
 493}
 494
 495/**
 496 * page_cache_sync_readahead - generic file readahead
 497 * @mapping: address_space which holds the pagecache and I/O vectors
 498 * @ra: file_ra_state which holds the readahead state
 499 * @filp: passed on to ->readpage() and ->readpages()
 500 * @offset: start offset into @mapping, in pagecache page-sized units
 501 * @req_size: hint: total size of the read which the caller is performing in
 502 *            pagecache pages
 503 *
 504 * page_cache_sync_readahead() should be called when a cache miss happened:
 505 * it will submit the read.  The readahead logic may decide to piggyback more
 506 * pages onto the read request if access patterns suggest it will improve
 507 * performance.
 508 */
 509void page_cache_sync_readahead(struct address_space *mapping,
 510                               struct file_ra_state *ra, struct file *filp,
 511                               pgoff_t offset, unsigned long req_size)
 512{
 513        /* no read-ahead */
 514        if (!ra->ra_pages)
 515                return;
 516
 517        if (blk_cgroup_congested())
 518                return;
 519
 520        /* be dumb */
 521        if (filp && (filp->f_mode & FMODE_RANDOM)) {
 522                force_page_cache_readahead(mapping, filp, offset, req_size);
 523                return;
 524        }
 525
 526        /* do read-ahead */
 527        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
 528}
 529EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
 530
 531/**
 532 * page_cache_async_readahead - file readahead for marked pages
 533 * @mapping: address_space which holds the pagecache and I/O vectors
 534 * @ra: file_ra_state which holds the readahead state
 535 * @filp: passed on to ->readpage() and ->readpages()
 536 * @page: the page at @offset which has the PG_readahead flag set
 537 * @offset: start offset into @mapping, in pagecache page-sized units
 538 * @req_size: hint: total size of the read which the caller is performing in
 539 *            pagecache pages
 540 *
 541 * page_cache_async_readahead() should be called when a page is used which
 542 * has the PG_readahead flag; this is a marker to suggest that the application
 543 * has used up enough of the readahead window that we should start pulling in
 544 * more pages.
 545 */
 546void
 547page_cache_async_readahead(struct address_space *mapping,
 548                           struct file_ra_state *ra, struct file *filp,
 549                           struct page *page, pgoff_t offset,
 550                           unsigned long req_size)
 551{
 552        /* no read-ahead */
 553        if (!ra->ra_pages)
 554                return;
 555
 556        /*
 557         * Same bit is used for PG_readahead and PG_reclaim.
 558         */
 559        if (PageWriteback(page))
 560                return;
 561
 562        ClearPageReadahead(page);
 563
 564        /*
 565         * Defer asynchronous read-ahead on IO congestion.
 566         */
 567        if (inode_read_congested(mapping->host))
 568                return;
 569
 570        if (blk_cgroup_congested())
 571                return;
 572
 573        /* do read-ahead */
 574        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
 575}
 576EXPORT_SYMBOL_GPL(page_cache_async_readahead);
 577
 578ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
 579{
 580        ssize_t ret;
 581        struct fd f;
 582
 583        ret = -EBADF;
 584        f = fdget(fd);
 585        if (!f.file || !(f.file->f_mode & FMODE_READ))
 586                goto out;
 587
 588        /*
 589         * The readahead() syscall is intended to run only on files
 590         * that can execute readahead. If readahead is not possible
 591         * on this file, then we must return -EINVAL.
 592         */
 593        ret = -EINVAL;
 594        if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
 595            !S_ISREG(file_inode(f.file)->i_mode))
 596                goto out;
 597
 598        ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
 599out:
 600        fdput(f);
 601        return ret;
 602}
 603
 604SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
 605{
 606        return ksys_readahead(fd, offset, count);
 607}
 608