linux/mm/vmalloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
  10 */
  11
  12#include <linux/vmalloc.h>
  13#include <linux/mm.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/sched/signal.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/interrupt.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/set_memory.h>
  23#include <linux/debugobjects.h>
  24#include <linux/kallsyms.h>
  25#include <linux/list.h>
  26#include <linux/notifier.h>
  27#include <linux/rbtree.h>
  28#include <linux/radix-tree.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/llist.h>
  35#include <linux/bitops.h>
  36#include <linux/rbtree_augmented.h>
  37
  38#include <linux/uaccess.h>
  39#include <asm/tlbflush.h>
  40#include <asm/shmparam.h>
  41
  42#include "internal.h"
  43
  44struct vfree_deferred {
  45        struct llist_head list;
  46        struct work_struct wq;
  47};
  48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  49
  50static void __vunmap(const void *, int);
  51
  52static void free_work(struct work_struct *w)
  53{
  54        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  55        struct llist_node *t, *llnode;
  56
  57        llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  58                __vunmap((void *)llnode, 1);
  59}
  60
  61/*** Page table manipulation functions ***/
  62
  63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  64{
  65        pte_t *pte;
  66
  67        pte = pte_offset_kernel(pmd, addr);
  68        do {
  69                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  70                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  71        } while (pte++, addr += PAGE_SIZE, addr != end);
  72}
  73
  74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  75{
  76        pmd_t *pmd;
  77        unsigned long next;
  78
  79        pmd = pmd_offset(pud, addr);
  80        do {
  81                next = pmd_addr_end(addr, end);
  82                if (pmd_clear_huge(pmd))
  83                        continue;
  84                if (pmd_none_or_clear_bad(pmd))
  85                        continue;
  86                vunmap_pte_range(pmd, addr, next);
  87        } while (pmd++, addr = next, addr != end);
  88}
  89
  90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  91{
  92        pud_t *pud;
  93        unsigned long next;
  94
  95        pud = pud_offset(p4d, addr);
  96        do {
  97                next = pud_addr_end(addr, end);
  98                if (pud_clear_huge(pud))
  99                        continue;
 100                if (pud_none_or_clear_bad(pud))
 101                        continue;
 102                vunmap_pmd_range(pud, addr, next);
 103        } while (pud++, addr = next, addr != end);
 104}
 105
 106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 107{
 108        p4d_t *p4d;
 109        unsigned long next;
 110
 111        p4d = p4d_offset(pgd, addr);
 112        do {
 113                next = p4d_addr_end(addr, end);
 114                if (p4d_clear_huge(p4d))
 115                        continue;
 116                if (p4d_none_or_clear_bad(p4d))
 117                        continue;
 118                vunmap_pud_range(p4d, addr, next);
 119        } while (p4d++, addr = next, addr != end);
 120}
 121
 122static void vunmap_page_range(unsigned long addr, unsigned long end)
 123{
 124        pgd_t *pgd;
 125        unsigned long next;
 126
 127        BUG_ON(addr >= end);
 128        pgd = pgd_offset_k(addr);
 129        do {
 130                next = pgd_addr_end(addr, end);
 131                if (pgd_none_or_clear_bad(pgd))
 132                        continue;
 133                vunmap_p4d_range(pgd, addr, next);
 134        } while (pgd++, addr = next, addr != end);
 135}
 136
 137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 138                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 139{
 140        pte_t *pte;
 141
 142        /*
 143         * nr is a running index into the array which helps higher level
 144         * callers keep track of where we're up to.
 145         */
 146
 147        pte = pte_alloc_kernel(pmd, addr);
 148        if (!pte)
 149                return -ENOMEM;
 150        do {
 151                struct page *page = pages[*nr];
 152
 153                if (WARN_ON(!pte_none(*pte)))
 154                        return -EBUSY;
 155                if (WARN_ON(!page))
 156                        return -ENOMEM;
 157                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 158                (*nr)++;
 159        } while (pte++, addr += PAGE_SIZE, addr != end);
 160        return 0;
 161}
 162
 163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 164                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 165{
 166        pmd_t *pmd;
 167        unsigned long next;
 168
 169        pmd = pmd_alloc(&init_mm, pud, addr);
 170        if (!pmd)
 171                return -ENOMEM;
 172        do {
 173                next = pmd_addr_end(addr, end);
 174                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 175                        return -ENOMEM;
 176        } while (pmd++, addr = next, addr != end);
 177        return 0;
 178}
 179
 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 181                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 182{
 183        pud_t *pud;
 184        unsigned long next;
 185
 186        pud = pud_alloc(&init_mm, p4d, addr);
 187        if (!pud)
 188                return -ENOMEM;
 189        do {
 190                next = pud_addr_end(addr, end);
 191                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 192                        return -ENOMEM;
 193        } while (pud++, addr = next, addr != end);
 194        return 0;
 195}
 196
 197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 198                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 199{
 200        p4d_t *p4d;
 201        unsigned long next;
 202
 203        p4d = p4d_alloc(&init_mm, pgd, addr);
 204        if (!p4d)
 205                return -ENOMEM;
 206        do {
 207                next = p4d_addr_end(addr, end);
 208                if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 209                        return -ENOMEM;
 210        } while (p4d++, addr = next, addr != end);
 211        return 0;
 212}
 213
 214/*
 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 216 * will have pfns corresponding to the "pages" array.
 217 *
 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 219 */
 220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 221                                   pgprot_t prot, struct page **pages)
 222{
 223        pgd_t *pgd;
 224        unsigned long next;
 225        unsigned long addr = start;
 226        int err = 0;
 227        int nr = 0;
 228
 229        BUG_ON(addr >= end);
 230        pgd = pgd_offset_k(addr);
 231        do {
 232                next = pgd_addr_end(addr, end);
 233                err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 234                if (err)
 235                        return err;
 236        } while (pgd++, addr = next, addr != end);
 237
 238        return nr;
 239}
 240
 241static int vmap_page_range(unsigned long start, unsigned long end,
 242                           pgprot_t prot, struct page **pages)
 243{
 244        int ret;
 245
 246        ret = vmap_page_range_noflush(start, end, prot, pages);
 247        flush_cache_vmap(start, end);
 248        return ret;
 249}
 250
 251int is_vmalloc_or_module_addr(const void *x)
 252{
 253        /*
 254         * ARM, x86-64 and sparc64 put modules in a special place,
 255         * and fall back on vmalloc() if that fails. Others
 256         * just put it in the vmalloc space.
 257         */
 258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 259        unsigned long addr = (unsigned long)x;
 260        if (addr >= MODULES_VADDR && addr < MODULES_END)
 261                return 1;
 262#endif
 263        return is_vmalloc_addr(x);
 264}
 265
 266/*
 267 * Walk a vmap address to the struct page it maps.
 268 */
 269struct page *vmalloc_to_page(const void *vmalloc_addr)
 270{
 271        unsigned long addr = (unsigned long) vmalloc_addr;
 272        struct page *page = NULL;
 273        pgd_t *pgd = pgd_offset_k(addr);
 274        p4d_t *p4d;
 275        pud_t *pud;
 276        pmd_t *pmd;
 277        pte_t *ptep, pte;
 278
 279        /*
 280         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 281         * architectures that do not vmalloc module space
 282         */
 283        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 284
 285        if (pgd_none(*pgd))
 286                return NULL;
 287        p4d = p4d_offset(pgd, addr);
 288        if (p4d_none(*p4d))
 289                return NULL;
 290        pud = pud_offset(p4d, addr);
 291
 292        /*
 293         * Don't dereference bad PUD or PMD (below) entries. This will also
 294         * identify huge mappings, which we may encounter on architectures
 295         * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 296         * identified as vmalloc addresses by is_vmalloc_addr(), but are
 297         * not [unambiguously] associated with a struct page, so there is
 298         * no correct value to return for them.
 299         */
 300        WARN_ON_ONCE(pud_bad(*pud));
 301        if (pud_none(*pud) || pud_bad(*pud))
 302                return NULL;
 303        pmd = pmd_offset(pud, addr);
 304        WARN_ON_ONCE(pmd_bad(*pmd));
 305        if (pmd_none(*pmd) || pmd_bad(*pmd))
 306                return NULL;
 307
 308        ptep = pte_offset_map(pmd, addr);
 309        pte = *ptep;
 310        if (pte_present(pte))
 311                page = pte_page(pte);
 312        pte_unmap(ptep);
 313        return page;
 314}
 315EXPORT_SYMBOL(vmalloc_to_page);
 316
 317/*
 318 * Map a vmalloc()-space virtual address to the physical page frame number.
 319 */
 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 321{
 322        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 323}
 324EXPORT_SYMBOL(vmalloc_to_pfn);
 325
 326
 327/*** Global kva allocator ***/
 328
 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 331
 332
 333static DEFINE_SPINLOCK(vmap_area_lock);
 334/* Export for kexec only */
 335LIST_HEAD(vmap_area_list);
 336static LLIST_HEAD(vmap_purge_list);
 337static struct rb_root vmap_area_root = RB_ROOT;
 338static bool vmap_initialized __read_mostly;
 339
 340/*
 341 * This kmem_cache is used for vmap_area objects. Instead of
 342 * allocating from slab we reuse an object from this cache to
 343 * make things faster. Especially in "no edge" splitting of
 344 * free block.
 345 */
 346static struct kmem_cache *vmap_area_cachep;
 347
 348/*
 349 * This linked list is used in pair with free_vmap_area_root.
 350 * It gives O(1) access to prev/next to perform fast coalescing.
 351 */
 352static LIST_HEAD(free_vmap_area_list);
 353
 354/*
 355 * This augment red-black tree represents the free vmap space.
 356 * All vmap_area objects in this tree are sorted by va->va_start
 357 * address. It is used for allocation and merging when a vmap
 358 * object is released.
 359 *
 360 * Each vmap_area node contains a maximum available free block
 361 * of its sub-tree, right or left. Therefore it is possible to
 362 * find a lowest match of free area.
 363 */
 364static struct rb_root free_vmap_area_root = RB_ROOT;
 365
 366/*
 367 * Preload a CPU with one object for "no edge" split case. The
 368 * aim is to get rid of allocations from the atomic context, thus
 369 * to use more permissive allocation masks.
 370 */
 371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 372
 373static __always_inline unsigned long
 374va_size(struct vmap_area *va)
 375{
 376        return (va->va_end - va->va_start);
 377}
 378
 379static __always_inline unsigned long
 380get_subtree_max_size(struct rb_node *node)
 381{
 382        struct vmap_area *va;
 383
 384        va = rb_entry_safe(node, struct vmap_area, rb_node);
 385        return va ? va->subtree_max_size : 0;
 386}
 387
 388/*
 389 * Gets called when remove the node and rotate.
 390 */
 391static __always_inline unsigned long
 392compute_subtree_max_size(struct vmap_area *va)
 393{
 394        return max3(va_size(va),
 395                get_subtree_max_size(va->rb_node.rb_left),
 396                get_subtree_max_size(va->rb_node.rb_right));
 397}
 398
 399RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 400        struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 401
 402static void purge_vmap_area_lazy(void);
 403static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 404static unsigned long lazy_max_pages(void);
 405
 406static atomic_long_t nr_vmalloc_pages;
 407
 408unsigned long vmalloc_nr_pages(void)
 409{
 410        return atomic_long_read(&nr_vmalloc_pages);
 411}
 412
 413static struct vmap_area *__find_vmap_area(unsigned long addr)
 414{
 415        struct rb_node *n = vmap_area_root.rb_node;
 416
 417        while (n) {
 418                struct vmap_area *va;
 419
 420                va = rb_entry(n, struct vmap_area, rb_node);
 421                if (addr < va->va_start)
 422                        n = n->rb_left;
 423                else if (addr >= va->va_end)
 424                        n = n->rb_right;
 425                else
 426                        return va;
 427        }
 428
 429        return NULL;
 430}
 431
 432/*
 433 * This function returns back addresses of parent node
 434 * and its left or right link for further processing.
 435 */
 436static __always_inline struct rb_node **
 437find_va_links(struct vmap_area *va,
 438        struct rb_root *root, struct rb_node *from,
 439        struct rb_node **parent)
 440{
 441        struct vmap_area *tmp_va;
 442        struct rb_node **link;
 443
 444        if (root) {
 445                link = &root->rb_node;
 446                if (unlikely(!*link)) {
 447                        *parent = NULL;
 448                        return link;
 449                }
 450        } else {
 451                link = &from;
 452        }
 453
 454        /*
 455         * Go to the bottom of the tree. When we hit the last point
 456         * we end up with parent rb_node and correct direction, i name
 457         * it link, where the new va->rb_node will be attached to.
 458         */
 459        do {
 460                tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 461
 462                /*
 463                 * During the traversal we also do some sanity check.
 464                 * Trigger the BUG() if there are sides(left/right)
 465                 * or full overlaps.
 466                 */
 467                if (va->va_start < tmp_va->va_end &&
 468                                va->va_end <= tmp_va->va_start)
 469                        link = &(*link)->rb_left;
 470                else if (va->va_end > tmp_va->va_start &&
 471                                va->va_start >= tmp_va->va_end)
 472                        link = &(*link)->rb_right;
 473                else
 474                        BUG();
 475        } while (*link);
 476
 477        *parent = &tmp_va->rb_node;
 478        return link;
 479}
 480
 481static __always_inline struct list_head *
 482get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 483{
 484        struct list_head *list;
 485
 486        if (unlikely(!parent))
 487                /*
 488                 * The red-black tree where we try to find VA neighbors
 489                 * before merging or inserting is empty, i.e. it means
 490                 * there is no free vmap space. Normally it does not
 491                 * happen but we handle this case anyway.
 492                 */
 493                return NULL;
 494
 495        list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 496        return (&parent->rb_right == link ? list->next : list);
 497}
 498
 499static __always_inline void
 500link_va(struct vmap_area *va, struct rb_root *root,
 501        struct rb_node *parent, struct rb_node **link, struct list_head *head)
 502{
 503        /*
 504         * VA is still not in the list, but we can
 505         * identify its future previous list_head node.
 506         */
 507        if (likely(parent)) {
 508                head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 509                if (&parent->rb_right != link)
 510                        head = head->prev;
 511        }
 512
 513        /* Insert to the rb-tree */
 514        rb_link_node(&va->rb_node, parent, link);
 515        if (root == &free_vmap_area_root) {
 516                /*
 517                 * Some explanation here. Just perform simple insertion
 518                 * to the tree. We do not set va->subtree_max_size to
 519                 * its current size before calling rb_insert_augmented().
 520                 * It is because of we populate the tree from the bottom
 521                 * to parent levels when the node _is_ in the tree.
 522                 *
 523                 * Therefore we set subtree_max_size to zero after insertion,
 524                 * to let __augment_tree_propagate_from() puts everything to
 525                 * the correct order later on.
 526                 */
 527                rb_insert_augmented(&va->rb_node,
 528                        root, &free_vmap_area_rb_augment_cb);
 529                va->subtree_max_size = 0;
 530        } else {
 531                rb_insert_color(&va->rb_node, root);
 532        }
 533
 534        /* Address-sort this list */
 535        list_add(&va->list, head);
 536}
 537
 538static __always_inline void
 539unlink_va(struct vmap_area *va, struct rb_root *root)
 540{
 541        if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 542                return;
 543
 544        if (root == &free_vmap_area_root)
 545                rb_erase_augmented(&va->rb_node,
 546                        root, &free_vmap_area_rb_augment_cb);
 547        else
 548                rb_erase(&va->rb_node, root);
 549
 550        list_del(&va->list);
 551        RB_CLEAR_NODE(&va->rb_node);
 552}
 553
 554#if DEBUG_AUGMENT_PROPAGATE_CHECK
 555static void
 556augment_tree_propagate_check(struct rb_node *n)
 557{
 558        struct vmap_area *va;
 559        struct rb_node *node;
 560        unsigned long size;
 561        bool found = false;
 562
 563        if (n == NULL)
 564                return;
 565
 566        va = rb_entry(n, struct vmap_area, rb_node);
 567        size = va->subtree_max_size;
 568        node = n;
 569
 570        while (node) {
 571                va = rb_entry(node, struct vmap_area, rb_node);
 572
 573                if (get_subtree_max_size(node->rb_left) == size) {
 574                        node = node->rb_left;
 575                } else {
 576                        if (va_size(va) == size) {
 577                                found = true;
 578                                break;
 579                        }
 580
 581                        node = node->rb_right;
 582                }
 583        }
 584
 585        if (!found) {
 586                va = rb_entry(n, struct vmap_area, rb_node);
 587                pr_emerg("tree is corrupted: %lu, %lu\n",
 588                        va_size(va), va->subtree_max_size);
 589        }
 590
 591        augment_tree_propagate_check(n->rb_left);
 592        augment_tree_propagate_check(n->rb_right);
 593}
 594#endif
 595
 596/*
 597 * This function populates subtree_max_size from bottom to upper
 598 * levels starting from VA point. The propagation must be done
 599 * when VA size is modified by changing its va_start/va_end. Or
 600 * in case of newly inserting of VA to the tree.
 601 *
 602 * It means that __augment_tree_propagate_from() must be called:
 603 * - After VA has been inserted to the tree(free path);
 604 * - After VA has been shrunk(allocation path);
 605 * - After VA has been increased(merging path).
 606 *
 607 * Please note that, it does not mean that upper parent nodes
 608 * and their subtree_max_size are recalculated all the time up
 609 * to the root node.
 610 *
 611 *       4--8
 612 *        /\
 613 *       /  \
 614 *      /    \
 615 *    2--2  8--8
 616 *
 617 * For example if we modify the node 4, shrinking it to 2, then
 618 * no any modification is required. If we shrink the node 2 to 1
 619 * its subtree_max_size is updated only, and set to 1. If we shrink
 620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 621 * node becomes 4--6.
 622 */
 623static __always_inline void
 624augment_tree_propagate_from(struct vmap_area *va)
 625{
 626        struct rb_node *node = &va->rb_node;
 627        unsigned long new_va_sub_max_size;
 628
 629        while (node) {
 630                va = rb_entry(node, struct vmap_area, rb_node);
 631                new_va_sub_max_size = compute_subtree_max_size(va);
 632
 633                /*
 634                 * If the newly calculated maximum available size of the
 635                 * subtree is equal to the current one, then it means that
 636                 * the tree is propagated correctly. So we have to stop at
 637                 * this point to save cycles.
 638                 */
 639                if (va->subtree_max_size == new_va_sub_max_size)
 640                        break;
 641
 642                va->subtree_max_size = new_va_sub_max_size;
 643                node = rb_parent(&va->rb_node);
 644        }
 645
 646#if DEBUG_AUGMENT_PROPAGATE_CHECK
 647        augment_tree_propagate_check(free_vmap_area_root.rb_node);
 648#endif
 649}
 650
 651static void
 652insert_vmap_area(struct vmap_area *va,
 653        struct rb_root *root, struct list_head *head)
 654{
 655        struct rb_node **link;
 656        struct rb_node *parent;
 657
 658        link = find_va_links(va, root, NULL, &parent);
 659        link_va(va, root, parent, link, head);
 660}
 661
 662static void
 663insert_vmap_area_augment(struct vmap_area *va,
 664        struct rb_node *from, struct rb_root *root,
 665        struct list_head *head)
 666{
 667        struct rb_node **link;
 668        struct rb_node *parent;
 669
 670        if (from)
 671                link = find_va_links(va, NULL, from, &parent);
 672        else
 673                link = find_va_links(va, root, NULL, &parent);
 674
 675        link_va(va, root, parent, link, head);
 676        augment_tree_propagate_from(va);
 677}
 678
 679/*
 680 * Merge de-allocated chunk of VA memory with previous
 681 * and next free blocks. If coalesce is not done a new
 682 * free area is inserted. If VA has been merged, it is
 683 * freed.
 684 */
 685static __always_inline void
 686merge_or_add_vmap_area(struct vmap_area *va,
 687        struct rb_root *root, struct list_head *head)
 688{
 689        struct vmap_area *sibling;
 690        struct list_head *next;
 691        struct rb_node **link;
 692        struct rb_node *parent;
 693        bool merged = false;
 694
 695        /*
 696         * Find a place in the tree where VA potentially will be
 697         * inserted, unless it is merged with its sibling/siblings.
 698         */
 699        link = find_va_links(va, root, NULL, &parent);
 700
 701        /*
 702         * Get next node of VA to check if merging can be done.
 703         */
 704        next = get_va_next_sibling(parent, link);
 705        if (unlikely(next == NULL))
 706                goto insert;
 707
 708        /*
 709         * start            end
 710         * |                |
 711         * |<------VA------>|<-----Next----->|
 712         *                  |                |
 713         *                  start            end
 714         */
 715        if (next != head) {
 716                sibling = list_entry(next, struct vmap_area, list);
 717                if (sibling->va_start == va->va_end) {
 718                        sibling->va_start = va->va_start;
 719
 720                        /* Check and update the tree if needed. */
 721                        augment_tree_propagate_from(sibling);
 722
 723                        /* Free vmap_area object. */
 724                        kmem_cache_free(vmap_area_cachep, va);
 725
 726                        /* Point to the new merged area. */
 727                        va = sibling;
 728                        merged = true;
 729                }
 730        }
 731
 732        /*
 733         * start            end
 734         * |                |
 735         * |<-----Prev----->|<------VA------>|
 736         *                  |                |
 737         *                  start            end
 738         */
 739        if (next->prev != head) {
 740                sibling = list_entry(next->prev, struct vmap_area, list);
 741                if (sibling->va_end == va->va_start) {
 742                        sibling->va_end = va->va_end;
 743
 744                        /* Check and update the tree if needed. */
 745                        augment_tree_propagate_from(sibling);
 746
 747                        if (merged)
 748                                unlink_va(va, root);
 749
 750                        /* Free vmap_area object. */
 751                        kmem_cache_free(vmap_area_cachep, va);
 752                        return;
 753                }
 754        }
 755
 756insert:
 757        if (!merged) {
 758                link_va(va, root, parent, link, head);
 759                augment_tree_propagate_from(va);
 760        }
 761}
 762
 763static __always_inline bool
 764is_within_this_va(struct vmap_area *va, unsigned long size,
 765        unsigned long align, unsigned long vstart)
 766{
 767        unsigned long nva_start_addr;
 768
 769        if (va->va_start > vstart)
 770                nva_start_addr = ALIGN(va->va_start, align);
 771        else
 772                nva_start_addr = ALIGN(vstart, align);
 773
 774        /* Can be overflowed due to big size or alignment. */
 775        if (nva_start_addr + size < nva_start_addr ||
 776                        nva_start_addr < vstart)
 777                return false;
 778
 779        return (nva_start_addr + size <= va->va_end);
 780}
 781
 782/*
 783 * Find the first free block(lowest start address) in the tree,
 784 * that will accomplish the request corresponding to passing
 785 * parameters.
 786 */
 787static __always_inline struct vmap_area *
 788find_vmap_lowest_match(unsigned long size,
 789        unsigned long align, unsigned long vstart)
 790{
 791        struct vmap_area *va;
 792        struct rb_node *node;
 793        unsigned long length;
 794
 795        /* Start from the root. */
 796        node = free_vmap_area_root.rb_node;
 797
 798        /* Adjust the search size for alignment overhead. */
 799        length = size + align - 1;
 800
 801        while (node) {
 802                va = rb_entry(node, struct vmap_area, rb_node);
 803
 804                if (get_subtree_max_size(node->rb_left) >= length &&
 805                                vstart < va->va_start) {
 806                        node = node->rb_left;
 807                } else {
 808                        if (is_within_this_va(va, size, align, vstart))
 809                                return va;
 810
 811                        /*
 812                         * Does not make sense to go deeper towards the right
 813                         * sub-tree if it does not have a free block that is
 814                         * equal or bigger to the requested search length.
 815                         */
 816                        if (get_subtree_max_size(node->rb_right) >= length) {
 817                                node = node->rb_right;
 818                                continue;
 819                        }
 820
 821                        /*
 822                         * OK. We roll back and find the first right sub-tree,
 823                         * that will satisfy the search criteria. It can happen
 824                         * only once due to "vstart" restriction.
 825                         */
 826                        while ((node = rb_parent(node))) {
 827                                va = rb_entry(node, struct vmap_area, rb_node);
 828                                if (is_within_this_va(va, size, align, vstart))
 829                                        return va;
 830
 831                                if (get_subtree_max_size(node->rb_right) >= length &&
 832                                                vstart <= va->va_start) {
 833                                        node = node->rb_right;
 834                                        break;
 835                                }
 836                        }
 837                }
 838        }
 839
 840        return NULL;
 841}
 842
 843#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 844#include <linux/random.h>
 845
 846static struct vmap_area *
 847find_vmap_lowest_linear_match(unsigned long size,
 848        unsigned long align, unsigned long vstart)
 849{
 850        struct vmap_area *va;
 851
 852        list_for_each_entry(va, &free_vmap_area_list, list) {
 853                if (!is_within_this_va(va, size, align, vstart))
 854                        continue;
 855
 856                return va;
 857        }
 858
 859        return NULL;
 860}
 861
 862static void
 863find_vmap_lowest_match_check(unsigned long size)
 864{
 865        struct vmap_area *va_1, *va_2;
 866        unsigned long vstart;
 867        unsigned int rnd;
 868
 869        get_random_bytes(&rnd, sizeof(rnd));
 870        vstart = VMALLOC_START + rnd;
 871
 872        va_1 = find_vmap_lowest_match(size, 1, vstart);
 873        va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 874
 875        if (va_1 != va_2)
 876                pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 877                        va_1, va_2, vstart);
 878}
 879#endif
 880
 881enum fit_type {
 882        NOTHING_FIT = 0,
 883        FL_FIT_TYPE = 1,        /* full fit */
 884        LE_FIT_TYPE = 2,        /* left edge fit */
 885        RE_FIT_TYPE = 3,        /* right edge fit */
 886        NE_FIT_TYPE = 4         /* no edge fit */
 887};
 888
 889static __always_inline enum fit_type
 890classify_va_fit_type(struct vmap_area *va,
 891        unsigned long nva_start_addr, unsigned long size)
 892{
 893        enum fit_type type;
 894
 895        /* Check if it is within VA. */
 896        if (nva_start_addr < va->va_start ||
 897                        nva_start_addr + size > va->va_end)
 898                return NOTHING_FIT;
 899
 900        /* Now classify. */
 901        if (va->va_start == nva_start_addr) {
 902                if (va->va_end == nva_start_addr + size)
 903                        type = FL_FIT_TYPE;
 904                else
 905                        type = LE_FIT_TYPE;
 906        } else if (va->va_end == nva_start_addr + size) {
 907                type = RE_FIT_TYPE;
 908        } else {
 909                type = NE_FIT_TYPE;
 910        }
 911
 912        return type;
 913}
 914
 915static __always_inline int
 916adjust_va_to_fit_type(struct vmap_area *va,
 917        unsigned long nva_start_addr, unsigned long size,
 918        enum fit_type type)
 919{
 920        struct vmap_area *lva = NULL;
 921
 922        if (type == FL_FIT_TYPE) {
 923                /*
 924                 * No need to split VA, it fully fits.
 925                 *
 926                 * |               |
 927                 * V      NVA      V
 928                 * |---------------|
 929                 */
 930                unlink_va(va, &free_vmap_area_root);
 931                kmem_cache_free(vmap_area_cachep, va);
 932        } else if (type == LE_FIT_TYPE) {
 933                /*
 934                 * Split left edge of fit VA.
 935                 *
 936                 * |       |
 937                 * V  NVA  V   R
 938                 * |-------|-------|
 939                 */
 940                va->va_start += size;
 941        } else if (type == RE_FIT_TYPE) {
 942                /*
 943                 * Split right edge of fit VA.
 944                 *
 945                 *         |       |
 946                 *     L   V  NVA  V
 947                 * |-------|-------|
 948                 */
 949                va->va_end = nva_start_addr;
 950        } else if (type == NE_FIT_TYPE) {
 951                /*
 952                 * Split no edge of fit VA.
 953                 *
 954                 *     |       |
 955                 *   L V  NVA  V R
 956                 * |---|-------|---|
 957                 */
 958                lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
 959                if (unlikely(!lva)) {
 960                        /*
 961                         * For percpu allocator we do not do any pre-allocation
 962                         * and leave it as it is. The reason is it most likely
 963                         * never ends up with NE_FIT_TYPE splitting. In case of
 964                         * percpu allocations offsets and sizes are aligned to
 965                         * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
 966                         * are its main fitting cases.
 967                         *
 968                         * There are a few exceptions though, as an example it is
 969                         * a first allocation (early boot up) when we have "one"
 970                         * big free space that has to be split.
 971                         */
 972                        lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
 973                        if (!lva)
 974                                return -1;
 975                }
 976
 977                /*
 978                 * Build the remainder.
 979                 */
 980                lva->va_start = va->va_start;
 981                lva->va_end = nva_start_addr;
 982
 983                /*
 984                 * Shrink this VA to remaining size.
 985                 */
 986                va->va_start = nva_start_addr + size;
 987        } else {
 988                return -1;
 989        }
 990
 991        if (type != FL_FIT_TYPE) {
 992                augment_tree_propagate_from(va);
 993
 994                if (lva)        /* type == NE_FIT_TYPE */
 995                        insert_vmap_area_augment(lva, &va->rb_node,
 996                                &free_vmap_area_root, &free_vmap_area_list);
 997        }
 998
 999        return 0;
1000}
1001
1002/*
1003 * Returns a start address of the newly allocated area, if success.
1004 * Otherwise a vend is returned that indicates failure.
1005 */
1006static __always_inline unsigned long
1007__alloc_vmap_area(unsigned long size, unsigned long align,
1008        unsigned long vstart, unsigned long vend)
1009{
1010        unsigned long nva_start_addr;
1011        struct vmap_area *va;
1012        enum fit_type type;
1013        int ret;
1014
1015        va = find_vmap_lowest_match(size, align, vstart);
1016        if (unlikely(!va))
1017                return vend;
1018
1019        if (va->va_start > vstart)
1020                nva_start_addr = ALIGN(va->va_start, align);
1021        else
1022                nva_start_addr = ALIGN(vstart, align);
1023
1024        /* Check the "vend" restriction. */
1025        if (nva_start_addr + size > vend)
1026                return vend;
1027
1028        /* Classify what we have found. */
1029        type = classify_va_fit_type(va, nva_start_addr, size);
1030        if (WARN_ON_ONCE(type == NOTHING_FIT))
1031                return vend;
1032
1033        /* Update the free vmap_area. */
1034        ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1035        if (ret)
1036                return vend;
1037
1038#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1039        find_vmap_lowest_match_check(size);
1040#endif
1041
1042        return nva_start_addr;
1043}
1044
1045/*
1046 * Allocate a region of KVA of the specified size and alignment, within the
1047 * vstart and vend.
1048 */
1049static struct vmap_area *alloc_vmap_area(unsigned long size,
1050                                unsigned long align,
1051                                unsigned long vstart, unsigned long vend,
1052                                int node, gfp_t gfp_mask)
1053{
1054        struct vmap_area *va, *pva;
1055        unsigned long addr;
1056        int purged = 0;
1057
1058        BUG_ON(!size);
1059        BUG_ON(offset_in_page(size));
1060        BUG_ON(!is_power_of_2(align));
1061
1062        if (unlikely(!vmap_initialized))
1063                return ERR_PTR(-EBUSY);
1064
1065        might_sleep();
1066
1067        va = kmem_cache_alloc_node(vmap_area_cachep,
1068                        gfp_mask & GFP_RECLAIM_MASK, node);
1069        if (unlikely(!va))
1070                return ERR_PTR(-ENOMEM);
1071
1072        /*
1073         * Only scan the relevant parts containing pointers to other objects
1074         * to avoid false negatives.
1075         */
1076        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1077
1078retry:
1079        /*
1080         * Preload this CPU with one extra vmap_area object to ensure
1081         * that we have it available when fit type of free area is
1082         * NE_FIT_TYPE.
1083         *
1084         * The preload is done in non-atomic context, thus it allows us
1085         * to use more permissive allocation masks to be more stable under
1086         * low memory condition and high memory pressure.
1087         *
1088         * Even if it fails we do not really care about that. Just proceed
1089         * as it is. "overflow" path will refill the cache we allocate from.
1090         */
1091        preempt_disable();
1092        if (!__this_cpu_read(ne_fit_preload_node)) {
1093                preempt_enable();
1094                pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1095                preempt_disable();
1096
1097                if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1098                        if (pva)
1099                                kmem_cache_free(vmap_area_cachep, pva);
1100                }
1101        }
1102
1103        spin_lock(&vmap_area_lock);
1104        preempt_enable();
1105
1106        /*
1107         * If an allocation fails, the "vend" address is
1108         * returned. Therefore trigger the overflow path.
1109         */
1110        addr = __alloc_vmap_area(size, align, vstart, vend);
1111        if (unlikely(addr == vend))
1112                goto overflow;
1113
1114        va->va_start = addr;
1115        va->va_end = addr + size;
1116        va->vm = NULL;
1117        insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1118
1119        spin_unlock(&vmap_area_lock);
1120
1121        BUG_ON(!IS_ALIGNED(va->va_start, align));
1122        BUG_ON(va->va_start < vstart);
1123        BUG_ON(va->va_end > vend);
1124
1125        return va;
1126
1127overflow:
1128        spin_unlock(&vmap_area_lock);
1129        if (!purged) {
1130                purge_vmap_area_lazy();
1131                purged = 1;
1132                goto retry;
1133        }
1134
1135        if (gfpflags_allow_blocking(gfp_mask)) {
1136                unsigned long freed = 0;
1137                blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1138                if (freed > 0) {
1139                        purged = 0;
1140                        goto retry;
1141                }
1142        }
1143
1144        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1145                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1146                        size);
1147
1148        kmem_cache_free(vmap_area_cachep, va);
1149        return ERR_PTR(-EBUSY);
1150}
1151
1152int register_vmap_purge_notifier(struct notifier_block *nb)
1153{
1154        return blocking_notifier_chain_register(&vmap_notify_list, nb);
1155}
1156EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1157
1158int unregister_vmap_purge_notifier(struct notifier_block *nb)
1159{
1160        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1161}
1162EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1163
1164static void __free_vmap_area(struct vmap_area *va)
1165{
1166        /*
1167         * Remove from the busy tree/list.
1168         */
1169        unlink_va(va, &vmap_area_root);
1170
1171        /*
1172         * Merge VA with its neighbors, otherwise just add it.
1173         */
1174        merge_or_add_vmap_area(va,
1175                &free_vmap_area_root, &free_vmap_area_list);
1176}
1177
1178/*
1179 * Free a region of KVA allocated by alloc_vmap_area
1180 */
1181static void free_vmap_area(struct vmap_area *va)
1182{
1183        spin_lock(&vmap_area_lock);
1184        __free_vmap_area(va);
1185        spin_unlock(&vmap_area_lock);
1186}
1187
1188/*
1189 * Clear the pagetable entries of a given vmap_area
1190 */
1191static void unmap_vmap_area(struct vmap_area *va)
1192{
1193        vunmap_page_range(va->va_start, va->va_end);
1194}
1195
1196/*
1197 * lazy_max_pages is the maximum amount of virtual address space we gather up
1198 * before attempting to purge with a TLB flush.
1199 *
1200 * There is a tradeoff here: a larger number will cover more kernel page tables
1201 * and take slightly longer to purge, but it will linearly reduce the number of
1202 * global TLB flushes that must be performed. It would seem natural to scale
1203 * this number up linearly with the number of CPUs (because vmapping activity
1204 * could also scale linearly with the number of CPUs), however it is likely
1205 * that in practice, workloads might be constrained in other ways that mean
1206 * vmap activity will not scale linearly with CPUs. Also, I want to be
1207 * conservative and not introduce a big latency on huge systems, so go with
1208 * a less aggressive log scale. It will still be an improvement over the old
1209 * code, and it will be simple to change the scale factor if we find that it
1210 * becomes a problem on bigger systems.
1211 */
1212static unsigned long lazy_max_pages(void)
1213{
1214        unsigned int log;
1215
1216        log = fls(num_online_cpus());
1217
1218        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1219}
1220
1221static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1222
1223/*
1224 * Serialize vmap purging.  There is no actual criticial section protected
1225 * by this look, but we want to avoid concurrent calls for performance
1226 * reasons and to make the pcpu_get_vm_areas more deterministic.
1227 */
1228static DEFINE_MUTEX(vmap_purge_lock);
1229
1230/* for per-CPU blocks */
1231static void purge_fragmented_blocks_allcpus(void);
1232
1233/*
1234 * called before a call to iounmap() if the caller wants vm_area_struct's
1235 * immediately freed.
1236 */
1237void set_iounmap_nonlazy(void)
1238{
1239        atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1240}
1241
1242/*
1243 * Purges all lazily-freed vmap areas.
1244 */
1245static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1246{
1247        unsigned long resched_threshold;
1248        struct llist_node *valist;
1249        struct vmap_area *va;
1250        struct vmap_area *n_va;
1251
1252        lockdep_assert_held(&vmap_purge_lock);
1253
1254        valist = llist_del_all(&vmap_purge_list);
1255        if (unlikely(valist == NULL))
1256                return false;
1257
1258        /*
1259         * First make sure the mappings are removed from all page-tables
1260         * before they are freed.
1261         */
1262        vmalloc_sync_all();
1263
1264        /*
1265         * TODO: to calculate a flush range without looping.
1266         * The list can be up to lazy_max_pages() elements.
1267         */
1268        llist_for_each_entry(va, valist, purge_list) {
1269                if (va->va_start < start)
1270                        start = va->va_start;
1271                if (va->va_end > end)
1272                        end = va->va_end;
1273        }
1274
1275        flush_tlb_kernel_range(start, end);
1276        resched_threshold = lazy_max_pages() << 1;
1277
1278        spin_lock(&vmap_area_lock);
1279        llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1280                unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1281
1282                /*
1283                 * Finally insert or merge lazily-freed area. It is
1284                 * detached and there is no need to "unlink" it from
1285                 * anything.
1286                 */
1287                merge_or_add_vmap_area(va,
1288                        &free_vmap_area_root, &free_vmap_area_list);
1289
1290                atomic_long_sub(nr, &vmap_lazy_nr);
1291
1292                if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1293                        cond_resched_lock(&vmap_area_lock);
1294        }
1295        spin_unlock(&vmap_area_lock);
1296        return true;
1297}
1298
1299/*
1300 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1301 * is already purging.
1302 */
1303static void try_purge_vmap_area_lazy(void)
1304{
1305        if (mutex_trylock(&vmap_purge_lock)) {
1306                __purge_vmap_area_lazy(ULONG_MAX, 0);
1307                mutex_unlock(&vmap_purge_lock);
1308        }
1309}
1310
1311/*
1312 * Kick off a purge of the outstanding lazy areas.
1313 */
1314static void purge_vmap_area_lazy(void)
1315{
1316        mutex_lock(&vmap_purge_lock);
1317        purge_fragmented_blocks_allcpus();
1318        __purge_vmap_area_lazy(ULONG_MAX, 0);
1319        mutex_unlock(&vmap_purge_lock);
1320}
1321
1322/*
1323 * Free a vmap area, caller ensuring that the area has been unmapped
1324 * and flush_cache_vunmap had been called for the correct range
1325 * previously.
1326 */
1327static void free_vmap_area_noflush(struct vmap_area *va)
1328{
1329        unsigned long nr_lazy;
1330
1331        spin_lock(&vmap_area_lock);
1332        unlink_va(va, &vmap_area_root);
1333        spin_unlock(&vmap_area_lock);
1334
1335        nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1336                                PAGE_SHIFT, &vmap_lazy_nr);
1337
1338        /* After this point, we may free va at any time */
1339        llist_add(&va->purge_list, &vmap_purge_list);
1340
1341        if (unlikely(nr_lazy > lazy_max_pages()))
1342                try_purge_vmap_area_lazy();
1343}
1344
1345/*
1346 * Free and unmap a vmap area
1347 */
1348static void free_unmap_vmap_area(struct vmap_area *va)
1349{
1350        flush_cache_vunmap(va->va_start, va->va_end);
1351        unmap_vmap_area(va);
1352        if (debug_pagealloc_enabled())
1353                flush_tlb_kernel_range(va->va_start, va->va_end);
1354
1355        free_vmap_area_noflush(va);
1356}
1357
1358static struct vmap_area *find_vmap_area(unsigned long addr)
1359{
1360        struct vmap_area *va;
1361
1362        spin_lock(&vmap_area_lock);
1363        va = __find_vmap_area(addr);
1364        spin_unlock(&vmap_area_lock);
1365
1366        return va;
1367}
1368
1369/*** Per cpu kva allocator ***/
1370
1371/*
1372 * vmap space is limited especially on 32 bit architectures. Ensure there is
1373 * room for at least 16 percpu vmap blocks per CPU.
1374 */
1375/*
1376 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1377 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
1378 * instead (we just need a rough idea)
1379 */
1380#if BITS_PER_LONG == 32
1381#define VMALLOC_SPACE           (128UL*1024*1024)
1382#else
1383#define VMALLOC_SPACE           (128UL*1024*1024*1024)
1384#endif
1385
1386#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
1387#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
1388#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
1389#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
1390#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
1391#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
1392#define VMAP_BBMAP_BITS         \
1393                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
1394                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
1395                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1396
1397#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
1398
1399struct vmap_block_queue {
1400        spinlock_t lock;
1401        struct list_head free;
1402};
1403
1404struct vmap_block {
1405        spinlock_t lock;
1406        struct vmap_area *va;
1407        unsigned long free, dirty;
1408        unsigned long dirty_min, dirty_max; /*< dirty range */
1409        struct list_head free_list;
1410        struct rcu_head rcu_head;
1411        struct list_head purge;
1412};
1413
1414/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1415static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1416
1417/*
1418 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1419 * in the free path. Could get rid of this if we change the API to return a
1420 * "cookie" from alloc, to be passed to free. But no big deal yet.
1421 */
1422static DEFINE_SPINLOCK(vmap_block_tree_lock);
1423static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1424
1425/*
1426 * We should probably have a fallback mechanism to allocate virtual memory
1427 * out of partially filled vmap blocks. However vmap block sizing should be
1428 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1429 * big problem.
1430 */
1431
1432static unsigned long addr_to_vb_idx(unsigned long addr)
1433{
1434        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1435        addr /= VMAP_BLOCK_SIZE;
1436        return addr;
1437}
1438
1439static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1440{
1441        unsigned long addr;
1442
1443        addr = va_start + (pages_off << PAGE_SHIFT);
1444        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1445        return (void *)addr;
1446}
1447
1448/**
1449 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1450 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1451 * @order:    how many 2^order pages should be occupied in newly allocated block
1452 * @gfp_mask: flags for the page level allocator
1453 *
1454 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1455 */
1456static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1457{
1458        struct vmap_block_queue *vbq;
1459        struct vmap_block *vb;
1460        struct vmap_area *va;
1461        unsigned long vb_idx;
1462        int node, err;
1463        void *vaddr;
1464
1465        node = numa_node_id();
1466
1467        vb = kmalloc_node(sizeof(struct vmap_block),
1468                        gfp_mask & GFP_RECLAIM_MASK, node);
1469        if (unlikely(!vb))
1470                return ERR_PTR(-ENOMEM);
1471
1472        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1473                                        VMALLOC_START, VMALLOC_END,
1474                                        node, gfp_mask);
1475        if (IS_ERR(va)) {
1476                kfree(vb);
1477                return ERR_CAST(va);
1478        }
1479
1480        err = radix_tree_preload(gfp_mask);
1481        if (unlikely(err)) {
1482                kfree(vb);
1483                free_vmap_area(va);
1484                return ERR_PTR(err);
1485        }
1486
1487        vaddr = vmap_block_vaddr(va->va_start, 0);
1488        spin_lock_init(&vb->lock);
1489        vb->va = va;
1490        /* At least something should be left free */
1491        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1492        vb->free = VMAP_BBMAP_BITS - (1UL << order);
1493        vb->dirty = 0;
1494        vb->dirty_min = VMAP_BBMAP_BITS;
1495        vb->dirty_max = 0;
1496        INIT_LIST_HEAD(&vb->free_list);
1497
1498        vb_idx = addr_to_vb_idx(va->va_start);
1499        spin_lock(&vmap_block_tree_lock);
1500        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1501        spin_unlock(&vmap_block_tree_lock);
1502        BUG_ON(err);
1503        radix_tree_preload_end();
1504
1505        vbq = &get_cpu_var(vmap_block_queue);
1506        spin_lock(&vbq->lock);
1507        list_add_tail_rcu(&vb->free_list, &vbq->free);
1508        spin_unlock(&vbq->lock);
1509        put_cpu_var(vmap_block_queue);
1510
1511        return vaddr;
1512}
1513
1514static void free_vmap_block(struct vmap_block *vb)
1515{
1516        struct vmap_block *tmp;
1517        unsigned long vb_idx;
1518
1519        vb_idx = addr_to_vb_idx(vb->va->va_start);
1520        spin_lock(&vmap_block_tree_lock);
1521        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1522        spin_unlock(&vmap_block_tree_lock);
1523        BUG_ON(tmp != vb);
1524
1525        free_vmap_area_noflush(vb->va);
1526        kfree_rcu(vb, rcu_head);
1527}
1528
1529static void purge_fragmented_blocks(int cpu)
1530{
1531        LIST_HEAD(purge);
1532        struct vmap_block *vb;
1533        struct vmap_block *n_vb;
1534        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1535
1536        rcu_read_lock();
1537        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1538
1539                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1540                        continue;
1541
1542                spin_lock(&vb->lock);
1543                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1544                        vb->free = 0; /* prevent further allocs after releasing lock */
1545                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1546                        vb->dirty_min = 0;
1547                        vb->dirty_max = VMAP_BBMAP_BITS;
1548                        spin_lock(&vbq->lock);
1549                        list_del_rcu(&vb->free_list);
1550                        spin_unlock(&vbq->lock);
1551                        spin_unlock(&vb->lock);
1552                        list_add_tail(&vb->purge, &purge);
1553                } else
1554                        spin_unlock(&vb->lock);
1555        }
1556        rcu_read_unlock();
1557
1558        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1559                list_del(&vb->purge);
1560                free_vmap_block(vb);
1561        }
1562}
1563
1564static void purge_fragmented_blocks_allcpus(void)
1565{
1566        int cpu;
1567
1568        for_each_possible_cpu(cpu)
1569                purge_fragmented_blocks(cpu);
1570}
1571
1572static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1573{
1574        struct vmap_block_queue *vbq;
1575        struct vmap_block *vb;
1576        void *vaddr = NULL;
1577        unsigned int order;
1578
1579        BUG_ON(offset_in_page(size));
1580        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1581        if (WARN_ON(size == 0)) {
1582                /*
1583                 * Allocating 0 bytes isn't what caller wants since
1584                 * get_order(0) returns funny result. Just warn and terminate
1585                 * early.
1586                 */
1587                return NULL;
1588        }
1589        order = get_order(size);
1590
1591        rcu_read_lock();
1592        vbq = &get_cpu_var(vmap_block_queue);
1593        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1594                unsigned long pages_off;
1595
1596                spin_lock(&vb->lock);
1597                if (vb->free < (1UL << order)) {
1598                        spin_unlock(&vb->lock);
1599                        continue;
1600                }
1601
1602                pages_off = VMAP_BBMAP_BITS - vb->free;
1603                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1604                vb->free -= 1UL << order;
1605                if (vb->free == 0) {
1606                        spin_lock(&vbq->lock);
1607                        list_del_rcu(&vb->free_list);
1608                        spin_unlock(&vbq->lock);
1609                }
1610
1611                spin_unlock(&vb->lock);
1612                break;
1613        }
1614
1615        put_cpu_var(vmap_block_queue);
1616        rcu_read_unlock();
1617
1618        /* Allocate new block if nothing was found */
1619        if (!vaddr)
1620                vaddr = new_vmap_block(order, gfp_mask);
1621
1622        return vaddr;
1623}
1624
1625static void vb_free(const void *addr, unsigned long size)
1626{
1627        unsigned long offset;
1628        unsigned long vb_idx;
1629        unsigned int order;
1630        struct vmap_block *vb;
1631
1632        BUG_ON(offset_in_page(size));
1633        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1634
1635        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1636
1637        order = get_order(size);
1638
1639        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1640        offset >>= PAGE_SHIFT;
1641
1642        vb_idx = addr_to_vb_idx((unsigned long)addr);
1643        rcu_read_lock();
1644        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1645        rcu_read_unlock();
1646        BUG_ON(!vb);
1647
1648        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1649
1650        if (debug_pagealloc_enabled())
1651                flush_tlb_kernel_range((unsigned long)addr,
1652                                        (unsigned long)addr + size);
1653
1654        spin_lock(&vb->lock);
1655
1656        /* Expand dirty range */
1657        vb->dirty_min = min(vb->dirty_min, offset);
1658        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1659
1660        vb->dirty += 1UL << order;
1661        if (vb->dirty == VMAP_BBMAP_BITS) {
1662                BUG_ON(vb->free);
1663                spin_unlock(&vb->lock);
1664                free_vmap_block(vb);
1665        } else
1666                spin_unlock(&vb->lock);
1667}
1668
1669static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1670{
1671        int cpu;
1672
1673        if (unlikely(!vmap_initialized))
1674                return;
1675
1676        might_sleep();
1677
1678        for_each_possible_cpu(cpu) {
1679                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1680                struct vmap_block *vb;
1681
1682                rcu_read_lock();
1683                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1684                        spin_lock(&vb->lock);
1685                        if (vb->dirty) {
1686                                unsigned long va_start = vb->va->va_start;
1687                                unsigned long s, e;
1688
1689                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1690                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1691
1692                                start = min(s, start);
1693                                end   = max(e, end);
1694
1695                                flush = 1;
1696                        }
1697                        spin_unlock(&vb->lock);
1698                }
1699                rcu_read_unlock();
1700        }
1701
1702        mutex_lock(&vmap_purge_lock);
1703        purge_fragmented_blocks_allcpus();
1704        if (!__purge_vmap_area_lazy(start, end) && flush)
1705                flush_tlb_kernel_range(start, end);
1706        mutex_unlock(&vmap_purge_lock);
1707}
1708
1709/**
1710 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1711 *
1712 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1713 * to amortize TLB flushing overheads. What this means is that any page you
1714 * have now, may, in a former life, have been mapped into kernel virtual
1715 * address by the vmap layer and so there might be some CPUs with TLB entries
1716 * still referencing that page (additional to the regular 1:1 kernel mapping).
1717 *
1718 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1719 * be sure that none of the pages we have control over will have any aliases
1720 * from the vmap layer.
1721 */
1722void vm_unmap_aliases(void)
1723{
1724        unsigned long start = ULONG_MAX, end = 0;
1725        int flush = 0;
1726
1727        _vm_unmap_aliases(start, end, flush);
1728}
1729EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1730
1731/**
1732 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1733 * @mem: the pointer returned by vm_map_ram
1734 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1735 */
1736void vm_unmap_ram(const void *mem, unsigned int count)
1737{
1738        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1739        unsigned long addr = (unsigned long)mem;
1740        struct vmap_area *va;
1741
1742        might_sleep();
1743        BUG_ON(!addr);
1744        BUG_ON(addr < VMALLOC_START);
1745        BUG_ON(addr > VMALLOC_END);
1746        BUG_ON(!PAGE_ALIGNED(addr));
1747
1748        if (likely(count <= VMAP_MAX_ALLOC)) {
1749                debug_check_no_locks_freed(mem, size);
1750                vb_free(mem, size);
1751                return;
1752        }
1753
1754        va = find_vmap_area(addr);
1755        BUG_ON(!va);
1756        debug_check_no_locks_freed((void *)va->va_start,
1757                                    (va->va_end - va->va_start));
1758        free_unmap_vmap_area(va);
1759}
1760EXPORT_SYMBOL(vm_unmap_ram);
1761
1762/**
1763 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1764 * @pages: an array of pointers to the pages to be mapped
1765 * @count: number of pages
1766 * @node: prefer to allocate data structures on this node
1767 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1768 *
1769 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1770 * faster than vmap so it's good.  But if you mix long-life and short-life
1771 * objects with vm_map_ram(), it could consume lots of address space through
1772 * fragmentation (especially on a 32bit machine).  You could see failures in
1773 * the end.  Please use this function for short-lived objects.
1774 *
1775 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1776 */
1777void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1778{
1779        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1780        unsigned long addr;
1781        void *mem;
1782
1783        if (likely(count <= VMAP_MAX_ALLOC)) {
1784                mem = vb_alloc(size, GFP_KERNEL);
1785                if (IS_ERR(mem))
1786                        return NULL;
1787                addr = (unsigned long)mem;
1788        } else {
1789                struct vmap_area *va;
1790                va = alloc_vmap_area(size, PAGE_SIZE,
1791                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1792                if (IS_ERR(va))
1793                        return NULL;
1794
1795                addr = va->va_start;
1796                mem = (void *)addr;
1797        }
1798        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1799                vm_unmap_ram(mem, count);
1800                return NULL;
1801        }
1802        return mem;
1803}
1804EXPORT_SYMBOL(vm_map_ram);
1805
1806static struct vm_struct *vmlist __initdata;
1807
1808/**
1809 * vm_area_add_early - add vmap area early during boot
1810 * @vm: vm_struct to add
1811 *
1812 * This function is used to add fixed kernel vm area to vmlist before
1813 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1814 * should contain proper values and the other fields should be zero.
1815 *
1816 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1817 */
1818void __init vm_area_add_early(struct vm_struct *vm)
1819{
1820        struct vm_struct *tmp, **p;
1821
1822        BUG_ON(vmap_initialized);
1823        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1824                if (tmp->addr >= vm->addr) {
1825                        BUG_ON(tmp->addr < vm->addr + vm->size);
1826                        break;
1827                } else
1828                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1829        }
1830        vm->next = *p;
1831        *p = vm;
1832}
1833
1834/**
1835 * vm_area_register_early - register vmap area early during boot
1836 * @vm: vm_struct to register
1837 * @align: requested alignment
1838 *
1839 * This function is used to register kernel vm area before
1840 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1841 * proper values on entry and other fields should be zero.  On return,
1842 * vm->addr contains the allocated address.
1843 *
1844 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1845 */
1846void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1847{
1848        static size_t vm_init_off __initdata;
1849        unsigned long addr;
1850
1851        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1852        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1853
1854        vm->addr = (void *)addr;
1855
1856        vm_area_add_early(vm);
1857}
1858
1859static void vmap_init_free_space(void)
1860{
1861        unsigned long vmap_start = 1;
1862        const unsigned long vmap_end = ULONG_MAX;
1863        struct vmap_area *busy, *free;
1864
1865        /*
1866         *     B     F     B     B     B     F
1867         * -|-----|.....|-----|-----|-----|.....|-
1868         *  |           The KVA space           |
1869         *  |<--------------------------------->|
1870         */
1871        list_for_each_entry(busy, &vmap_area_list, list) {
1872                if (busy->va_start - vmap_start > 0) {
1873                        free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1874                        if (!WARN_ON_ONCE(!free)) {
1875                                free->va_start = vmap_start;
1876                                free->va_end = busy->va_start;
1877
1878                                insert_vmap_area_augment(free, NULL,
1879                                        &free_vmap_area_root,
1880                                                &free_vmap_area_list);
1881                        }
1882                }
1883
1884                vmap_start = busy->va_end;
1885        }
1886
1887        if (vmap_end - vmap_start > 0) {
1888                free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1889                if (!WARN_ON_ONCE(!free)) {
1890                        free->va_start = vmap_start;
1891                        free->va_end = vmap_end;
1892
1893                        insert_vmap_area_augment(free, NULL,
1894                                &free_vmap_area_root,
1895                                        &free_vmap_area_list);
1896                }
1897        }
1898}
1899
1900void __init vmalloc_init(void)
1901{
1902        struct vmap_area *va;
1903        struct vm_struct *tmp;
1904        int i;
1905
1906        /*
1907         * Create the cache for vmap_area objects.
1908         */
1909        vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1910
1911        for_each_possible_cpu(i) {
1912                struct vmap_block_queue *vbq;
1913                struct vfree_deferred *p;
1914
1915                vbq = &per_cpu(vmap_block_queue, i);
1916                spin_lock_init(&vbq->lock);
1917                INIT_LIST_HEAD(&vbq->free);
1918                p = &per_cpu(vfree_deferred, i);
1919                init_llist_head(&p->list);
1920                INIT_WORK(&p->wq, free_work);
1921        }
1922
1923        /* Import existing vmlist entries. */
1924        for (tmp = vmlist; tmp; tmp = tmp->next) {
1925                va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1926                if (WARN_ON_ONCE(!va))
1927                        continue;
1928
1929                va->va_start = (unsigned long)tmp->addr;
1930                va->va_end = va->va_start + tmp->size;
1931                va->vm = tmp;
1932                insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1933        }
1934
1935        /*
1936         * Now we can initialize a free vmap space.
1937         */
1938        vmap_init_free_space();
1939        vmap_initialized = true;
1940}
1941
1942/**
1943 * map_kernel_range_noflush - map kernel VM area with the specified pages
1944 * @addr: start of the VM area to map
1945 * @size: size of the VM area to map
1946 * @prot: page protection flags to use
1947 * @pages: pages to map
1948 *
1949 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1950 * specify should have been allocated using get_vm_area() and its
1951 * friends.
1952 *
1953 * NOTE:
1954 * This function does NOT do any cache flushing.  The caller is
1955 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1956 * before calling this function.
1957 *
1958 * RETURNS:
1959 * The number of pages mapped on success, -errno on failure.
1960 */
1961int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1962                             pgprot_t prot, struct page **pages)
1963{
1964        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1965}
1966
1967/**
1968 * unmap_kernel_range_noflush - unmap kernel VM area
1969 * @addr: start of the VM area to unmap
1970 * @size: size of the VM area to unmap
1971 *
1972 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1973 * specify should have been allocated using get_vm_area() and its
1974 * friends.
1975 *
1976 * NOTE:
1977 * This function does NOT do any cache flushing.  The caller is
1978 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1979 * before calling this function and flush_tlb_kernel_range() after.
1980 */
1981void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1982{
1983        vunmap_page_range(addr, addr + size);
1984}
1985EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1986
1987/**
1988 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1989 * @addr: start of the VM area to unmap
1990 * @size: size of the VM area to unmap
1991 *
1992 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1993 * the unmapping and tlb after.
1994 */
1995void unmap_kernel_range(unsigned long addr, unsigned long size)
1996{
1997        unsigned long end = addr + size;
1998
1999        flush_cache_vunmap(addr, end);
2000        vunmap_page_range(addr, end);
2001        flush_tlb_kernel_range(addr, end);
2002}
2003EXPORT_SYMBOL_GPL(unmap_kernel_range);
2004
2005int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2006{
2007        unsigned long addr = (unsigned long)area->addr;
2008        unsigned long end = addr + get_vm_area_size(area);
2009        int err;
2010
2011        err = vmap_page_range(addr, end, prot, pages);
2012
2013        return err > 0 ? 0 : err;
2014}
2015EXPORT_SYMBOL_GPL(map_vm_area);
2016
2017static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2018                              unsigned long flags, const void *caller)
2019{
2020        spin_lock(&vmap_area_lock);
2021        vm->flags = flags;
2022        vm->addr = (void *)va->va_start;
2023        vm->size = va->va_end - va->va_start;
2024        vm->caller = caller;
2025        va->vm = vm;
2026        spin_unlock(&vmap_area_lock);
2027}
2028
2029static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2030{
2031        /*
2032         * Before removing VM_UNINITIALIZED,
2033         * we should make sure that vm has proper values.
2034         * Pair with smp_rmb() in show_numa_info().
2035         */
2036        smp_wmb();
2037        vm->flags &= ~VM_UNINITIALIZED;
2038}
2039
2040static struct vm_struct *__get_vm_area_node(unsigned long size,
2041                unsigned long align, unsigned long flags, unsigned long start,
2042                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2043{
2044        struct vmap_area *va;
2045        struct vm_struct *area;
2046
2047        BUG_ON(in_interrupt());
2048        size = PAGE_ALIGN(size);
2049        if (unlikely(!size))
2050                return NULL;
2051
2052        if (flags & VM_IOREMAP)
2053                align = 1ul << clamp_t(int, get_count_order_long(size),
2054                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2055
2056        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2057        if (unlikely(!area))
2058                return NULL;
2059
2060        if (!(flags & VM_NO_GUARD))
2061                size += PAGE_SIZE;
2062
2063        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2064        if (IS_ERR(va)) {
2065                kfree(area);
2066                return NULL;
2067        }
2068
2069        setup_vmalloc_vm(area, va, flags, caller);
2070
2071        return area;
2072}
2073
2074struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2075                                unsigned long start, unsigned long end)
2076{
2077        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2078                                  GFP_KERNEL, __builtin_return_address(0));
2079}
2080EXPORT_SYMBOL_GPL(__get_vm_area);
2081
2082struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2083                                       unsigned long start, unsigned long end,
2084                                       const void *caller)
2085{
2086        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2087                                  GFP_KERNEL, caller);
2088}
2089
2090/**
2091 * get_vm_area - reserve a contiguous kernel virtual area
2092 * @size:        size of the area
2093 * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
2094 *
2095 * Search an area of @size in the kernel virtual mapping area,
2096 * and reserved it for out purposes.  Returns the area descriptor
2097 * on success or %NULL on failure.
2098 *
2099 * Return: the area descriptor on success or %NULL on failure.
2100 */
2101struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2102{
2103        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2104                                  NUMA_NO_NODE, GFP_KERNEL,
2105                                  __builtin_return_address(0));
2106}
2107
2108struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2109                                const void *caller)
2110{
2111        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2112                                  NUMA_NO_NODE, GFP_KERNEL, caller);
2113}
2114
2115/**
2116 * find_vm_area - find a continuous kernel virtual area
2117 * @addr:         base address
2118 *
2119 * Search for the kernel VM area starting at @addr, and return it.
2120 * It is up to the caller to do all required locking to keep the returned
2121 * pointer valid.
2122 *
2123 * Return: pointer to the found area or %NULL on faulure
2124 */
2125struct vm_struct *find_vm_area(const void *addr)
2126{
2127        struct vmap_area *va;
2128
2129        va = find_vmap_area((unsigned long)addr);
2130        if (!va)
2131                return NULL;
2132
2133        return va->vm;
2134}
2135
2136/**
2137 * remove_vm_area - find and remove a continuous kernel virtual area
2138 * @addr:           base address
2139 *
2140 * Search for the kernel VM area starting at @addr, and remove it.
2141 * This function returns the found VM area, but using it is NOT safe
2142 * on SMP machines, except for its size or flags.
2143 *
2144 * Return: pointer to the found area or %NULL on faulure
2145 */
2146struct vm_struct *remove_vm_area(const void *addr)
2147{
2148        struct vmap_area *va;
2149
2150        might_sleep();
2151
2152        spin_lock(&vmap_area_lock);
2153        va = __find_vmap_area((unsigned long)addr);
2154        if (va && va->vm) {
2155                struct vm_struct *vm = va->vm;
2156
2157                va->vm = NULL;
2158                spin_unlock(&vmap_area_lock);
2159
2160                kasan_free_shadow(vm);
2161                free_unmap_vmap_area(va);
2162
2163                return vm;
2164        }
2165
2166        spin_unlock(&vmap_area_lock);
2167        return NULL;
2168}
2169
2170static inline void set_area_direct_map(const struct vm_struct *area,
2171                                       int (*set_direct_map)(struct page *page))
2172{
2173        int i;
2174
2175        for (i = 0; i < area->nr_pages; i++)
2176                if (page_address(area->pages[i]))
2177                        set_direct_map(area->pages[i]);
2178}
2179
2180/* Handle removing and resetting vm mappings related to the vm_struct. */
2181static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2182{
2183        unsigned long start = ULONG_MAX, end = 0;
2184        int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2185        int flush_dmap = 0;
2186        int i;
2187
2188        remove_vm_area(area->addr);
2189
2190        /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2191        if (!flush_reset)
2192                return;
2193
2194        /*
2195         * If not deallocating pages, just do the flush of the VM area and
2196         * return.
2197         */
2198        if (!deallocate_pages) {
2199                vm_unmap_aliases();
2200                return;
2201        }
2202
2203        /*
2204         * If execution gets here, flush the vm mapping and reset the direct
2205         * map. Find the start and end range of the direct mappings to make sure
2206         * the vm_unmap_aliases() flush includes the direct map.
2207         */
2208        for (i = 0; i < area->nr_pages; i++) {
2209                unsigned long addr = (unsigned long)page_address(area->pages[i]);
2210                if (addr) {
2211                        start = min(addr, start);
2212                        end = max(addr + PAGE_SIZE, end);
2213                        flush_dmap = 1;
2214                }
2215        }
2216
2217        /*
2218         * Set direct map to something invalid so that it won't be cached if
2219         * there are any accesses after the TLB flush, then flush the TLB and
2220         * reset the direct map permissions to the default.
2221         */
2222        set_area_direct_map(area, set_direct_map_invalid_noflush);
2223        _vm_unmap_aliases(start, end, flush_dmap);
2224        set_area_direct_map(area, set_direct_map_default_noflush);
2225}
2226
2227static void __vunmap(const void *addr, int deallocate_pages)
2228{
2229        struct vm_struct *area;
2230
2231        if (!addr)
2232                return;
2233
2234        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2235                        addr))
2236                return;
2237
2238        area = find_vm_area(addr);
2239        if (unlikely(!area)) {
2240                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2241                                addr);
2242                return;
2243        }
2244
2245        debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2246        debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2247
2248        vm_remove_mappings(area, deallocate_pages);
2249
2250        if (deallocate_pages) {
2251                int i;
2252
2253                for (i = 0; i < area->nr_pages; i++) {
2254                        struct page *page = area->pages[i];
2255
2256                        BUG_ON(!page);
2257                        __free_pages(page, 0);
2258                }
2259                atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2260
2261                kvfree(area->pages);
2262        }
2263
2264        kfree(area);
2265        return;
2266}
2267
2268static inline void __vfree_deferred(const void *addr)
2269{
2270        /*
2271         * Use raw_cpu_ptr() because this can be called from preemptible
2272         * context. Preemption is absolutely fine here, because the llist_add()
2273         * implementation is lockless, so it works even if we are adding to
2274         * nother cpu's list.  schedule_work() should be fine with this too.
2275         */
2276        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2277
2278        if (llist_add((struct llist_node *)addr, &p->list))
2279                schedule_work(&p->wq);
2280}
2281
2282/**
2283 * vfree_atomic - release memory allocated by vmalloc()
2284 * @addr:         memory base address
2285 *
2286 * This one is just like vfree() but can be called in any atomic context
2287 * except NMIs.
2288 */
2289void vfree_atomic(const void *addr)
2290{
2291        BUG_ON(in_nmi());
2292
2293        kmemleak_free(addr);
2294
2295        if (!addr)
2296                return;
2297        __vfree_deferred(addr);
2298}
2299
2300static void __vfree(const void *addr)
2301{
2302        if (unlikely(in_interrupt()))
2303                __vfree_deferred(addr);
2304        else
2305                __vunmap(addr, 1);
2306}
2307
2308/**
2309 * vfree - release memory allocated by vmalloc()
2310 * @addr:  memory base address
2311 *
2312 * Free the virtually continuous memory area starting at @addr, as
2313 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2314 * NULL, no operation is performed.
2315 *
2316 * Must not be called in NMI context (strictly speaking, only if we don't
2317 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2318 * conventions for vfree() arch-depenedent would be a really bad idea)
2319 *
2320 * May sleep if called *not* from interrupt context.
2321 *
2322 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2323 */
2324void vfree(const void *addr)
2325{
2326        BUG_ON(in_nmi());
2327
2328        kmemleak_free(addr);
2329
2330        might_sleep_if(!in_interrupt());
2331
2332        if (!addr)
2333                return;
2334
2335        __vfree(addr);
2336}
2337EXPORT_SYMBOL(vfree);
2338
2339/**
2340 * vunmap - release virtual mapping obtained by vmap()
2341 * @addr:   memory base address
2342 *
2343 * Free the virtually contiguous memory area starting at @addr,
2344 * which was created from the page array passed to vmap().
2345 *
2346 * Must not be called in interrupt context.
2347 */
2348void vunmap(const void *addr)
2349{
2350        BUG_ON(in_interrupt());
2351        might_sleep();
2352        if (addr)
2353                __vunmap(addr, 0);
2354}
2355EXPORT_SYMBOL(vunmap);
2356
2357/**
2358 * vmap - map an array of pages into virtually contiguous space
2359 * @pages: array of page pointers
2360 * @count: number of pages to map
2361 * @flags: vm_area->flags
2362 * @prot: page protection for the mapping
2363 *
2364 * Maps @count pages from @pages into contiguous kernel virtual
2365 * space.
2366 *
2367 * Return: the address of the area or %NULL on failure
2368 */
2369void *vmap(struct page **pages, unsigned int count,
2370           unsigned long flags, pgprot_t prot)
2371{
2372        struct vm_struct *area;
2373        unsigned long size;             /* In bytes */
2374
2375        might_sleep();
2376
2377        if (count > totalram_pages())
2378                return NULL;
2379
2380        size = (unsigned long)count << PAGE_SHIFT;
2381        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2382        if (!area)
2383                return NULL;
2384
2385        if (map_vm_area(area, prot, pages)) {
2386                vunmap(area->addr);
2387                return NULL;
2388        }
2389
2390        return area->addr;
2391}
2392EXPORT_SYMBOL(vmap);
2393
2394static void *__vmalloc_node(unsigned long size, unsigned long align,
2395                            gfp_t gfp_mask, pgprot_t prot,
2396                            int node, const void *caller);
2397static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2398                                 pgprot_t prot, int node)
2399{
2400        struct page **pages;
2401        unsigned int nr_pages, array_size, i;
2402        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2403        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2404        const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2405                                        0 :
2406                                        __GFP_HIGHMEM;
2407
2408        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2409        array_size = (nr_pages * sizeof(struct page *));
2410
2411        /* Please note that the recursion is strictly bounded. */
2412        if (array_size > PAGE_SIZE) {
2413                pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2414                                PAGE_KERNEL, node, area->caller);
2415        } else {
2416                pages = kmalloc_node(array_size, nested_gfp, node);
2417        }
2418
2419        if (!pages) {
2420                remove_vm_area(area->addr);
2421                kfree(area);
2422                return NULL;
2423        }
2424
2425        area->pages = pages;
2426        area->nr_pages = nr_pages;
2427
2428        for (i = 0; i < area->nr_pages; i++) {
2429                struct page *page;
2430
2431                if (node == NUMA_NO_NODE)
2432                        page = alloc_page(alloc_mask|highmem_mask);
2433                else
2434                        page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2435
2436                if (unlikely(!page)) {
2437                        /* Successfully allocated i pages, free them in __vunmap() */
2438                        area->nr_pages = i;
2439                        atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2440                        goto fail;
2441                }
2442                area->pages[i] = page;
2443                if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2444                        cond_resched();
2445        }
2446        atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2447
2448        if (map_vm_area(area, prot, pages))
2449                goto fail;
2450        return area->addr;
2451
2452fail:
2453        warn_alloc(gfp_mask, NULL,
2454                          "vmalloc: allocation failure, allocated %ld of %ld bytes",
2455                          (area->nr_pages*PAGE_SIZE), area->size);
2456        __vfree(area->addr);
2457        return NULL;
2458}
2459
2460/**
2461 * __vmalloc_node_range - allocate virtually contiguous memory
2462 * @size:                 allocation size
2463 * @align:                desired alignment
2464 * @start:                vm area range start
2465 * @end:                  vm area range end
2466 * @gfp_mask:             flags for the page level allocator
2467 * @prot:                 protection mask for the allocated pages
2468 * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
2469 * @node:                 node to use for allocation or NUMA_NO_NODE
2470 * @caller:               caller's return address
2471 *
2472 * Allocate enough pages to cover @size from the page level
2473 * allocator with @gfp_mask flags.  Map them into contiguous
2474 * kernel virtual space, using a pagetable protection of @prot.
2475 *
2476 * Return: the address of the area or %NULL on failure
2477 */
2478void *__vmalloc_node_range(unsigned long size, unsigned long align,
2479                        unsigned long start, unsigned long end, gfp_t gfp_mask,
2480                        pgprot_t prot, unsigned long vm_flags, int node,
2481                        const void *caller)
2482{
2483        struct vm_struct *area;
2484        void *addr;
2485        unsigned long real_size = size;
2486
2487        size = PAGE_ALIGN(size);
2488        if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2489                goto fail;
2490
2491        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2492                                vm_flags, start, end, node, gfp_mask, caller);
2493        if (!area)
2494                goto fail;
2495
2496        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2497        if (!addr)
2498                return NULL;
2499
2500        /*
2501         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2502         * flag. It means that vm_struct is not fully initialized.
2503         * Now, it is fully initialized, so remove this flag here.
2504         */
2505        clear_vm_uninitialized_flag(area);
2506
2507        kmemleak_vmalloc(area, size, gfp_mask);
2508
2509        return addr;
2510
2511fail:
2512        warn_alloc(gfp_mask, NULL,
2513                          "vmalloc: allocation failure: %lu bytes", real_size);
2514        return NULL;
2515}
2516
2517/*
2518 * This is only for performance analysis of vmalloc and stress purpose.
2519 * It is required by vmalloc test module, therefore do not use it other
2520 * than that.
2521 */
2522#ifdef CONFIG_TEST_VMALLOC_MODULE
2523EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2524#endif
2525
2526/**
2527 * __vmalloc_node - allocate virtually contiguous memory
2528 * @size:           allocation size
2529 * @align:          desired alignment
2530 * @gfp_mask:       flags for the page level allocator
2531 * @prot:           protection mask for the allocated pages
2532 * @node:           node to use for allocation or NUMA_NO_NODE
2533 * @caller:         caller's return address
2534 *
2535 * Allocate enough pages to cover @size from the page level
2536 * allocator with @gfp_mask flags.  Map them into contiguous
2537 * kernel virtual space, using a pagetable protection of @prot.
2538 *
2539 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2540 * and __GFP_NOFAIL are not supported
2541 *
2542 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2543 * with mm people.
2544 *
2545 * Return: pointer to the allocated memory or %NULL on error
2546 */
2547static void *__vmalloc_node(unsigned long size, unsigned long align,
2548                            gfp_t gfp_mask, pgprot_t prot,
2549                            int node, const void *caller)
2550{
2551        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2552                                gfp_mask, prot, 0, node, caller);
2553}
2554
2555void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2556{
2557        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2558                                __builtin_return_address(0));
2559}
2560EXPORT_SYMBOL(__vmalloc);
2561
2562static inline void *__vmalloc_node_flags(unsigned long size,
2563                                        int node, gfp_t flags)
2564{
2565        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2566                                        node, __builtin_return_address(0));
2567}
2568
2569
2570void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2571                                  void *caller)
2572{
2573        return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2574}
2575
2576/**
2577 * vmalloc - allocate virtually contiguous memory
2578 * @size:    allocation size
2579 *
2580 * Allocate enough pages to cover @size from the page level
2581 * allocator and map them into contiguous kernel virtual space.
2582 *
2583 * For tight control over page level allocator and protection flags
2584 * use __vmalloc() instead.
2585 *
2586 * Return: pointer to the allocated memory or %NULL on error
2587 */
2588void *vmalloc(unsigned long size)
2589{
2590        return __vmalloc_node_flags(size, NUMA_NO_NODE,
2591                                    GFP_KERNEL);
2592}
2593EXPORT_SYMBOL(vmalloc);
2594
2595/**
2596 * vzalloc - allocate virtually contiguous memory with zero fill
2597 * @size:    allocation size
2598 *
2599 * Allocate enough pages to cover @size from the page level
2600 * allocator and map them into contiguous kernel virtual space.
2601 * The memory allocated is set to zero.
2602 *
2603 * For tight control over page level allocator and protection flags
2604 * use __vmalloc() instead.
2605 *
2606 * Return: pointer to the allocated memory or %NULL on error
2607 */
2608void *vzalloc(unsigned long size)
2609{
2610        return __vmalloc_node_flags(size, NUMA_NO_NODE,
2611                                GFP_KERNEL | __GFP_ZERO);
2612}
2613EXPORT_SYMBOL(vzalloc);
2614
2615/**
2616 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2617 * @size: allocation size
2618 *
2619 * The resulting memory area is zeroed so it can be mapped to userspace
2620 * without leaking data.
2621 *
2622 * Return: pointer to the allocated memory or %NULL on error
2623 */
2624void *vmalloc_user(unsigned long size)
2625{
2626        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2627                                    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2628                                    VM_USERMAP, NUMA_NO_NODE,
2629                                    __builtin_return_address(0));
2630}
2631EXPORT_SYMBOL(vmalloc_user);
2632
2633/**
2634 * vmalloc_node - allocate memory on a specific node
2635 * @size:         allocation size
2636 * @node:         numa node
2637 *
2638 * Allocate enough pages to cover @size from the page level
2639 * allocator and map them into contiguous kernel virtual space.
2640 *
2641 * For tight control over page level allocator and protection flags
2642 * use __vmalloc() instead.
2643 *
2644 * Return: pointer to the allocated memory or %NULL on error
2645 */
2646void *vmalloc_node(unsigned long size, int node)
2647{
2648        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2649                                        node, __builtin_return_address(0));
2650}
2651EXPORT_SYMBOL(vmalloc_node);
2652
2653/**
2654 * vzalloc_node - allocate memory on a specific node with zero fill
2655 * @size:       allocation size
2656 * @node:       numa node
2657 *
2658 * Allocate enough pages to cover @size from the page level
2659 * allocator and map them into contiguous kernel virtual space.
2660 * The memory allocated is set to zero.
2661 *
2662 * For tight control over page level allocator and protection flags
2663 * use __vmalloc_node() instead.
2664 *
2665 * Return: pointer to the allocated memory or %NULL on error
2666 */
2667void *vzalloc_node(unsigned long size, int node)
2668{
2669        return __vmalloc_node_flags(size, node,
2670                         GFP_KERNEL | __GFP_ZERO);
2671}
2672EXPORT_SYMBOL(vzalloc_node);
2673
2674/**
2675 * vmalloc_exec - allocate virtually contiguous, executable memory
2676 * @size:         allocation size
2677 *
2678 * Kernel-internal function to allocate enough pages to cover @size
2679 * the page level allocator and map them into contiguous and
2680 * executable kernel virtual space.
2681 *
2682 * For tight control over page level allocator and protection flags
2683 * use __vmalloc() instead.
2684 *
2685 * Return: pointer to the allocated memory or %NULL on error
2686 */
2687void *vmalloc_exec(unsigned long size)
2688{
2689        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2690                        GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2691                        NUMA_NO_NODE, __builtin_return_address(0));
2692}
2693
2694#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2695#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2696#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2697#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2698#else
2699/*
2700 * 64b systems should always have either DMA or DMA32 zones. For others
2701 * GFP_DMA32 should do the right thing and use the normal zone.
2702 */
2703#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2704#endif
2705
2706/**
2707 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2708 * @size:       allocation size
2709 *
2710 * Allocate enough 32bit PA addressable pages to cover @size from the
2711 * page level allocator and map them into contiguous kernel virtual space.
2712 *
2713 * Return: pointer to the allocated memory or %NULL on error
2714 */
2715void *vmalloc_32(unsigned long size)
2716{
2717        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2718                              NUMA_NO_NODE, __builtin_return_address(0));
2719}
2720EXPORT_SYMBOL(vmalloc_32);
2721
2722/**
2723 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2724 * @size:            allocation size
2725 *
2726 * The resulting memory area is 32bit addressable and zeroed so it can be
2727 * mapped to userspace without leaking data.
2728 *
2729 * Return: pointer to the allocated memory or %NULL on error
2730 */
2731void *vmalloc_32_user(unsigned long size)
2732{
2733        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2734                                    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2735                                    VM_USERMAP, NUMA_NO_NODE,
2736                                    __builtin_return_address(0));
2737}
2738EXPORT_SYMBOL(vmalloc_32_user);
2739
2740/*
2741 * small helper routine , copy contents to buf from addr.
2742 * If the page is not present, fill zero.
2743 */
2744
2745static int aligned_vread(char *buf, char *addr, unsigned long count)
2746{
2747        struct page *p;
2748        int copied = 0;
2749
2750        while (count) {
2751                unsigned long offset, length;
2752
2753                offset = offset_in_page(addr);
2754                length = PAGE_SIZE - offset;
2755                if (length > count)
2756                        length = count;
2757                p = vmalloc_to_page(addr);
2758                /*
2759                 * To do safe access to this _mapped_ area, we need
2760                 * lock. But adding lock here means that we need to add
2761                 * overhead of vmalloc()/vfree() calles for this _debug_
2762                 * interface, rarely used. Instead of that, we'll use
2763                 * kmap() and get small overhead in this access function.
2764                 */
2765                if (p) {
2766                        /*
2767                         * we can expect USER0 is not used (see vread/vwrite's
2768                         * function description)
2769                         */
2770                        void *map = kmap_atomic(p);
2771                        memcpy(buf, map + offset, length);
2772                        kunmap_atomic(map);
2773                } else
2774                        memset(buf, 0, length);
2775
2776                addr += length;
2777                buf += length;
2778                copied += length;
2779                count -= length;
2780        }
2781        return copied;
2782}
2783
2784static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2785{
2786        struct page *p;
2787        int copied = 0;
2788
2789        while (count) {
2790                unsigned long offset, length;
2791
2792                offset = offset_in_page(addr);
2793                length = PAGE_SIZE - offset;
2794                if (length > count)
2795                        length = count;
2796                p = vmalloc_to_page(addr);
2797                /*
2798                 * To do safe access to this _mapped_ area, we need
2799                 * lock. But adding lock here means that we need to add
2800                 * overhead of vmalloc()/vfree() calles for this _debug_
2801                 * interface, rarely used. Instead of that, we'll use
2802                 * kmap() and get small overhead in this access function.
2803                 */
2804                if (p) {
2805                        /*
2806                         * we can expect USER0 is not used (see vread/vwrite's
2807                         * function description)
2808                         */
2809                        void *map = kmap_atomic(p);
2810                        memcpy(map + offset, buf, length);
2811                        kunmap_atomic(map);
2812                }
2813                addr += length;
2814                buf += length;
2815                copied += length;
2816                count -= length;
2817        }
2818        return copied;
2819}
2820
2821/**
2822 * vread() - read vmalloc area in a safe way.
2823 * @buf:     buffer for reading data
2824 * @addr:    vm address.
2825 * @count:   number of bytes to be read.
2826 *
2827 * This function checks that addr is a valid vmalloc'ed area, and
2828 * copy data from that area to a given buffer. If the given memory range
2829 * of [addr...addr+count) includes some valid address, data is copied to
2830 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2831 * IOREMAP area is treated as memory hole and no copy is done.
2832 *
2833 * If [addr...addr+count) doesn't includes any intersects with alive
2834 * vm_struct area, returns 0. @buf should be kernel's buffer.
2835 *
2836 * Note: In usual ops, vread() is never necessary because the caller
2837 * should know vmalloc() area is valid and can use memcpy().
2838 * This is for routines which have to access vmalloc area without
2839 * any information, as /dev/kmem.
2840 *
2841 * Return: number of bytes for which addr and buf should be increased
2842 * (same number as @count) or %0 if [addr...addr+count) doesn't
2843 * include any intersection with valid vmalloc area
2844 */
2845long vread(char *buf, char *addr, unsigned long count)
2846{
2847        struct vmap_area *va;
2848        struct vm_struct *vm;
2849        char *vaddr, *buf_start = buf;
2850        unsigned long buflen = count;
2851        unsigned long n;
2852
2853        /* Don't allow overflow */
2854        if ((unsigned long) addr + count < count)
2855                count = -(unsigned long) addr;
2856
2857        spin_lock(&vmap_area_lock);
2858        list_for_each_entry(va, &vmap_area_list, list) {
2859                if (!count)
2860                        break;
2861
2862                if (!va->vm)
2863                        continue;
2864
2865                vm = va->vm;
2866                vaddr = (char *) vm->addr;
2867                if (addr >= vaddr + get_vm_area_size(vm))
2868                        continue;
2869                while (addr < vaddr) {
2870                        if (count == 0)
2871                                goto finished;
2872                        *buf = '\0';
2873                        buf++;
2874                        addr++;
2875                        count--;
2876                }
2877                n = vaddr + get_vm_area_size(vm) - addr;
2878                if (n > count)
2879                        n = count;
2880                if (!(vm->flags & VM_IOREMAP))
2881                        aligned_vread(buf, addr, n);
2882                else /* IOREMAP area is treated as memory hole */
2883                        memset(buf, 0, n);
2884                buf += n;
2885                addr += n;
2886                count -= n;
2887        }
2888finished:
2889        spin_unlock(&vmap_area_lock);
2890
2891        if (buf == buf_start)
2892                return 0;
2893        /* zero-fill memory holes */
2894        if (buf != buf_start + buflen)
2895                memset(buf, 0, buflen - (buf - buf_start));
2896
2897        return buflen;
2898}
2899
2900/**
2901 * vwrite() - write vmalloc area in a safe way.
2902 * @buf:      buffer for source data
2903 * @addr:     vm address.
2904 * @count:    number of bytes to be read.
2905 *
2906 * This function checks that addr is a valid vmalloc'ed area, and
2907 * copy data from a buffer to the given addr. If specified range of
2908 * [addr...addr+count) includes some valid address, data is copied from
2909 * proper area of @buf. If there are memory holes, no copy to hole.
2910 * IOREMAP area is treated as memory hole and no copy is done.
2911 *
2912 * If [addr...addr+count) doesn't includes any intersects with alive
2913 * vm_struct area, returns 0. @buf should be kernel's buffer.
2914 *
2915 * Note: In usual ops, vwrite() is never necessary because the caller
2916 * should know vmalloc() area is valid and can use memcpy().
2917 * This is for routines which have to access vmalloc area without
2918 * any information, as /dev/kmem.
2919 *
2920 * Return: number of bytes for which addr and buf should be
2921 * increased (same number as @count) or %0 if [addr...addr+count)
2922 * doesn't include any intersection with valid vmalloc area
2923 */
2924long vwrite(char *buf, char *addr, unsigned long count)
2925{
2926        struct vmap_area *va;
2927        struct vm_struct *vm;
2928        char *vaddr;
2929        unsigned long n, buflen;
2930        int copied = 0;
2931
2932        /* Don't allow overflow */
2933        if ((unsigned long) addr + count < count)
2934                count = -(unsigned long) addr;
2935        buflen = count;
2936
2937        spin_lock(&vmap_area_lock);
2938        list_for_each_entry(va, &vmap_area_list, list) {
2939                if (!count)
2940                        break;
2941
2942                if (!va->vm)
2943                        continue;
2944
2945                vm = va->vm;
2946                vaddr = (char *) vm->addr;
2947                if (addr >= vaddr + get_vm_area_size(vm))
2948                        continue;
2949                while (addr < vaddr) {
2950                        if (count == 0)
2951                                goto finished;
2952                        buf++;
2953                        addr++;
2954                        count--;
2955                }
2956                n = vaddr + get_vm_area_size(vm) - addr;
2957                if (n > count)
2958                        n = count;
2959                if (!(vm->flags & VM_IOREMAP)) {
2960                        aligned_vwrite(buf, addr, n);
2961                        copied++;
2962                }
2963                buf += n;
2964                addr += n;
2965                count -= n;
2966        }
2967finished:
2968        spin_unlock(&vmap_area_lock);
2969        if (!copied)
2970                return 0;
2971        return buflen;
2972}
2973
2974/**
2975 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2976 * @vma:                vma to cover
2977 * @uaddr:              target user address to start at
2978 * @kaddr:              virtual address of vmalloc kernel memory
2979 * @size:               size of map area
2980 *
2981 * Returns:     0 for success, -Exxx on failure
2982 *
2983 * This function checks that @kaddr is a valid vmalloc'ed area,
2984 * and that it is big enough to cover the range starting at
2985 * @uaddr in @vma. Will return failure if that criteria isn't
2986 * met.
2987 *
2988 * Similar to remap_pfn_range() (see mm/memory.c)
2989 */
2990int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2991                                void *kaddr, unsigned long size)
2992{
2993        struct vm_struct *area;
2994
2995        size = PAGE_ALIGN(size);
2996
2997        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2998                return -EINVAL;
2999
3000        area = find_vm_area(kaddr);
3001        if (!area)
3002                return -EINVAL;
3003
3004        if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3005                return -EINVAL;
3006
3007        if (kaddr + size > area->addr + get_vm_area_size(area))
3008                return -EINVAL;
3009
3010        do {
3011                struct page *page = vmalloc_to_page(kaddr);
3012                int ret;
3013
3014                ret = vm_insert_page(vma, uaddr, page);
3015                if (ret)
3016                        return ret;
3017
3018                uaddr += PAGE_SIZE;
3019                kaddr += PAGE_SIZE;
3020                size -= PAGE_SIZE;
3021        } while (size > 0);
3022
3023        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3024
3025        return 0;
3026}
3027EXPORT_SYMBOL(remap_vmalloc_range_partial);
3028
3029/**
3030 * remap_vmalloc_range - map vmalloc pages to userspace
3031 * @vma:                vma to cover (map full range of vma)
3032 * @addr:               vmalloc memory
3033 * @pgoff:              number of pages into addr before first page to map
3034 *
3035 * Returns:     0 for success, -Exxx on failure
3036 *
3037 * This function checks that addr is a valid vmalloc'ed area, and
3038 * that it is big enough to cover the vma. Will return failure if
3039 * that criteria isn't met.
3040 *
3041 * Similar to remap_pfn_range() (see mm/memory.c)
3042 */
3043int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3044                                                unsigned long pgoff)
3045{
3046        return remap_vmalloc_range_partial(vma, vma->vm_start,
3047                                           addr + (pgoff << PAGE_SHIFT),
3048                                           vma->vm_end - vma->vm_start);
3049}
3050EXPORT_SYMBOL(remap_vmalloc_range);
3051
3052/*
3053 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3054 * have one.
3055 *
3056 * The purpose of this function is to make sure the vmalloc area
3057 * mappings are identical in all page-tables in the system.
3058 */
3059void __weak vmalloc_sync_all(void)
3060{
3061}
3062
3063
3064static int f(pte_t *pte, unsigned long addr, void *data)
3065{
3066        pte_t ***p = data;
3067
3068        if (p) {
3069                *(*p) = pte;
3070                (*p)++;
3071        }
3072        return 0;
3073}
3074
3075/**
3076 * alloc_vm_area - allocate a range of kernel address space
3077 * @size:          size of the area
3078 * @ptes:          returns the PTEs for the address space
3079 *
3080 * Returns:     NULL on failure, vm_struct on success
3081 *
3082 * This function reserves a range of kernel address space, and
3083 * allocates pagetables to map that range.  No actual mappings
3084 * are created.
3085 *
3086 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3087 * allocated for the VM area are returned.
3088 */
3089struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3090{
3091        struct vm_struct *area;
3092
3093        area = get_vm_area_caller(size, VM_IOREMAP,
3094                                __builtin_return_address(0));
3095        if (area == NULL)
3096                return NULL;
3097
3098        /*
3099         * This ensures that page tables are constructed for this region
3100         * of kernel virtual address space and mapped into init_mm.
3101         */
3102        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3103                                size, f, ptes ? &ptes : NULL)) {
3104                free_vm_area(area);
3105                return NULL;
3106        }
3107
3108        return area;
3109}
3110EXPORT_SYMBOL_GPL(alloc_vm_area);
3111
3112void free_vm_area(struct vm_struct *area)
3113{
3114        struct vm_struct *ret;
3115        ret = remove_vm_area(area->addr);
3116        BUG_ON(ret != area);
3117        kfree(area);
3118}
3119EXPORT_SYMBOL_GPL(free_vm_area);
3120
3121#ifdef CONFIG_SMP
3122static struct vmap_area *node_to_va(struct rb_node *n)
3123{
3124        return rb_entry_safe(n, struct vmap_area, rb_node);
3125}
3126
3127/**
3128 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3129 * @addr: target address
3130 *
3131 * Returns: vmap_area if it is found. If there is no such area
3132 *   the first highest(reverse order) vmap_area is returned
3133 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3134 *   if there are no any areas before @addr.
3135 */
3136static struct vmap_area *
3137pvm_find_va_enclose_addr(unsigned long addr)
3138{
3139        struct vmap_area *va, *tmp;
3140        struct rb_node *n;
3141
3142        n = free_vmap_area_root.rb_node;
3143        va = NULL;
3144
3145        while (n) {
3146                tmp = rb_entry(n, struct vmap_area, rb_node);
3147                if (tmp->va_start <= addr) {
3148                        va = tmp;
3149                        if (tmp->va_end >= addr)
3150                                break;
3151
3152                        n = n->rb_right;
3153                } else {
3154                        n = n->rb_left;
3155                }
3156        }
3157
3158        return va;
3159}
3160
3161/**
3162 * pvm_determine_end_from_reverse - find the highest aligned address
3163 * of free block below VMALLOC_END
3164 * @va:
3165 *   in - the VA we start the search(reverse order);
3166 *   out - the VA with the highest aligned end address.
3167 *
3168 * Returns: determined end address within vmap_area
3169 */
3170static unsigned long
3171pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3172{
3173        unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3174        unsigned long addr;
3175
3176        if (likely(*va)) {
3177                list_for_each_entry_from_reverse((*va),
3178                                &free_vmap_area_list, list) {
3179                        addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3180                        if ((*va)->va_start < addr)
3181                                return addr;
3182                }
3183        }
3184
3185        return 0;
3186}
3187
3188/**
3189 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3190 * @offsets: array containing offset of each area
3191 * @sizes: array containing size of each area
3192 * @nr_vms: the number of areas to allocate
3193 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3194 *
3195 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3196 *          vm_structs on success, %NULL on failure
3197 *
3198 * Percpu allocator wants to use congruent vm areas so that it can
3199 * maintain the offsets among percpu areas.  This function allocates
3200 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3201 * be scattered pretty far, distance between two areas easily going up
3202 * to gigabytes.  To avoid interacting with regular vmallocs, these
3203 * areas are allocated from top.
3204 *
3205 * Despite its complicated look, this allocator is rather simple. It
3206 * does everything top-down and scans free blocks from the end looking
3207 * for matching base. While scanning, if any of the areas do not fit the
3208 * base address is pulled down to fit the area. Scanning is repeated till
3209 * all the areas fit and then all necessary data structures are inserted
3210 * and the result is returned.
3211 */
3212struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3213                                     const size_t *sizes, int nr_vms,
3214                                     size_t align)
3215{
3216        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3217        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3218        struct vmap_area **vas, *va;
3219        struct vm_struct **vms;
3220        int area, area2, last_area, term_area;
3221        unsigned long base, start, size, end, last_end;
3222        bool purged = false;
3223        enum fit_type type;
3224
3225        /* verify parameters and allocate data structures */
3226        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3227        for (last_area = 0, area = 0; area < nr_vms; area++) {
3228                start = offsets[area];
3229                end = start + sizes[area];
3230
3231                /* is everything aligned properly? */
3232                BUG_ON(!IS_ALIGNED(offsets[area], align));
3233                BUG_ON(!IS_ALIGNED(sizes[area], align));
3234
3235                /* detect the area with the highest address */
3236                if (start > offsets[last_area])
3237                        last_area = area;
3238
3239                for (area2 = area + 1; area2 < nr_vms; area2++) {
3240                        unsigned long start2 = offsets[area2];
3241                        unsigned long end2 = start2 + sizes[area2];
3242
3243                        BUG_ON(start2 < end && start < end2);
3244                }
3245        }
3246        last_end = offsets[last_area] + sizes[last_area];
3247
3248        if (vmalloc_end - vmalloc_start < last_end) {
3249                WARN_ON(true);
3250                return NULL;
3251        }
3252
3253        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3254        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3255        if (!vas || !vms)
3256                goto err_free2;
3257
3258        for (area = 0; area < nr_vms; area++) {
3259                vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3260                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3261                if (!vas[area] || !vms[area])
3262                        goto err_free;
3263        }
3264retry:
3265        spin_lock(&vmap_area_lock);
3266
3267        /* start scanning - we scan from the top, begin with the last area */
3268        area = term_area = last_area;
3269        start = offsets[area];
3270        end = start + sizes[area];
3271
3272        va = pvm_find_va_enclose_addr(vmalloc_end);
3273        base = pvm_determine_end_from_reverse(&va, align) - end;
3274
3275        while (true) {
3276                /*
3277                 * base might have underflowed, add last_end before
3278                 * comparing.
3279                 */
3280                if (base + last_end < vmalloc_start + last_end)
3281                        goto overflow;
3282
3283                /*
3284                 * Fitting base has not been found.
3285                 */
3286                if (va == NULL)
3287                        goto overflow;
3288
3289                /*
3290                 * If required width exeeds current VA block, move
3291                 * base downwards and then recheck.
3292                 */
3293                if (base + end > va->va_end) {
3294                        base = pvm_determine_end_from_reverse(&va, align) - end;
3295                        term_area = area;
3296                        continue;
3297                }
3298
3299                /*
3300                 * If this VA does not fit, move base downwards and recheck.
3301                 */
3302                if (base + start < va->va_start) {
3303                        va = node_to_va(rb_prev(&va->rb_node));
3304                        base = pvm_determine_end_from_reverse(&va, align) - end;
3305                        term_area = area;
3306                        continue;
3307                }
3308
3309                /*
3310                 * This area fits, move on to the previous one.  If
3311                 * the previous one is the terminal one, we're done.
3312                 */
3313                area = (area + nr_vms - 1) % nr_vms;
3314                if (area == term_area)
3315                        break;
3316
3317                start = offsets[area];
3318                end = start + sizes[area];
3319                va = pvm_find_va_enclose_addr(base + end);
3320        }
3321
3322        /* we've found a fitting base, insert all va's */
3323        for (area = 0; area < nr_vms; area++) {
3324                int ret;
3325
3326                start = base + offsets[area];
3327                size = sizes[area];
3328
3329                va = pvm_find_va_enclose_addr(start);
3330                if (WARN_ON_ONCE(va == NULL))
3331                        /* It is a BUG(), but trigger recovery instead. */
3332                        goto recovery;
3333
3334                type = classify_va_fit_type(va, start, size);
3335                if (WARN_ON_ONCE(type == NOTHING_FIT))
3336                        /* It is a BUG(), but trigger recovery instead. */
3337                        goto recovery;
3338
3339                ret = adjust_va_to_fit_type(va, start, size, type);
3340                if (unlikely(ret))
3341                        goto recovery;
3342
3343                /* Allocated area. */
3344                va = vas[area];
3345                va->va_start = start;
3346                va->va_end = start + size;
3347
3348                insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3349        }
3350
3351        spin_unlock(&vmap_area_lock);
3352
3353        /* insert all vm's */
3354        for (area = 0; area < nr_vms; area++)
3355                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3356                                 pcpu_get_vm_areas);
3357
3358        kfree(vas);
3359        return vms;
3360
3361recovery:
3362        /* Remove previously inserted areas. */
3363        while (area--) {
3364                __free_vmap_area(vas[area]);
3365                vas[area] = NULL;
3366        }
3367
3368overflow:
3369        spin_unlock(&vmap_area_lock);
3370        if (!purged) {
3371                purge_vmap_area_lazy();
3372                purged = true;
3373
3374                /* Before "retry", check if we recover. */
3375                for (area = 0; area < nr_vms; area++) {
3376                        if (vas[area])
3377                                continue;
3378
3379                        vas[area] = kmem_cache_zalloc(
3380                                vmap_area_cachep, GFP_KERNEL);
3381                        if (!vas[area])
3382                                goto err_free;
3383                }
3384
3385                goto retry;
3386        }
3387
3388err_free:
3389        for (area = 0; area < nr_vms; area++) {
3390                if (vas[area])
3391                        kmem_cache_free(vmap_area_cachep, vas[area]);
3392
3393                kfree(vms[area]);
3394        }
3395err_free2:
3396        kfree(vas);
3397        kfree(vms);
3398        return NULL;
3399}
3400
3401/**
3402 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3403 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3404 * @nr_vms: the number of allocated areas
3405 *
3406 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3407 */
3408void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3409{
3410        int i;
3411
3412        for (i = 0; i < nr_vms; i++)
3413                free_vm_area(vms[i]);
3414        kfree(vms);
3415}
3416#endif  /* CONFIG_SMP */
3417
3418#ifdef CONFIG_PROC_FS
3419static void *s_start(struct seq_file *m, loff_t *pos)
3420        __acquires(&vmap_area_lock)
3421{
3422        spin_lock(&vmap_area_lock);
3423        return seq_list_start(&vmap_area_list, *pos);
3424}
3425
3426static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3427{
3428        return seq_list_next(p, &vmap_area_list, pos);
3429}
3430
3431static void s_stop(struct seq_file *m, void *p)
3432        __releases(&vmap_area_lock)
3433{
3434        spin_unlock(&vmap_area_lock);
3435}
3436
3437static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3438{
3439        if (IS_ENABLED(CONFIG_NUMA)) {
3440                unsigned int nr, *counters = m->private;
3441
3442                if (!counters)
3443                        return;
3444
3445                if (v->flags & VM_UNINITIALIZED)
3446                        return;
3447                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3448                smp_rmb();
3449
3450                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3451
3452                for (nr = 0; nr < v->nr_pages; nr++)
3453                        counters[page_to_nid(v->pages[nr])]++;
3454
3455                for_each_node_state(nr, N_HIGH_MEMORY)
3456                        if (counters[nr])
3457                                seq_printf(m, " N%u=%u", nr, counters[nr]);
3458        }
3459}
3460
3461static void show_purge_info(struct seq_file *m)
3462{
3463        struct llist_node *head;
3464        struct vmap_area *va;
3465
3466        head = READ_ONCE(vmap_purge_list.first);
3467        if (head == NULL)
3468                return;
3469
3470        llist_for_each_entry(va, head, purge_list) {
3471                seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3472                        (void *)va->va_start, (void *)va->va_end,
3473                        va->va_end - va->va_start);
3474        }
3475}
3476
3477static int s_show(struct seq_file *m, void *p)
3478{
3479        struct vmap_area *va;
3480        struct vm_struct *v;
3481
3482        va = list_entry(p, struct vmap_area, list);
3483
3484        /*
3485         * s_show can encounter race with remove_vm_area, !vm on behalf
3486         * of vmap area is being tear down or vm_map_ram allocation.
3487         */
3488        if (!va->vm) {
3489                seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3490                        (void *)va->va_start, (void *)va->va_end,
3491                        va->va_end - va->va_start);
3492
3493                return 0;
3494        }
3495
3496        v = va->vm;
3497
3498        seq_printf(m, "0x%pK-0x%pK %7ld",
3499                v->addr, v->addr + v->size, v->size);
3500
3501        if (v->caller)
3502                seq_printf(m, " %pS", v->caller);
3503
3504        if (v->nr_pages)
3505                seq_printf(m, " pages=%d", v->nr_pages);
3506
3507        if (v->phys_addr)
3508                seq_printf(m, " phys=%pa", &v->phys_addr);
3509
3510        if (v->flags & VM_IOREMAP)
3511                seq_puts(m, " ioremap");
3512
3513        if (v->flags & VM_ALLOC)
3514                seq_puts(m, " vmalloc");
3515
3516        if (v->flags & VM_MAP)
3517                seq_puts(m, " vmap");
3518
3519        if (v->flags & VM_USERMAP)
3520                seq_puts(m, " user");
3521
3522        if (v->flags & VM_DMA_COHERENT)
3523                seq_puts(m, " dma-coherent");
3524
3525        if (is_vmalloc_addr(v->pages))
3526                seq_puts(m, " vpages");
3527
3528        show_numa_info(m, v);
3529        seq_putc(m, '\n');
3530
3531        /*
3532         * As a final step, dump "unpurged" areas. Note,
3533         * that entire "/proc/vmallocinfo" output will not
3534         * be address sorted, because the purge list is not
3535         * sorted.
3536         */
3537        if (list_is_last(&va->list, &vmap_area_list))
3538                show_purge_info(m);
3539
3540        return 0;
3541}
3542
3543static const struct seq_operations vmalloc_op = {
3544        .start = s_start,
3545        .next = s_next,
3546        .stop = s_stop,
3547        .show = s_show,
3548};
3549
3550static int __init proc_vmalloc_init(void)
3551{
3552        if (IS_ENABLED(CONFIG_NUMA))
3553                proc_create_seq_private("vmallocinfo", 0400, NULL,
3554                                &vmalloc_op,
3555                                nr_node_ids * sizeof(unsigned int), NULL);
3556        else
3557                proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3558        return 0;
3559}
3560module_init(proc_vmalloc_init);
3561
3562#endif
3563