linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
  47
  48#define PR_SET_NAME             15               /* Set process name */
  49#define MAX_CPUS                4096
  50#define COMM_LEN                20
  51#define SYM_LEN                 129
  52#define MAX_PID                 1024000
  53
  54struct sched_atom;
  55
  56struct task_desc {
  57        unsigned long           nr;
  58        unsigned long           pid;
  59        char                    comm[COMM_LEN];
  60
  61        unsigned long           nr_events;
  62        unsigned long           curr_event;
  63        struct sched_atom       **atoms;
  64
  65        pthread_t               thread;
  66        sem_t                   sleep_sem;
  67
  68        sem_t                   ready_for_work;
  69        sem_t                   work_done_sem;
  70
  71        u64                     cpu_usage;
  72};
  73
  74enum sched_event_type {
  75        SCHED_EVENT_RUN,
  76        SCHED_EVENT_SLEEP,
  77        SCHED_EVENT_WAKEUP,
  78        SCHED_EVENT_MIGRATION,
  79};
  80
  81struct sched_atom {
  82        enum sched_event_type   type;
  83        int                     specific_wait;
  84        u64                     timestamp;
  85        u64                     duration;
  86        unsigned long           nr;
  87        sem_t                   *wait_sem;
  88        struct task_desc        *wakee;
  89};
  90
  91#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  92
  93/* task state bitmask, copied from include/linux/sched.h */
  94#define TASK_RUNNING            0
  95#define TASK_INTERRUPTIBLE      1
  96#define TASK_UNINTERRUPTIBLE    2
  97#define __TASK_STOPPED          4
  98#define __TASK_TRACED           8
  99/* in tsk->exit_state */
 100#define EXIT_DEAD               16
 101#define EXIT_ZOMBIE             32
 102#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
 103/* in tsk->state again */
 104#define TASK_DEAD               64
 105#define TASK_WAKEKILL           128
 106#define TASK_WAKING             256
 107#define TASK_PARKED             512
 108
 109enum thread_state {
 110        THREAD_SLEEPING = 0,
 111        THREAD_WAIT_CPU,
 112        THREAD_SCHED_IN,
 113        THREAD_IGNORE
 114};
 115
 116struct work_atom {
 117        struct list_head        list;
 118        enum thread_state       state;
 119        u64                     sched_out_time;
 120        u64                     wake_up_time;
 121        u64                     sched_in_time;
 122        u64                     runtime;
 123};
 124
 125struct work_atoms {
 126        struct list_head        work_list;
 127        struct thread           *thread;
 128        struct rb_node          node;
 129        u64                     max_lat;
 130        u64                     max_lat_at;
 131        u64                     total_lat;
 132        u64                     nb_atoms;
 133        u64                     total_runtime;
 134        int                     num_merged;
 135};
 136
 137typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 138
 139struct perf_sched;
 140
 141struct trace_sched_handler {
 142        int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 143                            struct perf_sample *sample, struct machine *machine);
 144
 145        int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 146                             struct perf_sample *sample, struct machine *machine);
 147
 148        int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 149                            struct perf_sample *sample, struct machine *machine);
 150
 151        /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 152        int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 153                          struct machine *machine);
 154
 155        int (*migrate_task_event)(struct perf_sched *sched,
 156                                  struct evsel *evsel,
 157                                  struct perf_sample *sample,
 158                                  struct machine *machine);
 159};
 160
 161#define COLOR_PIDS PERF_COLOR_BLUE
 162#define COLOR_CPUS PERF_COLOR_BG_RED
 163
 164struct perf_sched_map {
 165        DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 166        int                     *comp_cpus;
 167        bool                     comp;
 168        struct perf_thread_map *color_pids;
 169        const char              *color_pids_str;
 170        struct perf_cpu_map     *color_cpus;
 171        const char              *color_cpus_str;
 172        struct perf_cpu_map     *cpus;
 173        const char              *cpus_str;
 174};
 175
 176struct perf_sched {
 177        struct perf_tool tool;
 178        const char       *sort_order;
 179        unsigned long    nr_tasks;
 180        struct task_desc **pid_to_task;
 181        struct task_desc **tasks;
 182        const struct trace_sched_handler *tp_handler;
 183        pthread_mutex_t  start_work_mutex;
 184        pthread_mutex_t  work_done_wait_mutex;
 185        int              profile_cpu;
 186/*
 187 * Track the current task - that way we can know whether there's any
 188 * weird events, such as a task being switched away that is not current.
 189 */
 190        int              max_cpu;
 191        u32              curr_pid[MAX_CPUS];
 192        struct thread    *curr_thread[MAX_CPUS];
 193        char             next_shortname1;
 194        char             next_shortname2;
 195        unsigned int     replay_repeat;
 196        unsigned long    nr_run_events;
 197        unsigned long    nr_sleep_events;
 198        unsigned long    nr_wakeup_events;
 199        unsigned long    nr_sleep_corrections;
 200        unsigned long    nr_run_events_optimized;
 201        unsigned long    targetless_wakeups;
 202        unsigned long    multitarget_wakeups;
 203        unsigned long    nr_runs;
 204        unsigned long    nr_timestamps;
 205        unsigned long    nr_unordered_timestamps;
 206        unsigned long    nr_context_switch_bugs;
 207        unsigned long    nr_events;
 208        unsigned long    nr_lost_chunks;
 209        unsigned long    nr_lost_events;
 210        u64              run_measurement_overhead;
 211        u64              sleep_measurement_overhead;
 212        u64              start_time;
 213        u64              cpu_usage;
 214        u64              runavg_cpu_usage;
 215        u64              parent_cpu_usage;
 216        u64              runavg_parent_cpu_usage;
 217        u64              sum_runtime;
 218        u64              sum_fluct;
 219        u64              run_avg;
 220        u64              all_runtime;
 221        u64              all_count;
 222        u64              cpu_last_switched[MAX_CPUS];
 223        struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 224        struct list_head sort_list, cmp_pid;
 225        bool force;
 226        bool skip_merge;
 227        struct perf_sched_map map;
 228
 229        /* options for timehist command */
 230        bool            summary;
 231        bool            summary_only;
 232        bool            idle_hist;
 233        bool            show_callchain;
 234        unsigned int    max_stack;
 235        bool            show_cpu_visual;
 236        bool            show_wakeups;
 237        bool            show_next;
 238        bool            show_migrations;
 239        bool            show_state;
 240        u64             skipped_samples;
 241        const char      *time_str;
 242        struct perf_time_interval ptime;
 243        struct perf_time_interval hist_time;
 244};
 245
 246/* per thread run time data */
 247struct thread_runtime {
 248        u64 last_time;      /* time of previous sched in/out event */
 249        u64 dt_run;         /* run time */
 250        u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 251        u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 252        u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 253        u64 dt_delay;       /* time between wakeup and sched-in */
 254        u64 ready_to_run;   /* time of wakeup */
 255
 256        struct stats run_stats;
 257        u64 total_run_time;
 258        u64 total_sleep_time;
 259        u64 total_iowait_time;
 260        u64 total_preempt_time;
 261        u64 total_delay_time;
 262
 263        int last_state;
 264
 265        char shortname[3];
 266        bool comm_changed;
 267
 268        u64 migrations;
 269};
 270
 271/* per event run time data */
 272struct evsel_runtime {
 273        u64 *last_time; /* time this event was last seen per cpu */
 274        u32 ncpu;       /* highest cpu slot allocated */
 275};
 276
 277/* per cpu idle time data */
 278struct idle_thread_runtime {
 279        struct thread_runtime   tr;
 280        struct thread           *last_thread;
 281        struct rb_root_cached   sorted_root;
 282        struct callchain_root   callchain;
 283        struct callchain_cursor cursor;
 284};
 285
 286/* track idle times per cpu */
 287static struct thread **idle_threads;
 288static int idle_max_cpu;
 289static char idle_comm[] = "<idle>";
 290
 291static u64 get_nsecs(void)
 292{
 293        struct timespec ts;
 294
 295        clock_gettime(CLOCK_MONOTONIC, &ts);
 296
 297        return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 298}
 299
 300static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 301{
 302        u64 T0 = get_nsecs(), T1;
 303
 304        do {
 305                T1 = get_nsecs();
 306        } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 307}
 308
 309static void sleep_nsecs(u64 nsecs)
 310{
 311        struct timespec ts;
 312
 313        ts.tv_nsec = nsecs % 999999999;
 314        ts.tv_sec = nsecs / 999999999;
 315
 316        nanosleep(&ts, NULL);
 317}
 318
 319static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 320{
 321        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 322        int i;
 323
 324        for (i = 0; i < 10; i++) {
 325                T0 = get_nsecs();
 326                burn_nsecs(sched, 0);
 327                T1 = get_nsecs();
 328                delta = T1-T0;
 329                min_delta = min(min_delta, delta);
 330        }
 331        sched->run_measurement_overhead = min_delta;
 332
 333        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 334}
 335
 336static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 337{
 338        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 339        int i;
 340
 341        for (i = 0; i < 10; i++) {
 342                T0 = get_nsecs();
 343                sleep_nsecs(10000);
 344                T1 = get_nsecs();
 345                delta = T1-T0;
 346                min_delta = min(min_delta, delta);
 347        }
 348        min_delta -= 10000;
 349        sched->sleep_measurement_overhead = min_delta;
 350
 351        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 352}
 353
 354static struct sched_atom *
 355get_new_event(struct task_desc *task, u64 timestamp)
 356{
 357        struct sched_atom *event = zalloc(sizeof(*event));
 358        unsigned long idx = task->nr_events;
 359        size_t size;
 360
 361        event->timestamp = timestamp;
 362        event->nr = idx;
 363
 364        task->nr_events++;
 365        size = sizeof(struct sched_atom *) * task->nr_events;
 366        task->atoms = realloc(task->atoms, size);
 367        BUG_ON(!task->atoms);
 368
 369        task->atoms[idx] = event;
 370
 371        return event;
 372}
 373
 374static struct sched_atom *last_event(struct task_desc *task)
 375{
 376        if (!task->nr_events)
 377                return NULL;
 378
 379        return task->atoms[task->nr_events - 1];
 380}
 381
 382static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 383                                u64 timestamp, u64 duration)
 384{
 385        struct sched_atom *event, *curr_event = last_event(task);
 386
 387        /*
 388         * optimize an existing RUN event by merging this one
 389         * to it:
 390         */
 391        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 392                sched->nr_run_events_optimized++;
 393                curr_event->duration += duration;
 394                return;
 395        }
 396
 397        event = get_new_event(task, timestamp);
 398
 399        event->type = SCHED_EVENT_RUN;
 400        event->duration = duration;
 401
 402        sched->nr_run_events++;
 403}
 404
 405static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 406                                   u64 timestamp, struct task_desc *wakee)
 407{
 408        struct sched_atom *event, *wakee_event;
 409
 410        event = get_new_event(task, timestamp);
 411        event->type = SCHED_EVENT_WAKEUP;
 412        event->wakee = wakee;
 413
 414        wakee_event = last_event(wakee);
 415        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 416                sched->targetless_wakeups++;
 417                return;
 418        }
 419        if (wakee_event->wait_sem) {
 420                sched->multitarget_wakeups++;
 421                return;
 422        }
 423
 424        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 425        sem_init(wakee_event->wait_sem, 0, 0);
 426        wakee_event->specific_wait = 1;
 427        event->wait_sem = wakee_event->wait_sem;
 428
 429        sched->nr_wakeup_events++;
 430}
 431
 432static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 433                                  u64 timestamp, u64 task_state __maybe_unused)
 434{
 435        struct sched_atom *event = get_new_event(task, timestamp);
 436
 437        event->type = SCHED_EVENT_SLEEP;
 438
 439        sched->nr_sleep_events++;
 440}
 441
 442static struct task_desc *register_pid(struct perf_sched *sched,
 443                                      unsigned long pid, const char *comm)
 444{
 445        struct task_desc *task;
 446        static int pid_max;
 447
 448        if (sched->pid_to_task == NULL) {
 449                if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 450                        pid_max = MAX_PID;
 451                BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 452        }
 453        if (pid >= (unsigned long)pid_max) {
 454                BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 455                        sizeof(struct task_desc *))) == NULL);
 456                while (pid >= (unsigned long)pid_max)
 457                        sched->pid_to_task[pid_max++] = NULL;
 458        }
 459
 460        task = sched->pid_to_task[pid];
 461
 462        if (task)
 463                return task;
 464
 465        task = zalloc(sizeof(*task));
 466        task->pid = pid;
 467        task->nr = sched->nr_tasks;
 468        strcpy(task->comm, comm);
 469        /*
 470         * every task starts in sleeping state - this gets ignored
 471         * if there's no wakeup pointing to this sleep state:
 472         */
 473        add_sched_event_sleep(sched, task, 0, 0);
 474
 475        sched->pid_to_task[pid] = task;
 476        sched->nr_tasks++;
 477        sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 478        BUG_ON(!sched->tasks);
 479        sched->tasks[task->nr] = task;
 480
 481        if (verbose > 0)
 482                printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 483
 484        return task;
 485}
 486
 487
 488static void print_task_traces(struct perf_sched *sched)
 489{
 490        struct task_desc *task;
 491        unsigned long i;
 492
 493        for (i = 0; i < sched->nr_tasks; i++) {
 494                task = sched->tasks[i];
 495                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 496                        task->nr, task->comm, task->pid, task->nr_events);
 497        }
 498}
 499
 500static void add_cross_task_wakeups(struct perf_sched *sched)
 501{
 502        struct task_desc *task1, *task2;
 503        unsigned long i, j;
 504
 505        for (i = 0; i < sched->nr_tasks; i++) {
 506                task1 = sched->tasks[i];
 507                j = i + 1;
 508                if (j == sched->nr_tasks)
 509                        j = 0;
 510                task2 = sched->tasks[j];
 511                add_sched_event_wakeup(sched, task1, 0, task2);
 512        }
 513}
 514
 515static void perf_sched__process_event(struct perf_sched *sched,
 516                                      struct sched_atom *atom)
 517{
 518        int ret = 0;
 519
 520        switch (atom->type) {
 521                case SCHED_EVENT_RUN:
 522                        burn_nsecs(sched, atom->duration);
 523                        break;
 524                case SCHED_EVENT_SLEEP:
 525                        if (atom->wait_sem)
 526                                ret = sem_wait(atom->wait_sem);
 527                        BUG_ON(ret);
 528                        break;
 529                case SCHED_EVENT_WAKEUP:
 530                        if (atom->wait_sem)
 531                                ret = sem_post(atom->wait_sem);
 532                        BUG_ON(ret);
 533                        break;
 534                case SCHED_EVENT_MIGRATION:
 535                        break;
 536                default:
 537                        BUG_ON(1);
 538        }
 539}
 540
 541static u64 get_cpu_usage_nsec_parent(void)
 542{
 543        struct rusage ru;
 544        u64 sum;
 545        int err;
 546
 547        err = getrusage(RUSAGE_SELF, &ru);
 548        BUG_ON(err);
 549
 550        sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 551        sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 552
 553        return sum;
 554}
 555
 556static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 557{
 558        struct perf_event_attr attr;
 559        char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 560        int fd;
 561        struct rlimit limit;
 562        bool need_privilege = false;
 563
 564        memset(&attr, 0, sizeof(attr));
 565
 566        attr.type = PERF_TYPE_SOFTWARE;
 567        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 568
 569force_again:
 570        fd = sys_perf_event_open(&attr, 0, -1, -1,
 571                                 perf_event_open_cloexec_flag());
 572
 573        if (fd < 0) {
 574                if (errno == EMFILE) {
 575                        if (sched->force) {
 576                                BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 577                                limit.rlim_cur += sched->nr_tasks - cur_task;
 578                                if (limit.rlim_cur > limit.rlim_max) {
 579                                        limit.rlim_max = limit.rlim_cur;
 580                                        need_privilege = true;
 581                                }
 582                                if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 583                                        if (need_privilege && errno == EPERM)
 584                                                strcpy(info, "Need privilege\n");
 585                                } else
 586                                        goto force_again;
 587                        } else
 588                                strcpy(info, "Have a try with -f option\n");
 589                }
 590                pr_err("Error: sys_perf_event_open() syscall returned "
 591                       "with %d (%s)\n%s", fd,
 592                       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 593                exit(EXIT_FAILURE);
 594        }
 595        return fd;
 596}
 597
 598static u64 get_cpu_usage_nsec_self(int fd)
 599{
 600        u64 runtime;
 601        int ret;
 602
 603        ret = read(fd, &runtime, sizeof(runtime));
 604        BUG_ON(ret != sizeof(runtime));
 605
 606        return runtime;
 607}
 608
 609struct sched_thread_parms {
 610        struct task_desc  *task;
 611        struct perf_sched *sched;
 612        int fd;
 613};
 614
 615static void *thread_func(void *ctx)
 616{
 617        struct sched_thread_parms *parms = ctx;
 618        struct task_desc *this_task = parms->task;
 619        struct perf_sched *sched = parms->sched;
 620        u64 cpu_usage_0, cpu_usage_1;
 621        unsigned long i, ret;
 622        char comm2[22];
 623        int fd = parms->fd;
 624
 625        zfree(&parms);
 626
 627        sprintf(comm2, ":%s", this_task->comm);
 628        prctl(PR_SET_NAME, comm2);
 629        if (fd < 0)
 630                return NULL;
 631again:
 632        ret = sem_post(&this_task->ready_for_work);
 633        BUG_ON(ret);
 634        ret = pthread_mutex_lock(&sched->start_work_mutex);
 635        BUG_ON(ret);
 636        ret = pthread_mutex_unlock(&sched->start_work_mutex);
 637        BUG_ON(ret);
 638
 639        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 640
 641        for (i = 0; i < this_task->nr_events; i++) {
 642                this_task->curr_event = i;
 643                perf_sched__process_event(sched, this_task->atoms[i]);
 644        }
 645
 646        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 647        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 648        ret = sem_post(&this_task->work_done_sem);
 649        BUG_ON(ret);
 650
 651        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 652        BUG_ON(ret);
 653        ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 654        BUG_ON(ret);
 655
 656        goto again;
 657}
 658
 659static void create_tasks(struct perf_sched *sched)
 660{
 661        struct task_desc *task;
 662        pthread_attr_t attr;
 663        unsigned long i;
 664        int err;
 665
 666        err = pthread_attr_init(&attr);
 667        BUG_ON(err);
 668        err = pthread_attr_setstacksize(&attr,
 669                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 670        BUG_ON(err);
 671        err = pthread_mutex_lock(&sched->start_work_mutex);
 672        BUG_ON(err);
 673        err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 674        BUG_ON(err);
 675        for (i = 0; i < sched->nr_tasks; i++) {
 676                struct sched_thread_parms *parms = malloc(sizeof(*parms));
 677                BUG_ON(parms == NULL);
 678                parms->task = task = sched->tasks[i];
 679                parms->sched = sched;
 680                parms->fd = self_open_counters(sched, i);
 681                sem_init(&task->sleep_sem, 0, 0);
 682                sem_init(&task->ready_for_work, 0, 0);
 683                sem_init(&task->work_done_sem, 0, 0);
 684                task->curr_event = 0;
 685                err = pthread_create(&task->thread, &attr, thread_func, parms);
 686                BUG_ON(err);
 687        }
 688}
 689
 690static void wait_for_tasks(struct perf_sched *sched)
 691{
 692        u64 cpu_usage_0, cpu_usage_1;
 693        struct task_desc *task;
 694        unsigned long i, ret;
 695
 696        sched->start_time = get_nsecs();
 697        sched->cpu_usage = 0;
 698        pthread_mutex_unlock(&sched->work_done_wait_mutex);
 699
 700        for (i = 0; i < sched->nr_tasks; i++) {
 701                task = sched->tasks[i];
 702                ret = sem_wait(&task->ready_for_work);
 703                BUG_ON(ret);
 704                sem_init(&task->ready_for_work, 0, 0);
 705        }
 706        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 707        BUG_ON(ret);
 708
 709        cpu_usage_0 = get_cpu_usage_nsec_parent();
 710
 711        pthread_mutex_unlock(&sched->start_work_mutex);
 712
 713        for (i = 0; i < sched->nr_tasks; i++) {
 714                task = sched->tasks[i];
 715                ret = sem_wait(&task->work_done_sem);
 716                BUG_ON(ret);
 717                sem_init(&task->work_done_sem, 0, 0);
 718                sched->cpu_usage += task->cpu_usage;
 719                task->cpu_usage = 0;
 720        }
 721
 722        cpu_usage_1 = get_cpu_usage_nsec_parent();
 723        if (!sched->runavg_cpu_usage)
 724                sched->runavg_cpu_usage = sched->cpu_usage;
 725        sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 726
 727        sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 728        if (!sched->runavg_parent_cpu_usage)
 729                sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 730        sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 731                                         sched->parent_cpu_usage)/sched->replay_repeat;
 732
 733        ret = pthread_mutex_lock(&sched->start_work_mutex);
 734        BUG_ON(ret);
 735
 736        for (i = 0; i < sched->nr_tasks; i++) {
 737                task = sched->tasks[i];
 738                sem_init(&task->sleep_sem, 0, 0);
 739                task->curr_event = 0;
 740        }
 741}
 742
 743static void run_one_test(struct perf_sched *sched)
 744{
 745        u64 T0, T1, delta, avg_delta, fluct;
 746
 747        T0 = get_nsecs();
 748        wait_for_tasks(sched);
 749        T1 = get_nsecs();
 750
 751        delta = T1 - T0;
 752        sched->sum_runtime += delta;
 753        sched->nr_runs++;
 754
 755        avg_delta = sched->sum_runtime / sched->nr_runs;
 756        if (delta < avg_delta)
 757                fluct = avg_delta - delta;
 758        else
 759                fluct = delta - avg_delta;
 760        sched->sum_fluct += fluct;
 761        if (!sched->run_avg)
 762                sched->run_avg = delta;
 763        sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 764
 765        printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 766
 767        printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 768
 769        printf("cpu: %0.2f / %0.2f",
 770                (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 771
 772#if 0
 773        /*
 774         * rusage statistics done by the parent, these are less
 775         * accurate than the sched->sum_exec_runtime based statistics:
 776         */
 777        printf(" [%0.2f / %0.2f]",
 778                (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 779                (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 780#endif
 781
 782        printf("\n");
 783
 784        if (sched->nr_sleep_corrections)
 785                printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 786        sched->nr_sleep_corrections = 0;
 787}
 788
 789static void test_calibrations(struct perf_sched *sched)
 790{
 791        u64 T0, T1;
 792
 793        T0 = get_nsecs();
 794        burn_nsecs(sched, NSEC_PER_MSEC);
 795        T1 = get_nsecs();
 796
 797        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 798
 799        T0 = get_nsecs();
 800        sleep_nsecs(NSEC_PER_MSEC);
 801        T1 = get_nsecs();
 802
 803        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 804}
 805
 806static int
 807replay_wakeup_event(struct perf_sched *sched,
 808                    struct evsel *evsel, struct perf_sample *sample,
 809                    struct machine *machine __maybe_unused)
 810{
 811        const char *comm = perf_evsel__strval(evsel, sample, "comm");
 812        const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
 813        struct task_desc *waker, *wakee;
 814
 815        if (verbose > 0) {
 816                printf("sched_wakeup event %p\n", evsel);
 817
 818                printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 819        }
 820
 821        waker = register_pid(sched, sample->tid, "<unknown>");
 822        wakee = register_pid(sched, pid, comm);
 823
 824        add_sched_event_wakeup(sched, waker, sample->time, wakee);
 825        return 0;
 826}
 827
 828static int replay_switch_event(struct perf_sched *sched,
 829                               struct evsel *evsel,
 830                               struct perf_sample *sample,
 831                               struct machine *machine __maybe_unused)
 832{
 833        const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 834                   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 835        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 836                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 837        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 838        struct task_desc *prev, __maybe_unused *next;
 839        u64 timestamp0, timestamp = sample->time;
 840        int cpu = sample->cpu;
 841        s64 delta;
 842
 843        if (verbose > 0)
 844                printf("sched_switch event %p\n", evsel);
 845
 846        if (cpu >= MAX_CPUS || cpu < 0)
 847                return 0;
 848
 849        timestamp0 = sched->cpu_last_switched[cpu];
 850        if (timestamp0)
 851                delta = timestamp - timestamp0;
 852        else
 853                delta = 0;
 854
 855        if (delta < 0) {
 856                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 857                return -1;
 858        }
 859
 860        pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 861                 prev_comm, prev_pid, next_comm, next_pid, delta);
 862
 863        prev = register_pid(sched, prev_pid, prev_comm);
 864        next = register_pid(sched, next_pid, next_comm);
 865
 866        sched->cpu_last_switched[cpu] = timestamp;
 867
 868        add_sched_event_run(sched, prev, timestamp, delta);
 869        add_sched_event_sleep(sched, prev, timestamp, prev_state);
 870
 871        return 0;
 872}
 873
 874static int replay_fork_event(struct perf_sched *sched,
 875                             union perf_event *event,
 876                             struct machine *machine)
 877{
 878        struct thread *child, *parent;
 879
 880        child = machine__findnew_thread(machine, event->fork.pid,
 881                                        event->fork.tid);
 882        parent = machine__findnew_thread(machine, event->fork.ppid,
 883                                         event->fork.ptid);
 884
 885        if (child == NULL || parent == NULL) {
 886                pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 887                                 child, parent);
 888                goto out_put;
 889        }
 890
 891        if (verbose > 0) {
 892                printf("fork event\n");
 893                printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 894                printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 895        }
 896
 897        register_pid(sched, parent->tid, thread__comm_str(parent));
 898        register_pid(sched, child->tid, thread__comm_str(child));
 899out_put:
 900        thread__put(child);
 901        thread__put(parent);
 902        return 0;
 903}
 904
 905struct sort_dimension {
 906        const char              *name;
 907        sort_fn_t               cmp;
 908        struct list_head        list;
 909};
 910
 911/*
 912 * handle runtime stats saved per thread
 913 */
 914static struct thread_runtime *thread__init_runtime(struct thread *thread)
 915{
 916        struct thread_runtime *r;
 917
 918        r = zalloc(sizeof(struct thread_runtime));
 919        if (!r)
 920                return NULL;
 921
 922        init_stats(&r->run_stats);
 923        thread__set_priv(thread, r);
 924
 925        return r;
 926}
 927
 928static struct thread_runtime *thread__get_runtime(struct thread *thread)
 929{
 930        struct thread_runtime *tr;
 931
 932        tr = thread__priv(thread);
 933        if (tr == NULL) {
 934                tr = thread__init_runtime(thread);
 935                if (tr == NULL)
 936                        pr_debug("Failed to malloc memory for runtime data.\n");
 937        }
 938
 939        return tr;
 940}
 941
 942static int
 943thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 944{
 945        struct sort_dimension *sort;
 946        int ret = 0;
 947
 948        BUG_ON(list_empty(list));
 949
 950        list_for_each_entry(sort, list, list) {
 951                ret = sort->cmp(l, r);
 952                if (ret)
 953                        return ret;
 954        }
 955
 956        return ret;
 957}
 958
 959static struct work_atoms *
 960thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 961                         struct list_head *sort_list)
 962{
 963        struct rb_node *node = root->rb_root.rb_node;
 964        struct work_atoms key = { .thread = thread };
 965
 966        while (node) {
 967                struct work_atoms *atoms;
 968                int cmp;
 969
 970                atoms = container_of(node, struct work_atoms, node);
 971
 972                cmp = thread_lat_cmp(sort_list, &key, atoms);
 973                if (cmp > 0)
 974                        node = node->rb_left;
 975                else if (cmp < 0)
 976                        node = node->rb_right;
 977                else {
 978                        BUG_ON(thread != atoms->thread);
 979                        return atoms;
 980                }
 981        }
 982        return NULL;
 983}
 984
 985static void
 986__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 987                         struct list_head *sort_list)
 988{
 989        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 990        bool leftmost = true;
 991
 992        while (*new) {
 993                struct work_atoms *this;
 994                int cmp;
 995
 996                this = container_of(*new, struct work_atoms, node);
 997                parent = *new;
 998
 999                cmp = thread_lat_cmp(sort_list, data, this);
1000
1001                if (cmp > 0)
1002                        new = &((*new)->rb_left);
1003                else {
1004                        new = &((*new)->rb_right);
1005                        leftmost = false;
1006                }
1007        }
1008
1009        rb_link_node(&data->node, parent, new);
1010        rb_insert_color_cached(&data->node, root, leftmost);
1011}
1012
1013static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014{
1015        struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016        if (!atoms) {
1017                pr_err("No memory at %s\n", __func__);
1018                return -1;
1019        }
1020
1021        atoms->thread = thread__get(thread);
1022        INIT_LIST_HEAD(&atoms->work_list);
1023        __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024        return 0;
1025}
1026
1027static char sched_out_state(u64 prev_state)
1028{
1029        const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031        return str[prev_state];
1032}
1033
1034static int
1035add_sched_out_event(struct work_atoms *atoms,
1036                    char run_state,
1037                    u64 timestamp)
1038{
1039        struct work_atom *atom = zalloc(sizeof(*atom));
1040        if (!atom) {
1041                pr_err("Non memory at %s", __func__);
1042                return -1;
1043        }
1044
1045        atom->sched_out_time = timestamp;
1046
1047        if (run_state == 'R') {
1048                atom->state = THREAD_WAIT_CPU;
1049                atom->wake_up_time = atom->sched_out_time;
1050        }
1051
1052        list_add_tail(&atom->list, &atoms->work_list);
1053        return 0;
1054}
1055
1056static void
1057add_runtime_event(struct work_atoms *atoms, u64 delta,
1058                  u64 timestamp __maybe_unused)
1059{
1060        struct work_atom *atom;
1061
1062        BUG_ON(list_empty(&atoms->work_list));
1063
1064        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066        atom->runtime += delta;
1067        atoms->total_runtime += delta;
1068}
1069
1070static void
1071add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072{
1073        struct work_atom *atom;
1074        u64 delta;
1075
1076        if (list_empty(&atoms->work_list))
1077                return;
1078
1079        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081        if (atom->state != THREAD_WAIT_CPU)
1082                return;
1083
1084        if (timestamp < atom->wake_up_time) {
1085                atom->state = THREAD_IGNORE;
1086                return;
1087        }
1088
1089        atom->state = THREAD_SCHED_IN;
1090        atom->sched_in_time = timestamp;
1091
1092        delta = atom->sched_in_time - atom->wake_up_time;
1093        atoms->total_lat += delta;
1094        if (delta > atoms->max_lat) {
1095                atoms->max_lat = delta;
1096                atoms->max_lat_at = timestamp;
1097        }
1098        atoms->nb_atoms++;
1099}
1100
1101static int latency_switch_event(struct perf_sched *sched,
1102                                struct evsel *evsel,
1103                                struct perf_sample *sample,
1104                                struct machine *machine)
1105{
1106        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109        struct work_atoms *out_events, *in_events;
1110        struct thread *sched_out, *sched_in;
1111        u64 timestamp0, timestamp = sample->time;
1112        int cpu = sample->cpu, err = -1;
1113        s64 delta;
1114
1115        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117        timestamp0 = sched->cpu_last_switched[cpu];
1118        sched->cpu_last_switched[cpu] = timestamp;
1119        if (timestamp0)
1120                delta = timestamp - timestamp0;
1121        else
1122                delta = 0;
1123
1124        if (delta < 0) {
1125                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126                return -1;
1127        }
1128
1129        sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130        sched_in = machine__findnew_thread(machine, -1, next_pid);
1131        if (sched_out == NULL || sched_in == NULL)
1132                goto out_put;
1133
1134        out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1135        if (!out_events) {
1136                if (thread_atoms_insert(sched, sched_out))
1137                        goto out_put;
1138                out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139                if (!out_events) {
1140                        pr_err("out-event: Internal tree error");
1141                        goto out_put;
1142                }
1143        }
1144        if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145                return -1;
1146
1147        in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148        if (!in_events) {
1149                if (thread_atoms_insert(sched, sched_in))
1150                        goto out_put;
1151                in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152                if (!in_events) {
1153                        pr_err("in-event: Internal tree error");
1154                        goto out_put;
1155                }
1156                /*
1157                 * Take came in we have not heard about yet,
1158                 * add in an initial atom in runnable state:
1159                 */
1160                if (add_sched_out_event(in_events, 'R', timestamp))
1161                        goto out_put;
1162        }
1163        add_sched_in_event(in_events, timestamp);
1164        err = 0;
1165out_put:
1166        thread__put(sched_out);
1167        thread__put(sched_in);
1168        return err;
1169}
1170
1171static int latency_runtime_event(struct perf_sched *sched,
1172                                 struct evsel *evsel,
1173                                 struct perf_sample *sample,
1174                                 struct machine *machine)
1175{
1176        const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1177        const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1178        struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179        struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180        u64 timestamp = sample->time;
1181        int cpu = sample->cpu, err = -1;
1182
1183        if (thread == NULL)
1184                return -1;
1185
1186        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187        if (!atoms) {
1188                if (thread_atoms_insert(sched, thread))
1189                        goto out_put;
1190                atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191                if (!atoms) {
1192                        pr_err("in-event: Internal tree error");
1193                        goto out_put;
1194                }
1195                if (add_sched_out_event(atoms, 'R', timestamp))
1196                        goto out_put;
1197        }
1198
1199        add_runtime_event(atoms, runtime, timestamp);
1200        err = 0;
1201out_put:
1202        thread__put(thread);
1203        return err;
1204}
1205
1206static int latency_wakeup_event(struct perf_sched *sched,
1207                                struct evsel *evsel,
1208                                struct perf_sample *sample,
1209                                struct machine *machine)
1210{
1211        const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1212        struct work_atoms *atoms;
1213        struct work_atom *atom;
1214        struct thread *wakee;
1215        u64 timestamp = sample->time;
1216        int err = -1;
1217
1218        wakee = machine__findnew_thread(machine, -1, pid);
1219        if (wakee == NULL)
1220                return -1;
1221        atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1222        if (!atoms) {
1223                if (thread_atoms_insert(sched, wakee))
1224                        goto out_put;
1225                atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226                if (!atoms) {
1227                        pr_err("wakeup-event: Internal tree error");
1228                        goto out_put;
1229                }
1230                if (add_sched_out_event(atoms, 'S', timestamp))
1231                        goto out_put;
1232        }
1233
1234        BUG_ON(list_empty(&atoms->work_list));
1235
1236        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238        /*
1239         * As we do not guarantee the wakeup event happens when
1240         * task is out of run queue, also may happen when task is
1241         * on run queue and wakeup only change ->state to TASK_RUNNING,
1242         * then we should not set the ->wake_up_time when wake up a
1243         * task which is on run queue.
1244         *
1245         * You WILL be missing events if you've recorded only
1246         * one CPU, or are only looking at only one, so don't
1247         * skip in this case.
1248         */
1249        if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250                goto out_ok;
1251
1252        sched->nr_timestamps++;
1253        if (atom->sched_out_time > timestamp) {
1254                sched->nr_unordered_timestamps++;
1255                goto out_ok;
1256        }
1257
1258        atom->state = THREAD_WAIT_CPU;
1259        atom->wake_up_time = timestamp;
1260out_ok:
1261        err = 0;
1262out_put:
1263        thread__put(wakee);
1264        return err;
1265}
1266
1267static int latency_migrate_task_event(struct perf_sched *sched,
1268                                      struct evsel *evsel,
1269                                      struct perf_sample *sample,
1270                                      struct machine *machine)
1271{
1272        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273        u64 timestamp = sample->time;
1274        struct work_atoms *atoms;
1275        struct work_atom *atom;
1276        struct thread *migrant;
1277        int err = -1;
1278
1279        /*
1280         * Only need to worry about migration when profiling one CPU.
1281         */
1282        if (sched->profile_cpu == -1)
1283                return 0;
1284
1285        migrant = machine__findnew_thread(machine, -1, pid);
1286        if (migrant == NULL)
1287                return -1;
1288        atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289        if (!atoms) {
1290                if (thread_atoms_insert(sched, migrant))
1291                        goto out_put;
1292                register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293                atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294                if (!atoms) {
1295                        pr_err("migration-event: Internal tree error");
1296                        goto out_put;
1297                }
1298                if (add_sched_out_event(atoms, 'R', timestamp))
1299                        goto out_put;
1300        }
1301
1302        BUG_ON(list_empty(&atoms->work_list));
1303
1304        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307        sched->nr_timestamps++;
1308
1309        if (atom->sched_out_time > timestamp)
1310                sched->nr_unordered_timestamps++;
1311        err = 0;
1312out_put:
1313        thread__put(migrant);
1314        return err;
1315}
1316
1317static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1318{
1319        int i;
1320        int ret;
1321        u64 avg;
1322        char max_lat_at[32];
1323
1324        if (!work_list->nb_atoms)
1325                return;
1326        /*
1327         * Ignore idle threads:
1328         */
1329        if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330                return;
1331
1332        sched->all_runtime += work_list->total_runtime;
1333        sched->all_count   += work_list->nb_atoms;
1334
1335        if (work_list->num_merged > 1)
1336                ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337        else
1338                ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1339
1340        for (i = 0; i < 24 - ret; i++)
1341                printf(" ");
1342
1343        avg = work_list->total_lat / work_list->nb_atoms;
1344        timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1345
1346        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347              (double)work_list->total_runtime / NSEC_PER_MSEC,
1348                 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349                 (double)work_list->max_lat / NSEC_PER_MSEC,
1350                 max_lat_at);
1351}
1352
1353static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354{
1355        if (l->thread == r->thread)
1356                return 0;
1357        if (l->thread->tid < r->thread->tid)
1358                return -1;
1359        if (l->thread->tid > r->thread->tid)
1360                return 1;
1361        return (int)(l->thread - r->thread);
1362}
1363
1364static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365{
1366        u64 avgl, avgr;
1367
1368        if (!l->nb_atoms)
1369                return -1;
1370
1371        if (!r->nb_atoms)
1372                return 1;
1373
1374        avgl = l->total_lat / l->nb_atoms;
1375        avgr = r->total_lat / r->nb_atoms;
1376
1377        if (avgl < avgr)
1378                return -1;
1379        if (avgl > avgr)
1380                return 1;
1381
1382        return 0;
1383}
1384
1385static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387        if (l->max_lat < r->max_lat)
1388                return -1;
1389        if (l->max_lat > r->max_lat)
1390                return 1;
1391
1392        return 0;
1393}
1394
1395static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397        if (l->nb_atoms < r->nb_atoms)
1398                return -1;
1399        if (l->nb_atoms > r->nb_atoms)
1400                return 1;
1401
1402        return 0;
1403}
1404
1405static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407        if (l->total_runtime < r->total_runtime)
1408                return -1;
1409        if (l->total_runtime > r->total_runtime)
1410                return 1;
1411
1412        return 0;
1413}
1414
1415static int sort_dimension__add(const char *tok, struct list_head *list)
1416{
1417        size_t i;
1418        static struct sort_dimension avg_sort_dimension = {
1419                .name = "avg",
1420                .cmp  = avg_cmp,
1421        };
1422        static struct sort_dimension max_sort_dimension = {
1423                .name = "max",
1424                .cmp  = max_cmp,
1425        };
1426        static struct sort_dimension pid_sort_dimension = {
1427                .name = "pid",
1428                .cmp  = pid_cmp,
1429        };
1430        static struct sort_dimension runtime_sort_dimension = {
1431                .name = "runtime",
1432                .cmp  = runtime_cmp,
1433        };
1434        static struct sort_dimension switch_sort_dimension = {
1435                .name = "switch",
1436                .cmp  = switch_cmp,
1437        };
1438        struct sort_dimension *available_sorts[] = {
1439                &pid_sort_dimension,
1440                &avg_sort_dimension,
1441                &max_sort_dimension,
1442                &switch_sort_dimension,
1443                &runtime_sort_dimension,
1444        };
1445
1446        for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447                if (!strcmp(available_sorts[i]->name, tok)) {
1448                        list_add_tail(&available_sorts[i]->list, list);
1449
1450                        return 0;
1451                }
1452        }
1453
1454        return -1;
1455}
1456
1457static void perf_sched__sort_lat(struct perf_sched *sched)
1458{
1459        struct rb_node *node;
1460        struct rb_root_cached *root = &sched->atom_root;
1461again:
1462        for (;;) {
1463                struct work_atoms *data;
1464                node = rb_first_cached(root);
1465                if (!node)
1466                        break;
1467
1468                rb_erase_cached(node, root);
1469                data = rb_entry(node, struct work_atoms, node);
1470                __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471        }
1472        if (root == &sched->atom_root) {
1473                root = &sched->merged_atom_root;
1474                goto again;
1475        }
1476}
1477
1478static int process_sched_wakeup_event(struct perf_tool *tool,
1479                                      struct evsel *evsel,
1480                                      struct perf_sample *sample,
1481                                      struct machine *machine)
1482{
1483        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485        if (sched->tp_handler->wakeup_event)
1486                return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488        return 0;
1489}
1490
1491union map_priv {
1492        void    *ptr;
1493        bool     color;
1494};
1495
1496static bool thread__has_color(struct thread *thread)
1497{
1498        union map_priv priv = {
1499                .ptr = thread__priv(thread),
1500        };
1501
1502        return priv.color;
1503}
1504
1505static struct thread*
1506map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507{
1508        struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509        union map_priv priv = {
1510                .color = false,
1511        };
1512
1513        if (!sched->map.color_pids || !thread || thread__priv(thread))
1514                return thread;
1515
1516        if (thread_map__has(sched->map.color_pids, tid))
1517                priv.color = true;
1518
1519        thread__set_priv(thread, priv.ptr);
1520        return thread;
1521}
1522
1523static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524                            struct perf_sample *sample, struct machine *machine)
1525{
1526        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527        struct thread *sched_in;
1528        struct thread_runtime *tr;
1529        int new_shortname;
1530        u64 timestamp0, timestamp = sample->time;
1531        s64 delta;
1532        int i, this_cpu = sample->cpu;
1533        int cpus_nr;
1534        bool new_cpu = false;
1535        const char *color = PERF_COLOR_NORMAL;
1536        char stimestamp[32];
1537
1538        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540        if (this_cpu > sched->max_cpu)
1541                sched->max_cpu = this_cpu;
1542
1543        if (sched->map.comp) {
1544                cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545                if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546                        sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547                        new_cpu = true;
1548                }
1549        } else
1550                cpus_nr = sched->max_cpu;
1551
1552        timestamp0 = sched->cpu_last_switched[this_cpu];
1553        sched->cpu_last_switched[this_cpu] = timestamp;
1554        if (timestamp0)
1555                delta = timestamp - timestamp0;
1556        else
1557                delta = 0;
1558
1559        if (delta < 0) {
1560                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561                return -1;
1562        }
1563
1564        sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565        if (sched_in == NULL)
1566                return -1;
1567
1568        tr = thread__get_runtime(sched_in);
1569        if (tr == NULL) {
1570                thread__put(sched_in);
1571                return -1;
1572        }
1573
1574        sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576        printf("  ");
1577
1578        new_shortname = 0;
1579        if (!tr->shortname[0]) {
1580                if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581                        /*
1582                         * Don't allocate a letter-number for swapper:0
1583                         * as a shortname. Instead, we use '.' for it.
1584                         */
1585                        tr->shortname[0] = '.';
1586                        tr->shortname[1] = ' ';
1587                } else {
1588                        tr->shortname[0] = sched->next_shortname1;
1589                        tr->shortname[1] = sched->next_shortname2;
1590
1591                        if (sched->next_shortname1 < 'Z') {
1592                                sched->next_shortname1++;
1593                        } else {
1594                                sched->next_shortname1 = 'A';
1595                                if (sched->next_shortname2 < '9')
1596                                        sched->next_shortname2++;
1597                                else
1598                                        sched->next_shortname2 = '0';
1599                        }
1600                }
1601                new_shortname = 1;
1602        }
1603
1604        for (i = 0; i < cpus_nr; i++) {
1605                int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606                struct thread *curr_thread = sched->curr_thread[cpu];
1607                struct thread_runtime *curr_tr;
1608                const char *pid_color = color;
1609                const char *cpu_color = color;
1610
1611                if (curr_thread && thread__has_color(curr_thread))
1612                        pid_color = COLOR_PIDS;
1613
1614                if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615                        continue;
1616
1617                if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618                        cpu_color = COLOR_CPUS;
1619
1620                if (cpu != this_cpu)
1621                        color_fprintf(stdout, color, " ");
1622                else
1623                        color_fprintf(stdout, cpu_color, "*");
1624
1625                if (sched->curr_thread[cpu]) {
1626                        curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627                        if (curr_tr == NULL) {
1628                                thread__put(sched_in);
1629                                return -1;
1630                        }
1631                        color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632                } else
1633                        color_fprintf(stdout, color, "   ");
1634        }
1635
1636        if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637                goto out;
1638
1639        timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640        color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1641        if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642                const char *pid_color = color;
1643
1644                if (thread__has_color(sched_in))
1645                        pid_color = COLOR_PIDS;
1646
1647                color_fprintf(stdout, pid_color, "%s => %s:%d",
1648                       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649                tr->comm_changed = false;
1650        }
1651
1652        if (sched->map.comp && new_cpu)
1653                color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1654
1655out:
1656        color_fprintf(stdout, color, "\n");
1657
1658        thread__put(sched_in);
1659
1660        return 0;
1661}
1662
1663static int process_sched_switch_event(struct perf_tool *tool,
1664                                      struct evsel *evsel,
1665                                      struct perf_sample *sample,
1666                                      struct machine *machine)
1667{
1668        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669        int this_cpu = sample->cpu, err = 0;
1670        u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671            next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673        if (sched->curr_pid[this_cpu] != (u32)-1) {
1674                /*
1675                 * Are we trying to switch away a PID that is
1676                 * not current?
1677                 */
1678                if (sched->curr_pid[this_cpu] != prev_pid)
1679                        sched->nr_context_switch_bugs++;
1680        }
1681
1682        if (sched->tp_handler->switch_event)
1683                err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685        sched->curr_pid[this_cpu] = next_pid;
1686        return err;
1687}
1688
1689static int process_sched_runtime_event(struct perf_tool *tool,
1690                                       struct evsel *evsel,
1691                                       struct perf_sample *sample,
1692                                       struct machine *machine)
1693{
1694        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696        if (sched->tp_handler->runtime_event)
1697                return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1698
1699        return 0;
1700}
1701
1702static int perf_sched__process_fork_event(struct perf_tool *tool,
1703                                          union perf_event *event,
1704                                          struct perf_sample *sample,
1705                                          struct machine *machine)
1706{
1707        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709        /* run the fork event through the perf machineruy */
1710        perf_event__process_fork(tool, event, sample, machine);
1711
1712        /* and then run additional processing needed for this command */
1713        if (sched->tp_handler->fork_event)
1714                return sched->tp_handler->fork_event(sched, event, machine);
1715
1716        return 0;
1717}
1718
1719static int process_sched_migrate_task_event(struct perf_tool *tool,
1720                                            struct evsel *evsel,
1721                                            struct perf_sample *sample,
1722                                            struct machine *machine)
1723{
1724        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726        if (sched->tp_handler->migrate_task_event)
1727                return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729        return 0;
1730}
1731
1732typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733                                  struct evsel *evsel,
1734                                  struct perf_sample *sample,
1735                                  struct machine *machine);
1736
1737static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738                                                 union perf_event *event __maybe_unused,
1739                                                 struct perf_sample *sample,
1740                                                 struct evsel *evsel,
1741                                                 struct machine *machine)
1742{
1743        int err = 0;
1744
1745        if (evsel->handler != NULL) {
1746                tracepoint_handler f = evsel->handler;
1747                err = f(tool, evsel, sample, machine);
1748        }
1749
1750        return err;
1751}
1752
1753static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754                                    union perf_event *event,
1755                                    struct perf_sample *sample,
1756                                    struct machine *machine)
1757{
1758        struct thread *thread;
1759        struct thread_runtime *tr;
1760        int err;
1761
1762        err = perf_event__process_comm(tool, event, sample, machine);
1763        if (err)
1764                return err;
1765
1766        thread = machine__find_thread(machine, sample->pid, sample->tid);
1767        if (!thread) {
1768                pr_err("Internal error: can't find thread\n");
1769                return -1;
1770        }
1771
1772        tr = thread__get_runtime(thread);
1773        if (tr == NULL) {
1774                thread__put(thread);
1775                return -1;
1776        }
1777
1778        tr->comm_changed = true;
1779        thread__put(thread);
1780
1781        return 0;
1782}
1783
1784static int perf_sched__read_events(struct perf_sched *sched)
1785{
1786        const struct evsel_str_handler handlers[] = {
1787                { "sched:sched_switch",       process_sched_switch_event, },
1788                { "sched:sched_stat_runtime", process_sched_runtime_event, },
1789                { "sched:sched_wakeup",       process_sched_wakeup_event, },
1790                { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1791                { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792        };
1793        struct perf_session *session;
1794        struct perf_data data = {
1795                .path  = input_name,
1796                .mode  = PERF_DATA_MODE_READ,
1797                .force = sched->force,
1798        };
1799        int rc = -1;
1800
1801        session = perf_session__new(&data, false, &sched->tool);
1802        if (IS_ERR(session)) {
1803                pr_debug("Error creating perf session");
1804                return PTR_ERR(session);
1805        }
1806
1807        symbol__init(&session->header.env);
1808
1809        if (perf_session__set_tracepoints_handlers(session, handlers))
1810                goto out_delete;
1811
1812        if (perf_session__has_traces(session, "record -R")) {
1813                int err = perf_session__process_events(session);
1814                if (err) {
1815                        pr_err("Failed to process events, error %d", err);
1816                        goto out_delete;
1817                }
1818
1819                sched->nr_events      = session->evlist->stats.nr_events[0];
1820                sched->nr_lost_events = session->evlist->stats.total_lost;
1821                sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822        }
1823
1824        rc = 0;
1825out_delete:
1826        perf_session__delete(session);
1827        return rc;
1828}
1829
1830/*
1831 * scheduling times are printed as msec.usec
1832 */
1833static inline void print_sched_time(unsigned long long nsecs, int width)
1834{
1835        unsigned long msecs;
1836        unsigned long usecs;
1837
1838        msecs  = nsecs / NSEC_PER_MSEC;
1839        nsecs -= msecs * NSEC_PER_MSEC;
1840        usecs  = nsecs / NSEC_PER_USEC;
1841        printf("%*lu.%03lu ", width, msecs, usecs);
1842}
1843
1844/*
1845 * returns runtime data for event, allocating memory for it the
1846 * first time it is used.
1847 */
1848static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849{
1850        struct evsel_runtime *r = evsel->priv;
1851
1852        if (r == NULL) {
1853                r = zalloc(sizeof(struct evsel_runtime));
1854                evsel->priv = r;
1855        }
1856
1857        return r;
1858}
1859
1860/*
1861 * save last time event was seen per cpu
1862 */
1863static void perf_evsel__save_time(struct evsel *evsel,
1864                                  u64 timestamp, u32 cpu)
1865{
1866        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868        if (r == NULL)
1869                return;
1870
1871        if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872                int i, n = __roundup_pow_of_two(cpu+1);
1873                void *p = r->last_time;
1874
1875                p = realloc(r->last_time, n * sizeof(u64));
1876                if (!p)
1877                        return;
1878
1879                r->last_time = p;
1880                for (i = r->ncpu; i < n; ++i)
1881                        r->last_time[i] = (u64) 0;
1882
1883                r->ncpu = n;
1884        }
1885
1886        r->last_time[cpu] = timestamp;
1887}
1888
1889/* returns last time this event was seen on the given cpu */
1890static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891{
1892        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894        if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895                return 0;
1896
1897        return r->last_time[cpu];
1898}
1899
1900static int comm_width = 30;
1901
1902static char *timehist_get_commstr(struct thread *thread)
1903{
1904        static char str[32];
1905        const char *comm = thread__comm_str(thread);
1906        pid_t tid = thread->tid;
1907        pid_t pid = thread->pid_;
1908        int n;
1909
1910        if (pid == 0)
1911                n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913        else if (tid != pid)
1914                n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916        else
1917                n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919        if (n > comm_width)
1920                comm_width = n;
1921
1922        return str;
1923}
1924
1925static void timehist_header(struct perf_sched *sched)
1926{
1927        u32 ncpus = sched->max_cpu + 1;
1928        u32 i, j;
1929
1930        printf("%15s %6s ", "time", "cpu");
1931
1932        if (sched->show_cpu_visual) {
1933                printf(" ");
1934                for (i = 0, j = 0; i < ncpus; ++i) {
1935                        printf("%x", j++);
1936                        if (j > 15)
1937                                j = 0;
1938                }
1939                printf(" ");
1940        }
1941
1942        printf(" %-*s  %9s  %9s  %9s", comm_width,
1943                "task name", "wait time", "sch delay", "run time");
1944
1945        if (sched->show_state)
1946                printf("  %s", "state");
1947
1948        printf("\n");
1949
1950        /*
1951         * units row
1952         */
1953        printf("%15s %-6s ", "", "");
1954
1955        if (sched->show_cpu_visual)
1956                printf(" %*s ", ncpus, "");
1957
1958        printf(" %-*s  %9s  %9s  %9s", comm_width,
1959               "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961        if (sched->show_state)
1962                printf("  %5s", "");
1963
1964        printf("\n");
1965
1966        /*
1967         * separator
1968         */
1969        printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971        if (sched->show_cpu_visual)
1972                printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974        printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1975                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976                graph_dotted_line);
1977
1978        if (sched->show_state)
1979                printf("  %.5s", graph_dotted_line);
1980
1981        printf("\n");
1982}
1983
1984static char task_state_char(struct thread *thread, int state)
1985{
1986        static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987        unsigned bit = state ? ffs(state) : 0;
1988
1989        /* 'I' for idle */
1990        if (thread->tid == 0)
1991                return 'I';
1992
1993        return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994}
1995
1996static void timehist_print_sample(struct perf_sched *sched,
1997                                  struct evsel *evsel,
1998                                  struct perf_sample *sample,
1999                                  struct addr_location *al,
2000                                  struct thread *thread,
2001                                  u64 t, int state)
2002{
2003        struct thread_runtime *tr = thread__priv(thread);
2004        const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006        u32 max_cpus = sched->max_cpu + 1;
2007        char tstr[64];
2008        char nstr[30];
2009        u64 wait_time;
2010
2011        timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012        printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014        if (sched->show_cpu_visual) {
2015                u32 i;
2016                char c;
2017
2018                printf(" ");
2019                for (i = 0; i < max_cpus; ++i) {
2020                        /* flag idle times with 'i'; others are sched events */
2021                        if (i == sample->cpu)
2022                                c = (thread->tid == 0) ? 'i' : 's';
2023                        else
2024                                c = ' ';
2025                        printf("%c", c);
2026                }
2027                printf(" ");
2028        }
2029
2030        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
2032        wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033        print_sched_time(wait_time, 6);
2034
2035        print_sched_time(tr->dt_delay, 6);
2036        print_sched_time(tr->dt_run, 6);
2037
2038        if (sched->show_state)
2039                printf(" %5c ", task_state_char(thread, state));
2040
2041        if (sched->show_next) {
2042                snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043                printf(" %-*s", comm_width, nstr);
2044        }
2045
2046        if (sched->show_wakeups && !sched->show_next)
2047                printf("  %-*s", comm_width, "");
2048
2049        if (thread->tid == 0)
2050                goto out;
2051
2052        if (sched->show_callchain)
2053                printf("  ");
2054
2055        sample__fprintf_sym(sample, al, 0,
2056                            EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057                            EVSEL__PRINT_CALLCHAIN_ARROW |
2058                            EVSEL__PRINT_SKIP_IGNORED,
2059                            &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2060
2061out:
2062        printf("\n");
2063}
2064
2065/*
2066 * Explanation of delta-time stats:
2067 *
2068 *            t = time of current schedule out event
2069 *        tprev = time of previous sched out event
2070 *                also time of schedule-in event for current task
2071 *    last_time = time of last sched change event for current task
2072 *                (i.e, time process was last scheduled out)
2073 * ready_to_run = time of wakeup for current task
2074 *
2075 * -----|------------|------------|------------|------
2076 *    last         ready        tprev          t
2077 *    time         to run
2078 *
2079 *      |-------- dt_wait --------|
2080 *                   |- dt_delay -|-- dt_run --|
2081 *
2082 *   dt_run = run time of current task
2083 *  dt_wait = time between last schedule out event for task and tprev
2084 *            represents time spent off the cpu
2085 * dt_delay = time between wakeup and schedule-in of task
2086 */
2087
2088static void timehist_update_runtime_stats(struct thread_runtime *r,
2089                                         u64 t, u64 tprev)
2090{
2091        r->dt_delay   = 0;
2092        r->dt_sleep   = 0;
2093        r->dt_iowait  = 0;
2094        r->dt_preempt = 0;
2095        r->dt_run     = 0;
2096
2097        if (tprev) {
2098                r->dt_run = t - tprev;
2099                if (r->ready_to_run) {
2100                        if (r->ready_to_run > tprev)
2101                                pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102                        else
2103                                r->dt_delay = tprev - r->ready_to_run;
2104                }
2105
2106                if (r->last_time > tprev)
2107                        pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108                else if (r->last_time) {
2109                        u64 dt_wait = tprev - r->last_time;
2110
2111                        if (r->last_state == TASK_RUNNING)
2112                                r->dt_preempt = dt_wait;
2113                        else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114                                r->dt_iowait = dt_wait;
2115                        else
2116                                r->dt_sleep = dt_wait;
2117                }
2118        }
2119
2120        update_stats(&r->run_stats, r->dt_run);
2121
2122        r->total_run_time     += r->dt_run;
2123        r->total_delay_time   += r->dt_delay;
2124        r->total_sleep_time   += r->dt_sleep;
2125        r->total_iowait_time  += r->dt_iowait;
2126        r->total_preempt_time += r->dt_preempt;
2127}
2128
2129static bool is_idle_sample(struct perf_sample *sample,
2130                           struct evsel *evsel)
2131{
2132        /* pid 0 == swapper == idle task */
2133        if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134                return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136        return sample->pid == 0;
2137}
2138
2139static void save_task_callchain(struct perf_sched *sched,
2140                                struct perf_sample *sample,
2141                                struct evsel *evsel,
2142                                struct machine *machine)
2143{
2144        struct callchain_cursor *cursor = &callchain_cursor;
2145        struct thread *thread;
2146
2147        /* want main thread for process - has maps */
2148        thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149        if (thread == NULL) {
2150                pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151                return;
2152        }
2153
2154        if (!sched->show_callchain || sample->callchain == NULL)
2155                return;
2156
2157        if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158                                      NULL, NULL, sched->max_stack + 2) != 0) {
2159                if (verbose > 0)
2160                        pr_err("Failed to resolve callchain. Skipping\n");
2161
2162                return;
2163        }
2164
2165        callchain_cursor_commit(cursor);
2166
2167        while (true) {
2168                struct callchain_cursor_node *node;
2169                struct symbol *sym;
2170
2171                node = callchain_cursor_current(cursor);
2172                if (node == NULL)
2173                        break;
2174
2175                sym = node->sym;
2176                if (sym) {
2177                        if (!strcmp(sym->name, "schedule") ||
2178                            !strcmp(sym->name, "__schedule") ||
2179                            !strcmp(sym->name, "preempt_schedule"))
2180                                sym->ignore = 1;
2181                }
2182
2183                callchain_cursor_advance(cursor);
2184        }
2185}
2186
2187static int init_idle_thread(struct thread *thread)
2188{
2189        struct idle_thread_runtime *itr;
2190
2191        thread__set_comm(thread, idle_comm, 0);
2192
2193        itr = zalloc(sizeof(*itr));
2194        if (itr == NULL)
2195                return -ENOMEM;
2196
2197        init_stats(&itr->tr.run_stats);
2198        callchain_init(&itr->callchain);
2199        callchain_cursor_reset(&itr->cursor);
2200        thread__set_priv(thread, itr);
2201
2202        return 0;
2203}
2204
2205/*
2206 * Track idle stats per cpu by maintaining a local thread
2207 * struct for the idle task on each cpu.
2208 */
2209static int init_idle_threads(int ncpu)
2210{
2211        int i, ret;
2212
2213        idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214        if (!idle_threads)
2215                return -ENOMEM;
2216
2217        idle_max_cpu = ncpu;
2218
2219        /* allocate the actual thread struct if needed */
2220        for (i = 0; i < ncpu; ++i) {
2221                idle_threads[i] = thread__new(0, 0);
2222                if (idle_threads[i] == NULL)
2223                        return -ENOMEM;
2224
2225                ret = init_idle_thread(idle_threads[i]);
2226                if (ret < 0)
2227                        return ret;
2228        }
2229
2230        return 0;
2231}
2232
2233static void free_idle_threads(void)
2234{
2235        int i;
2236
2237        if (idle_threads == NULL)
2238                return;
2239
2240        for (i = 0; i < idle_max_cpu; ++i) {
2241                if ((idle_threads[i]))
2242                        thread__delete(idle_threads[i]);
2243        }
2244
2245        free(idle_threads);
2246}
2247
2248static struct thread *get_idle_thread(int cpu)
2249{
2250        /*
2251         * expand/allocate array of pointers to local thread
2252         * structs if needed
2253         */
2254        if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255                int i, j = __roundup_pow_of_two(cpu+1);
2256                void *p;
2257
2258                p = realloc(idle_threads, j * sizeof(struct thread *));
2259                if (!p)
2260                        return NULL;
2261
2262                idle_threads = (struct thread **) p;
2263                for (i = idle_max_cpu; i < j; ++i)
2264                        idle_threads[i] = NULL;
2265
2266                idle_max_cpu = j;
2267        }
2268
2269        /* allocate a new thread struct if needed */
2270        if (idle_threads[cpu] == NULL) {
2271                idle_threads[cpu] = thread__new(0, 0);
2272
2273                if (idle_threads[cpu]) {
2274                        if (init_idle_thread(idle_threads[cpu]) < 0)
2275                                return NULL;
2276                }
2277        }
2278
2279        return idle_threads[cpu];
2280}
2281
2282static void save_idle_callchain(struct perf_sched *sched,
2283                                struct idle_thread_runtime *itr,
2284                                struct perf_sample *sample)
2285{
2286        if (!sched->show_callchain || sample->callchain == NULL)
2287                return;
2288
2289        callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2290}
2291
2292static struct thread *timehist_get_thread(struct perf_sched *sched,
2293                                          struct perf_sample *sample,
2294                                          struct machine *machine,
2295                                          struct evsel *evsel)
2296{
2297        struct thread *thread;
2298
2299        if (is_idle_sample(sample, evsel)) {
2300                thread = get_idle_thread(sample->cpu);
2301                if (thread == NULL)
2302                        pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304        } else {
2305                /* there were samples with tid 0 but non-zero pid */
2306                thread = machine__findnew_thread(machine, sample->pid,
2307                                                 sample->tid ?: sample->pid);
2308                if (thread == NULL) {
2309                        pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310                                 sample->tid);
2311                }
2312
2313                save_task_callchain(sched, sample, evsel, machine);
2314                if (sched->idle_hist) {
2315                        struct thread *idle;
2316                        struct idle_thread_runtime *itr;
2317
2318                        idle = get_idle_thread(sample->cpu);
2319                        if (idle == NULL) {
2320                                pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321                                return NULL;
2322                        }
2323
2324                        itr = thread__priv(idle);
2325                        if (itr == NULL)
2326                                return NULL;
2327
2328                        itr->last_thread = thread;
2329
2330                        /* copy task callchain when entering to idle */
2331                        if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332                                save_idle_callchain(sched, itr, sample);
2333                }
2334        }
2335
2336        return thread;
2337}
2338
2339static bool timehist_skip_sample(struct perf_sched *sched,
2340                                 struct thread *thread,
2341                                 struct evsel *evsel,
2342                                 struct perf_sample *sample)
2343{
2344        bool rc = false;
2345
2346        if (thread__is_filtered(thread)) {
2347                rc = true;
2348                sched->skipped_samples++;
2349        }
2350
2351        if (sched->idle_hist) {
2352                if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353                        rc = true;
2354                else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355                         perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356                        rc = true;
2357        }
2358
2359        return rc;
2360}
2361
2362static void timehist_print_wakeup_event(struct perf_sched *sched,
2363                                        struct evsel *evsel,
2364                                        struct perf_sample *sample,
2365                                        struct machine *machine,
2366                                        struct thread *awakened)
2367{
2368        struct thread *thread;
2369        char tstr[64];
2370
2371        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372        if (thread == NULL)
2373                return;
2374
2375        /* show wakeup unless both awakee and awaker are filtered */
2376        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377            timehist_skip_sample(sched, awakened, evsel, sample)) {
2378                return;
2379        }
2380
2381        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382        printf("%15s [%04d] ", tstr, sample->cpu);
2383        if (sched->show_cpu_visual)
2384                printf(" %*s ", sched->max_cpu + 1, "");
2385
2386        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388        /* dt spacer */
2389        printf("  %9s  %9s  %9s ", "", "", "");
2390
2391        printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393        printf("\n");
2394}
2395
2396static int timehist_sched_wakeup_event(struct perf_tool *tool,
2397                                       union perf_event *event __maybe_unused,
2398                                       struct evsel *evsel,
2399                                       struct perf_sample *sample,
2400                                       struct machine *machine)
2401{
2402        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403        struct thread *thread;
2404        struct thread_runtime *tr = NULL;
2405        /* want pid of awakened task not pid in sample */
2406        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408        thread = machine__findnew_thread(machine, 0, pid);
2409        if (thread == NULL)
2410                return -1;
2411
2412        tr = thread__get_runtime(thread);
2413        if (tr == NULL)
2414                return -1;
2415
2416        if (tr->ready_to_run == 0)
2417                tr->ready_to_run = sample->time;
2418
2419        /* show wakeups if requested */
2420        if (sched->show_wakeups &&
2421            !perf_time__skip_sample(&sched->ptime, sample->time))
2422                timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424        return 0;
2425}
2426
2427static void timehist_print_migration_event(struct perf_sched *sched,
2428                                        struct evsel *evsel,
2429                                        struct perf_sample *sample,
2430                                        struct machine *machine,
2431                                        struct thread *migrated)
2432{
2433        struct thread *thread;
2434        char tstr[64];
2435        u32 max_cpus = sched->max_cpu + 1;
2436        u32 ocpu, dcpu;
2437
2438        if (sched->summary_only)
2439                return;
2440
2441        max_cpus = sched->max_cpu + 1;
2442        ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443        dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446        if (thread == NULL)
2447                return;
2448
2449        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450            timehist_skip_sample(sched, migrated, evsel, sample)) {
2451                return;
2452        }
2453
2454        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455        printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457        if (sched->show_cpu_visual) {
2458                u32 i;
2459                char c;
2460
2461                printf("  ");
2462                for (i = 0; i < max_cpus; ++i) {
2463                        c = (i == sample->cpu) ? 'm' : ' ';
2464                        printf("%c", c);
2465                }
2466                printf("  ");
2467        }
2468
2469        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471        /* dt spacer */
2472        printf("  %9s  %9s  %9s ", "", "", "");
2473
2474        printf("migrated: %s", timehist_get_commstr(migrated));
2475        printf(" cpu %d => %d", ocpu, dcpu);
2476
2477        printf("\n");
2478}
2479
2480static int timehist_migrate_task_event(struct perf_tool *tool,
2481                                       union perf_event *event __maybe_unused,
2482                                       struct evsel *evsel,
2483                                       struct perf_sample *sample,
2484                                       struct machine *machine)
2485{
2486        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487        struct thread *thread;
2488        struct thread_runtime *tr = NULL;
2489        /* want pid of migrated task not pid in sample */
2490        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492        thread = machine__findnew_thread(machine, 0, pid);
2493        if (thread == NULL)
2494                return -1;
2495
2496        tr = thread__get_runtime(thread);
2497        if (tr == NULL)
2498                return -1;
2499
2500        tr->migrations++;
2501
2502        /* show migrations if requested */
2503        timehist_print_migration_event(sched, evsel, sample, machine, thread);
2504
2505        return 0;
2506}
2507
2508static int timehist_sched_change_event(struct perf_tool *tool,
2509                                       union perf_event *event,
2510                                       struct evsel *evsel,
2511                                       struct perf_sample *sample,
2512                                       struct machine *machine)
2513{
2514        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515        struct perf_time_interval *ptime = &sched->ptime;
2516        struct addr_location al;
2517        struct thread *thread;
2518        struct thread_runtime *tr = NULL;
2519        u64 tprev, t = sample->time;
2520        int rc = 0;
2521        int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
2524        if (machine__resolve(machine, &al, sample) < 0) {
2525                pr_err("problem processing %d event. skipping it\n",
2526                       event->header.type);
2527                rc = -1;
2528                goto out;
2529        }
2530
2531        thread = timehist_get_thread(sched, sample, machine, evsel);
2532        if (thread == NULL) {
2533                rc = -1;
2534                goto out;
2535        }
2536
2537        if (timehist_skip_sample(sched, thread, evsel, sample))
2538                goto out;
2539
2540        tr = thread__get_runtime(thread);
2541        if (tr == NULL) {
2542                rc = -1;
2543                goto out;
2544        }
2545
2546        tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548        /*
2549         * If start time given:
2550         * - sample time is under window user cares about - skip sample
2551         * - tprev is under window user cares about  - reset to start of window
2552         */
2553        if (ptime->start && ptime->start > t)
2554                goto out;
2555
2556        if (tprev && ptime->start > tprev)
2557                tprev = ptime->start;
2558
2559        /*
2560         * If end time given:
2561         * - previous sched event is out of window - we are done
2562         * - sample time is beyond window user cares about - reset it
2563         *   to close out stats for time window interest
2564         */
2565        if (ptime->end) {
2566                if (tprev > ptime->end)
2567                        goto out;
2568
2569                if (t > ptime->end)
2570                        t = ptime->end;
2571        }
2572
2573        if (!sched->idle_hist || thread->tid == 0) {
2574                timehist_update_runtime_stats(tr, t, tprev);
2575
2576                if (sched->idle_hist) {
2577                        struct idle_thread_runtime *itr = (void *)tr;
2578                        struct thread_runtime *last_tr;
2579
2580                        BUG_ON(thread->tid != 0);
2581
2582                        if (itr->last_thread == NULL)
2583                                goto out;
2584
2585                        /* add current idle time as last thread's runtime */
2586                        last_tr = thread__get_runtime(itr->last_thread);
2587                        if (last_tr == NULL)
2588                                goto out;
2589
2590                        timehist_update_runtime_stats(last_tr, t, tprev);
2591                        /*
2592                         * remove delta time of last thread as it's not updated
2593                         * and otherwise it will show an invalid value next
2594                         * time.  we only care total run time and run stat.
2595                         */
2596                        last_tr->dt_run = 0;
2597                        last_tr->dt_delay = 0;
2598                        last_tr->dt_sleep = 0;
2599                        last_tr->dt_iowait = 0;
2600                        last_tr->dt_preempt = 0;
2601
2602                        if (itr->cursor.nr)
2603                                callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605                        itr->last_thread = NULL;
2606                }
2607        }
2608
2609        if (!sched->summary_only)
2610                timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2611
2612out:
2613        if (sched->hist_time.start == 0 && t >= ptime->start)
2614                sched->hist_time.start = t;
2615        if (ptime->end == 0 || t <= ptime->end)
2616                sched->hist_time.end = t;
2617
2618        if (tr) {
2619                /* time of this sched_switch event becomes last time task seen */
2620                tr->last_time = sample->time;
2621
2622                /* last state is used to determine where to account wait time */
2623                tr->last_state = state;
2624
2625                /* sched out event for task so reset ready to run time */
2626                tr->ready_to_run = 0;
2627        }
2628
2629        perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
2631        return rc;
2632}
2633
2634static int timehist_sched_switch_event(struct perf_tool *tool,
2635                             union perf_event *event,
2636                             struct evsel *evsel,
2637                             struct perf_sample *sample,
2638                             struct machine *machine __maybe_unused)
2639{
2640        return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641}
2642
2643static int process_lost(struct perf_tool *tool __maybe_unused,
2644                        union perf_event *event,
2645                        struct perf_sample *sample,
2646                        struct machine *machine __maybe_unused)
2647{
2648        char tstr[64];
2649
2650        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651        printf("%15s ", tstr);
2652        printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654        return 0;
2655}
2656
2657
2658static void print_thread_runtime(struct thread *t,
2659                                 struct thread_runtime *r)
2660{
2661        double mean = avg_stats(&r->run_stats);
2662        float stddev;
2663
2664        printf("%*s   %5d  %9" PRIu64 " ",
2665               comm_width, timehist_get_commstr(t), t->ppid,
2666               (u64) r->run_stats.n);
2667
2668        print_sched_time(r->total_run_time, 8);
2669        stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670        print_sched_time(r->run_stats.min, 6);
2671        printf(" ");
2672        print_sched_time((u64) mean, 6);
2673        printf(" ");
2674        print_sched_time(r->run_stats.max, 6);
2675        printf("  ");
2676        printf("%5.2f", stddev);
2677        printf("   %5" PRIu64, r->migrations);
2678        printf("\n");
2679}
2680
2681static void print_thread_waittime(struct thread *t,
2682                                  struct thread_runtime *r)
2683{
2684        printf("%*s   %5d  %9" PRIu64 " ",
2685               comm_width, timehist_get_commstr(t), t->ppid,
2686               (u64) r->run_stats.n);
2687
2688        print_sched_time(r->total_run_time, 8);
2689        print_sched_time(r->total_sleep_time, 6);
2690        printf(" ");
2691        print_sched_time(r->total_iowait_time, 6);
2692        printf(" ");
2693        print_sched_time(r->total_preempt_time, 6);
2694        printf(" ");
2695        print_sched_time(r->total_delay_time, 6);
2696        printf("\n");
2697}
2698
2699struct total_run_stats {
2700        struct perf_sched *sched;
2701        u64  sched_count;
2702        u64  task_count;
2703        u64  total_run_time;
2704};
2705
2706static int __show_thread_runtime(struct thread *t, void *priv)
2707{
2708        struct total_run_stats *stats = priv;
2709        struct thread_runtime *r;
2710
2711        if (thread__is_filtered(t))
2712                return 0;
2713
2714        r = thread__priv(t);
2715        if (r && r->run_stats.n) {
2716                stats->task_count++;
2717                stats->sched_count += r->run_stats.n;
2718                stats->total_run_time += r->total_run_time;
2719
2720                if (stats->sched->show_state)
2721                        print_thread_waittime(t, r);
2722                else
2723                        print_thread_runtime(t, r);
2724        }
2725
2726        return 0;
2727}
2728
2729static int show_thread_runtime(struct thread *t, void *priv)
2730{
2731        if (t->dead)
2732                return 0;
2733
2734        return __show_thread_runtime(t, priv);
2735}
2736
2737static int show_deadthread_runtime(struct thread *t, void *priv)
2738{
2739        if (!t->dead)
2740                return 0;
2741
2742        return __show_thread_runtime(t, priv);
2743}
2744
2745static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746{
2747        const char *sep = " <- ";
2748        struct callchain_list *chain;
2749        size_t ret = 0;
2750        char bf[1024];
2751        bool first;
2752
2753        if (node == NULL)
2754                return 0;
2755
2756        ret = callchain__fprintf_folded(fp, node->parent);
2757        first = (ret == 0);
2758
2759        list_for_each_entry(chain, &node->val, list) {
2760                if (chain->ip >= PERF_CONTEXT_MAX)
2761                        continue;
2762                if (chain->ms.sym && chain->ms.sym->ignore)
2763                        continue;
2764                ret += fprintf(fp, "%s%s", first ? "" : sep,
2765                               callchain_list__sym_name(chain, bf, sizeof(bf),
2766                                                        false));
2767                first = false;
2768        }
2769
2770        return ret;
2771}
2772
2773static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774{
2775        size_t ret = 0;
2776        FILE *fp = stdout;
2777        struct callchain_node *chain;
2778        struct rb_node *rb_node = rb_first_cached(root);
2779
2780        printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2781        printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2782               graph_dotted_line);
2783
2784        while (rb_node) {
2785                chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786                rb_node = rb_next(rb_node);
2787
2788                ret += fprintf(fp, "  ");
2789                print_sched_time(chain->hit, 12);
2790                ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2791                ret += fprintf(fp, " %8d  ", chain->count);
2792                ret += callchain__fprintf_folded(fp, chain);
2793                ret += fprintf(fp, "\n");
2794        }
2795
2796        return ret;
2797}
2798
2799static void timehist_print_summary(struct perf_sched *sched,
2800                                   struct perf_session *session)
2801{
2802        struct machine *m = &session->machines.host;
2803        struct total_run_stats totals;
2804        u64 task_count;
2805        struct thread *t;
2806        struct thread_runtime *r;
2807        int i;
2808        u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810        memset(&totals, 0, sizeof(totals));
2811        totals.sched = sched;
2812
2813        if (sched->idle_hist) {
2814                printf("\nIdle-time summary\n");
2815                printf("%*s  parent  sched-out  ", comm_width, "comm");
2816                printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2817        } else if (sched->show_state) {
2818                printf("\nWait-time summary\n");
2819                printf("%*s  parent   sched-in  ", comm_width, "comm");
2820                printf("   run-time      sleep      iowait     preempt       delay\n");
2821        } else {
2822                printf("\nRuntime summary\n");
2823                printf("%*s  parent   sched-in  ", comm_width, "comm");
2824                printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2825        }
2826        printf("%*s            (count)  ", comm_width, "");
2827        printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2828               sched->show_state ? "(msec)" : "%");
2829        printf("%.117s\n", graph_dotted_line);
2830
2831        machine__for_each_thread(m, show_thread_runtime, &totals);
2832        task_count = totals.task_count;
2833        if (!task_count)
2834                printf("<no still running tasks>\n");
2835
2836        printf("\nTerminated tasks:\n");
2837        machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838        if (task_count == totals.task_count)
2839                printf("<no terminated tasks>\n");
2840
2841        /* CPU idle stats not tracked when samples were skipped */
2842        if (sched->skipped_samples && !sched->idle_hist)
2843                return;
2844
2845        printf("\nIdle stats:\n");
2846        for (i = 0; i < idle_max_cpu; ++i) {
2847                t = idle_threads[i];
2848                if (!t)
2849                        continue;
2850
2851                r = thread__priv(t);
2852                if (r && r->run_stats.n) {
2853                        totals.sched_count += r->run_stats.n;
2854                        printf("    CPU %2d idle for ", i);
2855                        print_sched_time(r->total_run_time, 6);
2856                        printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857                } else
2858                        printf("    CPU %2d idle entire time window\n", i);
2859        }
2860
2861        if (sched->idle_hist && sched->show_callchain) {
2862                callchain_param.mode  = CHAIN_FOLDED;
2863                callchain_param.value = CCVAL_PERIOD;
2864
2865                callchain_register_param(&callchain_param);
2866
2867                printf("\nIdle stats by callchain:\n");
2868                for (i = 0; i < idle_max_cpu; ++i) {
2869                        struct idle_thread_runtime *itr;
2870
2871                        t = idle_threads[i];
2872                        if (!t)
2873                                continue;
2874
2875                        itr = thread__priv(t);
2876                        if (itr == NULL)
2877                                continue;
2878
2879                        callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880                                             0, &callchain_param);
2881
2882                        printf("  CPU %2d:", i);
2883                        print_sched_time(itr->tr.total_run_time, 6);
2884                        printf(" msec\n");
2885                        timehist_print_idlehist_callchain(&itr->sorted_root);
2886                        printf("\n");
2887                }
2888        }
2889
2890        printf("\n"
2891               "    Total number of unique tasks: %" PRIu64 "\n"
2892               "Total number of context switches: %" PRIu64 "\n",
2893               totals.task_count, totals.sched_count);
2894
2895        printf("           Total run time (msec): ");
2896        print_sched_time(totals.total_run_time, 2);
2897        printf("\n");
2898
2899        printf("    Total scheduling time (msec): ");
2900        print_sched_time(hist_time, 2);
2901        printf(" (x %d)\n", sched->max_cpu);
2902}
2903
2904typedef int (*sched_handler)(struct perf_tool *tool,
2905                          union perf_event *event,
2906                          struct evsel *evsel,
2907                          struct perf_sample *sample,
2908                          struct machine *machine);
2909
2910static int perf_timehist__process_sample(struct perf_tool *tool,
2911                                         union perf_event *event,
2912                                         struct perf_sample *sample,
2913                                         struct evsel *evsel,
2914                                         struct machine *machine)
2915{
2916        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917        int err = 0;
2918        int this_cpu = sample->cpu;
2919
2920        if (this_cpu > sched->max_cpu)
2921                sched->max_cpu = this_cpu;
2922
2923        if (evsel->handler != NULL) {
2924                sched_handler f = evsel->handler;
2925
2926                err = f(tool, event, evsel, sample, machine);
2927        }
2928
2929        return err;
2930}
2931
2932static int timehist_check_attr(struct perf_sched *sched,
2933                               struct evlist *evlist)
2934{
2935        struct evsel *evsel;
2936        struct evsel_runtime *er;
2937
2938        list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939                er = perf_evsel__get_runtime(evsel);
2940                if (er == NULL) {
2941                        pr_err("Failed to allocate memory for evsel runtime data\n");
2942                        return -1;
2943                }
2944
2945                if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2946                        pr_info("Samples do not have callchains.\n");
2947                        sched->show_callchain = 0;
2948                        symbol_conf.use_callchain = 0;
2949                }
2950        }
2951
2952        return 0;
2953}
2954
2955static int perf_sched__timehist(struct perf_sched *sched)
2956{
2957        const struct evsel_str_handler handlers[] = {
2958                { "sched:sched_switch",       timehist_sched_switch_event, },
2959                { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2960                { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2961        };
2962        const struct evsel_str_handler migrate_handlers[] = {
2963                { "sched:sched_migrate_task", timehist_migrate_task_event, },
2964        };
2965        struct perf_data data = {
2966                .path  = input_name,
2967                .mode  = PERF_DATA_MODE_READ,
2968                .force = sched->force,
2969        };
2970
2971        struct perf_session *session;
2972        struct evlist *evlist;
2973        int err = -1;
2974
2975        /*
2976         * event handlers for timehist option
2977         */
2978        sched->tool.sample       = perf_timehist__process_sample;
2979        sched->tool.mmap         = perf_event__process_mmap;
2980        sched->tool.comm         = perf_event__process_comm;
2981        sched->tool.exit         = perf_event__process_exit;
2982        sched->tool.fork         = perf_event__process_fork;
2983        sched->tool.lost         = process_lost;
2984        sched->tool.attr         = perf_event__process_attr;
2985        sched->tool.tracing_data = perf_event__process_tracing_data;
2986        sched->tool.build_id     = perf_event__process_build_id;
2987
2988        sched->tool.ordered_events = true;
2989        sched->tool.ordering_requires_timestamps = true;
2990
2991        symbol_conf.use_callchain = sched->show_callchain;
2992
2993        session = perf_session__new(&data, false, &sched->tool);
2994        if (IS_ERR(session))
2995                return PTR_ERR(session);
2996
2997        evlist = session->evlist;
2998
2999        symbol__init(&session->header.env);
3000
3001        if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002                pr_err("Invalid time string\n");
3003                return -EINVAL;
3004        }
3005
3006        if (timehist_check_attr(sched, evlist) != 0)
3007                goto out;
3008
3009        setup_pager();
3010
3011        /* setup per-evsel handlers */
3012        if (perf_session__set_tracepoints_handlers(session, handlers))
3013                goto out;
3014
3015        /* sched_switch event at a minimum needs to exist */
3016        if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017                                                  "sched:sched_switch")) {
3018                pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019                goto out;
3020        }
3021
3022        if (sched->show_migrations &&
3023            perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024                goto out;
3025
3026        /* pre-allocate struct for per-CPU idle stats */
3027        sched->max_cpu = session->header.env.nr_cpus_online;
3028        if (sched->max_cpu == 0)
3029                sched->max_cpu = 4;
3030        if (init_idle_threads(sched->max_cpu))
3031                goto out;
3032
3033        /* summary_only implies summary option, but don't overwrite summary if set */
3034        if (sched->summary_only)
3035                sched->summary = sched->summary_only;
3036
3037        if (!sched->summary_only)
3038                timehist_header(sched);
3039
3040        err = perf_session__process_events(session);
3041        if (err) {
3042                pr_err("Failed to process events, error %d", err);
3043                goto out;
3044        }
3045
3046        sched->nr_events      = evlist->stats.nr_events[0];
3047        sched->nr_lost_events = evlist->stats.total_lost;
3048        sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050        if (sched->summary)
3051                timehist_print_summary(sched, session);
3052
3053out:
3054        free_idle_threads();
3055        perf_session__delete(session);
3056
3057        return err;
3058}
3059
3060
3061static void print_bad_events(struct perf_sched *sched)
3062{
3063        if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065                        (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066                        sched->nr_unordered_timestamps, sched->nr_timestamps);
3067        }
3068        if (sched->nr_lost_events && sched->nr_events) {
3069                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070                        (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071                        sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072        }
3073        if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075                        (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076                        sched->nr_context_switch_bugs, sched->nr_timestamps);
3077                if (sched->nr_lost_events)
3078                        printf(" (due to lost events?)");
3079                printf("\n");
3080        }
3081}
3082
3083static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084{
3085        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086        struct work_atoms *this;
3087        const char *comm = thread__comm_str(data->thread), *this_comm;
3088        bool leftmost = true;
3089
3090        while (*new) {
3091                int cmp;
3092
3093                this = container_of(*new, struct work_atoms, node);
3094                parent = *new;
3095
3096                this_comm = thread__comm_str(this->thread);
3097                cmp = strcmp(comm, this_comm);
3098                if (cmp > 0) {
3099                        new = &((*new)->rb_left);
3100                } else if (cmp < 0) {
3101                        new = &((*new)->rb_right);
3102                        leftmost = false;
3103                } else {
3104                        this->num_merged++;
3105                        this->total_runtime += data->total_runtime;
3106                        this->nb_atoms += data->nb_atoms;
3107                        this->total_lat += data->total_lat;
3108                        list_splice(&data->work_list, &this->work_list);
3109                        if (this->max_lat < data->max_lat) {
3110                                this->max_lat = data->max_lat;
3111                                this->max_lat_at = data->max_lat_at;
3112                        }
3113                        zfree(&data);
3114                        return;
3115                }
3116        }
3117
3118        data->num_merged++;
3119        rb_link_node(&data->node, parent, new);
3120        rb_insert_color_cached(&data->node, root, leftmost);
3121}
3122
3123static void perf_sched__merge_lat(struct perf_sched *sched)
3124{
3125        struct work_atoms *data;
3126        struct rb_node *node;
3127
3128        if (sched->skip_merge)
3129                return;
3130
3131        while ((node = rb_first_cached(&sched->atom_root))) {
3132                rb_erase_cached(node, &sched->atom_root);
3133                data = rb_entry(node, struct work_atoms, node);
3134                __merge_work_atoms(&sched->merged_atom_root, data);
3135        }
3136}
3137
3138static int perf_sched__lat(struct perf_sched *sched)
3139{
3140        struct rb_node *next;
3141
3142        setup_pager();
3143
3144        if (perf_sched__read_events(sched))
3145                return -1;
3146
3147        perf_sched__merge_lat(sched);
3148        perf_sched__sort_lat(sched);
3149
3150        printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3152        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154        next = rb_first_cached(&sched->sorted_atom_root);
3155
3156        while (next) {
3157                struct work_atoms *work_list;
3158
3159                work_list = rb_entry(next, struct work_atoms, node);
3160                output_lat_thread(sched, work_list);
3161                next = rb_next(next);
3162                thread__zput(work_list->thread);
3163        }
3164
3165        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3167                (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169        printf(" ---------------------------------------------------\n");
3170
3171        print_bad_events(sched);
3172        printf("\n");
3173
3174        return 0;
3175}
3176
3177static int setup_map_cpus(struct perf_sched *sched)
3178{
3179        struct perf_cpu_map *map;
3180
3181        sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3182
3183        if (sched->map.comp) {
3184                sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185                if (!sched->map.comp_cpus)
3186                        return -1;
3187        }
3188
3189        if (!sched->map.cpus_str)
3190                return 0;
3191
3192        map = perf_cpu_map__new(sched->map.cpus_str);
3193        if (!map) {
3194                pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195                return -1;
3196        }
3197
3198        sched->map.cpus = map;
3199        return 0;
3200}
3201
3202static int setup_color_pids(struct perf_sched *sched)
3203{
3204        struct perf_thread_map *map;
3205
3206        if (!sched->map.color_pids_str)
3207                return 0;
3208
3209        map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210        if (!map) {
3211                pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212                return -1;
3213        }
3214
3215        sched->map.color_pids = map;
3216        return 0;
3217}
3218
3219static int setup_color_cpus(struct perf_sched *sched)
3220{
3221        struct perf_cpu_map *map;
3222
3223        if (!sched->map.color_cpus_str)
3224                return 0;
3225
3226        map = perf_cpu_map__new(sched->map.color_cpus_str);
3227        if (!map) {
3228                pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229                return -1;
3230        }
3231
3232        sched->map.color_cpus = map;
3233        return 0;
3234}
3235
3236static int perf_sched__map(struct perf_sched *sched)
3237{
3238        if (setup_map_cpus(sched))
3239                return -1;
3240
3241        if (setup_color_pids(sched))
3242                return -1;
3243
3244        if (setup_color_cpus(sched))
3245                return -1;
3246
3247        setup_pager();
3248        if (perf_sched__read_events(sched))
3249                return -1;
3250        print_bad_events(sched);
3251        return 0;
3252}
3253
3254static int perf_sched__replay(struct perf_sched *sched)
3255{
3256        unsigned long i;
3257
3258        calibrate_run_measurement_overhead(sched);
3259        calibrate_sleep_measurement_overhead(sched);
3260
3261        test_calibrations(sched);
3262
3263        if (perf_sched__read_events(sched))
3264                return -1;
3265
3266        printf("nr_run_events:        %ld\n", sched->nr_run_events);
3267        printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3268        printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3269
3270        if (sched->targetless_wakeups)
3271                printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3272        if (sched->multitarget_wakeups)
3273                printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274        if (sched->nr_run_events_optimized)
3275                printf("run atoms optimized: %ld\n",
3276                        sched->nr_run_events_optimized);
3277
3278        print_task_traces(sched);
3279        add_cross_task_wakeups(sched);
3280
3281        create_tasks(sched);
3282        printf("------------------------------------------------------------\n");
3283        for (i = 0; i < sched->replay_repeat; i++)
3284                run_one_test(sched);
3285
3286        return 0;
3287}
3288
3289static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290                          const char * const usage_msg[])
3291{
3292        char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294        for (tok = strtok_r(str, ", ", &tmp);
3295                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296                if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297                        usage_with_options_msg(usage_msg, options,
3298                                        "Unknown --sort key: `%s'", tok);
3299                }
3300        }
3301
3302        free(str);
3303
3304        sort_dimension__add("pid", &sched->cmp_pid);
3305}
3306
3307static int __cmd_record(int argc, const char **argv)
3308{
3309        unsigned int rec_argc, i, j;
3310        const char **rec_argv;
3311        const char * const record_args[] = {
3312                "record",
3313                "-a",
3314                "-R",
3315                "-m", "1024",
3316                "-c", "1",
3317                "-e", "sched:sched_switch",
3318                "-e", "sched:sched_stat_wait",
3319                "-e", "sched:sched_stat_sleep",
3320                "-e", "sched:sched_stat_iowait",
3321                "-e", "sched:sched_stat_runtime",
3322                "-e", "sched:sched_process_fork",
3323                "-e", "sched:sched_wakeup",
3324                "-e", "sched:sched_wakeup_new",
3325                "-e", "sched:sched_migrate_task",
3326        };
3327
3328        rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3329        rec_argv = calloc(rec_argc + 1, sizeof(char *));
3330
3331        if (rec_argv == NULL)
3332                return -ENOMEM;
3333
3334        for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335                rec_argv[i] = strdup(record_args[i]);
3336
3337        for (j = 1; j < (unsigned int)argc; j++, i++)
3338                rec_argv[i] = argv[j];
3339
3340        BUG_ON(i != rec_argc);
3341
3342        return cmd_record(i, rec_argv);
3343}
3344
3345int cmd_sched(int argc, const char **argv)
3346{
3347        static const char default_sort_order[] = "avg, max, switch, runtime";
3348        struct perf_sched sched = {
3349                .tool = {
3350                        .sample          = perf_sched__process_tracepoint_sample,
3351                        .comm            = perf_sched__process_comm,
3352                        .namespaces      = perf_event__process_namespaces,
3353                        .lost            = perf_event__process_lost,
3354                        .fork            = perf_sched__process_fork_event,
3355                        .ordered_events = true,
3356                },
3357                .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3358                .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3359                .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3360                .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361                .sort_order           = default_sort_order,
3362                .replay_repeat        = 10,
3363                .profile_cpu          = -1,
3364                .next_shortname1      = 'A',
3365                .next_shortname2      = '0',
3366                .skip_merge           = 0,
3367                .show_callchain       = 1,
3368                .max_stack            = 5,
3369        };
3370        const struct option sched_options[] = {
3371        OPT_STRING('i', "input", &input_name, "file",
3372                    "input file name"),
3373        OPT_INCR('v', "verbose", &verbose,
3374                    "be more verbose (show symbol address, etc)"),
3375        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376                    "dump raw trace in ASCII"),
3377        OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378        OPT_END()
3379        };
3380        const struct option latency_options[] = {
3381        OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382                   "sort by key(s): runtime, switch, avg, max"),
3383        OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384                    "CPU to profile on"),
3385        OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386                    "latency stats per pid instead of per comm"),
3387        OPT_PARENT(sched_options)
3388        };
3389        const struct option replay_options[] = {
3390        OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391                     "repeat the workload replay N times (-1: infinite)"),
3392        OPT_PARENT(sched_options)
3393        };
3394        const struct option map_options[] = {
3395        OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396                    "map output in compact mode"),
3397        OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398                   "highlight given pids in map"),
3399        OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400                    "highlight given CPUs in map"),
3401        OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402                    "display given CPUs in map"),
3403        OPT_PARENT(sched_options)
3404        };
3405        const struct option timehist_options[] = {
3406        OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407                   "file", "vmlinux pathname"),
3408        OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409                   "file", "kallsyms pathname"),
3410        OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411                    "Display call chains if present (default on)"),
3412        OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413                   "Maximum number of functions to display backtrace."),
3414        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415                    "Look for files with symbols relative to this directory"),
3416        OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417                    "Show only syscall summary with statistics"),
3418        OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419                    "Show all syscalls and summary with statistics"),
3420        OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421        OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422        OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423        OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424        OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425        OPT_STRING(0, "time", &sched.time_str, "str",
3426                   "Time span for analysis (start,stop)"),
3427        OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428        OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429                   "analyze events only for given process id(s)"),
3430        OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431                   "analyze events only for given thread id(s)"),
3432        OPT_PARENT(sched_options)
3433        };
3434
3435        const char * const latency_usage[] = {
3436                "perf sched latency [<options>]",
3437                NULL
3438        };
3439        const char * const replay_usage[] = {
3440                "perf sched replay [<options>]",
3441                NULL
3442        };
3443        const char * const map_usage[] = {
3444                "perf sched map [<options>]",
3445                NULL
3446        };
3447        const char * const timehist_usage[] = {
3448                "perf sched timehist [<options>]",
3449                NULL
3450        };
3451        const char *const sched_subcommands[] = { "record", "latency", "map",
3452                                                  "replay", "script",
3453                                                  "timehist", NULL };
3454        const char *sched_usage[] = {
3455                NULL,
3456                NULL
3457        };
3458        struct trace_sched_handler lat_ops  = {
3459                .wakeup_event       = latency_wakeup_event,
3460                .switch_event       = latency_switch_event,
3461                .runtime_event      = latency_runtime_event,
3462                .migrate_task_event = latency_migrate_task_event,
3463        };
3464        struct trace_sched_handler map_ops  = {
3465                .switch_event       = map_switch_event,
3466        };
3467        struct trace_sched_handler replay_ops  = {
3468                .wakeup_event       = replay_wakeup_event,
3469                .switch_event       = replay_switch_event,
3470                .fork_event         = replay_fork_event,
3471        };
3472        unsigned int i;
3473
3474        for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475                sched.curr_pid[i] = -1;
3476
3477        argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478                                        sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479        if (!argc)
3480                usage_with_options(sched_usage, sched_options);
3481
3482        /*
3483         * Aliased to 'perf script' for now:
3484         */
3485        if (!strcmp(argv[0], "script"))
3486                return cmd_script(argc, argv);
3487
3488        if (!strncmp(argv[0], "rec", 3)) {
3489                return __cmd_record(argc, argv);
3490        } else if (!strncmp(argv[0], "lat", 3)) {
3491                sched.tp_handler = &lat_ops;
3492                if (argc > 1) {
3493                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494                        if (argc)
3495                                usage_with_options(latency_usage, latency_options);
3496                }
3497                setup_sorting(&sched, latency_options, latency_usage);
3498                return perf_sched__lat(&sched);
3499        } else if (!strcmp(argv[0], "map")) {
3500                if (argc) {
3501                        argc = parse_options(argc, argv, map_options, map_usage, 0);
3502                        if (argc)
3503                                usage_with_options(map_usage, map_options);
3504                }
3505                sched.tp_handler = &map_ops;
3506                setup_sorting(&sched, latency_options, latency_usage);
3507                return perf_sched__map(&sched);
3508        } else if (!strncmp(argv[0], "rep", 3)) {
3509                sched.tp_handler = &replay_ops;
3510                if (argc) {
3511                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512                        if (argc)
3513                                usage_with_options(replay_usage, replay_options);
3514                }
3515                return perf_sched__replay(&sched);
3516        } else if (!strcmp(argv[0], "timehist")) {
3517                if (argc) {
3518                        argc = parse_options(argc, argv, timehist_options,
3519                                             timehist_usage, 0);
3520                        if (argc)
3521                                usage_with_options(timehist_usage, timehist_options);
3522                }
3523                if ((sched.show_wakeups || sched.show_next) &&
3524                    sched.summary_only) {
3525                        pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526                        parse_options_usage(timehist_usage, timehist_options, "s", true);
3527                        if (sched.show_wakeups)
3528                                parse_options_usage(NULL, timehist_options, "w", true);
3529                        if (sched.show_next)
3530                                parse_options_usage(NULL, timehist_options, "n", true);
3531                        return -EINVAL;
3532                }
3533
3534                return perf_sched__timehist(&sched);
3535        } else {
3536                usage_with_options(sched_usage, sched_options);
3537        }
3538
3539        return 0;
3540}
3541