linux/tools/perf/util/thread-stack.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * thread-stack.c: Synthesize a thread's stack using call / return events
   4 * Copyright (c) 2014, Intel Corporation.
   5 */
   6
   7#include <linux/rbtree.h>
   8#include <linux/list.h>
   9#include <linux/log2.h>
  10#include <linux/zalloc.h>
  11#include <errno.h>
  12#include <stdlib.h>
  13#include <string.h>
  14#include "thread.h"
  15#include "event.h"
  16#include "machine.h"
  17#include "env.h"
  18#include "debug.h"
  19#include "symbol.h"
  20#include "comm.h"
  21#include "call-path.h"
  22#include "thread-stack.h"
  23
  24#define STACK_GROWTH 2048
  25
  26/*
  27 * State of retpoline detection.
  28 *
  29 * RETPOLINE_NONE: no retpoline detection
  30 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible
  31 * X86_RETPOLINE_DETECTED: x86 retpoline detected
  32 */
  33enum retpoline_state_t {
  34        RETPOLINE_NONE,
  35        X86_RETPOLINE_POSSIBLE,
  36        X86_RETPOLINE_DETECTED,
  37};
  38
  39/**
  40 * struct thread_stack_entry - thread stack entry.
  41 * @ret_addr: return address
  42 * @timestamp: timestamp (if known)
  43 * @ref: external reference (e.g. db_id of sample)
  44 * @branch_count: the branch count when the entry was created
  45 * @insn_count: the instruction count when the entry was created
  46 * @cyc_count the cycle count when the entry was created
  47 * @db_id: id used for db-export
  48 * @cp: call path
  49 * @no_call: a 'call' was not seen
  50 * @trace_end: a 'call' but trace ended
  51 * @non_call: a branch but not a 'call' to the start of a different symbol
  52 */
  53struct thread_stack_entry {
  54        u64 ret_addr;
  55        u64 timestamp;
  56        u64 ref;
  57        u64 branch_count;
  58        u64 insn_count;
  59        u64 cyc_count;
  60        u64 db_id;
  61        struct call_path *cp;
  62        bool no_call;
  63        bool trace_end;
  64        bool non_call;
  65};
  66
  67/**
  68 * struct thread_stack - thread stack constructed from 'call' and 'return'
  69 *                       branch samples.
  70 * @stack: array that holds the stack
  71 * @cnt: number of entries in the stack
  72 * @sz: current maximum stack size
  73 * @trace_nr: current trace number
  74 * @branch_count: running branch count
  75 * @insn_count: running  instruction count
  76 * @cyc_count running  cycle count
  77 * @kernel_start: kernel start address
  78 * @last_time: last timestamp
  79 * @crp: call/return processor
  80 * @comm: current comm
  81 * @arr_sz: size of array if this is the first element of an array
  82 * @rstate: used to detect retpolines
  83 */
  84struct thread_stack {
  85        struct thread_stack_entry *stack;
  86        size_t cnt;
  87        size_t sz;
  88        u64 trace_nr;
  89        u64 branch_count;
  90        u64 insn_count;
  91        u64 cyc_count;
  92        u64 kernel_start;
  93        u64 last_time;
  94        struct call_return_processor *crp;
  95        struct comm *comm;
  96        unsigned int arr_sz;
  97        enum retpoline_state_t rstate;
  98};
  99
 100/*
 101 * Assume pid == tid == 0 identifies the idle task as defined by
 102 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu,
 103 * and therefore requires a stack for each cpu.
 104 */
 105static inline bool thread_stack__per_cpu(struct thread *thread)
 106{
 107        return !(thread->tid || thread->pid_);
 108}
 109
 110static int thread_stack__grow(struct thread_stack *ts)
 111{
 112        struct thread_stack_entry *new_stack;
 113        size_t sz, new_sz;
 114
 115        new_sz = ts->sz + STACK_GROWTH;
 116        sz = new_sz * sizeof(struct thread_stack_entry);
 117
 118        new_stack = realloc(ts->stack, sz);
 119        if (!new_stack)
 120                return -ENOMEM;
 121
 122        ts->stack = new_stack;
 123        ts->sz = new_sz;
 124
 125        return 0;
 126}
 127
 128static int thread_stack__init(struct thread_stack *ts, struct thread *thread,
 129                              struct call_return_processor *crp)
 130{
 131        int err;
 132
 133        err = thread_stack__grow(ts);
 134        if (err)
 135                return err;
 136
 137        if (thread->mg && thread->mg->machine) {
 138                struct machine *machine = thread->mg->machine;
 139                const char *arch = perf_env__arch(machine->env);
 140
 141                ts->kernel_start = machine__kernel_start(machine);
 142                if (!strcmp(arch, "x86"))
 143                        ts->rstate = X86_RETPOLINE_POSSIBLE;
 144        } else {
 145                ts->kernel_start = 1ULL << 63;
 146        }
 147        ts->crp = crp;
 148
 149        return 0;
 150}
 151
 152static struct thread_stack *thread_stack__new(struct thread *thread, int cpu,
 153                                              struct call_return_processor *crp)
 154{
 155        struct thread_stack *ts = thread->ts, *new_ts;
 156        unsigned int old_sz = ts ? ts->arr_sz : 0;
 157        unsigned int new_sz = 1;
 158
 159        if (thread_stack__per_cpu(thread) && cpu > 0)
 160                new_sz = roundup_pow_of_two(cpu + 1);
 161
 162        if (!ts || new_sz > old_sz) {
 163                new_ts = calloc(new_sz, sizeof(*ts));
 164                if (!new_ts)
 165                        return NULL;
 166                if (ts)
 167                        memcpy(new_ts, ts, old_sz * sizeof(*ts));
 168                new_ts->arr_sz = new_sz;
 169                zfree(&thread->ts);
 170                thread->ts = new_ts;
 171                ts = new_ts;
 172        }
 173
 174        if (thread_stack__per_cpu(thread) && cpu > 0 &&
 175            (unsigned int)cpu < ts->arr_sz)
 176                ts += cpu;
 177
 178        if (!ts->stack &&
 179            thread_stack__init(ts, thread, crp))
 180                return NULL;
 181
 182        return ts;
 183}
 184
 185static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu)
 186{
 187        struct thread_stack *ts = thread->ts;
 188
 189        if (cpu < 0)
 190                cpu = 0;
 191
 192        if (!ts || (unsigned int)cpu >= ts->arr_sz)
 193                return NULL;
 194
 195        ts += cpu;
 196
 197        if (!ts->stack)
 198                return NULL;
 199
 200        return ts;
 201}
 202
 203static inline struct thread_stack *thread__stack(struct thread *thread,
 204                                                    int cpu)
 205{
 206        if (!thread)
 207                return NULL;
 208
 209        if (thread_stack__per_cpu(thread))
 210                return thread__cpu_stack(thread, cpu);
 211
 212        return thread->ts;
 213}
 214
 215static int thread_stack__push(struct thread_stack *ts, u64 ret_addr,
 216                              bool trace_end)
 217{
 218        int err = 0;
 219
 220        if (ts->cnt == ts->sz) {
 221                err = thread_stack__grow(ts);
 222                if (err) {
 223                        pr_warning("Out of memory: discarding thread stack\n");
 224                        ts->cnt = 0;
 225                }
 226        }
 227
 228        ts->stack[ts->cnt].trace_end = trace_end;
 229        ts->stack[ts->cnt++].ret_addr = ret_addr;
 230
 231        return err;
 232}
 233
 234static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
 235{
 236        size_t i;
 237
 238        /*
 239         * In some cases there may be functions which are not seen to return.
 240         * For example when setjmp / longjmp has been used.  Or the perf context
 241         * switch in the kernel which doesn't stop and start tracing in exactly
 242         * the same code path.  When that happens the return address will be
 243         * further down the stack.  If the return address is not found at all,
 244         * we assume the opposite (i.e. this is a return for a call that wasn't
 245         * seen for some reason) and leave the stack alone.
 246         */
 247        for (i = ts->cnt; i; ) {
 248                if (ts->stack[--i].ret_addr == ret_addr) {
 249                        ts->cnt = i;
 250                        return;
 251                }
 252        }
 253}
 254
 255static void thread_stack__pop_trace_end(struct thread_stack *ts)
 256{
 257        size_t i;
 258
 259        for (i = ts->cnt; i; ) {
 260                if (ts->stack[--i].trace_end)
 261                        ts->cnt = i;
 262                else
 263                        return;
 264        }
 265}
 266
 267static bool thread_stack__in_kernel(struct thread_stack *ts)
 268{
 269        if (!ts->cnt)
 270                return false;
 271
 272        return ts->stack[ts->cnt - 1].cp->in_kernel;
 273}
 274
 275static int thread_stack__call_return(struct thread *thread,
 276                                     struct thread_stack *ts, size_t idx,
 277                                     u64 timestamp, u64 ref, bool no_return)
 278{
 279        struct call_return_processor *crp = ts->crp;
 280        struct thread_stack_entry *tse;
 281        struct call_return cr = {
 282                .thread = thread,
 283                .comm = ts->comm,
 284                .db_id = 0,
 285        };
 286        u64 *parent_db_id;
 287
 288        tse = &ts->stack[idx];
 289        cr.cp = tse->cp;
 290        cr.call_time = tse->timestamp;
 291        cr.return_time = timestamp;
 292        cr.branch_count = ts->branch_count - tse->branch_count;
 293        cr.insn_count = ts->insn_count - tse->insn_count;
 294        cr.cyc_count = ts->cyc_count - tse->cyc_count;
 295        cr.db_id = tse->db_id;
 296        cr.call_ref = tse->ref;
 297        cr.return_ref = ref;
 298        if (tse->no_call)
 299                cr.flags |= CALL_RETURN_NO_CALL;
 300        if (no_return)
 301                cr.flags |= CALL_RETURN_NO_RETURN;
 302        if (tse->non_call)
 303                cr.flags |= CALL_RETURN_NON_CALL;
 304
 305        /*
 306         * The parent db_id must be assigned before exporting the child. Note
 307         * it is not possible to export the parent first because its information
 308         * is not yet complete because its 'return' has not yet been processed.
 309         */
 310        parent_db_id = idx ? &(tse - 1)->db_id : NULL;
 311
 312        return crp->process(&cr, parent_db_id, crp->data);
 313}
 314
 315static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
 316{
 317        struct call_return_processor *crp = ts->crp;
 318        int err;
 319
 320        if (!crp) {
 321                ts->cnt = 0;
 322                return 0;
 323        }
 324
 325        while (ts->cnt) {
 326                err = thread_stack__call_return(thread, ts, --ts->cnt,
 327                                                ts->last_time, 0, true);
 328                if (err) {
 329                        pr_err("Error flushing thread stack!\n");
 330                        ts->cnt = 0;
 331                        return err;
 332                }
 333        }
 334
 335        return 0;
 336}
 337
 338int thread_stack__flush(struct thread *thread)
 339{
 340        struct thread_stack *ts = thread->ts;
 341        unsigned int pos;
 342        int err = 0;
 343
 344        if (ts) {
 345                for (pos = 0; pos < ts->arr_sz; pos++) {
 346                        int ret = __thread_stack__flush(thread, ts + pos);
 347
 348                        if (ret)
 349                                err = ret;
 350                }
 351        }
 352
 353        return err;
 354}
 355
 356int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip,
 357                        u64 to_ip, u16 insn_len, u64 trace_nr)
 358{
 359        struct thread_stack *ts = thread__stack(thread, cpu);
 360
 361        if (!thread)
 362                return -EINVAL;
 363
 364        if (!ts) {
 365                ts = thread_stack__new(thread, cpu, NULL);
 366                if (!ts) {
 367                        pr_warning("Out of memory: no thread stack\n");
 368                        return -ENOMEM;
 369                }
 370                ts->trace_nr = trace_nr;
 371        }
 372
 373        /*
 374         * When the trace is discontinuous, the trace_nr changes.  In that case
 375         * the stack might be completely invalid.  Better to report nothing than
 376         * to report something misleading, so flush the stack.
 377         */
 378        if (trace_nr != ts->trace_nr) {
 379                if (ts->trace_nr)
 380                        __thread_stack__flush(thread, ts);
 381                ts->trace_nr = trace_nr;
 382        }
 383
 384        /* Stop here if thread_stack__process() is in use */
 385        if (ts->crp)
 386                return 0;
 387
 388        if (flags & PERF_IP_FLAG_CALL) {
 389                u64 ret_addr;
 390
 391                if (!to_ip)
 392                        return 0;
 393                ret_addr = from_ip + insn_len;
 394                if (ret_addr == to_ip)
 395                        return 0; /* Zero-length calls are excluded */
 396                return thread_stack__push(ts, ret_addr,
 397                                          flags & PERF_IP_FLAG_TRACE_END);
 398        } else if (flags & PERF_IP_FLAG_TRACE_BEGIN) {
 399                /*
 400                 * If the caller did not change the trace number (which would
 401                 * have flushed the stack) then try to make sense of the stack.
 402                 * Possibly, tracing began after returning to the current
 403                 * address, so try to pop that. Also, do not expect a call made
 404                 * when the trace ended, to return, so pop that.
 405                 */
 406                thread_stack__pop(ts, to_ip);
 407                thread_stack__pop_trace_end(ts);
 408        } else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) {
 409                thread_stack__pop(ts, to_ip);
 410        }
 411
 412        return 0;
 413}
 414
 415void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr)
 416{
 417        struct thread_stack *ts = thread__stack(thread, cpu);
 418
 419        if (!ts)
 420                return;
 421
 422        if (trace_nr != ts->trace_nr) {
 423                if (ts->trace_nr)
 424                        __thread_stack__flush(thread, ts);
 425                ts->trace_nr = trace_nr;
 426        }
 427}
 428
 429static void __thread_stack__free(struct thread *thread, struct thread_stack *ts)
 430{
 431        __thread_stack__flush(thread, ts);
 432        zfree(&ts->stack);
 433}
 434
 435static void thread_stack__reset(struct thread *thread, struct thread_stack *ts)
 436{
 437        unsigned int arr_sz = ts->arr_sz;
 438
 439        __thread_stack__free(thread, ts);
 440        memset(ts, 0, sizeof(*ts));
 441        ts->arr_sz = arr_sz;
 442}
 443
 444void thread_stack__free(struct thread *thread)
 445{
 446        struct thread_stack *ts = thread->ts;
 447        unsigned int pos;
 448
 449        if (ts) {
 450                for (pos = 0; pos < ts->arr_sz; pos++)
 451                        __thread_stack__free(thread, ts + pos);
 452                zfree(&thread->ts);
 453        }
 454}
 455
 456static inline u64 callchain_context(u64 ip, u64 kernel_start)
 457{
 458        return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL;
 459}
 460
 461void thread_stack__sample(struct thread *thread, int cpu,
 462                          struct ip_callchain *chain,
 463                          size_t sz, u64 ip, u64 kernel_start)
 464{
 465        struct thread_stack *ts = thread__stack(thread, cpu);
 466        u64 context = callchain_context(ip, kernel_start);
 467        u64 last_context;
 468        size_t i, j;
 469
 470        if (sz < 2) {
 471                chain->nr = 0;
 472                return;
 473        }
 474
 475        chain->ips[0] = context;
 476        chain->ips[1] = ip;
 477
 478        if (!ts) {
 479                chain->nr = 2;
 480                return;
 481        }
 482
 483        last_context = context;
 484
 485        for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) {
 486                ip = ts->stack[ts->cnt - j].ret_addr;
 487                context = callchain_context(ip, kernel_start);
 488                if (context != last_context) {
 489                        if (i >= sz - 1)
 490                                break;
 491                        chain->ips[i++] = context;
 492                        last_context = context;
 493                }
 494                chain->ips[i] = ip;
 495        }
 496
 497        chain->nr = i;
 498}
 499
 500struct call_return_processor *
 501call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data),
 502                           void *data)
 503{
 504        struct call_return_processor *crp;
 505
 506        crp = zalloc(sizeof(struct call_return_processor));
 507        if (!crp)
 508                return NULL;
 509        crp->cpr = call_path_root__new();
 510        if (!crp->cpr)
 511                goto out_free;
 512        crp->process = process;
 513        crp->data = data;
 514        return crp;
 515
 516out_free:
 517        free(crp);
 518        return NULL;
 519}
 520
 521void call_return_processor__free(struct call_return_processor *crp)
 522{
 523        if (crp) {
 524                call_path_root__free(crp->cpr);
 525                free(crp);
 526        }
 527}
 528
 529static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
 530                                 u64 timestamp, u64 ref, struct call_path *cp,
 531                                 bool no_call, bool trace_end)
 532{
 533        struct thread_stack_entry *tse;
 534        int err;
 535
 536        if (!cp)
 537                return -ENOMEM;
 538
 539        if (ts->cnt == ts->sz) {
 540                err = thread_stack__grow(ts);
 541                if (err)
 542                        return err;
 543        }
 544
 545        tse = &ts->stack[ts->cnt++];
 546        tse->ret_addr = ret_addr;
 547        tse->timestamp = timestamp;
 548        tse->ref = ref;
 549        tse->branch_count = ts->branch_count;
 550        tse->insn_count = ts->insn_count;
 551        tse->cyc_count = ts->cyc_count;
 552        tse->cp = cp;
 553        tse->no_call = no_call;
 554        tse->trace_end = trace_end;
 555        tse->non_call = false;
 556        tse->db_id = 0;
 557
 558        return 0;
 559}
 560
 561static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
 562                                u64 ret_addr, u64 timestamp, u64 ref,
 563                                struct symbol *sym)
 564{
 565        int err;
 566
 567        if (!ts->cnt)
 568                return 1;
 569
 570        if (ts->cnt == 1) {
 571                struct thread_stack_entry *tse = &ts->stack[0];
 572
 573                if (tse->cp->sym == sym)
 574                        return thread_stack__call_return(thread, ts, --ts->cnt,
 575                                                         timestamp, ref, false);
 576        }
 577
 578        if (ts->stack[ts->cnt - 1].ret_addr == ret_addr &&
 579            !ts->stack[ts->cnt - 1].non_call) {
 580                return thread_stack__call_return(thread, ts, --ts->cnt,
 581                                                 timestamp, ref, false);
 582        } else {
 583                size_t i = ts->cnt - 1;
 584
 585                while (i--) {
 586                        if (ts->stack[i].ret_addr != ret_addr ||
 587                            ts->stack[i].non_call)
 588                                continue;
 589                        i += 1;
 590                        while (ts->cnt > i) {
 591                                err = thread_stack__call_return(thread, ts,
 592                                                                --ts->cnt,
 593                                                                timestamp, ref,
 594                                                                true);
 595                                if (err)
 596                                        return err;
 597                        }
 598                        return thread_stack__call_return(thread, ts, --ts->cnt,
 599                                                         timestamp, ref, false);
 600                }
 601        }
 602
 603        return 1;
 604}
 605
 606static int thread_stack__bottom(struct thread_stack *ts,
 607                                struct perf_sample *sample,
 608                                struct addr_location *from_al,
 609                                struct addr_location *to_al, u64 ref)
 610{
 611        struct call_path_root *cpr = ts->crp->cpr;
 612        struct call_path *cp;
 613        struct symbol *sym;
 614        u64 ip;
 615
 616        if (sample->ip) {
 617                ip = sample->ip;
 618                sym = from_al->sym;
 619        } else if (sample->addr) {
 620                ip = sample->addr;
 621                sym = to_al->sym;
 622        } else {
 623                return 0;
 624        }
 625
 626        cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
 627                                ts->kernel_start);
 628
 629        return thread_stack__push_cp(ts, ip, sample->time, ref, cp,
 630                                     true, false);
 631}
 632
 633static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts,
 634                                struct perf_sample *sample, u64 ref)
 635{
 636        u64 tm = sample->time;
 637        int err;
 638
 639        /* Return to userspace, so pop all kernel addresses */
 640        while (thread_stack__in_kernel(ts)) {
 641                err = thread_stack__call_return(thread, ts, --ts->cnt,
 642                                                tm, ref, true);
 643                if (err)
 644                        return err;
 645        }
 646
 647        return 0;
 648}
 649
 650static int thread_stack__no_call_return(struct thread *thread,
 651                                        struct thread_stack *ts,
 652                                        struct perf_sample *sample,
 653                                        struct addr_location *from_al,
 654                                        struct addr_location *to_al, u64 ref)
 655{
 656        struct call_path_root *cpr = ts->crp->cpr;
 657        struct call_path *root = &cpr->call_path;
 658        struct symbol *fsym = from_al->sym;
 659        struct symbol *tsym = to_al->sym;
 660        struct call_path *cp, *parent;
 661        u64 ks = ts->kernel_start;
 662        u64 addr = sample->addr;
 663        u64 tm = sample->time;
 664        u64 ip = sample->ip;
 665        int err;
 666
 667        if (ip >= ks && addr < ks) {
 668                /* Return to userspace, so pop all kernel addresses */
 669                err = thread_stack__pop_ks(thread, ts, sample, ref);
 670                if (err)
 671                        return err;
 672
 673                /* If the stack is empty, push the userspace address */
 674                if (!ts->cnt) {
 675                        cp = call_path__findnew(cpr, root, tsym, addr, ks);
 676                        return thread_stack__push_cp(ts, 0, tm, ref, cp, true,
 677                                                     false);
 678                }
 679        } else if (thread_stack__in_kernel(ts) && ip < ks) {
 680                /* Return to userspace, so pop all kernel addresses */
 681                err = thread_stack__pop_ks(thread, ts, sample, ref);
 682                if (err)
 683                        return err;
 684        }
 685
 686        if (ts->cnt)
 687                parent = ts->stack[ts->cnt - 1].cp;
 688        else
 689                parent = root;
 690
 691        if (parent->sym == from_al->sym) {
 692                /*
 693                 * At the bottom of the stack, assume the missing 'call' was
 694                 * before the trace started. So, pop the current symbol and push
 695                 * the 'to' symbol.
 696                 */
 697                if (ts->cnt == 1) {
 698                        err = thread_stack__call_return(thread, ts, --ts->cnt,
 699                                                        tm, ref, false);
 700                        if (err)
 701                                return err;
 702                }
 703
 704                if (!ts->cnt) {
 705                        cp = call_path__findnew(cpr, root, tsym, addr, ks);
 706
 707                        return thread_stack__push_cp(ts, addr, tm, ref, cp,
 708                                                     true, false);
 709                }
 710
 711                /*
 712                 * Otherwise assume the 'return' is being used as a jump (e.g.
 713                 * retpoline) and just push the 'to' symbol.
 714                 */
 715                cp = call_path__findnew(cpr, parent, tsym, addr, ks);
 716
 717                err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false);
 718                if (!err)
 719                        ts->stack[ts->cnt - 1].non_call = true;
 720
 721                return err;
 722        }
 723
 724        /*
 725         * Assume 'parent' has not yet returned, so push 'to', and then push and
 726         * pop 'from'.
 727         */
 728
 729        cp = call_path__findnew(cpr, parent, tsym, addr, ks);
 730
 731        err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false);
 732        if (err)
 733                return err;
 734
 735        cp = call_path__findnew(cpr, cp, fsym, ip, ks);
 736
 737        err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false);
 738        if (err)
 739                return err;
 740
 741        return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false);
 742}
 743
 744static int thread_stack__trace_begin(struct thread *thread,
 745                                     struct thread_stack *ts, u64 timestamp,
 746                                     u64 ref)
 747{
 748        struct thread_stack_entry *tse;
 749        int err;
 750
 751        if (!ts->cnt)
 752                return 0;
 753
 754        /* Pop trace end */
 755        tse = &ts->stack[ts->cnt - 1];
 756        if (tse->trace_end) {
 757                err = thread_stack__call_return(thread, ts, --ts->cnt,
 758                                                timestamp, ref, false);
 759                if (err)
 760                        return err;
 761        }
 762
 763        return 0;
 764}
 765
 766static int thread_stack__trace_end(struct thread_stack *ts,
 767                                   struct perf_sample *sample, u64 ref)
 768{
 769        struct call_path_root *cpr = ts->crp->cpr;
 770        struct call_path *cp;
 771        u64 ret_addr;
 772
 773        /* No point having 'trace end' on the bottom of the stack */
 774        if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
 775                return 0;
 776
 777        cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
 778                                ts->kernel_start);
 779
 780        ret_addr = sample->ip + sample->insn_len;
 781
 782        return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
 783                                     false, true);
 784}
 785
 786static bool is_x86_retpoline(const char *name)
 787{
 788        const char *p = strstr(name, "__x86_indirect_thunk_");
 789
 790        return p == name || !strcmp(name, "__indirect_thunk_start");
 791}
 792
 793/*
 794 * x86 retpoline functions pollute the call graph. This function removes them.
 795 * This does not handle function return thunks, nor is there any improvement
 796 * for the handling of inline thunks or extern thunks.
 797 */
 798static int thread_stack__x86_retpoline(struct thread_stack *ts,
 799                                       struct perf_sample *sample,
 800                                       struct addr_location *to_al)
 801{
 802        struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1];
 803        struct call_path_root *cpr = ts->crp->cpr;
 804        struct symbol *sym = tse->cp->sym;
 805        struct symbol *tsym = to_al->sym;
 806        struct call_path *cp;
 807
 808        if (sym && is_x86_retpoline(sym->name)) {
 809                /*
 810                 * This is a x86 retpoline fn. It pollutes the call graph by
 811                 * showing up everywhere there is an indirect branch, but does
 812                 * not itself mean anything. Here the top-of-stack is removed,
 813                 * by decrementing the stack count, and then further down, the
 814                 * resulting top-of-stack is replaced with the actual target.
 815                 * The result is that the retpoline functions will no longer
 816                 * appear in the call graph. Note this only affects the call
 817                 * graph, since all the original branches are left unchanged.
 818                 */
 819                ts->cnt -= 1;
 820                sym = ts->stack[ts->cnt - 2].cp->sym;
 821                if (sym && sym == tsym && to_al->addr != tsym->start) {
 822                        /*
 823                         * Target is back to the middle of the symbol we came
 824                         * from so assume it is an indirect jmp and forget it
 825                         * altogether.
 826                         */
 827                        ts->cnt -= 1;
 828                        return 0;
 829                }
 830        } else if (sym && sym == tsym) {
 831                /*
 832                 * Target is back to the symbol we came from so assume it is an
 833                 * indirect jmp and forget it altogether.
 834                 */
 835                ts->cnt -= 1;
 836                return 0;
 837        }
 838
 839        cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym,
 840                                sample->addr, ts->kernel_start);
 841        if (!cp)
 842                return -ENOMEM;
 843
 844        /* Replace the top-of-stack with the actual target */
 845        ts->stack[ts->cnt - 1].cp = cp;
 846
 847        return 0;
 848}
 849
 850int thread_stack__process(struct thread *thread, struct comm *comm,
 851                          struct perf_sample *sample,
 852                          struct addr_location *from_al,
 853                          struct addr_location *to_al, u64 ref,
 854                          struct call_return_processor *crp)
 855{
 856        struct thread_stack *ts = thread__stack(thread, sample->cpu);
 857        enum retpoline_state_t rstate;
 858        int err = 0;
 859
 860        if (ts && !ts->crp) {
 861                /* Supersede thread_stack__event() */
 862                thread_stack__reset(thread, ts);
 863                ts = NULL;
 864        }
 865
 866        if (!ts) {
 867                ts = thread_stack__new(thread, sample->cpu, crp);
 868                if (!ts)
 869                        return -ENOMEM;
 870                ts->comm = comm;
 871        }
 872
 873        rstate = ts->rstate;
 874        if (rstate == X86_RETPOLINE_DETECTED)
 875                ts->rstate = X86_RETPOLINE_POSSIBLE;
 876
 877        /* Flush stack on exec */
 878        if (ts->comm != comm && thread->pid_ == thread->tid) {
 879                err = __thread_stack__flush(thread, ts);
 880                if (err)
 881                        return err;
 882                ts->comm = comm;
 883        }
 884
 885        /* If the stack is empty, put the current symbol on the stack */
 886        if (!ts->cnt) {
 887                err = thread_stack__bottom(ts, sample, from_al, to_al, ref);
 888                if (err)
 889                        return err;
 890        }
 891
 892        ts->branch_count += 1;
 893        ts->insn_count += sample->insn_cnt;
 894        ts->cyc_count += sample->cyc_cnt;
 895        ts->last_time = sample->time;
 896
 897        if (sample->flags & PERF_IP_FLAG_CALL) {
 898                bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END;
 899                struct call_path_root *cpr = ts->crp->cpr;
 900                struct call_path *cp;
 901                u64 ret_addr;
 902
 903                if (!sample->ip || !sample->addr)
 904                        return 0;
 905
 906                ret_addr = sample->ip + sample->insn_len;
 907                if (ret_addr == sample->addr)
 908                        return 0; /* Zero-length calls are excluded */
 909
 910                cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
 911                                        to_al->sym, sample->addr,
 912                                        ts->kernel_start);
 913                err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
 914                                            cp, false, trace_end);
 915
 916                /*
 917                 * A call to the same symbol but not the start of the symbol,
 918                 * may be the start of a x86 retpoline.
 919                 */
 920                if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym &&
 921                    from_al->sym == to_al->sym &&
 922                    to_al->addr != to_al->sym->start)
 923                        ts->rstate = X86_RETPOLINE_DETECTED;
 924
 925        } else if (sample->flags & PERF_IP_FLAG_RETURN) {
 926                if (!sample->addr) {
 927                        u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET |
 928                                                 PERF_IP_FLAG_INTERRUPT;
 929
 930                        if (!(sample->flags & return_from_kernel))
 931                                return 0;
 932
 933                        /* Pop kernel stack */
 934                        return thread_stack__pop_ks(thread, ts, sample, ref);
 935                }
 936
 937                if (!sample->ip)
 938                        return 0;
 939
 940                /* x86 retpoline 'return' doesn't match the stack */
 941                if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 &&
 942                    ts->stack[ts->cnt - 1].ret_addr != sample->addr)
 943                        return thread_stack__x86_retpoline(ts, sample, to_al);
 944
 945                err = thread_stack__pop_cp(thread, ts, sample->addr,
 946                                           sample->time, ref, from_al->sym);
 947                if (err) {
 948                        if (err < 0)
 949                                return err;
 950                        err = thread_stack__no_call_return(thread, ts, sample,
 951                                                           from_al, to_al, ref);
 952                }
 953        } else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
 954                err = thread_stack__trace_begin(thread, ts, sample->time, ref);
 955        } else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
 956                err = thread_stack__trace_end(ts, sample, ref);
 957        } else if (sample->flags & PERF_IP_FLAG_BRANCH &&
 958                   from_al->sym != to_al->sym && to_al->sym &&
 959                   to_al->addr == to_al->sym->start) {
 960                struct call_path_root *cpr = ts->crp->cpr;
 961                struct call_path *cp;
 962
 963                /*
 964                 * The compiler might optimize a call/ret combination by making
 965                 * it a jmp. Make that visible by recording on the stack a
 966                 * branch to the start of a different symbol. Note, that means
 967                 * when a ret pops the stack, all jmps must be popped off first.
 968                 */
 969                cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
 970                                        to_al->sym, sample->addr,
 971                                        ts->kernel_start);
 972                err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false,
 973                                            false);
 974                if (!err)
 975                        ts->stack[ts->cnt - 1].non_call = true;
 976        }
 977
 978        return err;
 979}
 980
 981size_t thread_stack__depth(struct thread *thread, int cpu)
 982{
 983        struct thread_stack *ts = thread__stack(thread, cpu);
 984
 985        if (!ts)
 986                return 0;
 987        return ts->cnt;
 988}
 989