linux/arch/alpha/mm/numa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/alpha/mm/numa.c
   4 *
   5 *  DISCONTIGMEM NUMA alpha support.
   6 *
   7 *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
   8 */
   9
  10#include <linux/types.h>
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/memblock.h>
  14#include <linux/swap.h>
  15#include <linux/initrd.h>
  16#include <linux/pfn.h>
  17#include <linux/module.h>
  18
  19#include <asm/hwrpb.h>
  20#include <asm/pgalloc.h>
  21#include <asm/sections.h>
  22
  23pg_data_t node_data[MAX_NUMNODES];
  24EXPORT_SYMBOL(node_data);
  25
  26#undef DEBUG_DISCONTIG
  27#ifdef DEBUG_DISCONTIG
  28#define DBGDCONT(args...) printk(args)
  29#else
  30#define DBGDCONT(args...)
  31#endif
  32
  33#define for_each_mem_cluster(memdesc, _cluster, i)              \
  34        for ((_cluster) = (memdesc)->cluster, (i) = 0;          \
  35             (i) < (memdesc)->numclusters; (i)++, (_cluster)++)
  36
  37static void __init show_mem_layout(void)
  38{
  39        struct memclust_struct * cluster;
  40        struct memdesc_struct * memdesc;
  41        int i;
  42
  43        /* Find free clusters, and init and free the bootmem accordingly.  */
  44        memdesc = (struct memdesc_struct *)
  45          (hwrpb->mddt_offset + (unsigned long) hwrpb);
  46
  47        printk("Raw memory layout:\n");
  48        for_each_mem_cluster(memdesc, cluster, i) {
  49                printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
  50                       i, cluster->usage, cluster->start_pfn,
  51                       cluster->start_pfn + cluster->numpages);
  52        }
  53}
  54
  55static void __init
  56setup_memory_node(int nid, void *kernel_end)
  57{
  58        extern unsigned long mem_size_limit;
  59        struct memclust_struct * cluster;
  60        struct memdesc_struct * memdesc;
  61        unsigned long start_kernel_pfn, end_kernel_pfn;
  62        unsigned long start, end;
  63        unsigned long node_pfn_start, node_pfn_end;
  64        unsigned long node_min_pfn, node_max_pfn;
  65        int i;
  66        int show_init = 0;
  67
  68        /* Find the bounds of current node */
  69        node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
  70        node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
  71        
  72        /* Find free clusters, and init and free the bootmem accordingly.  */
  73        memdesc = (struct memdesc_struct *)
  74          (hwrpb->mddt_offset + (unsigned long) hwrpb);
  75
  76        /* find the bounds of this node (node_min_pfn/node_max_pfn) */
  77        node_min_pfn = ~0UL;
  78        node_max_pfn = 0UL;
  79        for_each_mem_cluster(memdesc, cluster, i) {
  80                /* Bit 0 is console/PALcode reserved.  Bit 1 is
  81                   non-volatile memory -- we might want to mark
  82                   this for later.  */
  83                if (cluster->usage & 3)
  84                        continue;
  85
  86                start = cluster->start_pfn;
  87                end = start + cluster->numpages;
  88
  89                if (start >= node_pfn_end || end <= node_pfn_start)
  90                        continue;
  91
  92                if (!show_init) {
  93                        show_init = 1;
  94                        printk("Initializing bootmem allocator on Node ID %d\n", nid);
  95                }
  96                printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
  97                       i, cluster->usage, cluster->start_pfn,
  98                       cluster->start_pfn + cluster->numpages);
  99
 100                if (start < node_pfn_start)
 101                        start = node_pfn_start;
 102                if (end > node_pfn_end)
 103                        end = node_pfn_end;
 104
 105                if (start < node_min_pfn)
 106                        node_min_pfn = start;
 107                if (end > node_max_pfn)
 108                        node_max_pfn = end;
 109        }
 110
 111        if (mem_size_limit && node_max_pfn > mem_size_limit) {
 112                static int msg_shown = 0;
 113                if (!msg_shown) {
 114                        msg_shown = 1;
 115                        printk("setup: forcing memory size to %ldK (from %ldK).\n",
 116                               mem_size_limit << (PAGE_SHIFT - 10),
 117                               node_max_pfn    << (PAGE_SHIFT - 10));
 118                }
 119                node_max_pfn = mem_size_limit;
 120        }
 121
 122        if (node_min_pfn >= node_max_pfn)
 123                return;
 124
 125        /* Update global {min,max}_low_pfn from node information. */
 126        if (node_min_pfn < min_low_pfn)
 127                min_low_pfn = node_min_pfn;
 128        if (node_max_pfn > max_low_pfn)
 129                max_pfn = max_low_pfn = node_max_pfn;
 130
 131#if 0 /* we'll try this one again in a little while */
 132        /* Cute trick to make sure our local node data is on local memory */
 133        node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
 134#endif
 135        printk(" Detected node memory:   start %8lu, end %8lu\n",
 136               node_min_pfn, node_max_pfn);
 137
 138        DBGDCONT(" DISCONTIG: node_data[%d]   is at 0x%p\n", nid, NODE_DATA(nid));
 139
 140        /* Find the bounds of kernel memory.  */
 141        start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
 142        end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
 143
 144        if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
 145                panic("kernel loaded out of ram");
 146
 147        memblock_add(PFN_PHYS(node_min_pfn),
 148                     (node_max_pfn - node_min_pfn) << PAGE_SHIFT);
 149
 150        /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
 151           Note that we round this down, not up - node memory
 152           has much larger alignment than 8Mb, so it's safe. */
 153        node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
 154
 155        NODE_DATA(nid)->node_start_pfn = node_min_pfn;
 156        NODE_DATA(nid)->node_present_pages = node_max_pfn - node_min_pfn;
 157
 158        node_set_online(nid);
 159}
 160
 161void __init
 162setup_memory(void *kernel_end)
 163{
 164        unsigned long kernel_size;
 165        int nid;
 166
 167        show_mem_layout();
 168
 169        nodes_clear(node_online_map);
 170
 171        min_low_pfn = ~0UL;
 172        max_low_pfn = 0UL;
 173        for (nid = 0; nid < MAX_NUMNODES; nid++)
 174                setup_memory_node(nid, kernel_end);
 175
 176        kernel_size = virt_to_phys(kernel_end) - KERNEL_START_PHYS;
 177        memblock_reserve(KERNEL_START_PHYS, kernel_size);
 178
 179#ifdef CONFIG_BLK_DEV_INITRD
 180        initrd_start = INITRD_START;
 181        if (initrd_start) {
 182                extern void *move_initrd(unsigned long);
 183
 184                initrd_end = initrd_start+INITRD_SIZE;
 185                printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
 186                       (void *) initrd_start, INITRD_SIZE);
 187
 188                if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
 189                        if (!move_initrd(PFN_PHYS(max_low_pfn)))
 190                                printk("initrd extends beyond end of memory "
 191                                       "(0x%08lx > 0x%p)\ndisabling initrd\n",
 192                                       initrd_end,
 193                                       phys_to_virt(PFN_PHYS(max_low_pfn)));
 194                } else {
 195                        nid = kvaddr_to_nid(initrd_start);
 196                        memblock_reserve(virt_to_phys((void *)initrd_start),
 197                                         INITRD_SIZE);
 198                }
 199        }
 200#endif /* CONFIG_BLK_DEV_INITRD */
 201}
 202
 203void __init paging_init(void)
 204{
 205        unsigned int    nid;
 206        unsigned long   zones_size[MAX_NR_ZONES] = {0, };
 207        unsigned long   dma_local_pfn;
 208
 209        /*
 210         * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
 211         * in the NUMA model, for now we convert it to a pfn and
 212         * we interpret this pfn as a local per-node information.
 213         * This issue isn't very important since none of these machines
 214         * have legacy ISA slots anyways.
 215         */
 216        dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
 217
 218        for_each_online_node(nid) {
 219                unsigned long start_pfn = NODE_DATA(nid)->node_start_pfn;
 220                unsigned long end_pfn = start_pfn + NODE_DATA(nid)->node_present_pages;
 221
 222                if (dma_local_pfn >= end_pfn - start_pfn)
 223                        zones_size[ZONE_DMA] = end_pfn - start_pfn;
 224                else {
 225                        zones_size[ZONE_DMA] = dma_local_pfn;
 226                        zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
 227                }
 228                node_set_state(nid, N_NORMAL_MEMORY);
 229                free_area_init_node(nid, zones_size, start_pfn, NULL);
 230        }
 231
 232        /* Initialize the kernel's ZERO_PGE. */
 233        memset((void *)ZERO_PGE, 0, PAGE_SIZE);
 234}
 235