linux/arch/parisc/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _PARISC_PGTABLE_H
   3#define _PARISC_PGTABLE_H
   4
   5#include <asm/page.h>
   6#include <asm-generic/4level-fixup.h>
   7
   8#include <asm/fixmap.h>
   9
  10#ifndef __ASSEMBLY__
  11/*
  12 * we simulate an x86-style page table for the linux mm code
  13 */
  14
  15#include <linux/bitops.h>
  16#include <linux/spinlock.h>
  17#include <linux/mm_types.h>
  18#include <asm/processor.h>
  19#include <asm/cache.h>
  20
  21static inline spinlock_t *pgd_spinlock(pgd_t *);
  22
  23/*
  24 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
  25 * memory.  For the return value to be meaningful, ADDR must be >=
  26 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
  27 * require a hash-, or multi-level tree-lookup or something of that
  28 * sort) but it guarantees to return TRUE only if accessing the page
  29 * at that address does not cause an error.  Note that there may be
  30 * addresses for which kern_addr_valid() returns FALSE even though an
  31 * access would not cause an error (e.g., this is typically true for
  32 * memory mapped I/O regions.
  33 *
  34 * XXX Need to implement this for parisc.
  35 */
  36#define kern_addr_valid(addr)   (1)
  37
  38/* This is for the serialization of PxTLB broadcasts. At least on the N class
  39 * systems, only one PxTLB inter processor broadcast can be active at any one
  40 * time on the Merced bus.
  41
  42 * PTE updates are protected by locks in the PMD.
  43 */
  44extern spinlock_t pa_tlb_flush_lock;
  45extern spinlock_t pa_swapper_pg_lock;
  46#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  47extern int pa_serialize_tlb_flushes;
  48#else
  49#define pa_serialize_tlb_flushes        (0)
  50#endif
  51
  52#define purge_tlb_start(flags)  do { \
  53        if (pa_serialize_tlb_flushes)   \
  54                spin_lock_irqsave(&pa_tlb_flush_lock, flags); \
  55        else \
  56                local_irq_save(flags);  \
  57        } while (0)
  58#define purge_tlb_end(flags)    do { \
  59        if (pa_serialize_tlb_flushes)   \
  60                spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \
  61        else \
  62                local_irq_restore(flags); \
  63        } while (0)
  64
  65/* Purge data and instruction TLB entries. The TLB purge instructions
  66 * are slow on SMP machines since the purge must be broadcast to all CPUs.
  67 */
  68
  69static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
  70{
  71        unsigned long flags;
  72
  73        purge_tlb_start(flags);
  74        mtsp(mm->context, 1);
  75        pdtlb(addr);
  76        pitlb(addr);
  77        purge_tlb_end(flags);
  78}
  79
  80/* Certain architectures need to do special things when PTEs
  81 * within a page table are directly modified.  Thus, the following
  82 * hook is made available.
  83 */
  84#define set_pte(pteptr, pteval)                                 \
  85        do{                                                     \
  86                *(pteptr) = (pteval);                           \
  87        } while(0)
  88
  89#define set_pte_at(mm, addr, ptep, pteval)                      \
  90        do {                                                    \
  91                pte_t old_pte;                                  \
  92                unsigned long flags;                            \
  93                spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);\
  94                old_pte = *ptep;                                \
  95                set_pte(ptep, pteval);                          \
  96                purge_tlb_entries(mm, addr);                    \
  97                spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);\
  98        } while (0)
  99
 100#endif /* !__ASSEMBLY__ */
 101
 102#define pte_ERROR(e) \
 103        printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 104#define pmd_ERROR(e) \
 105        printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
 106#define pgd_ERROR(e) \
 107        printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
 108
 109/* This is the size of the initially mapped kernel memory */
 110#if defined(CONFIG_64BIT)
 111#define KERNEL_INITIAL_ORDER    26      /* 1<<26 = 64MB */
 112#else
 113#define KERNEL_INITIAL_ORDER    25      /* 1<<25 = 32MB */
 114#endif
 115#define KERNEL_INITIAL_SIZE     (1 << KERNEL_INITIAL_ORDER)
 116
 117#if CONFIG_PGTABLE_LEVELS == 3
 118#define PGD_ORDER       1 /* Number of pages per pgd */
 119#define PMD_ORDER       1 /* Number of pages per pmd */
 120#define PGD_ALLOC_ORDER (2 + 1) /* first pgd contains pmd */
 121#else
 122#define PGD_ORDER       1 /* Number of pages per pgd */
 123#define PGD_ALLOC_ORDER (PGD_ORDER + 1)
 124#endif
 125
 126/* Definitions for 3rd level (we use PLD here for Page Lower directory
 127 * because PTE_SHIFT is used lower down to mean shift that has to be
 128 * done to get usable bits out of the PTE) */
 129#define PLD_SHIFT       PAGE_SHIFT
 130#define PLD_SIZE        PAGE_SIZE
 131#define BITS_PER_PTE    (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
 132#define PTRS_PER_PTE    (1UL << BITS_PER_PTE)
 133
 134/* Definitions for 2nd level */
 135#define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE)
 136#define PMD_SIZE        (1UL << PMD_SHIFT)
 137#define PMD_MASK        (~(PMD_SIZE-1))
 138#if CONFIG_PGTABLE_LEVELS == 3
 139#define BITS_PER_PMD    (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
 140#else
 141#define __PAGETABLE_PMD_FOLDED 1
 142#define BITS_PER_PMD    0
 143#endif
 144#define PTRS_PER_PMD    (1UL << BITS_PER_PMD)
 145
 146/* Definitions for 1st level */
 147#define PGDIR_SHIFT     (PMD_SHIFT + BITS_PER_PMD)
 148#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
 149#define BITS_PER_PGD    (BITS_PER_LONG - PGDIR_SHIFT)
 150#else
 151#define BITS_PER_PGD    (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
 152#endif
 153#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 154#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 155#define PTRS_PER_PGD    (1UL << BITS_PER_PGD)
 156#define USER_PTRS_PER_PGD       PTRS_PER_PGD
 157
 158#ifdef CONFIG_64BIT
 159#define MAX_ADDRBITS    (PGDIR_SHIFT + BITS_PER_PGD)
 160#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 161#define SPACEID_SHIFT   (MAX_ADDRBITS - 32)
 162#else
 163#define MAX_ADDRBITS    (BITS_PER_LONG)
 164#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 165#define SPACEID_SHIFT   0
 166#endif
 167
 168/* This calculates the number of initial pages we need for the initial
 169 * page tables */
 170#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
 171# define PT_INITIAL     (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
 172#else
 173# define PT_INITIAL     (1)  /* all initial PTEs fit into one page */
 174#endif
 175
 176/*
 177 * pgd entries used up by user/kernel:
 178 */
 179
 180#define FIRST_USER_ADDRESS      0UL
 181
 182/* NB: The tlb miss handlers make certain assumptions about the order */
 183/*     of the following bits, so be careful (One example, bits 25-31  */
 184/*     are moved together in one instruction).                        */
 185
 186#define _PAGE_READ_BIT     31   /* (0x001) read access allowed */
 187#define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */
 188#define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */
 189#define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */
 190#define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */
 191#define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */
 192#define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */
 193#define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */
 194#define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */
 195#define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */
 196#define _PAGE_HPAGE_BIT    21   /* (0x400) Software: Huge Page */
 197#define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */
 198
 199/* N.B. The bits are defined in terms of a 32 bit word above, so the */
 200/*      following macro is ok for both 32 and 64 bit.                */
 201
 202#define xlate_pabit(x) (31 - x)
 203
 204/* this defines the shift to the usable bits in the PTE it is set so
 205 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
 206 * to zero */
 207#define PTE_SHIFT               xlate_pabit(_PAGE_USER_BIT)
 208
 209/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
 210#define PFN_PTE_SHIFT           12
 211
 212#define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT))
 213#define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT))
 214#define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE)
 215#define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT))
 216#define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
 217#define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT))
 218#define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT))
 219#define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
 220#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
 221#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
 222#define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT))
 223#define _PAGE_HUGE     (1 << xlate_pabit(_PAGE_HPAGE_BIT))
 224#define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT))
 225
 226#define _PAGE_TABLE     (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
 227#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 228#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
 229#define _PAGE_KERNEL_EXEC       (_PAGE_KERNEL_RO | _PAGE_EXEC)
 230#define _PAGE_KERNEL_RWX        (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
 231#define _PAGE_KERNEL            (_PAGE_KERNEL_RO | _PAGE_WRITE)
 232
 233/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
 234 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
 235 * for a few meta-information bits, so we shift the address to be
 236 * able to effectively address 40/42/44-bits of physical address space
 237 * depending on 4k/16k/64k PAGE_SIZE */
 238#define _PxD_PRESENT_BIT   31
 239#define _PxD_ATTACHED_BIT  30
 240#define _PxD_VALID_BIT     29
 241
 242#define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT))
 243#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
 244#define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT))
 245#define PxD_FLAG_MASK     (0xf)
 246#define PxD_FLAG_SHIFT    (4)
 247#define PxD_VALUE_SHIFT   (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
 248
 249#ifndef __ASSEMBLY__
 250
 251#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER)
 252#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE)
 253/* Others seem to make this executable, I don't know if that's correct
 254   or not.  The stack is mapped this way though so this is necessary
 255   in the short term - dhd@linuxcare.com, 2000-08-08 */
 256#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ)
 257#define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE)
 258#define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC)
 259#define PAGE_COPY       PAGE_EXECREAD
 260#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
 261#define PAGE_KERNEL     __pgprot(_PAGE_KERNEL)
 262#define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL_EXEC)
 263#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
 264#define PAGE_KERNEL_RO  __pgprot(_PAGE_KERNEL_RO)
 265#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
 266#define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ)
 267
 268
 269/*
 270 * We could have an execute only page using "gateway - promote to priv
 271 * level 3", but that is kind of silly. So, the way things are defined
 272 * now, we must always have read permission for pages with execute
 273 * permission. For the fun of it we'll go ahead and support write only
 274 * pages.
 275 */
 276
 277         /*xwr*/
 278#define __P000  PAGE_NONE
 279#define __P001  PAGE_READONLY
 280#define __P010  __P000 /* copy on write */
 281#define __P011  __P001 /* copy on write */
 282#define __P100  PAGE_EXECREAD
 283#define __P101  PAGE_EXECREAD
 284#define __P110  __P100 /* copy on write */
 285#define __P111  __P101 /* copy on write */
 286
 287#define __S000  PAGE_NONE
 288#define __S001  PAGE_READONLY
 289#define __S010  PAGE_WRITEONLY
 290#define __S011  PAGE_SHARED
 291#define __S100  PAGE_EXECREAD
 292#define __S101  PAGE_EXECREAD
 293#define __S110  PAGE_RWX
 294#define __S111  PAGE_RWX
 295
 296
 297extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
 298
 299/* initial page tables for 0-8MB for kernel */
 300
 301extern pte_t pg0[];
 302
 303/* zero page used for uninitialized stuff */
 304
 305extern unsigned long *empty_zero_page;
 306
 307/*
 308 * ZERO_PAGE is a global shared page that is always zero: used
 309 * for zero-mapped memory areas etc..
 310 */
 311
 312#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 313
 314#define pte_none(x)     (pte_val(x) == 0)
 315#define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
 316#define pte_clear(mm, addr, xp)  set_pte_at(mm, addr, xp, __pte(0))
 317
 318#define pmd_flag(x)     (pmd_val(x) & PxD_FLAG_MASK)
 319#define pmd_address(x)  ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 320#define pgd_flag(x)     (pgd_val(x) & PxD_FLAG_MASK)
 321#define pgd_address(x)  ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 322
 323#if CONFIG_PGTABLE_LEVELS == 3
 324/* The first entry of the permanent pmd is not there if it contains
 325 * the gateway marker */
 326#define pmd_none(x)     (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
 327#else
 328#define pmd_none(x)     (!pmd_val(x))
 329#endif
 330#define pmd_bad(x)      (!(pmd_flag(x) & PxD_FLAG_VALID))
 331#define pmd_present(x)  (pmd_flag(x) & PxD_FLAG_PRESENT)
 332static inline void pmd_clear(pmd_t *pmd) {
 333#if CONFIG_PGTABLE_LEVELS == 3
 334        if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
 335                /* This is the entry pointing to the permanent pmd
 336                 * attached to the pgd; cannot clear it */
 337                __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
 338        else
 339#endif
 340                __pmd_val_set(*pmd,  0);
 341}
 342
 343
 344
 345#if CONFIG_PGTABLE_LEVELS == 3
 346#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
 347#define pgd_page(pgd)   virt_to_page((void *)pgd_page_vaddr(pgd))
 348
 349/* For 64 bit we have three level tables */
 350
 351#define pgd_none(x)     (!pgd_val(x))
 352#define pgd_bad(x)      (!(pgd_flag(x) & PxD_FLAG_VALID))
 353#define pgd_present(x)  (pgd_flag(x) & PxD_FLAG_PRESENT)
 354static inline void pgd_clear(pgd_t *pgd) {
 355#if CONFIG_PGTABLE_LEVELS == 3
 356        if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
 357                /* This is the permanent pmd attached to the pgd; cannot
 358                 * free it */
 359                return;
 360#endif
 361        __pgd_val_set(*pgd, 0);
 362}
 363#else
 364/*
 365 * The "pgd_xxx()" functions here are trivial for a folded two-level
 366 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 367 * into the pgd entry)
 368 */
 369static inline int pgd_none(pgd_t pgd)           { return 0; }
 370static inline int pgd_bad(pgd_t pgd)            { return 0; }
 371static inline int pgd_present(pgd_t pgd)        { return 1; }
 372static inline void pgd_clear(pgd_t * pgdp)      { }
 373#endif
 374
 375/*
 376 * The following only work if pte_present() is true.
 377 * Undefined behaviour if not..
 378 */
 379static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
 380static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
 381static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
 382static inline int pte_special(pte_t pte)        { return 0; }
 383
 384static inline pte_t pte_mkclean(pte_t pte)      { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
 385static inline pte_t pte_mkold(pte_t pte)        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 386static inline pte_t pte_wrprotect(pte_t pte)    { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
 387static inline pte_t pte_mkdirty(pte_t pte)      { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 388static inline pte_t pte_mkyoung(pte_t pte)      { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 389static inline pte_t pte_mkwrite(pte_t pte)      { pte_val(pte) |= _PAGE_WRITE; return pte; }
 390static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
 391
 392/*
 393 * Huge pte definitions.
 394 */
 395#ifdef CONFIG_HUGETLB_PAGE
 396#define pte_huge(pte)           (pte_val(pte) & _PAGE_HUGE)
 397#define pte_mkhuge(pte)         (__pte(pte_val(pte) | \
 398                                 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
 399#else
 400#define pte_huge(pte)           (0)
 401#define pte_mkhuge(pte)         (pte)
 402#endif
 403
 404
 405/*
 406 * Conversion functions: convert a page and protection to a page entry,
 407 * and a page entry and page directory to the page they refer to.
 408 */
 409#define __mk_pte(addr,pgprot) \
 410({                                                                      \
 411        pte_t __pte;                                                    \
 412                                                                        \
 413        pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot));  \
 414                                                                        \
 415        __pte;                                                          \
 416})
 417
 418#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 419
 420static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 421{
 422        pte_t pte;
 423        pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
 424        return pte;
 425}
 426
 427static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 428{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 429
 430/* Permanent address of a page.  On parisc we don't have highmem. */
 431
 432#define pte_pfn(x)              (pte_val(x) >> PFN_PTE_SHIFT)
 433
 434#define pte_page(pte)           (pfn_to_page(pte_pfn(pte)))
 435
 436#define pmd_page_vaddr(pmd)     ((unsigned long) __va(pmd_address(pmd)))
 437
 438#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
 439#define pmd_page(pmd)   virt_to_page((void *)__pmd_page(pmd))
 440
 441#define pgd_index(address) ((address) >> PGDIR_SHIFT)
 442
 443/* to find an entry in a page-table-directory */
 444#define pgd_offset(mm, address) \
 445((mm)->pgd + ((address) >> PGDIR_SHIFT))
 446
 447/* to find an entry in a kernel page-table-directory */
 448#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 449
 450/* Find an entry in the second-level page table.. */
 451
 452#if CONFIG_PGTABLE_LEVELS == 3
 453#define pmd_index(addr)         (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
 454#define pmd_offset(dir,address) \
 455((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(address))
 456#else
 457#define pmd_offset(dir,addr) ((pmd_t *) dir)
 458#endif
 459
 460/* Find an entry in the third-level page table.. */ 
 461#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
 462#define pte_offset_kernel(pmd, address) \
 463        ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
 464#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
 465#define pte_unmap(pte) do { } while (0)
 466
 467#define pte_unmap(pte)                  do { } while (0)
 468#define pte_unmap_nested(pte)           do { } while (0)
 469
 470extern void paging_init (void);
 471
 472/* Used for deferring calls to flush_dcache_page() */
 473
 474#define PG_dcache_dirty         PG_arch_1
 475
 476extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
 477
 478/* Encode and de-code a swap entry */
 479
 480#define __swp_type(x)                     ((x).val & 0x1f)
 481#define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \
 482                                          (((x).val >> 8) & ~0x7) )
 483#define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \
 484                                            ((offset &  0x7) << 6) | \
 485                                            ((offset & ~0x7) << 8) })
 486#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 487#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 488
 489
 490static inline spinlock_t *pgd_spinlock(pgd_t *pgd)
 491{
 492        if (unlikely(pgd == swapper_pg_dir))
 493                return &pa_swapper_pg_lock;
 494        return (spinlock_t *)((char *)pgd + (PAGE_SIZE << (PGD_ALLOC_ORDER - 1)));
 495}
 496
 497
 498static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 499{
 500        pte_t pte;
 501        unsigned long flags;
 502
 503        if (!pte_young(*ptep))
 504                return 0;
 505
 506        spin_lock_irqsave(pgd_spinlock(vma->vm_mm->pgd), flags);
 507        pte = *ptep;
 508        if (!pte_young(pte)) {
 509                spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
 510                return 0;
 511        }
 512        set_pte(ptep, pte_mkold(pte));
 513        purge_tlb_entries(vma->vm_mm, addr);
 514        spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
 515        return 1;
 516}
 517
 518struct mm_struct;
 519static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 520{
 521        pte_t old_pte;
 522        unsigned long flags;
 523
 524        spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
 525        old_pte = *ptep;
 526        set_pte(ptep, __pte(0));
 527        purge_tlb_entries(mm, addr);
 528        spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
 529
 530        return old_pte;
 531}
 532
 533static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 534{
 535        unsigned long flags;
 536        spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
 537        set_pte(ptep, pte_wrprotect(*ptep));
 538        purge_tlb_entries(mm, addr);
 539        spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
 540}
 541
 542#define pte_same(A,B)   (pte_val(A) == pte_val(B))
 543
 544struct seq_file;
 545extern void arch_report_meminfo(struct seq_file *m);
 546
 547#endif /* !__ASSEMBLY__ */
 548
 549
 550/* TLB page size encoding - see table 3-1 in parisc20.pdf */
 551#define _PAGE_SIZE_ENCODING_4K          0
 552#define _PAGE_SIZE_ENCODING_16K         1
 553#define _PAGE_SIZE_ENCODING_64K         2
 554#define _PAGE_SIZE_ENCODING_256K        3
 555#define _PAGE_SIZE_ENCODING_1M          4
 556#define _PAGE_SIZE_ENCODING_4M          5
 557#define _PAGE_SIZE_ENCODING_16M         6
 558#define _PAGE_SIZE_ENCODING_64M         7
 559
 560#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 561# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
 562#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
 563# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
 564#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
 565# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
 566#endif
 567
 568
 569#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
 570
 571/* We provide our own get_unmapped_area to provide cache coherency */
 572
 573#define HAVE_ARCH_UNMAPPED_AREA
 574#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 575
 576#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 577#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 578#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 579#define __HAVE_ARCH_PTE_SAME
 580#include <asm-generic/pgtable.h>
 581
 582#endif /* _PARISC_PGTABLE_H */
 583