linux/arch/s390/kernel/kprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright IBM Corp. 2002, 2006
   6 *
   7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
   8 */
   9
  10#include <linux/kprobes.h>
  11#include <linux/ptrace.h>
  12#include <linux/preempt.h>
  13#include <linux/stop_machine.h>
  14#include <linux/kdebug.h>
  15#include <linux/uaccess.h>
  16#include <linux/extable.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/hardirq.h>
  20#include <linux/ftrace.h>
  21#include <asm/set_memory.h>
  22#include <asm/sections.h>
  23#include <asm/dis.h>
  24
  25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
  26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  27
  28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
  29
  30DEFINE_INSN_CACHE_OPS(s390_insn);
  31
  32static int insn_page_in_use;
  33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
  34
  35static void *alloc_s390_insn_page(void)
  36{
  37        if (xchg(&insn_page_in_use, 1) == 1)
  38                return NULL;
  39        set_memory_x((unsigned long) &insn_page, 1);
  40        return &insn_page;
  41}
  42
  43static void free_s390_insn_page(void *page)
  44{
  45        set_memory_nx((unsigned long) page, 1);
  46        xchg(&insn_page_in_use, 0);
  47}
  48
  49struct kprobe_insn_cache kprobe_s390_insn_slots = {
  50        .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
  51        .alloc = alloc_s390_insn_page,
  52        .free = free_s390_insn_page,
  53        .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
  54        .insn_size = MAX_INSN_SIZE,
  55};
  56
  57static void copy_instruction(struct kprobe *p)
  58{
  59        unsigned long ip = (unsigned long) p->addr;
  60        s64 disp, new_disp;
  61        u64 addr, new_addr;
  62
  63        if (ftrace_location(ip) == ip) {
  64                /*
  65                 * If kprobes patches the instruction that is morphed by
  66                 * ftrace make sure that kprobes always sees the branch
  67                 * "jg .+24" that skips the mcount block or the "brcl 0,0"
  68                 * in case of hotpatch.
  69                 */
  70                ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
  71                p->ainsn.is_ftrace_insn = 1;
  72        } else
  73                memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
  74        p->opcode = p->ainsn.insn[0];
  75        if (!probe_is_insn_relative_long(p->ainsn.insn))
  76                return;
  77        /*
  78         * For pc-relative instructions in RIL-b or RIL-c format patch the
  79         * RI2 displacement field. We have already made sure that the insn
  80         * slot for the patched instruction is within the same 2GB area
  81         * as the original instruction (either kernel image or module area).
  82         * Therefore the new displacement will always fit.
  83         */
  84        disp = *(s32 *)&p->ainsn.insn[1];
  85        addr = (u64)(unsigned long)p->addr;
  86        new_addr = (u64)(unsigned long)p->ainsn.insn;
  87        new_disp = ((addr + (disp * 2)) - new_addr) / 2;
  88        *(s32 *)&p->ainsn.insn[1] = new_disp;
  89}
  90NOKPROBE_SYMBOL(copy_instruction);
  91
  92static inline int is_kernel_addr(void *addr)
  93{
  94        return addr < (void *)_end;
  95}
  96
  97static int s390_get_insn_slot(struct kprobe *p)
  98{
  99        /*
 100         * Get an insn slot that is within the same 2GB area like the original
 101         * instruction. That way instructions with a 32bit signed displacement
 102         * field can be patched and executed within the insn slot.
 103         */
 104        p->ainsn.insn = NULL;
 105        if (is_kernel_addr(p->addr))
 106                p->ainsn.insn = get_s390_insn_slot();
 107        else if (is_module_addr(p->addr))
 108                p->ainsn.insn = get_insn_slot();
 109        return p->ainsn.insn ? 0 : -ENOMEM;
 110}
 111NOKPROBE_SYMBOL(s390_get_insn_slot);
 112
 113static void s390_free_insn_slot(struct kprobe *p)
 114{
 115        if (!p->ainsn.insn)
 116                return;
 117        if (is_kernel_addr(p->addr))
 118                free_s390_insn_slot(p->ainsn.insn, 0);
 119        else
 120                free_insn_slot(p->ainsn.insn, 0);
 121        p->ainsn.insn = NULL;
 122}
 123NOKPROBE_SYMBOL(s390_free_insn_slot);
 124
 125int arch_prepare_kprobe(struct kprobe *p)
 126{
 127        if ((unsigned long) p->addr & 0x01)
 128                return -EINVAL;
 129        /* Make sure the probe isn't going on a difficult instruction */
 130        if (probe_is_prohibited_opcode(p->addr))
 131                return -EINVAL;
 132        if (s390_get_insn_slot(p))
 133                return -ENOMEM;
 134        copy_instruction(p);
 135        return 0;
 136}
 137NOKPROBE_SYMBOL(arch_prepare_kprobe);
 138
 139int arch_check_ftrace_location(struct kprobe *p)
 140{
 141        return 0;
 142}
 143
 144struct swap_insn_args {
 145        struct kprobe *p;
 146        unsigned int arm_kprobe : 1;
 147};
 148
 149static int swap_instruction(void *data)
 150{
 151        struct swap_insn_args *args = data;
 152        struct ftrace_insn new_insn, *insn;
 153        struct kprobe *p = args->p;
 154        size_t len;
 155
 156        new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
 157        len = sizeof(new_insn.opc);
 158        if (!p->ainsn.is_ftrace_insn)
 159                goto skip_ftrace;
 160        len = sizeof(new_insn);
 161        insn = (struct ftrace_insn *) p->addr;
 162        if (args->arm_kprobe) {
 163                if (is_ftrace_nop(insn))
 164                        new_insn.disp = KPROBE_ON_FTRACE_NOP;
 165                else
 166                        new_insn.disp = KPROBE_ON_FTRACE_CALL;
 167        } else {
 168                ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
 169                if (insn->disp == KPROBE_ON_FTRACE_NOP)
 170                        ftrace_generate_nop_insn(&new_insn);
 171        }
 172skip_ftrace:
 173        s390_kernel_write(p->addr, &new_insn, len);
 174        return 0;
 175}
 176NOKPROBE_SYMBOL(swap_instruction);
 177
 178void arch_arm_kprobe(struct kprobe *p)
 179{
 180        struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
 181
 182        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 183}
 184NOKPROBE_SYMBOL(arch_arm_kprobe);
 185
 186void arch_disarm_kprobe(struct kprobe *p)
 187{
 188        struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
 189
 190        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 191}
 192NOKPROBE_SYMBOL(arch_disarm_kprobe);
 193
 194void arch_remove_kprobe(struct kprobe *p)
 195{
 196        s390_free_insn_slot(p);
 197}
 198NOKPROBE_SYMBOL(arch_remove_kprobe);
 199
 200static void enable_singlestep(struct kprobe_ctlblk *kcb,
 201                              struct pt_regs *regs,
 202                              unsigned long ip)
 203{
 204        struct per_regs per_kprobe;
 205
 206        /* Set up the PER control registers %cr9-%cr11 */
 207        per_kprobe.control = PER_EVENT_IFETCH;
 208        per_kprobe.start = ip;
 209        per_kprobe.end = ip;
 210
 211        /* Save control regs and psw mask */
 212        __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 213        kcb->kprobe_saved_imask = regs->psw.mask &
 214                (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
 215
 216        /* Set PER control regs, turns on single step for the given address */
 217        __ctl_load(per_kprobe, 9, 11);
 218        regs->psw.mask |= PSW_MASK_PER;
 219        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 220        regs->psw.addr = ip;
 221}
 222NOKPROBE_SYMBOL(enable_singlestep);
 223
 224static void disable_singlestep(struct kprobe_ctlblk *kcb,
 225                               struct pt_regs *regs,
 226                               unsigned long ip)
 227{
 228        /* Restore control regs and psw mask, set new psw address */
 229        __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 230        regs->psw.mask &= ~PSW_MASK_PER;
 231        regs->psw.mask |= kcb->kprobe_saved_imask;
 232        regs->psw.addr = ip;
 233}
 234NOKPROBE_SYMBOL(disable_singlestep);
 235
 236/*
 237 * Activate a kprobe by storing its pointer to current_kprobe. The
 238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 239 * two kprobes can be active, see KPROBE_REENTER.
 240 */
 241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
 242{
 243        kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
 244        kcb->prev_kprobe.status = kcb->kprobe_status;
 245        __this_cpu_write(current_kprobe, p);
 246}
 247NOKPROBE_SYMBOL(push_kprobe);
 248
 249/*
 250 * Deactivate a kprobe by backing up to the previous state. If the
 251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 252 * for any other state prev_kprobe.kp will be NULL.
 253 */
 254static void pop_kprobe(struct kprobe_ctlblk *kcb)
 255{
 256        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 257        kcb->kprobe_status = kcb->prev_kprobe.status;
 258}
 259NOKPROBE_SYMBOL(pop_kprobe);
 260
 261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 262{
 263        ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 264
 265        /* Replace the return addr with trampoline addr */
 266        regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
 267}
 268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 269
 270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 271{
 272        switch (kcb->kprobe_status) {
 273        case KPROBE_HIT_SSDONE:
 274        case KPROBE_HIT_ACTIVE:
 275                kprobes_inc_nmissed_count(p);
 276                break;
 277        case KPROBE_HIT_SS:
 278        case KPROBE_REENTER:
 279        default:
 280                /*
 281                 * A kprobe on the code path to single step an instruction
 282                 * is a BUG. The code path resides in the .kprobes.text
 283                 * section and is executed with interrupts disabled.
 284                 */
 285                pr_err("Invalid kprobe detected.\n");
 286                dump_kprobe(p);
 287                BUG();
 288        }
 289}
 290NOKPROBE_SYMBOL(kprobe_reenter_check);
 291
 292static int kprobe_handler(struct pt_regs *regs)
 293{
 294        struct kprobe_ctlblk *kcb;
 295        struct kprobe *p;
 296
 297        /*
 298         * We want to disable preemption for the entire duration of kprobe
 299         * processing. That includes the calls to the pre/post handlers
 300         * and single stepping the kprobe instruction.
 301         */
 302        preempt_disable();
 303        kcb = get_kprobe_ctlblk();
 304        p = get_kprobe((void *)(regs->psw.addr - 2));
 305
 306        if (p) {
 307                if (kprobe_running()) {
 308                        /*
 309                         * We have hit a kprobe while another is still
 310                         * active. This can happen in the pre and post
 311                         * handler. Single step the instruction of the
 312                         * new probe but do not call any handler function
 313                         * of this secondary kprobe.
 314                         * push_kprobe and pop_kprobe saves and restores
 315                         * the currently active kprobe.
 316                         */
 317                        kprobe_reenter_check(kcb, p);
 318                        push_kprobe(kcb, p);
 319                        kcb->kprobe_status = KPROBE_REENTER;
 320                } else {
 321                        /*
 322                         * If we have no pre-handler or it returned 0, we
 323                         * continue with single stepping. If we have a
 324                         * pre-handler and it returned non-zero, it prepped
 325                         * for changing execution path, so get out doing
 326                         * nothing more here.
 327                         */
 328                        push_kprobe(kcb, p);
 329                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 330                        if (p->pre_handler && p->pre_handler(p, regs)) {
 331                                pop_kprobe(kcb);
 332                                preempt_enable_no_resched();
 333                                return 1;
 334                        }
 335                        kcb->kprobe_status = KPROBE_HIT_SS;
 336                }
 337                enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
 338                return 1;
 339        } /* else:
 340           * No kprobe at this address and no active kprobe. The trap has
 341           * not been caused by a kprobe breakpoint. The race of breakpoint
 342           * vs. kprobe remove does not exist because on s390 as we use
 343           * stop_machine to arm/disarm the breakpoints.
 344           */
 345        preempt_enable_no_resched();
 346        return 0;
 347}
 348NOKPROBE_SYMBOL(kprobe_handler);
 349
 350/*
 351 * Function return probe trampoline:
 352 *      - init_kprobes() establishes a probepoint here
 353 *      - When the probed function returns, this probe
 354 *              causes the handlers to fire
 355 */
 356static void __used kretprobe_trampoline_holder(void)
 357{
 358        asm volatile(".global kretprobe_trampoline\n"
 359                     "kretprobe_trampoline: bcr 0,0\n");
 360}
 361
 362/*
 363 * Called when the probe at kretprobe trampoline is hit
 364 */
 365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 366{
 367        struct kretprobe_instance *ri;
 368        struct hlist_head *head, empty_rp;
 369        struct hlist_node *tmp;
 370        unsigned long flags, orig_ret_address;
 371        unsigned long trampoline_address;
 372        kprobe_opcode_t *correct_ret_addr;
 373
 374        INIT_HLIST_HEAD(&empty_rp);
 375        kretprobe_hash_lock(current, &head, &flags);
 376
 377        /*
 378         * It is possible to have multiple instances associated with a given
 379         * task either because an multiple functions in the call path
 380         * have a return probe installed on them, and/or more than one return
 381         * return probe was registered for a target function.
 382         *
 383         * We can handle this because:
 384         *     - instances are always inserted at the head of the list
 385         *     - when multiple return probes are registered for the same
 386         *       function, the first instance's ret_addr will point to the
 387         *       real return address, and all the rest will point to
 388         *       kretprobe_trampoline
 389         */
 390        ri = NULL;
 391        orig_ret_address = 0;
 392        correct_ret_addr = NULL;
 393        trampoline_address = (unsigned long) &kretprobe_trampoline;
 394        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 395                if (ri->task != current)
 396                        /* another task is sharing our hash bucket */
 397                        continue;
 398
 399                orig_ret_address = (unsigned long) ri->ret_addr;
 400
 401                if (orig_ret_address != trampoline_address)
 402                        /*
 403                         * This is the real return address. Any other
 404                         * instances associated with this task are for
 405                         * other calls deeper on the call stack
 406                         */
 407                        break;
 408        }
 409
 410        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 411
 412        correct_ret_addr = ri->ret_addr;
 413        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 414                if (ri->task != current)
 415                        /* another task is sharing our hash bucket */
 416                        continue;
 417
 418                orig_ret_address = (unsigned long) ri->ret_addr;
 419
 420                if (ri->rp && ri->rp->handler) {
 421                        ri->ret_addr = correct_ret_addr;
 422                        ri->rp->handler(ri, regs);
 423                }
 424
 425                recycle_rp_inst(ri, &empty_rp);
 426
 427                if (orig_ret_address != trampoline_address)
 428                        /*
 429                         * This is the real return address. Any other
 430                         * instances associated with this task are for
 431                         * other calls deeper on the call stack
 432                         */
 433                        break;
 434        }
 435
 436        regs->psw.addr = orig_ret_address;
 437
 438        kretprobe_hash_unlock(current, &flags);
 439
 440        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 441                hlist_del(&ri->hlist);
 442                kfree(ri);
 443        }
 444        /*
 445         * By returning a non-zero value, we are telling
 446         * kprobe_handler() that we don't want the post_handler
 447         * to run (and have re-enabled preemption)
 448         */
 449        return 1;
 450}
 451NOKPROBE_SYMBOL(trampoline_probe_handler);
 452
 453/*
 454 * Called after single-stepping.  p->addr is the address of the
 455 * instruction whose first byte has been replaced by the "breakpoint"
 456 * instruction.  To avoid the SMP problems that can occur when we
 457 * temporarily put back the original opcode to single-step, we
 458 * single-stepped a copy of the instruction.  The address of this
 459 * copy is p->ainsn.insn.
 460 */
 461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
 462{
 463        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 464        unsigned long ip = regs->psw.addr;
 465        int fixup = probe_get_fixup_type(p->ainsn.insn);
 466
 467        /* Check if the kprobes location is an enabled ftrace caller */
 468        if (p->ainsn.is_ftrace_insn) {
 469                struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
 470                struct ftrace_insn call_insn;
 471
 472                ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
 473                /*
 474                 * A kprobe on an enabled ftrace call site actually single
 475                 * stepped an unconditional branch (ftrace nop equivalent).
 476                 * Now we need to fixup things and pretend that a brasl r0,...
 477                 * was executed instead.
 478                 */
 479                if (insn->disp == KPROBE_ON_FTRACE_CALL) {
 480                        ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
 481                        regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
 482                }
 483        }
 484
 485        if (fixup & FIXUP_PSW_NORMAL)
 486                ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
 487
 488        if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
 489                int ilen = insn_length(p->ainsn.insn[0] >> 8);
 490                if (ip - (unsigned long) p->ainsn.insn == ilen)
 491                        ip = (unsigned long) p->addr + ilen;
 492        }
 493
 494        if (fixup & FIXUP_RETURN_REGISTER) {
 495                int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
 496                regs->gprs[reg] += (unsigned long) p->addr -
 497                                   (unsigned long) p->ainsn.insn;
 498        }
 499
 500        disable_singlestep(kcb, regs, ip);
 501}
 502NOKPROBE_SYMBOL(resume_execution);
 503
 504static int post_kprobe_handler(struct pt_regs *regs)
 505{
 506        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 507        struct kprobe *p = kprobe_running();
 508
 509        if (!p)
 510                return 0;
 511
 512        if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
 513                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 514                p->post_handler(p, regs, 0);
 515        }
 516
 517        resume_execution(p, regs);
 518        pop_kprobe(kcb);
 519        preempt_enable_no_resched();
 520
 521        /*
 522         * if somebody else is singlestepping across a probe point, psw mask
 523         * will have PER set, in which case, continue the remaining processing
 524         * of do_single_step, as if this is not a probe hit.
 525         */
 526        if (regs->psw.mask & PSW_MASK_PER)
 527                return 0;
 528
 529        return 1;
 530}
 531NOKPROBE_SYMBOL(post_kprobe_handler);
 532
 533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
 534{
 535        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 536        struct kprobe *p = kprobe_running();
 537        const struct exception_table_entry *entry;
 538
 539        switch(kcb->kprobe_status) {
 540        case KPROBE_HIT_SS:
 541        case KPROBE_REENTER:
 542                /*
 543                 * We are here because the instruction being single
 544                 * stepped caused a page fault. We reset the current
 545                 * kprobe and the nip points back to the probe address
 546                 * and allow the page fault handler to continue as a
 547                 * normal page fault.
 548                 */
 549                disable_singlestep(kcb, regs, (unsigned long) p->addr);
 550                pop_kprobe(kcb);
 551                preempt_enable_no_resched();
 552                break;
 553        case KPROBE_HIT_ACTIVE:
 554        case KPROBE_HIT_SSDONE:
 555                /*
 556                 * We increment the nmissed count for accounting,
 557                 * we can also use npre/npostfault count for accounting
 558                 * these specific fault cases.
 559                 */
 560                kprobes_inc_nmissed_count(p);
 561
 562                /*
 563                 * We come here because instructions in the pre/post
 564                 * handler caused the page_fault, this could happen
 565                 * if handler tries to access user space by
 566                 * copy_from_user(), get_user() etc. Let the
 567                 * user-specified handler try to fix it first.
 568                 */
 569                if (p->fault_handler && p->fault_handler(p, regs, trapnr))
 570                        return 1;
 571
 572                /*
 573                 * In case the user-specified fault handler returned
 574                 * zero, try to fix up.
 575                 */
 576                entry = s390_search_extables(regs->psw.addr);
 577                if (entry) {
 578                        regs->psw.addr = extable_fixup(entry);
 579                        return 1;
 580                }
 581
 582                /*
 583                 * fixup_exception() could not handle it,
 584                 * Let do_page_fault() fix it.
 585                 */
 586                break;
 587        default:
 588                break;
 589        }
 590        return 0;
 591}
 592NOKPROBE_SYMBOL(kprobe_trap_handler);
 593
 594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 595{
 596        int ret;
 597
 598        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 599                local_irq_disable();
 600        ret = kprobe_trap_handler(regs, trapnr);
 601        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 602                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 603        return ret;
 604}
 605NOKPROBE_SYMBOL(kprobe_fault_handler);
 606
 607/*
 608 * Wrapper routine to for handling exceptions.
 609 */
 610int kprobe_exceptions_notify(struct notifier_block *self,
 611                             unsigned long val, void *data)
 612{
 613        struct die_args *args = (struct die_args *) data;
 614        struct pt_regs *regs = args->regs;
 615        int ret = NOTIFY_DONE;
 616
 617        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 618                local_irq_disable();
 619
 620        switch (val) {
 621        case DIE_BPT:
 622                if (kprobe_handler(regs))
 623                        ret = NOTIFY_STOP;
 624                break;
 625        case DIE_SSTEP:
 626                if (post_kprobe_handler(regs))
 627                        ret = NOTIFY_STOP;
 628                break;
 629        case DIE_TRAP:
 630                if (!preemptible() && kprobe_running() &&
 631                    kprobe_trap_handler(regs, args->trapnr))
 632                        ret = NOTIFY_STOP;
 633                break;
 634        default:
 635                break;
 636        }
 637
 638        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 639                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 640
 641        return ret;
 642}
 643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 644
 645static struct kprobe trampoline = {
 646        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 647        .pre_handler = trampoline_probe_handler
 648};
 649
 650int __init arch_init_kprobes(void)
 651{
 652        return register_kprobe(&trampoline);
 653}
 654
 655int arch_trampoline_kprobe(struct kprobe *p)
 656{
 657        return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
 658}
 659NOKPROBE_SYMBOL(arch_trampoline_kprobe);
 660