linux/arch/x86/crypto/sha512-ssse3-asm.S
<<
>>
Prefs
   1########################################################################
   2# Implement fast SHA-512 with SSSE3 instructions. (x86_64)
   3#
   4# Copyright (C) 2013 Intel Corporation.
   5#
   6# Authors:
   7#     James Guilford <james.guilford@intel.com>
   8#     Kirk Yap <kirk.s.yap@intel.com>
   9#     David Cote <david.m.cote@intel.com>
  10#     Tim Chen <tim.c.chen@linux.intel.com>
  11#
  12# This software is available to you under a choice of one of two
  13# licenses.  You may choose to be licensed under the terms of the GNU
  14# General Public License (GPL) Version 2, available from the file
  15# COPYING in the main directory of this source tree, or the
  16# OpenIB.org BSD license below:
  17#
  18#     Redistribution and use in source and binary forms, with or
  19#     without modification, are permitted provided that the following
  20#     conditions are met:
  21#
  22#      - Redistributions of source code must retain the above
  23#        copyright notice, this list of conditions and the following
  24#        disclaimer.
  25#
  26#      - Redistributions in binary form must reproduce the above
  27#        copyright notice, this list of conditions and the following
  28#        disclaimer in the documentation and/or other materials
  29#        provided with the distribution.
  30#
  31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38# SOFTWARE.
  39#
  40########################################################################
  41#
  42# This code is described in an Intel White-Paper:
  43# "Fast SHA-512 Implementations on Intel Architecture Processors"
  44#
  45# To find it, surf to http://www.intel.com/p/en_US/embedded
  46# and search for that title.
  47#
  48########################################################################
  49
  50#include <linux/linkage.h>
  51
  52.text
  53
  54# Virtual Registers
  55# ARG1
  56digest =        %rdi
  57# ARG2
  58msg =           %rsi
  59# ARG3
  60msglen =        %rdx
  61T1 =            %rcx
  62T2 =            %r8
  63a_64 =          %r9
  64b_64 =          %r10
  65c_64 =          %r11
  66d_64 =          %r12
  67e_64 =          %r13
  68f_64 =          %r14
  69g_64 =          %r15
  70h_64 =          %rbx
  71tmp0 =          %rax
  72
  73# Local variables (stack frame)
  74
  75W_SIZE = 80*8
  76WK_SIZE = 2*8
  77RSPSAVE_SIZE = 1*8
  78GPRSAVE_SIZE = 5*8
  79
  80frame_W = 0
  81frame_WK = frame_W + W_SIZE
  82frame_RSPSAVE = frame_WK + WK_SIZE
  83frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
  84frame_size = frame_GPRSAVE + GPRSAVE_SIZE
  85
  86# Useful QWORD "arrays" for simpler memory references
  87# MSG, DIGEST, K_t, W_t are arrays
  88# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
  89
  90# Input message (arg1)
  91#define MSG(i)    8*i(msg)
  92
  93# Output Digest (arg2)
  94#define DIGEST(i) 8*i(digest)
  95
  96# SHA Constants (static mem)
  97#define K_t(i)    8*i+K512(%rip)
  98
  99# Message Schedule (stack frame)
 100#define W_t(i)    8*i+frame_W(%rsp)
 101
 102# W[t]+K[t] (stack frame)
 103#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
 104
 105.macro RotateState
 106        # Rotate symbols a..h right
 107        TMP   = h_64
 108        h_64  = g_64
 109        g_64  = f_64
 110        f_64  = e_64
 111        e_64  = d_64
 112        d_64  = c_64
 113        c_64  = b_64
 114        b_64  = a_64
 115        a_64  = TMP
 116.endm
 117
 118.macro SHA512_Round rnd
 119
 120        # Compute Round %%t
 121        mov     f_64, T1          # T1 = f
 122        mov     e_64, tmp0        # tmp = e
 123        xor     g_64, T1          # T1 = f ^ g
 124        ror     $23, tmp0 # 41    # tmp = e ror 23
 125        and     e_64, T1          # T1 = (f ^ g) & e
 126        xor     e_64, tmp0        # tmp = (e ror 23) ^ e
 127        xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
 128        idx = \rnd
 129        add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
 130        ror     $4, tmp0  # 18    # tmp = ((e ror 23) ^ e) ror 4
 131        xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
 132        mov     a_64, T2          # T2 = a
 133        add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
 134        ror     $14, tmp0 # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
 135        add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
 136        mov     a_64, tmp0        # tmp = a
 137        xor     c_64, T2          # T2 = a ^ c
 138        and     c_64, tmp0        # tmp = a & c
 139        and     b_64, T2          # T2 = (a ^ c) & b
 140        xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
 141        mov     a_64, tmp0        # tmp = a
 142        ror     $5, tmp0 # 39     # tmp = a ror 5
 143        xor     a_64, tmp0        # tmp = (a ror 5) ^ a
 144        add     T1, d_64          # e(next_state) = d + T1
 145        ror     $6, tmp0 # 34     # tmp = ((a ror 5) ^ a) ror 6
 146        xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
 147        lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
 148        ror     $28, tmp0 # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
 149        add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
 150        RotateState
 151.endm
 152
 153.macro SHA512_2Sched_2Round_sse rnd
 154
 155        # Compute rounds t-2 and t-1
 156        # Compute message schedule QWORDS t and t+1
 157
 158        #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
 159        # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
 160        # scheduler.
 161        #   The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
 162        # They are then added to their respective SHA512 constants at
 163        # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
 164        #   For brievity, the comments following vectored instructions only refer to
 165        # the first of a pair of QWORDS.
 166        # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
 167        #   The computation of the message schedule and the rounds are tightly
 168        # stitched to take advantage of instruction-level parallelism.
 169        # For clarity, integer instructions (for the rounds calculation) are indented
 170        # by one tab. Vectored instructions (for the message scheduler) are indented
 171        # by two tabs.
 172
 173        mov     f_64, T1
 174        idx = \rnd -2
 175        movdqa  W_t(idx), %xmm2             # XMM2 = W[t-2]
 176        xor     g_64, T1
 177        and     e_64, T1
 178        movdqa  %xmm2, %xmm0                # XMM0 = W[t-2]
 179        xor     g_64, T1
 180        idx = \rnd
 181        add     WK_2(idx), T1
 182        idx = \rnd - 15
 183        movdqu  W_t(idx), %xmm5             # XMM5 = W[t-15]
 184        mov     e_64, tmp0
 185        ror     $23, tmp0 # 41
 186        movdqa  %xmm5, %xmm3                # XMM3 = W[t-15]
 187        xor     e_64, tmp0
 188        ror     $4, tmp0 # 18
 189        psrlq   $61-19, %xmm0               # XMM0 = W[t-2] >> 42
 190        xor     e_64, tmp0
 191        ror     $14, tmp0 # 14
 192        psrlq   $(8-7), %xmm3               # XMM3 = W[t-15] >> 1
 193        add     tmp0, T1
 194        add     h_64, T1
 195        pxor    %xmm2, %xmm0                # XMM0 = (W[t-2] >> 42) ^ W[t-2]
 196        mov     a_64, T2
 197        xor     c_64, T2
 198        pxor    %xmm5, %xmm3                # XMM3 = (W[t-15] >> 1) ^ W[t-15]
 199        and     b_64, T2
 200        mov     a_64, tmp0
 201        psrlq   $(19-6), %xmm0              # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
 202        and     c_64, tmp0
 203        xor     tmp0, T2
 204        psrlq   $(7-1), %xmm3               # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
 205        mov     a_64, tmp0
 206        ror     $5, tmp0 # 39
 207        pxor    %xmm2, %xmm0                # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
 208        xor     a_64, tmp0
 209        ror     $6, tmp0 # 34
 210        pxor    %xmm5, %xmm3                # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
 211        xor     a_64, tmp0
 212        ror     $28, tmp0 # 28
 213        psrlq   $6, %xmm0                   # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
 214        add     tmp0, T2
 215        add     T1, d_64
 216        psrlq   $1, %xmm3                   # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
 217        lea     (T1, T2), h_64
 218        RotateState
 219        movdqa  %xmm2, %xmm1                # XMM1 = W[t-2]
 220        mov     f_64, T1
 221        xor     g_64, T1
 222        movdqa  %xmm5, %xmm4                # XMM4 = W[t-15]
 223        and     e_64, T1
 224        xor     g_64, T1
 225        psllq   $(64-19)-(64-61) , %xmm1    # XMM1 = W[t-2] << 42
 226        idx = \rnd + 1
 227        add     WK_2(idx), T1
 228        mov     e_64, tmp0
 229        psllq   $(64-1)-(64-8), %xmm4       # XMM4 = W[t-15] << 7
 230        ror     $23, tmp0 # 41
 231        xor     e_64, tmp0
 232        pxor    %xmm2, %xmm1                # XMM1 = (W[t-2] << 42)^W[t-2]
 233        ror     $4, tmp0 # 18
 234        xor     e_64, tmp0
 235        pxor    %xmm5, %xmm4                # XMM4 = (W[t-15]<<7)^W[t-15]
 236        ror     $14, tmp0 # 14
 237        add     tmp0, T1
 238        psllq   $(64-61), %xmm1             # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
 239        add     h_64, T1
 240        mov     a_64, T2
 241        psllq   $(64-8), %xmm4              # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
 242        xor     c_64, T2
 243        and     b_64, T2
 244        pxor    %xmm1, %xmm0                # XMM0 = s1(W[t-2])
 245        mov     a_64, tmp0
 246        and     c_64, tmp0
 247        idx = \rnd - 7
 248        movdqu  W_t(idx), %xmm1             # XMM1 = W[t-7]
 249        xor     tmp0, T2
 250        pxor    %xmm4, %xmm3                # XMM3 = s0(W[t-15])
 251        mov     a_64, tmp0
 252        paddq   %xmm3, %xmm0                # XMM0 = s1(W[t-2]) + s0(W[t-15])
 253        ror     $5, tmp0 # 39
 254        idx =\rnd-16
 255        paddq   W_t(idx), %xmm0             # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
 256        xor     a_64, tmp0
 257        paddq   %xmm1, %xmm0                # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
 258        ror     $6, tmp0 # 34
 259        movdqa  %xmm0, W_t(\rnd)            # Store scheduled qwords
 260        xor     a_64, tmp0
 261        paddq   K_t(\rnd), %xmm0            # Compute W[t]+K[t]
 262        ror     $28, tmp0 # 28
 263        idx = \rnd
 264        movdqa  %xmm0, WK_2(idx)            # Store W[t]+K[t] for next rounds
 265        add     tmp0, T2
 266        add     T1, d_64
 267        lea     (T1, T2), h_64
 268        RotateState
 269.endm
 270
 271########################################################################
 272# void sha512_transform_ssse3(void* D, const void* M, u64 L)#
 273# Purpose: Updates the SHA512 digest stored at D with the message stored in M.
 274# The size of the message pointed to by M must be an integer multiple of SHA512
 275#   message blocks.
 276# L is the message length in SHA512 blocks.
 277########################################################################
 278ENTRY(sha512_transform_ssse3)
 279
 280        cmp $0, msglen
 281        je nowork
 282
 283        # Allocate Stack Space
 284        mov     %rsp, %rax
 285        sub     $frame_size, %rsp
 286        and     $~(0x20 - 1), %rsp
 287        mov     %rax, frame_RSPSAVE(%rsp)
 288
 289        # Save GPRs
 290        mov     %rbx, frame_GPRSAVE(%rsp)
 291        mov     %r12, frame_GPRSAVE +8*1(%rsp)
 292        mov     %r13, frame_GPRSAVE +8*2(%rsp)
 293        mov     %r14, frame_GPRSAVE +8*3(%rsp)
 294        mov     %r15, frame_GPRSAVE +8*4(%rsp)
 295
 296updateblock:
 297
 298# Load state variables
 299        mov     DIGEST(0), a_64
 300        mov     DIGEST(1), b_64
 301        mov     DIGEST(2), c_64
 302        mov     DIGEST(3), d_64
 303        mov     DIGEST(4), e_64
 304        mov     DIGEST(5), f_64
 305        mov     DIGEST(6), g_64
 306        mov     DIGEST(7), h_64
 307
 308        t = 0
 309        .rept 80/2 + 1
 310        # (80 rounds) / (2 rounds/iteration) + (1 iteration)
 311        # +1 iteration because the scheduler leads hashing by 1 iteration
 312                .if t < 2
 313                        # BSWAP 2 QWORDS
 314                        movdqa  XMM_QWORD_BSWAP(%rip), %xmm1
 315                        movdqu  MSG(t), %xmm0
 316                        pshufb  %xmm1, %xmm0    # BSWAP
 317                        movdqa  %xmm0, W_t(t)   # Store Scheduled Pair
 318                        paddq   K_t(t), %xmm0   # Compute W[t]+K[t]
 319                        movdqa  %xmm0, WK_2(t)  # Store into WK for rounds
 320                .elseif t < 16
 321                        # BSWAP 2 QWORDS# Compute 2 Rounds
 322                        movdqu  MSG(t), %xmm0
 323                        pshufb  %xmm1, %xmm0    # BSWAP
 324                        SHA512_Round t-2        # Round t-2
 325                        movdqa  %xmm0, W_t(t)   # Store Scheduled Pair
 326                        paddq   K_t(t), %xmm0   # Compute W[t]+K[t]
 327                        SHA512_Round t-1        # Round t-1
 328                        movdqa  %xmm0, WK_2(t)  # Store W[t]+K[t] into WK
 329                .elseif t < 79
 330                        # Schedule 2 QWORDS# Compute 2 Rounds
 331                        SHA512_2Sched_2Round_sse t
 332                .else
 333                        # Compute 2 Rounds
 334                        SHA512_Round t-2
 335                        SHA512_Round t-1
 336                .endif
 337                t = t+2
 338        .endr
 339
 340        # Update digest
 341        add     a_64, DIGEST(0)
 342        add     b_64, DIGEST(1)
 343        add     c_64, DIGEST(2)
 344        add     d_64, DIGEST(3)
 345        add     e_64, DIGEST(4)
 346        add     f_64, DIGEST(5)
 347        add     g_64, DIGEST(6)
 348        add     h_64, DIGEST(7)
 349
 350        # Advance to next message block
 351        add     $16*8, msg
 352        dec     msglen
 353        jnz     updateblock
 354
 355        # Restore GPRs
 356        mov     frame_GPRSAVE(%rsp),      %rbx
 357        mov     frame_GPRSAVE +8*1(%rsp), %r12
 358        mov     frame_GPRSAVE +8*2(%rsp), %r13
 359        mov     frame_GPRSAVE +8*3(%rsp), %r14
 360        mov     frame_GPRSAVE +8*4(%rsp), %r15
 361
 362        # Restore Stack Pointer
 363        mov     frame_RSPSAVE(%rsp), %rsp
 364
 365nowork:
 366        ret
 367ENDPROC(sha512_transform_ssse3)
 368
 369########################################################################
 370### Binary Data
 371
 372.section        .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
 373.align 16
 374# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
 375XMM_QWORD_BSWAP:
 376        .octa 0x08090a0b0c0d0e0f0001020304050607
 377
 378# Mergeable 640-byte rodata section. This allows linker to merge the table
 379# with other, exactly the same 640-byte fragment of another rodata section
 380# (if such section exists).
 381.section        .rodata.cst640.K512, "aM", @progbits, 640
 382.align 64
 383# K[t] used in SHA512 hashing
 384K512:
 385        .quad 0x428a2f98d728ae22,0x7137449123ef65cd
 386        .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
 387        .quad 0x3956c25bf348b538,0x59f111f1b605d019
 388        .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
 389        .quad 0xd807aa98a3030242,0x12835b0145706fbe
 390        .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
 391        .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
 392        .quad 0x9bdc06a725c71235,0xc19bf174cf692694
 393        .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
 394        .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
 395        .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
 396        .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
 397        .quad 0x983e5152ee66dfab,0xa831c66d2db43210
 398        .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
 399        .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
 400        .quad 0x06ca6351e003826f,0x142929670a0e6e70
 401        .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
 402        .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
 403        .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
 404        .quad 0x81c2c92e47edaee6,0x92722c851482353b
 405        .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
 406        .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
 407        .quad 0xd192e819d6ef5218,0xd69906245565a910
 408        .quad 0xf40e35855771202a,0x106aa07032bbd1b8
 409        .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
 410        .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
 411        .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
 412        .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
 413        .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
 414        .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
 415        .quad 0x90befffa23631e28,0xa4506cebde82bde9
 416        .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
 417        .quad 0xca273eceea26619c,0xd186b8c721c0c207
 418        .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
 419        .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
 420        .quad 0x113f9804bef90dae,0x1b710b35131c471b
 421        .quad 0x28db77f523047d84,0x32caab7b40c72493
 422        .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
 423        .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
 424        .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
 425