linux/drivers/dma/stm32-dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/delay.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/err.h>
  17#include <linux/init.h>
  18#include <linux/jiffies.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/of_dma.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/reset.h>
  27#include <linux/sched.h>
  28#include <linux/slab.h>
  29
  30#include "virt-dma.h"
  31
  32#define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
  33#define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
  34#define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
  35#define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
  36#define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
  37#define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
  38#define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
  39#define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
  40#define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
  41#define STM32_DMA_MASKI                 (STM32_DMA_TCI \
  42                                         | STM32_DMA_TEI \
  43                                         | STM32_DMA_DMEI \
  44                                         | STM32_DMA_FEI)
  45
  46/* DMA Stream x Configuration Register */
  47#define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
  48#define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
  49#define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
  50#define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
  51#define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
  52#define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
  53#define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
  54#define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
  55#define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
  56#define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
  57#define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
  58#define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
  59#define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
  60#define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
  61#define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
  62#define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
  63#define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
  64#define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
  65#define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
  66#define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
  67#define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
  68#define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
  69#define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
  70                                                */
  71#define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
  72#define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
  73#define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
  74#define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
  75                                        | STM32_DMA_SCR_MINC \
  76                                        | STM32_DMA_SCR_PINCOS \
  77                                        | STM32_DMA_SCR_PL_MASK)
  78#define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
  79                                        | STM32_DMA_SCR_TEIE \
  80                                        | STM32_DMA_SCR_DMEIE)
  81
  82/* DMA Stream x number of data register */
  83#define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
  84
  85/* DMA stream peripheral address register */
  86#define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
  87
  88/* DMA stream x memory 0 address register */
  89#define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
  90
  91/* DMA stream x memory 1 address register */
  92#define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
  93
  94/* DMA stream x FIFO control register */
  95#define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
  96#define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
  97#define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
  98#define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
  99#define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
 100#define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
 101                                        | STM32_DMA_SFCR_DMDIS)
 102
 103/* DMA direction */
 104#define STM32_DMA_DEV_TO_MEM            0x00
 105#define STM32_DMA_MEM_TO_DEV            0x01
 106#define STM32_DMA_MEM_TO_MEM            0x02
 107
 108/* DMA priority level */
 109#define STM32_DMA_PRIORITY_LOW          0x00
 110#define STM32_DMA_PRIORITY_MEDIUM       0x01
 111#define STM32_DMA_PRIORITY_HIGH         0x02
 112#define STM32_DMA_PRIORITY_VERY_HIGH    0x03
 113
 114/* DMA FIFO threshold selection */
 115#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
 116#define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
 117#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
 118#define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
 119
 120#define STM32_DMA_MAX_DATA_ITEMS        0xffff
 121/*
 122 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 123 * gather at boundary. Thus it's safer to round down this value on FIFO
 124 * size (16 Bytes)
 125 */
 126#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
 127        ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 128#define STM32_DMA_MAX_CHANNELS          0x08
 129#define STM32_DMA_MAX_REQUEST_ID        0x08
 130#define STM32_DMA_MAX_DATA_PARAM        0x03
 131#define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
 132#define STM32_DMA_MIN_BURST             4
 133#define STM32_DMA_MAX_BURST             16
 134
 135/* DMA Features */
 136#define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
 137#define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
 138
 139enum stm32_dma_width {
 140        STM32_DMA_BYTE,
 141        STM32_DMA_HALF_WORD,
 142        STM32_DMA_WORD,
 143};
 144
 145enum stm32_dma_burst_size {
 146        STM32_DMA_BURST_SINGLE,
 147        STM32_DMA_BURST_INCR4,
 148        STM32_DMA_BURST_INCR8,
 149        STM32_DMA_BURST_INCR16,
 150};
 151
 152/**
 153 * struct stm32_dma_cfg - STM32 DMA custom configuration
 154 * @channel_id: channel ID
 155 * @request_line: DMA request
 156 * @stream_config: 32bit mask specifying the DMA channel configuration
 157 * @features: 32bit mask specifying the DMA Feature list
 158 */
 159struct stm32_dma_cfg {
 160        u32 channel_id;
 161        u32 request_line;
 162        u32 stream_config;
 163        u32 features;
 164};
 165
 166struct stm32_dma_chan_reg {
 167        u32 dma_lisr;
 168        u32 dma_hisr;
 169        u32 dma_lifcr;
 170        u32 dma_hifcr;
 171        u32 dma_scr;
 172        u32 dma_sndtr;
 173        u32 dma_spar;
 174        u32 dma_sm0ar;
 175        u32 dma_sm1ar;
 176        u32 dma_sfcr;
 177};
 178
 179struct stm32_dma_sg_req {
 180        u32 len;
 181        struct stm32_dma_chan_reg chan_reg;
 182};
 183
 184struct stm32_dma_desc {
 185        struct virt_dma_desc vdesc;
 186        bool cyclic;
 187        u32 num_sgs;
 188        struct stm32_dma_sg_req sg_req[];
 189};
 190
 191struct stm32_dma_chan {
 192        struct virt_dma_chan vchan;
 193        bool config_init;
 194        bool busy;
 195        u32 id;
 196        u32 irq;
 197        struct stm32_dma_desc *desc;
 198        u32 next_sg;
 199        struct dma_slave_config dma_sconfig;
 200        struct stm32_dma_chan_reg chan_reg;
 201        u32 threshold;
 202        u32 mem_burst;
 203        u32 mem_width;
 204};
 205
 206struct stm32_dma_device {
 207        struct dma_device ddev;
 208        void __iomem *base;
 209        struct clk *clk;
 210        struct reset_control *rst;
 211        bool mem2mem;
 212        struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 213};
 214
 215static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 216{
 217        return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 218                            ddev);
 219}
 220
 221static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 222{
 223        return container_of(c, struct stm32_dma_chan, vchan.chan);
 224}
 225
 226static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 227{
 228        return container_of(vdesc, struct stm32_dma_desc, vdesc);
 229}
 230
 231static struct device *chan2dev(struct stm32_dma_chan *chan)
 232{
 233        return &chan->vchan.chan.dev->device;
 234}
 235
 236static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 237{
 238        return readl_relaxed(dmadev->base + reg);
 239}
 240
 241static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 242{
 243        writel_relaxed(val, dmadev->base + reg);
 244}
 245
 246static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 247                               enum dma_slave_buswidth width)
 248{
 249        switch (width) {
 250        case DMA_SLAVE_BUSWIDTH_1_BYTE:
 251                return STM32_DMA_BYTE;
 252        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 253                return STM32_DMA_HALF_WORD;
 254        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 255                return STM32_DMA_WORD;
 256        default:
 257                dev_err(chan2dev(chan), "Dma bus width not supported\n");
 258                return -EINVAL;
 259        }
 260}
 261
 262static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 263                                                       u32 threshold)
 264{
 265        enum dma_slave_buswidth max_width;
 266
 267        if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 268                max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 269        else
 270                max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 271
 272        while ((buf_len < max_width  || buf_len % max_width) &&
 273               max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 274                max_width = max_width >> 1;
 275
 276        return max_width;
 277}
 278
 279static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 280                                                enum dma_slave_buswidth width)
 281{
 282        u32 remaining;
 283
 284        if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 285                if (burst != 0) {
 286                        /*
 287                         * If number of beats fit in several whole bursts
 288                         * this configuration is allowed.
 289                         */
 290                        remaining = ((STM32_DMA_FIFO_SIZE / width) *
 291                                     (threshold + 1) / 4) % burst;
 292
 293                        if (remaining == 0)
 294                                return true;
 295                } else {
 296                        return true;
 297                }
 298        }
 299
 300        return false;
 301}
 302
 303static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 304{
 305        /*
 306         * Buffer or period length has to be aligned on FIFO depth.
 307         * Otherwise bytes may be stuck within FIFO at buffer or period
 308         * length.
 309         */
 310        return ((buf_len % ((threshold + 1) * 4)) == 0);
 311}
 312
 313static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 314                                    enum dma_slave_buswidth width)
 315{
 316        u32 best_burst = max_burst;
 317
 318        if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 319                return 0;
 320
 321        while ((buf_len < best_burst * width && best_burst > 1) ||
 322               !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 323                                                    width)) {
 324                if (best_burst > STM32_DMA_MIN_BURST)
 325                        best_burst = best_burst >> 1;
 326                else
 327                        best_burst = 0;
 328        }
 329
 330        return best_burst;
 331}
 332
 333static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 334{
 335        switch (maxburst) {
 336        case 0:
 337        case 1:
 338                return STM32_DMA_BURST_SINGLE;
 339        case 4:
 340                return STM32_DMA_BURST_INCR4;
 341        case 8:
 342                return STM32_DMA_BURST_INCR8;
 343        case 16:
 344                return STM32_DMA_BURST_INCR16;
 345        default:
 346                dev_err(chan2dev(chan), "Dma burst size not supported\n");
 347                return -EINVAL;
 348        }
 349}
 350
 351static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 352                                      u32 src_burst, u32 dst_burst)
 353{
 354        chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 355        chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 356
 357        if (!src_burst && !dst_burst) {
 358                /* Using direct mode */
 359                chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 360        } else {
 361                /* Using FIFO mode */
 362                chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 363        }
 364}
 365
 366static int stm32_dma_slave_config(struct dma_chan *c,
 367                                  struct dma_slave_config *config)
 368{
 369        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 370
 371        memcpy(&chan->dma_sconfig, config, sizeof(*config));
 372
 373        chan->config_init = true;
 374
 375        return 0;
 376}
 377
 378static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 379{
 380        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 381        u32 flags, dma_isr;
 382
 383        /*
 384         * Read "flags" from DMA_xISR register corresponding to the selected
 385         * DMA channel at the correct bit offset inside that register.
 386         *
 387         * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 388         * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 389         */
 390
 391        if (chan->id & 4)
 392                dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
 393        else
 394                dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
 395
 396        flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 397
 398        return flags & STM32_DMA_MASKI;
 399}
 400
 401static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 402{
 403        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 404        u32 dma_ifcr;
 405
 406        /*
 407         * Write "flags" to the DMA_xIFCR register corresponding to the selected
 408         * DMA channel at the correct bit offset inside that register.
 409         *
 410         * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 411         * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 412         */
 413        flags &= STM32_DMA_MASKI;
 414        dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 415
 416        if (chan->id & 4)
 417                stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
 418        else
 419                stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
 420}
 421
 422static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 423{
 424        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 425        unsigned long timeout = jiffies + msecs_to_jiffies(5000);
 426        u32 dma_scr, id;
 427
 428        id = chan->id;
 429        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 430
 431        if (dma_scr & STM32_DMA_SCR_EN) {
 432                dma_scr &= ~STM32_DMA_SCR_EN;
 433                stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
 434
 435                do {
 436                        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 437                        dma_scr &= STM32_DMA_SCR_EN;
 438                        if (!dma_scr)
 439                                break;
 440
 441                        if (time_after_eq(jiffies, timeout)) {
 442                                dev_err(chan2dev(chan), "%s: timeout!\n",
 443                                        __func__);
 444                                return -EBUSY;
 445                        }
 446                        cond_resched();
 447                } while (1);
 448        }
 449
 450        return 0;
 451}
 452
 453static void stm32_dma_stop(struct stm32_dma_chan *chan)
 454{
 455        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 456        u32 dma_scr, dma_sfcr, status;
 457        int ret;
 458
 459        /* Disable interrupts */
 460        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 461        dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 462        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 463        dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 464        dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 465        stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 466
 467        /* Disable DMA */
 468        ret = stm32_dma_disable_chan(chan);
 469        if (ret < 0)
 470                return;
 471
 472        /* Clear interrupt status if it is there */
 473        status = stm32_dma_irq_status(chan);
 474        if (status) {
 475                dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 476                        __func__, status);
 477                stm32_dma_irq_clear(chan, status);
 478        }
 479
 480        chan->busy = false;
 481}
 482
 483static int stm32_dma_terminate_all(struct dma_chan *c)
 484{
 485        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 486        unsigned long flags;
 487        LIST_HEAD(head);
 488
 489        spin_lock_irqsave(&chan->vchan.lock, flags);
 490
 491        if (chan->busy) {
 492                stm32_dma_stop(chan);
 493                chan->desc = NULL;
 494        }
 495
 496        vchan_get_all_descriptors(&chan->vchan, &head);
 497        spin_unlock_irqrestore(&chan->vchan.lock, flags);
 498        vchan_dma_desc_free_list(&chan->vchan, &head);
 499
 500        return 0;
 501}
 502
 503static void stm32_dma_synchronize(struct dma_chan *c)
 504{
 505        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 506
 507        vchan_synchronize(&chan->vchan);
 508}
 509
 510static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 511{
 512        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 513        u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 514        u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 515        u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 516        u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 517        u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 518        u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 519
 520        dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 521        dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 522        dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 523        dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 524        dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 525        dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 526}
 527
 528static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 529
 530static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 531{
 532        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 533        struct virt_dma_desc *vdesc;
 534        struct stm32_dma_sg_req *sg_req;
 535        struct stm32_dma_chan_reg *reg;
 536        u32 status;
 537        int ret;
 538
 539        ret = stm32_dma_disable_chan(chan);
 540        if (ret < 0)
 541                return;
 542
 543        if (!chan->desc) {
 544                vdesc = vchan_next_desc(&chan->vchan);
 545                if (!vdesc)
 546                        return;
 547
 548                chan->desc = to_stm32_dma_desc(vdesc);
 549                chan->next_sg = 0;
 550        }
 551
 552        if (chan->next_sg == chan->desc->num_sgs)
 553                chan->next_sg = 0;
 554
 555        sg_req = &chan->desc->sg_req[chan->next_sg];
 556        reg = &sg_req->chan_reg;
 557
 558        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 559        stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 560        stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 561        stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 562        stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 563        stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 564
 565        chan->next_sg++;
 566
 567        /* Clear interrupt status if it is there */
 568        status = stm32_dma_irq_status(chan);
 569        if (status)
 570                stm32_dma_irq_clear(chan, status);
 571
 572        if (chan->desc->cyclic)
 573                stm32_dma_configure_next_sg(chan);
 574
 575        stm32_dma_dump_reg(chan);
 576
 577        /* Start DMA */
 578        reg->dma_scr |= STM32_DMA_SCR_EN;
 579        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 580
 581        chan->busy = true;
 582
 583        dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 584}
 585
 586static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 587{
 588        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 589        struct stm32_dma_sg_req *sg_req;
 590        u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 591
 592        id = chan->id;
 593        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 594
 595        if (dma_scr & STM32_DMA_SCR_DBM) {
 596                if (chan->next_sg == chan->desc->num_sgs)
 597                        chan->next_sg = 0;
 598
 599                sg_req = &chan->desc->sg_req[chan->next_sg];
 600
 601                if (dma_scr & STM32_DMA_SCR_CT) {
 602                        dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 603                        stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 604                        dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 605                                stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 606                } else {
 607                        dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 608                        stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 609                        dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 610                                stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 611                }
 612        }
 613}
 614
 615static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
 616{
 617        if (chan->desc) {
 618                if (chan->desc->cyclic) {
 619                        vchan_cyclic_callback(&chan->desc->vdesc);
 620                        chan->next_sg++;
 621                        stm32_dma_configure_next_sg(chan);
 622                } else {
 623                        chan->busy = false;
 624                        if (chan->next_sg == chan->desc->num_sgs) {
 625                                list_del(&chan->desc->vdesc.node);
 626                                vchan_cookie_complete(&chan->desc->vdesc);
 627                                chan->desc = NULL;
 628                        }
 629                        stm32_dma_start_transfer(chan);
 630                }
 631        }
 632}
 633
 634static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 635{
 636        struct stm32_dma_chan *chan = devid;
 637        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 638        u32 status, scr, sfcr;
 639
 640        spin_lock(&chan->vchan.lock);
 641
 642        status = stm32_dma_irq_status(chan);
 643        scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 644        sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 645
 646        if (status & STM32_DMA_TCI) {
 647                stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 648                if (scr & STM32_DMA_SCR_TCIE)
 649                        stm32_dma_handle_chan_done(chan);
 650                status &= ~STM32_DMA_TCI;
 651        }
 652        if (status & STM32_DMA_HTI) {
 653                stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 654                status &= ~STM32_DMA_HTI;
 655        }
 656        if (status & STM32_DMA_FEI) {
 657                stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 658                status &= ~STM32_DMA_FEI;
 659                if (sfcr & STM32_DMA_SFCR_FEIE) {
 660                        if (!(scr & STM32_DMA_SCR_EN))
 661                                dev_err(chan2dev(chan), "FIFO Error\n");
 662                        else
 663                                dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 664                }
 665        }
 666        if (status) {
 667                stm32_dma_irq_clear(chan, status);
 668                dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 669                if (!(scr & STM32_DMA_SCR_EN))
 670                        dev_err(chan2dev(chan), "chan disabled by HW\n");
 671        }
 672
 673        spin_unlock(&chan->vchan.lock);
 674
 675        return IRQ_HANDLED;
 676}
 677
 678static void stm32_dma_issue_pending(struct dma_chan *c)
 679{
 680        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 681        unsigned long flags;
 682
 683        spin_lock_irqsave(&chan->vchan.lock, flags);
 684        if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 685                dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 686                stm32_dma_start_transfer(chan);
 687
 688        }
 689        spin_unlock_irqrestore(&chan->vchan.lock, flags);
 690}
 691
 692static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 693                                    enum dma_transfer_direction direction,
 694                                    enum dma_slave_buswidth *buswidth,
 695                                    u32 buf_len)
 696{
 697        enum dma_slave_buswidth src_addr_width, dst_addr_width;
 698        int src_bus_width, dst_bus_width;
 699        int src_burst_size, dst_burst_size;
 700        u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 701        u32 dma_scr, threshold;
 702
 703        src_addr_width = chan->dma_sconfig.src_addr_width;
 704        dst_addr_width = chan->dma_sconfig.dst_addr_width;
 705        src_maxburst = chan->dma_sconfig.src_maxburst;
 706        dst_maxburst = chan->dma_sconfig.dst_maxburst;
 707        threshold = chan->threshold;
 708
 709        switch (direction) {
 710        case DMA_MEM_TO_DEV:
 711                /* Set device data size */
 712                dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 713                if (dst_bus_width < 0)
 714                        return dst_bus_width;
 715
 716                /* Set device burst size */
 717                dst_best_burst = stm32_dma_get_best_burst(buf_len,
 718                                                          dst_maxburst,
 719                                                          threshold,
 720                                                          dst_addr_width);
 721
 722                dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 723                if (dst_burst_size < 0)
 724                        return dst_burst_size;
 725
 726                /* Set memory data size */
 727                src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
 728                chan->mem_width = src_addr_width;
 729                src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 730                if (src_bus_width < 0)
 731                        return src_bus_width;
 732
 733                /* Set memory burst size */
 734                src_maxburst = STM32_DMA_MAX_BURST;
 735                src_best_burst = stm32_dma_get_best_burst(buf_len,
 736                                                          src_maxburst,
 737                                                          threshold,
 738                                                          src_addr_width);
 739                src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 740                if (src_burst_size < 0)
 741                        return src_burst_size;
 742
 743                dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
 744                        STM32_DMA_SCR_PSIZE(dst_bus_width) |
 745                        STM32_DMA_SCR_MSIZE(src_bus_width) |
 746                        STM32_DMA_SCR_PBURST(dst_burst_size) |
 747                        STM32_DMA_SCR_MBURST(src_burst_size);
 748
 749                /* Set FIFO threshold */
 750                chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 751                chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
 752
 753                /* Set peripheral address */
 754                chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
 755                *buswidth = dst_addr_width;
 756                break;
 757
 758        case DMA_DEV_TO_MEM:
 759                /* Set device data size */
 760                src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 761                if (src_bus_width < 0)
 762                        return src_bus_width;
 763
 764                /* Set device burst size */
 765                src_best_burst = stm32_dma_get_best_burst(buf_len,
 766                                                          src_maxburst,
 767                                                          threshold,
 768                                                          src_addr_width);
 769                chan->mem_burst = src_best_burst;
 770                src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 771                if (src_burst_size < 0)
 772                        return src_burst_size;
 773
 774                /* Set memory data size */
 775                dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
 776                chan->mem_width = dst_addr_width;
 777                dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 778                if (dst_bus_width < 0)
 779                        return dst_bus_width;
 780
 781                /* Set memory burst size */
 782                dst_maxburst = STM32_DMA_MAX_BURST;
 783                dst_best_burst = stm32_dma_get_best_burst(buf_len,
 784                                                          dst_maxburst,
 785                                                          threshold,
 786                                                          dst_addr_width);
 787                chan->mem_burst = dst_best_burst;
 788                dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 789                if (dst_burst_size < 0)
 790                        return dst_burst_size;
 791
 792                dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
 793                        STM32_DMA_SCR_PSIZE(src_bus_width) |
 794                        STM32_DMA_SCR_MSIZE(dst_bus_width) |
 795                        STM32_DMA_SCR_PBURST(src_burst_size) |
 796                        STM32_DMA_SCR_MBURST(dst_burst_size);
 797
 798                /* Set FIFO threshold */
 799                chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 800                chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
 801
 802                /* Set peripheral address */
 803                chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
 804                *buswidth = chan->dma_sconfig.src_addr_width;
 805                break;
 806
 807        default:
 808                dev_err(chan2dev(chan), "Dma direction is not supported\n");
 809                return -EINVAL;
 810        }
 811
 812        stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
 813
 814        /* Set DMA control register */
 815        chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
 816                        STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
 817                        STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
 818        chan->chan_reg.dma_scr |= dma_scr;
 819
 820        return 0;
 821}
 822
 823static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
 824{
 825        memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
 826}
 827
 828static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
 829        struct dma_chan *c, struct scatterlist *sgl,
 830        u32 sg_len, enum dma_transfer_direction direction,
 831        unsigned long flags, void *context)
 832{
 833        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 834        struct stm32_dma_desc *desc;
 835        struct scatterlist *sg;
 836        enum dma_slave_buswidth buswidth;
 837        u32 nb_data_items;
 838        int i, ret;
 839
 840        if (!chan->config_init) {
 841                dev_err(chan2dev(chan), "dma channel is not configured\n");
 842                return NULL;
 843        }
 844
 845        if (sg_len < 1) {
 846                dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
 847                return NULL;
 848        }
 849
 850        desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
 851        if (!desc)
 852                return NULL;
 853
 854        /* Set peripheral flow controller */
 855        if (chan->dma_sconfig.device_fc)
 856                chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
 857        else
 858                chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 859
 860        for_each_sg(sgl, sg, sg_len, i) {
 861                ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
 862                                               sg_dma_len(sg));
 863                if (ret < 0)
 864                        goto err;
 865
 866                desc->sg_req[i].len = sg_dma_len(sg);
 867
 868                nb_data_items = desc->sg_req[i].len / buswidth;
 869                if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 870                        dev_err(chan2dev(chan), "nb items not supported\n");
 871                        goto err;
 872                }
 873
 874                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 875                desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 876                desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 877                desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 878                desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
 879                desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
 880                desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 881        }
 882
 883        desc->num_sgs = sg_len;
 884        desc->cyclic = false;
 885
 886        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 887
 888err:
 889        kfree(desc);
 890        return NULL;
 891}
 892
 893static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
 894        struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
 895        size_t period_len, enum dma_transfer_direction direction,
 896        unsigned long flags)
 897{
 898        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 899        struct stm32_dma_desc *desc;
 900        enum dma_slave_buswidth buswidth;
 901        u32 num_periods, nb_data_items;
 902        int i, ret;
 903
 904        if (!buf_len || !period_len) {
 905                dev_err(chan2dev(chan), "Invalid buffer/period len\n");
 906                return NULL;
 907        }
 908
 909        if (!chan->config_init) {
 910                dev_err(chan2dev(chan), "dma channel is not configured\n");
 911                return NULL;
 912        }
 913
 914        if (buf_len % period_len) {
 915                dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
 916                return NULL;
 917        }
 918
 919        /*
 920         * We allow to take more number of requests till DMA is
 921         * not started. The driver will loop over all requests.
 922         * Once DMA is started then new requests can be queued only after
 923         * terminating the DMA.
 924         */
 925        if (chan->busy) {
 926                dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
 927                return NULL;
 928        }
 929
 930        ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
 931        if (ret < 0)
 932                return NULL;
 933
 934        nb_data_items = period_len / buswidth;
 935        if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 936                dev_err(chan2dev(chan), "number of items not supported\n");
 937                return NULL;
 938        }
 939
 940        /*  Enable Circular mode or double buffer mode */
 941        if (buf_len == period_len)
 942                chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
 943        else
 944                chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
 945
 946        /* Clear periph ctrl if client set it */
 947        chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 948
 949        num_periods = buf_len / period_len;
 950
 951        desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
 952        if (!desc)
 953                return NULL;
 954
 955        for (i = 0; i < num_periods; i++) {
 956                desc->sg_req[i].len = period_len;
 957
 958                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 959                desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 960                desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 961                desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 962                desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
 963                desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
 964                desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 965                buf_addr += period_len;
 966        }
 967
 968        desc->num_sgs = num_periods;
 969        desc->cyclic = true;
 970
 971        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 972}
 973
 974static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
 975        struct dma_chan *c, dma_addr_t dest,
 976        dma_addr_t src, size_t len, unsigned long flags)
 977{
 978        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 979        enum dma_slave_buswidth max_width;
 980        struct stm32_dma_desc *desc;
 981        size_t xfer_count, offset;
 982        u32 num_sgs, best_burst, dma_burst, threshold;
 983        int i;
 984
 985        num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
 986        desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
 987        if (!desc)
 988                return NULL;
 989
 990        threshold = chan->threshold;
 991
 992        for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
 993                xfer_count = min_t(size_t, len - offset,
 994                                   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
 995
 996                /* Compute best burst size */
 997                max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 998                best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
 999                                                      threshold, max_width);
1000                dma_burst = stm32_dma_get_burst(chan, best_burst);
1001
1002                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1003                desc->sg_req[i].chan_reg.dma_scr =
1004                        STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1005                        STM32_DMA_SCR_PBURST(dma_burst) |
1006                        STM32_DMA_SCR_MBURST(dma_burst) |
1007                        STM32_DMA_SCR_MINC |
1008                        STM32_DMA_SCR_PINC |
1009                        STM32_DMA_SCR_TCIE |
1010                        STM32_DMA_SCR_TEIE;
1011                desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1012                desc->sg_req[i].chan_reg.dma_sfcr |=
1013                        STM32_DMA_SFCR_FTH(threshold);
1014                desc->sg_req[i].chan_reg.dma_spar = src + offset;
1015                desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1016                desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1017                desc->sg_req[i].len = xfer_count;
1018        }
1019
1020        desc->num_sgs = num_sgs;
1021        desc->cyclic = false;
1022
1023        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1024}
1025
1026static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1027{
1028        u32 dma_scr, width, ndtr;
1029        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1030
1031        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1032        width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1033        ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1034
1035        return ndtr << width;
1036}
1037
1038/**
1039 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1040 * @chan: dma channel
1041 *
1042 * This function called when IRQ are disable, checks that the hardware has not
1043 * switched on the next transfer in double buffer mode. The test is done by
1044 * comparing the next_sg memory address with the hardware related register
1045 * (based on CT bit value).
1046 *
1047 * Returns true if expected current transfer is still running or double
1048 * buffer mode is not activated.
1049 */
1050static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1051{
1052        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1053        struct stm32_dma_sg_req *sg_req;
1054        u32 dma_scr, dma_smar, id;
1055
1056        id = chan->id;
1057        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1058
1059        if (!(dma_scr & STM32_DMA_SCR_DBM))
1060                return true;
1061
1062        sg_req = &chan->desc->sg_req[chan->next_sg];
1063
1064        if (dma_scr & STM32_DMA_SCR_CT) {
1065                dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1066                return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1067        }
1068
1069        dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1070
1071        return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1072}
1073
1074static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1075                                     struct stm32_dma_desc *desc,
1076                                     u32 next_sg)
1077{
1078        u32 modulo, burst_size;
1079        u32 residue;
1080        u32 n_sg = next_sg;
1081        struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1082        int i;
1083
1084        /*
1085         * Calculate the residue means compute the descriptors
1086         * information:
1087         * - the sg_req currently transferred
1088         * - the Hardware remaining position in this sg (NDTR bits field).
1089         *
1090         * A race condition may occur if DMA is running in cyclic or double
1091         * buffer mode, since the DMA register are automatically reloaded at end
1092         * of period transfer. The hardware may have switched to the next
1093         * transfer (CT bit updated) just before the position (SxNDTR reg) is
1094         * read.
1095         * In this case the SxNDTR reg could (or not) correspond to the new
1096         * transfer position, and not the expected one.
1097         * The strategy implemented in the stm32 driver is to:
1098         *  - read the SxNDTR register
1099         *  - crosscheck that hardware is still in current transfer.
1100         * In case of switch, we can assume that the DMA is at the beginning of
1101         * the next transfer. So we approximate the residue in consequence, by
1102         * pointing on the beginning of next transfer.
1103         *
1104         * This race condition doesn't apply for none cyclic mode, as double
1105         * buffer is not used. In such situation registers are updated by the
1106         * software.
1107         */
1108
1109        residue = stm32_dma_get_remaining_bytes(chan);
1110
1111        if (!stm32_dma_is_current_sg(chan)) {
1112                n_sg++;
1113                if (n_sg == chan->desc->num_sgs)
1114                        n_sg = 0;
1115                residue = sg_req->len;
1116        }
1117
1118        /*
1119         * In cyclic mode, for the last period, residue = remaining bytes
1120         * from NDTR,
1121         * else for all other periods in cyclic mode, and in sg mode,
1122         * residue = remaining bytes from NDTR + remaining
1123         * periods/sg to be transferred
1124         */
1125        if (!chan->desc->cyclic || n_sg != 0)
1126                for (i = n_sg; i < desc->num_sgs; i++)
1127                        residue += desc->sg_req[i].len;
1128
1129        if (!chan->mem_burst)
1130                return residue;
1131
1132        burst_size = chan->mem_burst * chan->mem_width;
1133        modulo = residue % burst_size;
1134        if (modulo)
1135                residue = residue - modulo + burst_size;
1136
1137        return residue;
1138}
1139
1140static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1141                                           dma_cookie_t cookie,
1142                                           struct dma_tx_state *state)
1143{
1144        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1145        struct virt_dma_desc *vdesc;
1146        enum dma_status status;
1147        unsigned long flags;
1148        u32 residue = 0;
1149
1150        status = dma_cookie_status(c, cookie, state);
1151        if (status == DMA_COMPLETE || !state)
1152                return status;
1153
1154        spin_lock_irqsave(&chan->vchan.lock, flags);
1155        vdesc = vchan_find_desc(&chan->vchan, cookie);
1156        if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1157                residue = stm32_dma_desc_residue(chan, chan->desc,
1158                                                 chan->next_sg);
1159        else if (vdesc)
1160                residue = stm32_dma_desc_residue(chan,
1161                                                 to_stm32_dma_desc(vdesc), 0);
1162        dma_set_residue(state, residue);
1163
1164        spin_unlock_irqrestore(&chan->vchan.lock, flags);
1165
1166        return status;
1167}
1168
1169static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1170{
1171        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1172        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1173        int ret;
1174
1175        chan->config_init = false;
1176
1177        ret = pm_runtime_get_sync(dmadev->ddev.dev);
1178        if (ret < 0)
1179                return ret;
1180
1181        ret = stm32_dma_disable_chan(chan);
1182        if (ret < 0)
1183                pm_runtime_put(dmadev->ddev.dev);
1184
1185        return ret;
1186}
1187
1188static void stm32_dma_free_chan_resources(struct dma_chan *c)
1189{
1190        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1191        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1192        unsigned long flags;
1193
1194        dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1195
1196        if (chan->busy) {
1197                spin_lock_irqsave(&chan->vchan.lock, flags);
1198                stm32_dma_stop(chan);
1199                chan->desc = NULL;
1200                spin_unlock_irqrestore(&chan->vchan.lock, flags);
1201        }
1202
1203        pm_runtime_put(dmadev->ddev.dev);
1204
1205        vchan_free_chan_resources(to_virt_chan(c));
1206}
1207
1208static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1209{
1210        kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1211}
1212
1213static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1214                                 struct stm32_dma_cfg *cfg)
1215{
1216        stm32_dma_clear_reg(&chan->chan_reg);
1217
1218        chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1219        chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1220
1221        /* Enable Interrupts  */
1222        chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1223
1224        chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1225}
1226
1227static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1228                                           struct of_dma *ofdma)
1229{
1230        struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1231        struct device *dev = dmadev->ddev.dev;
1232        struct stm32_dma_cfg cfg;
1233        struct stm32_dma_chan *chan;
1234        struct dma_chan *c;
1235
1236        if (dma_spec->args_count < 4) {
1237                dev_err(dev, "Bad number of cells\n");
1238                return NULL;
1239        }
1240
1241        cfg.channel_id = dma_spec->args[0];
1242        cfg.request_line = dma_spec->args[1];
1243        cfg.stream_config = dma_spec->args[2];
1244        cfg.features = dma_spec->args[3];
1245
1246        if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1247            cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1248                dev_err(dev, "Bad channel and/or request id\n");
1249                return NULL;
1250        }
1251
1252        chan = &dmadev->chan[cfg.channel_id];
1253
1254        c = dma_get_slave_channel(&chan->vchan.chan);
1255        if (!c) {
1256                dev_err(dev, "No more channels available\n");
1257                return NULL;
1258        }
1259
1260        stm32_dma_set_config(chan, &cfg);
1261
1262        return c;
1263}
1264
1265static const struct of_device_id stm32_dma_of_match[] = {
1266        { .compatible = "st,stm32-dma", },
1267        { /* sentinel */ },
1268};
1269MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1270
1271static int stm32_dma_probe(struct platform_device *pdev)
1272{
1273        struct stm32_dma_chan *chan;
1274        struct stm32_dma_device *dmadev;
1275        struct dma_device *dd;
1276        const struct of_device_id *match;
1277        struct resource *res;
1278        int i, ret;
1279
1280        match = of_match_device(stm32_dma_of_match, &pdev->dev);
1281        if (!match) {
1282                dev_err(&pdev->dev, "Error: No device match found\n");
1283                return -ENODEV;
1284        }
1285
1286        dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1287        if (!dmadev)
1288                return -ENOMEM;
1289
1290        dd = &dmadev->ddev;
1291
1292        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293        dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1294        if (IS_ERR(dmadev->base))
1295                return PTR_ERR(dmadev->base);
1296
1297        dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1298        if (IS_ERR(dmadev->clk)) {
1299                dev_err(&pdev->dev, "Error: Missing controller clock\n");
1300                return PTR_ERR(dmadev->clk);
1301        }
1302
1303        ret = clk_prepare_enable(dmadev->clk);
1304        if (ret < 0) {
1305                dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1306                return ret;
1307        }
1308
1309        dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1310                                                "st,mem2mem");
1311
1312        dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1313        if (!IS_ERR(dmadev->rst)) {
1314                reset_control_assert(dmadev->rst);
1315                udelay(2);
1316                reset_control_deassert(dmadev->rst);
1317        }
1318
1319        dma_cap_set(DMA_SLAVE, dd->cap_mask);
1320        dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1321        dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1322        dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1323        dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1324        dd->device_tx_status = stm32_dma_tx_status;
1325        dd->device_issue_pending = stm32_dma_issue_pending;
1326        dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1327        dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1328        dd->device_config = stm32_dma_slave_config;
1329        dd->device_terminate_all = stm32_dma_terminate_all;
1330        dd->device_synchronize = stm32_dma_synchronize;
1331        dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1332                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1333                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1334        dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337        dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1338        dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1339        dd->max_burst = STM32_DMA_MAX_BURST;
1340        dd->dev = &pdev->dev;
1341        INIT_LIST_HEAD(&dd->channels);
1342
1343        if (dmadev->mem2mem) {
1344                dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1345                dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1346                dd->directions |= BIT(DMA_MEM_TO_MEM);
1347        }
1348
1349        for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1350                chan = &dmadev->chan[i];
1351                chan->id = i;
1352                chan->vchan.desc_free = stm32_dma_desc_free;
1353                vchan_init(&chan->vchan, dd);
1354        }
1355
1356        ret = dma_async_device_register(dd);
1357        if (ret)
1358                goto clk_free;
1359
1360        for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1361                chan = &dmadev->chan[i];
1362                ret = platform_get_irq(pdev, i);
1363                if (ret < 0)
1364                        goto err_unregister;
1365                chan->irq = ret;
1366
1367                ret = devm_request_irq(&pdev->dev, chan->irq,
1368                                       stm32_dma_chan_irq, 0,
1369                                       dev_name(chan2dev(chan)), chan);
1370                if (ret) {
1371                        dev_err(&pdev->dev,
1372                                "request_irq failed with err %d channel %d\n",
1373                                ret, i);
1374                        goto err_unregister;
1375                }
1376        }
1377
1378        ret = of_dma_controller_register(pdev->dev.of_node,
1379                                         stm32_dma_of_xlate, dmadev);
1380        if (ret < 0) {
1381                dev_err(&pdev->dev,
1382                        "STM32 DMA DMA OF registration failed %d\n", ret);
1383                goto err_unregister;
1384        }
1385
1386        platform_set_drvdata(pdev, dmadev);
1387
1388        pm_runtime_set_active(&pdev->dev);
1389        pm_runtime_enable(&pdev->dev);
1390        pm_runtime_get_noresume(&pdev->dev);
1391        pm_runtime_put(&pdev->dev);
1392
1393        dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1394
1395        return 0;
1396
1397err_unregister:
1398        dma_async_device_unregister(dd);
1399clk_free:
1400        clk_disable_unprepare(dmadev->clk);
1401
1402        return ret;
1403}
1404
1405#ifdef CONFIG_PM
1406static int stm32_dma_runtime_suspend(struct device *dev)
1407{
1408        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1409
1410        clk_disable_unprepare(dmadev->clk);
1411
1412        return 0;
1413}
1414
1415static int stm32_dma_runtime_resume(struct device *dev)
1416{
1417        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1418        int ret;
1419
1420        ret = clk_prepare_enable(dmadev->clk);
1421        if (ret) {
1422                dev_err(dev, "failed to prepare_enable clock\n");
1423                return ret;
1424        }
1425
1426        return 0;
1427}
1428#endif
1429
1430static const struct dev_pm_ops stm32_dma_pm_ops = {
1431        SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1432                           stm32_dma_runtime_resume, NULL)
1433};
1434
1435static struct platform_driver stm32_dma_driver = {
1436        .driver = {
1437                .name = "stm32-dma",
1438                .of_match_table = stm32_dma_of_match,
1439                .pm = &stm32_dma_pm_ops,
1440        },
1441};
1442
1443static int __init stm32_dma_init(void)
1444{
1445        return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1446}
1447subsys_initcall(stm32_dma_init);
1448