linux/drivers/media/i2c/aptina-pll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Aptina Sensor PLL Configuration
   4 *
   5 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   6 */
   7
   8#include <linux/device.h>
   9#include <linux/gcd.h>
  10#include <linux/kernel.h>
  11#include <linux/lcm.h>
  12#include <linux/module.h>
  13
  14#include "aptina-pll.h"
  15
  16int aptina_pll_calculate(struct device *dev,
  17                         const struct aptina_pll_limits *limits,
  18                         struct aptina_pll *pll)
  19{
  20        unsigned int mf_min;
  21        unsigned int mf_max;
  22        unsigned int p1_min;
  23        unsigned int p1_max;
  24        unsigned int p1;
  25        unsigned int div;
  26
  27        dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
  28                pll->ext_clock, pll->pix_clock);
  29
  30        if (pll->ext_clock < limits->ext_clock_min ||
  31            pll->ext_clock > limits->ext_clock_max) {
  32                dev_err(dev, "pll: invalid external clock frequency.\n");
  33                return -EINVAL;
  34        }
  35
  36        if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
  37                dev_err(dev, "pll: invalid pixel clock frequency.\n");
  38                return -EINVAL;
  39        }
  40
  41        /* Compute the multiplier M and combined N*P1 divisor. */
  42        div = gcd(pll->pix_clock, pll->ext_clock);
  43        pll->m = pll->pix_clock / div;
  44        div = pll->ext_clock / div;
  45
  46        /* We now have the smallest M and N*P1 values that will result in the
  47         * desired pixel clock frequency, but they might be out of the valid
  48         * range. Compute the factor by which we should multiply them given the
  49         * following constraints:
  50         *
  51         * - minimum/maximum multiplier
  52         * - minimum/maximum multiplier output clock frequency assuming the
  53         *   minimum/maximum N value
  54         * - minimum/maximum combined N*P1 divisor
  55         */
  56        mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
  57        mf_min = max(mf_min, limits->out_clock_min /
  58                     (pll->ext_clock / limits->n_min * pll->m));
  59        mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
  60        mf_max = limits->m_max / pll->m;
  61        mf_max = min(mf_max, limits->out_clock_max /
  62                    (pll->ext_clock / limits->n_max * pll->m));
  63        mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
  64
  65        dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
  66        if (mf_min > mf_max) {
  67                dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
  68                return -EINVAL;
  69        }
  70
  71        /*
  72         * We're looking for the highest acceptable P1 value for which a
  73         * multiplier factor MF exists that fulfills the following conditions:
  74         *
  75         * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
  76         *    even
  77         * 2. mf is in the [mf_min, mf_max] range computed above
  78         * 3. div * mf is a multiple of p1, in order to compute
  79         *      n = div * mf / p1
  80         *      m = pll->m * mf
  81         * 4. the internal clock frequency, given by ext_clock / n, is in the
  82         *    [int_clock_min, int_clock_max] range given by the limits
  83         * 5. the output clock frequency, given by ext_clock / n * m, is in the
  84         *    [out_clock_min, out_clock_max] range given by the limits
  85         *
  86         * The first naive approach is to iterate over all p1 values acceptable
  87         * according to (1) and all mf values acceptable according to (2), and
  88         * stop at the first combination that fulfills (3), (4) and (5). This
  89         * has a O(n^2) complexity.
  90         *
  91         * Instead of iterating over all mf values in the [mf_min, mf_max] range
  92         * we can compute the mf increment between two acceptable values
  93         * according to (3) with
  94         *
  95         *      mf_inc = p1 / gcd(div, p1)                      (6)
  96         *
  97         * and round the minimum up to the nearest multiple of mf_inc. This will
  98         * restrict the number of mf values to be checked.
  99         *
 100         * Furthermore, conditions (4) and (5) only restrict the range of
 101         * acceptable p1 and mf values by modifying the minimum and maximum
 102         * limits. (5) can be expressed as
 103         *
 104         *      ext_clock / (div * mf / p1) * m * mf >= out_clock_min
 105         *      ext_clock / (div * mf / p1) * m * mf <= out_clock_max
 106         *
 107         * or
 108         *
 109         *      p1 >= out_clock_min * div / (ext_clock * m)     (7)
 110         *      p1 <= out_clock_max * div / (ext_clock * m)
 111         *
 112         * Similarly, (4) can be expressed as
 113         *
 114         *      mf >= ext_clock * p1 / (int_clock_max * div)    (8)
 115         *      mf <= ext_clock * p1 / (int_clock_min * div)
 116         *
 117         * We can thus iterate over the restricted p1 range defined by the
 118         * combination of (1) and (7), and then compute the restricted mf range
 119         * defined by the combination of (2), (6) and (8). If the resulting mf
 120         * range is not empty, any value in the mf range is acceptable. We thus
 121         * select the mf lwoer bound and the corresponding p1 value.
 122         */
 123        if (limits->p1_min == 0) {
 124                dev_err(dev, "pll: P1 minimum value must be >0.\n");
 125                return -EINVAL;
 126        }
 127
 128        p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
 129                     pll->ext_clock * pll->m));
 130        p1_max = min(limits->p1_max, limits->out_clock_max * div /
 131                     (pll->ext_clock * pll->m));
 132
 133        for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
 134                unsigned int mf_inc = p1 / gcd(div, p1);
 135                unsigned int mf_high;
 136                unsigned int mf_low;
 137
 138                mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
 139                                        limits->int_clock_max * div)), mf_inc);
 140                mf_high = min(mf_max, pll->ext_clock * p1 /
 141                              (limits->int_clock_min * div));
 142
 143                if (mf_low > mf_high)
 144                        continue;
 145
 146                pll->n = div * mf_low / p1;
 147                pll->m *= mf_low;
 148                pll->p1 = p1;
 149                dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
 150                return 0;
 151        }
 152
 153        dev_err(dev, "pll: no valid N and P1 divisors found.\n");
 154        return -EINVAL;
 155}
 156EXPORT_SYMBOL_GPL(aptina_pll_calculate);
 157
 158MODULE_DESCRIPTION("Aptina PLL Helpers");
 159MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
 160MODULE_LICENSE("GPL v2");
 161