linux/drivers/mtd/nand/raw/mxc_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   5 */
   6
   7#include <linux/delay.h>
   8#include <linux/slab.h>
   9#include <linux/init.h>
  10#include <linux/module.h>
  11#include <linux/mtd/mtd.h>
  12#include <linux/mtd/rawnand.h>
  13#include <linux/mtd/partitions.h>
  14#include <linux/interrupt.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/clk.h>
  18#include <linux/err.h>
  19#include <linux/io.h>
  20#include <linux/irq.h>
  21#include <linux/completion.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/platform_data/mtd-mxc_nand.h>
  25
  26#define DRIVER_NAME "mxc_nand"
  27
  28/* Addresses for NFC registers */
  29#define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
  30#define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
  31#define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
  32#define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
  33#define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
  34#define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
  35#define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
  36#define NFC_V21_RSLTSPARE_AREA          (host->regs + 0x10)
  37#define NFC_V1_V2_WRPROT                (host->regs + 0x12)
  38#define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
  39#define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
  40#define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
  41#define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
  42#define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
  43#define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
  44#define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
  45#define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
  46#define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
  47#define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
  48#define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
  49#define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
  50#define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
  51
  52#define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
  53#define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
  54#define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
  55#define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
  56#define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
  57#define NFC_V1_V2_CONFIG1_RST           (1 << 6)
  58#define NFC_V1_V2_CONFIG1_CE            (1 << 7)
  59#define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
  60#define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
  61#define NFC_V2_CONFIG1_FP_INT           (1 << 11)
  62
  63#define NFC_V1_V2_CONFIG2_INT           (1 << 15)
  64
  65/*
  66 * Operation modes for the NFC. Valid for v1, v2 and v3
  67 * type controllers.
  68 */
  69#define NFC_CMD                         (1 << 0)
  70#define NFC_ADDR                        (1 << 1)
  71#define NFC_INPUT                       (1 << 2)
  72#define NFC_OUTPUT                      (1 << 3)
  73#define NFC_ID                          (1 << 4)
  74#define NFC_STATUS                      (1 << 5)
  75
  76#define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
  77#define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
  78
  79#define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
  80#define NFC_V3_CONFIG1_SP_EN            (1 << 0)
  81#define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
  82
  83#define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
  84
  85#define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
  86
  87#define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
  88#define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
  89#define NFC_V3_WRPROT_LOCK              (1 << 1)
  90#define NFC_V3_WRPROT_UNLOCK            (1 << 2)
  91#define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
  92
  93#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
  94
  95#define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
  96#define NFC_V3_CONFIG2_PS_512                   (0 << 0)
  97#define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
  98#define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
  99#define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
 100#define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
 101#define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
 102#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
 103#define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
 104#define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
 105#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
 106#define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
 107#define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
 108#define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
 109
 110#define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
 111#define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
 112#define NFC_V3_CONFIG3_FW8                      (1 << 3)
 113#define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
 114#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
 115#define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
 116#define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
 117
 118#define NFC_V3_IPC                      (host->regs_ip + 0x2C)
 119#define NFC_V3_IPC_CREQ                 (1 << 0)
 120#define NFC_V3_IPC_INT                  (1 << 31)
 121
 122#define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
 123
 124struct mxc_nand_host;
 125
 126struct mxc_nand_devtype_data {
 127        void (*preset)(struct mtd_info *);
 128        int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
 129                         int page);
 130        void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 131        void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
 132        void (*send_page)(struct mtd_info *, unsigned int);
 133        void (*send_read_id)(struct mxc_nand_host *);
 134        uint16_t (*get_dev_status)(struct mxc_nand_host *);
 135        int (*check_int)(struct mxc_nand_host *);
 136        void (*irq_control)(struct mxc_nand_host *, int);
 137        u32 (*get_ecc_status)(struct mxc_nand_host *);
 138        const struct mtd_ooblayout_ops *ooblayout;
 139        void (*select_chip)(struct nand_chip *chip, int cs);
 140        int (*setup_data_interface)(struct nand_chip *chip, int csline,
 141                                    const struct nand_data_interface *conf);
 142        void (*enable_hwecc)(struct nand_chip *chip, bool enable);
 143
 144        /*
 145         * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
 146         * (CONFIG1:INT_MSK is set). To handle this the driver uses
 147         * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
 148         */
 149        int irqpending_quirk;
 150        int needs_ip;
 151
 152        size_t regs_offset;
 153        size_t spare0_offset;
 154        size_t axi_offset;
 155
 156        int spare_len;
 157        int eccbytes;
 158        int eccsize;
 159        int ppb_shift;
 160};
 161
 162struct mxc_nand_host {
 163        struct nand_chip        nand;
 164        struct device           *dev;
 165
 166        void __iomem            *spare0;
 167        void __iomem            *main_area0;
 168
 169        void __iomem            *base;
 170        void __iomem            *regs;
 171        void __iomem            *regs_axi;
 172        void __iomem            *regs_ip;
 173        int                     status_request;
 174        struct clk              *clk;
 175        int                     clk_act;
 176        int                     irq;
 177        int                     eccsize;
 178        int                     used_oobsize;
 179        int                     active_cs;
 180
 181        struct completion       op_completion;
 182
 183        uint8_t                 *data_buf;
 184        unsigned int            buf_start;
 185
 186        const struct mxc_nand_devtype_data *devtype_data;
 187        struct mxc_nand_platform_data pdata;
 188};
 189
 190static const char * const part_probes[] = {
 191        "cmdlinepart", "RedBoot", "ofpart", NULL };
 192
 193static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 194{
 195        int i;
 196        u32 *t = trg;
 197        const __iomem u32 *s = src;
 198
 199        for (i = 0; i < (size >> 2); i++)
 200                *t++ = __raw_readl(s++);
 201}
 202
 203static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
 204{
 205        int i;
 206        u16 *t = trg;
 207        const __iomem u16 *s = src;
 208
 209        /* We assume that src (IO) is always 32bit aligned */
 210        if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
 211                memcpy32_fromio(trg, src, size);
 212                return;
 213        }
 214
 215        for (i = 0; i < (size >> 1); i++)
 216                *t++ = __raw_readw(s++);
 217}
 218
 219static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
 220{
 221        /* __iowrite32_copy use 32bit size values so divide by 4 */
 222        __iowrite32_copy(trg, src, size / 4);
 223}
 224
 225static void memcpy16_toio(void __iomem *trg, const void *src, int size)
 226{
 227        int i;
 228        __iomem u16 *t = trg;
 229        const u16 *s = src;
 230
 231        /* We assume that trg (IO) is always 32bit aligned */
 232        if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
 233                memcpy32_toio(trg, src, size);
 234                return;
 235        }
 236
 237        for (i = 0; i < (size >> 1); i++)
 238                __raw_writew(*s++, t++);
 239}
 240
 241/*
 242 * The controller splits a page into data chunks of 512 bytes + partial oob.
 243 * There are writesize / 512 such chunks, the size of the partial oob parts is
 244 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
 245 * contains additionally the byte lost by rounding (if any).
 246 * This function handles the needed shuffling between host->data_buf (which
 247 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
 248 * spare) and the NFC buffer.
 249 */
 250static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
 251{
 252        struct nand_chip *this = mtd_to_nand(mtd);
 253        struct mxc_nand_host *host = nand_get_controller_data(this);
 254        u16 i, oob_chunk_size;
 255        u16 num_chunks = mtd->writesize / 512;
 256
 257        u8 *d = buf;
 258        u8 __iomem *s = host->spare0;
 259        u16 sparebuf_size = host->devtype_data->spare_len;
 260
 261        /* size of oob chunk for all but possibly the last one */
 262        oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
 263
 264        if (bfrom) {
 265                for (i = 0; i < num_chunks - 1; i++)
 266                        memcpy16_fromio(d + i * oob_chunk_size,
 267                                        s + i * sparebuf_size,
 268                                        oob_chunk_size);
 269
 270                /* the last chunk */
 271                memcpy16_fromio(d + i * oob_chunk_size,
 272                                s + i * sparebuf_size,
 273                                host->used_oobsize - i * oob_chunk_size);
 274        } else {
 275                for (i = 0; i < num_chunks - 1; i++)
 276                        memcpy16_toio(&s[i * sparebuf_size],
 277                                      &d[i * oob_chunk_size],
 278                                      oob_chunk_size);
 279
 280                /* the last chunk */
 281                memcpy16_toio(&s[i * sparebuf_size],
 282                              &d[i * oob_chunk_size],
 283                              host->used_oobsize - i * oob_chunk_size);
 284        }
 285}
 286
 287/*
 288 * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
 289 * the upper layers perform a read/write buf operation, the saved column address
 290 * is used to index into the full page. So usually this function is called with
 291 * column == 0 (unless no column cycle is needed indicated by column == -1)
 292 */
 293static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 294{
 295        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 296        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 297
 298        /* Write out column address, if necessary */
 299        if (column != -1) {
 300                host->devtype_data->send_addr(host, column & 0xff,
 301                                              page_addr == -1);
 302                if (mtd->writesize > 512)
 303                        /* another col addr cycle for 2k page */
 304                        host->devtype_data->send_addr(host,
 305                                                      (column >> 8) & 0xff,
 306                                                      false);
 307        }
 308
 309        /* Write out page address, if necessary */
 310        if (page_addr != -1) {
 311                /* paddr_0 - p_addr_7 */
 312                host->devtype_data->send_addr(host, (page_addr & 0xff), false);
 313
 314                if (mtd->writesize > 512) {
 315                        if (mtd->size >= 0x10000000) {
 316                                /* paddr_8 - paddr_15 */
 317                                host->devtype_data->send_addr(host,
 318                                                (page_addr >> 8) & 0xff,
 319                                                false);
 320                                host->devtype_data->send_addr(host,
 321                                                (page_addr >> 16) & 0xff,
 322                                                true);
 323                        } else
 324                                /* paddr_8 - paddr_15 */
 325                                host->devtype_data->send_addr(host,
 326                                                (page_addr >> 8) & 0xff, true);
 327                } else {
 328                        if (nand_chip->options & NAND_ROW_ADDR_3) {
 329                                /* paddr_8 - paddr_15 */
 330                                host->devtype_data->send_addr(host,
 331                                                (page_addr >> 8) & 0xff,
 332                                                false);
 333                                host->devtype_data->send_addr(host,
 334                                                (page_addr >> 16) & 0xff,
 335                                                true);
 336                        } else
 337                                /* paddr_8 - paddr_15 */
 338                                host->devtype_data->send_addr(host,
 339                                                (page_addr >> 8) & 0xff, true);
 340                }
 341        }
 342}
 343
 344static int check_int_v3(struct mxc_nand_host *host)
 345{
 346        uint32_t tmp;
 347
 348        tmp = readl(NFC_V3_IPC);
 349        if (!(tmp & NFC_V3_IPC_INT))
 350                return 0;
 351
 352        tmp &= ~NFC_V3_IPC_INT;
 353        writel(tmp, NFC_V3_IPC);
 354
 355        return 1;
 356}
 357
 358static int check_int_v1_v2(struct mxc_nand_host *host)
 359{
 360        uint32_t tmp;
 361
 362        tmp = readw(NFC_V1_V2_CONFIG2);
 363        if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 364                return 0;
 365
 366        if (!host->devtype_data->irqpending_quirk)
 367                writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 368
 369        return 1;
 370}
 371
 372static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 373{
 374        uint16_t tmp;
 375
 376        tmp = readw(NFC_V1_V2_CONFIG1);
 377
 378        if (activate)
 379                tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 380        else
 381                tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 382
 383        writew(tmp, NFC_V1_V2_CONFIG1);
 384}
 385
 386static void irq_control_v3(struct mxc_nand_host *host, int activate)
 387{
 388        uint32_t tmp;
 389
 390        tmp = readl(NFC_V3_CONFIG2);
 391
 392        if (activate)
 393                tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 394        else
 395                tmp |= NFC_V3_CONFIG2_INT_MSK;
 396
 397        writel(tmp, NFC_V3_CONFIG2);
 398}
 399
 400static void irq_control(struct mxc_nand_host *host, int activate)
 401{
 402        if (host->devtype_data->irqpending_quirk) {
 403                if (activate)
 404                        enable_irq(host->irq);
 405                else
 406                        disable_irq_nosync(host->irq);
 407        } else {
 408                host->devtype_data->irq_control(host, activate);
 409        }
 410}
 411
 412static u32 get_ecc_status_v1(struct mxc_nand_host *host)
 413{
 414        return readw(NFC_V1_V2_ECC_STATUS_RESULT);
 415}
 416
 417static u32 get_ecc_status_v2(struct mxc_nand_host *host)
 418{
 419        return readl(NFC_V1_V2_ECC_STATUS_RESULT);
 420}
 421
 422static u32 get_ecc_status_v3(struct mxc_nand_host *host)
 423{
 424        return readl(NFC_V3_ECC_STATUS_RESULT);
 425}
 426
 427static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 428{
 429        struct mxc_nand_host *host = dev_id;
 430
 431        if (!host->devtype_data->check_int(host))
 432                return IRQ_NONE;
 433
 434        irq_control(host, 0);
 435
 436        complete(&host->op_completion);
 437
 438        return IRQ_HANDLED;
 439}
 440
 441/* This function polls the NANDFC to wait for the basic operation to
 442 * complete by checking the INT bit of config2 register.
 443 */
 444static int wait_op_done(struct mxc_nand_host *host, int useirq)
 445{
 446        int ret = 0;
 447
 448        /*
 449         * If operation is already complete, don't bother to setup an irq or a
 450         * loop.
 451         */
 452        if (host->devtype_data->check_int(host))
 453                return 0;
 454
 455        if (useirq) {
 456                unsigned long timeout;
 457
 458                reinit_completion(&host->op_completion);
 459
 460                irq_control(host, 1);
 461
 462                timeout = wait_for_completion_timeout(&host->op_completion, HZ);
 463                if (!timeout && !host->devtype_data->check_int(host)) {
 464                        dev_dbg(host->dev, "timeout waiting for irq\n");
 465                        ret = -ETIMEDOUT;
 466                }
 467        } else {
 468                int max_retries = 8000;
 469                int done;
 470
 471                do {
 472                        udelay(1);
 473
 474                        done = host->devtype_data->check_int(host);
 475                        if (done)
 476                                break;
 477
 478                } while (--max_retries);
 479
 480                if (!done) {
 481                        dev_dbg(host->dev, "timeout polling for completion\n");
 482                        ret = -ETIMEDOUT;
 483                }
 484        }
 485
 486        WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
 487
 488        return ret;
 489}
 490
 491static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 492{
 493        /* fill command */
 494        writel(cmd, NFC_V3_FLASH_CMD);
 495
 496        /* send out command */
 497        writel(NFC_CMD, NFC_V3_LAUNCH);
 498
 499        /* Wait for operation to complete */
 500        wait_op_done(host, useirq);
 501}
 502
 503/* This function issues the specified command to the NAND device and
 504 * waits for completion. */
 505static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 506{
 507        dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 508
 509        writew(cmd, NFC_V1_V2_FLASH_CMD);
 510        writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 511
 512        if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
 513                int max_retries = 100;
 514                /* Reset completion is indicated by NFC_CONFIG2 */
 515                /* being set to 0 */
 516                while (max_retries-- > 0) {
 517                        if (readw(NFC_V1_V2_CONFIG2) == 0) {
 518                                break;
 519                        }
 520                        udelay(1);
 521                }
 522                if (max_retries < 0)
 523                        dev_dbg(host->dev, "%s: RESET failed\n", __func__);
 524        } else {
 525                /* Wait for operation to complete */
 526                wait_op_done(host, useirq);
 527        }
 528}
 529
 530static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 531{
 532        /* fill address */
 533        writel(addr, NFC_V3_FLASH_ADDR0);
 534
 535        /* send out address */
 536        writel(NFC_ADDR, NFC_V3_LAUNCH);
 537
 538        wait_op_done(host, 0);
 539}
 540
 541/* This function sends an address (or partial address) to the
 542 * NAND device. The address is used to select the source/destination for
 543 * a NAND command. */
 544static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 545{
 546        dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
 547
 548        writew(addr, NFC_V1_V2_FLASH_ADDR);
 549        writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 550
 551        /* Wait for operation to complete */
 552        wait_op_done(host, islast);
 553}
 554
 555static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 556{
 557        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 558        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 559        uint32_t tmp;
 560
 561        tmp = readl(NFC_V3_CONFIG1);
 562        tmp &= ~(7 << 4);
 563        writel(tmp, NFC_V3_CONFIG1);
 564
 565        /* transfer data from NFC ram to nand */
 566        writel(ops, NFC_V3_LAUNCH);
 567
 568        wait_op_done(host, false);
 569}
 570
 571static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
 572{
 573        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 574        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 575
 576        /* NANDFC buffer 0 is used for page read/write */
 577        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 578
 579        writew(ops, NFC_V1_V2_CONFIG2);
 580
 581        /* Wait for operation to complete */
 582        wait_op_done(host, true);
 583}
 584
 585static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
 586{
 587        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 588        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 589        int bufs, i;
 590
 591        if (mtd->writesize > 512)
 592                bufs = 4;
 593        else
 594                bufs = 1;
 595
 596        for (i = 0; i < bufs; i++) {
 597
 598                /* NANDFC buffer 0 is used for page read/write */
 599                writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 600
 601                writew(ops, NFC_V1_V2_CONFIG2);
 602
 603                /* Wait for operation to complete */
 604                wait_op_done(host, true);
 605        }
 606}
 607
 608static void send_read_id_v3(struct mxc_nand_host *host)
 609{
 610        /* Read ID into main buffer */
 611        writel(NFC_ID, NFC_V3_LAUNCH);
 612
 613        wait_op_done(host, true);
 614
 615        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 616}
 617
 618/* Request the NANDFC to perform a read of the NAND device ID. */
 619static void send_read_id_v1_v2(struct mxc_nand_host *host)
 620{
 621        /* NANDFC buffer 0 is used for device ID output */
 622        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 623
 624        writew(NFC_ID, NFC_V1_V2_CONFIG2);
 625
 626        /* Wait for operation to complete */
 627        wait_op_done(host, true);
 628
 629        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 630}
 631
 632static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 633{
 634        writew(NFC_STATUS, NFC_V3_LAUNCH);
 635        wait_op_done(host, true);
 636
 637        return readl(NFC_V3_CONFIG1) >> 16;
 638}
 639
 640/* This function requests the NANDFC to perform a read of the
 641 * NAND device status and returns the current status. */
 642static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 643{
 644        void __iomem *main_buf = host->main_area0;
 645        uint32_t store;
 646        uint16_t ret;
 647
 648        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 649
 650        /*
 651         * The device status is stored in main_area0. To
 652         * prevent corruption of the buffer save the value
 653         * and restore it afterwards.
 654         */
 655        store = readl(main_buf);
 656
 657        writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 658        wait_op_done(host, true);
 659
 660        ret = readw(main_buf);
 661
 662        writel(store, main_buf);
 663
 664        return ret;
 665}
 666
 667static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
 668{
 669        struct mxc_nand_host *host = nand_get_controller_data(chip);
 670        uint16_t config1;
 671
 672        if (chip->ecc.mode != NAND_ECC_HW)
 673                return;
 674
 675        config1 = readw(NFC_V1_V2_CONFIG1);
 676
 677        if (enable)
 678                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 679        else
 680                config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
 681
 682        writew(config1, NFC_V1_V2_CONFIG1);
 683}
 684
 685static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
 686{
 687        struct mxc_nand_host *host = nand_get_controller_data(chip);
 688        uint32_t config2;
 689
 690        if (chip->ecc.mode != NAND_ECC_HW)
 691                return;
 692
 693        config2 = readl(NFC_V3_CONFIG2);
 694
 695        if (enable)
 696                config2 |= NFC_V3_CONFIG2_ECC_EN;
 697        else
 698                config2 &= ~NFC_V3_CONFIG2_ECC_EN;
 699
 700        writel(config2, NFC_V3_CONFIG2);
 701}
 702
 703/* This functions is used by upper layer to checks if device is ready */
 704static int mxc_nand_dev_ready(struct nand_chip *chip)
 705{
 706        /*
 707         * NFC handles R/B internally. Therefore, this function
 708         * always returns status as ready.
 709         */
 710        return 1;
 711}
 712
 713static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
 714                                 bool ecc, int page)
 715{
 716        struct mtd_info *mtd = nand_to_mtd(chip);
 717        struct mxc_nand_host *host = nand_get_controller_data(chip);
 718        unsigned int bitflips_corrected = 0;
 719        int no_subpages;
 720        int i;
 721
 722        host->devtype_data->enable_hwecc(chip, ecc);
 723
 724        host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
 725        mxc_do_addr_cycle(mtd, 0, page);
 726
 727        if (mtd->writesize > 512)
 728                host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
 729
 730        no_subpages = mtd->writesize >> 9;
 731
 732        for (i = 0; i < no_subpages; i++) {
 733                uint16_t ecc_stats;
 734
 735                /* NANDFC buffer 0 is used for page read/write */
 736                writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 737
 738                writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
 739
 740                /* Wait for operation to complete */
 741                wait_op_done(host, true);
 742
 743                ecc_stats = get_ecc_status_v1(host);
 744
 745                ecc_stats >>= 2;
 746
 747                if (buf && ecc) {
 748                        switch (ecc_stats & 0x3) {
 749                        case 0:
 750                        default:
 751                                break;
 752                        case 1:
 753                                mtd->ecc_stats.corrected++;
 754                                bitflips_corrected = 1;
 755                                break;
 756                        case 2:
 757                                mtd->ecc_stats.failed++;
 758                                break;
 759                        }
 760                }
 761        }
 762
 763        if (buf)
 764                memcpy32_fromio(buf, host->main_area0, mtd->writesize);
 765        if (oob)
 766                copy_spare(mtd, true, oob);
 767
 768        return bitflips_corrected;
 769}
 770
 771static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
 772                                    void *oob, bool ecc, int page)
 773{
 774        struct mtd_info *mtd = nand_to_mtd(chip);
 775        struct mxc_nand_host *host = nand_get_controller_data(chip);
 776        unsigned int max_bitflips = 0;
 777        u32 ecc_stat, err;
 778        int no_subpages;
 779        u8 ecc_bit_mask, err_limit;
 780
 781        host->devtype_data->enable_hwecc(chip, ecc);
 782
 783        host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
 784        mxc_do_addr_cycle(mtd, 0, page);
 785
 786        if (mtd->writesize > 512)
 787                host->devtype_data->send_cmd(host,
 788                                NAND_CMD_READSTART, true);
 789
 790        host->devtype_data->send_page(mtd, NFC_OUTPUT);
 791
 792        if (buf)
 793                memcpy32_fromio(buf, host->main_area0, mtd->writesize);
 794        if (oob)
 795                copy_spare(mtd, true, oob);
 796
 797        ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 798        err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 799
 800        no_subpages = mtd->writesize >> 9;
 801
 802        ecc_stat = host->devtype_data->get_ecc_status(host);
 803
 804        do {
 805                err = ecc_stat & ecc_bit_mask;
 806                if (err > err_limit) {
 807                        mtd->ecc_stats.failed++;
 808                } else {
 809                        mtd->ecc_stats.corrected += err;
 810                        max_bitflips = max_t(unsigned int, max_bitflips, err);
 811                }
 812
 813                ecc_stat >>= 4;
 814        } while (--no_subpages);
 815
 816        return max_bitflips;
 817}
 818
 819static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
 820                              int oob_required, int page)
 821{
 822        struct mxc_nand_host *host = nand_get_controller_data(chip);
 823        void *oob_buf;
 824
 825        if (oob_required)
 826                oob_buf = chip->oob_poi;
 827        else
 828                oob_buf = NULL;
 829
 830        return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
 831}
 832
 833static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
 834                                  int oob_required, int page)
 835{
 836        struct mxc_nand_host *host = nand_get_controller_data(chip);
 837        void *oob_buf;
 838
 839        if (oob_required)
 840                oob_buf = chip->oob_poi;
 841        else
 842                oob_buf = NULL;
 843
 844        return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
 845}
 846
 847static int mxc_nand_read_oob(struct nand_chip *chip, int page)
 848{
 849        struct mxc_nand_host *host = nand_get_controller_data(chip);
 850
 851        return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
 852                                             page);
 853}
 854
 855static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
 856                               bool ecc, int page)
 857{
 858        struct mtd_info *mtd = nand_to_mtd(chip);
 859        struct mxc_nand_host *host = nand_get_controller_data(chip);
 860
 861        host->devtype_data->enable_hwecc(chip, ecc);
 862
 863        host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
 864        mxc_do_addr_cycle(mtd, 0, page);
 865
 866        memcpy32_toio(host->main_area0, buf, mtd->writesize);
 867        copy_spare(mtd, false, chip->oob_poi);
 868
 869        host->devtype_data->send_page(mtd, NFC_INPUT);
 870        host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
 871        mxc_do_addr_cycle(mtd, 0, page);
 872
 873        return 0;
 874}
 875
 876static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
 877                                   int oob_required, int page)
 878{
 879        return mxc_nand_write_page(chip, buf, true, page);
 880}
 881
 882static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
 883                                   int oob_required, int page)
 884{
 885        return mxc_nand_write_page(chip, buf, false, page);
 886}
 887
 888static int mxc_nand_write_oob(struct nand_chip *chip, int page)
 889{
 890        struct mtd_info *mtd = nand_to_mtd(chip);
 891        struct mxc_nand_host *host = nand_get_controller_data(chip);
 892
 893        memset(host->data_buf, 0xff, mtd->writesize);
 894
 895        return mxc_nand_write_page(chip, host->data_buf, false, page);
 896}
 897
 898static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
 899{
 900        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 901        uint8_t ret;
 902
 903        /* Check for status request */
 904        if (host->status_request)
 905                return host->devtype_data->get_dev_status(host) & 0xFF;
 906
 907        if (nand_chip->options & NAND_BUSWIDTH_16) {
 908                /* only take the lower byte of each word */
 909                ret = *(uint16_t *)(host->data_buf + host->buf_start);
 910
 911                host->buf_start += 2;
 912        } else {
 913                ret = *(uint8_t *)(host->data_buf + host->buf_start);
 914                host->buf_start++;
 915        }
 916
 917        dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
 918        return ret;
 919}
 920
 921/* Write data of length len to buffer buf. The data to be
 922 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 923 * Operation by the NFC, the data is written to NAND Flash */
 924static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
 925                               int len)
 926{
 927        struct mtd_info *mtd = nand_to_mtd(nand_chip);
 928        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 929        u16 col = host->buf_start;
 930        int n = mtd->oobsize + mtd->writesize - col;
 931
 932        n = min(n, len);
 933
 934        memcpy(host->data_buf + col, buf, n);
 935
 936        host->buf_start += n;
 937}
 938
 939/* Read the data buffer from the NAND Flash. To read the data from NAND
 940 * Flash first the data output cycle is initiated by the NFC, which copies
 941 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 942 */
 943static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
 944                              int len)
 945{
 946        struct mtd_info *mtd = nand_to_mtd(nand_chip);
 947        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 948        u16 col = host->buf_start;
 949        int n = mtd->oobsize + mtd->writesize - col;
 950
 951        n = min(n, len);
 952
 953        memcpy(buf, host->data_buf + col, n);
 954
 955        host->buf_start += n;
 956}
 957
 958/* This function is used by upper layer for select and
 959 * deselect of the NAND chip */
 960static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
 961{
 962        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 963
 964        if (chip == -1) {
 965                /* Disable the NFC clock */
 966                if (host->clk_act) {
 967                        clk_disable_unprepare(host->clk);
 968                        host->clk_act = 0;
 969                }
 970                return;
 971        }
 972
 973        if (!host->clk_act) {
 974                /* Enable the NFC clock */
 975                clk_prepare_enable(host->clk);
 976                host->clk_act = 1;
 977        }
 978}
 979
 980static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
 981{
 982        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 983
 984        if (chip == -1) {
 985                /* Disable the NFC clock */
 986                if (host->clk_act) {
 987                        clk_disable_unprepare(host->clk);
 988                        host->clk_act = 0;
 989                }
 990                return;
 991        }
 992
 993        if (!host->clk_act) {
 994                /* Enable the NFC clock */
 995                clk_prepare_enable(host->clk);
 996                host->clk_act = 1;
 997        }
 998
 999        host->active_cs = chip;
1000        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1001}
1002
1003#define MXC_V1_ECCBYTES         5
1004
1005static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1006                                struct mtd_oob_region *oobregion)
1007{
1008        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1009
1010        if (section >= nand_chip->ecc.steps)
1011                return -ERANGE;
1012
1013        oobregion->offset = (section * 16) + 6;
1014        oobregion->length = MXC_V1_ECCBYTES;
1015
1016        return 0;
1017}
1018
1019static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1020                                 struct mtd_oob_region *oobregion)
1021{
1022        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023
1024        if (section > nand_chip->ecc.steps)
1025                return -ERANGE;
1026
1027        if (!section) {
1028                if (mtd->writesize <= 512) {
1029                        oobregion->offset = 0;
1030                        oobregion->length = 5;
1031                } else {
1032                        oobregion->offset = 2;
1033                        oobregion->length = 4;
1034                }
1035        } else {
1036                oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1037                if (section < nand_chip->ecc.steps)
1038                        oobregion->length = (section * 16) + 6 -
1039                                            oobregion->offset;
1040                else
1041                        oobregion->length = mtd->oobsize - oobregion->offset;
1042        }
1043
1044        return 0;
1045}
1046
1047static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1048        .ecc = mxc_v1_ooblayout_ecc,
1049        .free = mxc_v1_ooblayout_free,
1050};
1051
1052static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1053                                struct mtd_oob_region *oobregion)
1054{
1055        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1056        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1057
1058        if (section >= nand_chip->ecc.steps)
1059                return -ERANGE;
1060
1061        oobregion->offset = (section * stepsize) + 7;
1062        oobregion->length = nand_chip->ecc.bytes;
1063
1064        return 0;
1065}
1066
1067static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1068                                 struct mtd_oob_region *oobregion)
1069{
1070        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1071        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1072
1073        if (section >= nand_chip->ecc.steps)
1074                return -ERANGE;
1075
1076        if (!section) {
1077                if (mtd->writesize <= 512) {
1078                        oobregion->offset = 0;
1079                        oobregion->length = 5;
1080                } else {
1081                        oobregion->offset = 2;
1082                        oobregion->length = 4;
1083                }
1084        } else {
1085                oobregion->offset = section * stepsize;
1086                oobregion->length = 7;
1087        }
1088
1089        return 0;
1090}
1091
1092static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1093        .ecc = mxc_v2_ooblayout_ecc,
1094        .free = mxc_v2_ooblayout_free,
1095};
1096
1097/*
1098 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1099 * on how much oob the nand chip has. For 8bit ecc we need at least
1100 * 26 bytes of oob data per 512 byte block.
1101 */
1102static int get_eccsize(struct mtd_info *mtd)
1103{
1104        int oobbytes_per_512 = 0;
1105
1106        oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1107
1108        if (oobbytes_per_512 < 26)
1109                return 4;
1110        else
1111                return 8;
1112}
1113
1114static void preset_v1(struct mtd_info *mtd)
1115{
1116        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1117        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1118        uint16_t config1 = 0;
1119
1120        if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
1121                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1122
1123        if (!host->devtype_data->irqpending_quirk)
1124                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1125
1126        host->eccsize = 1;
1127
1128        writew(config1, NFC_V1_V2_CONFIG1);
1129        /* preset operation */
1130
1131        /* Unlock the internal RAM Buffer */
1132        writew(0x2, NFC_V1_V2_CONFIG);
1133
1134        /* Blocks to be unlocked */
1135        writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1136        writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1137
1138        /* Unlock Block Command for given address range */
1139        writew(0x4, NFC_V1_V2_WRPROT);
1140}
1141
1142static int mxc_nand_v2_setup_data_interface(struct nand_chip *chip, int csline,
1143                                        const struct nand_data_interface *conf)
1144{
1145        struct mxc_nand_host *host = nand_get_controller_data(chip);
1146        int tRC_min_ns, tRC_ps, ret;
1147        unsigned long rate, rate_round;
1148        const struct nand_sdr_timings *timings;
1149        u16 config1;
1150
1151        timings = nand_get_sdr_timings(conf);
1152        if (IS_ERR(timings))
1153                return -ENOTSUPP;
1154
1155        config1 = readw(NFC_V1_V2_CONFIG1);
1156
1157        tRC_min_ns = timings->tRC_min / 1000;
1158        rate = 1000000000 / tRC_min_ns;
1159
1160        /*
1161         * For tRC < 30ns we have to use EDO mode. In this case the controller
1162         * does one access per clock cycle. Otherwise the controller does one
1163         * access in two clock cycles, thus we have to double the rate to the
1164         * controller.
1165         */
1166        if (tRC_min_ns < 30) {
1167                rate_round = clk_round_rate(host->clk, rate);
1168                config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1169                tRC_ps = 1000000000 / (rate_round / 1000);
1170        } else {
1171                rate *= 2;
1172                rate_round = clk_round_rate(host->clk, rate);
1173                config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1174                tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1175        }
1176
1177        /*
1178         * The timing values compared against are from the i.MX25 Automotive
1179         * datasheet, Table 50. NFC Timing Parameters
1180         */
1181        if (timings->tCLS_min > tRC_ps - 1000 ||
1182            timings->tCLH_min > tRC_ps - 2000 ||
1183            timings->tCS_min > tRC_ps - 1000 ||
1184            timings->tCH_min > tRC_ps - 2000 ||
1185            timings->tWP_min > tRC_ps - 1500 ||
1186            timings->tALS_min > tRC_ps ||
1187            timings->tALH_min > tRC_ps - 3000 ||
1188            timings->tDS_min > tRC_ps ||
1189            timings->tDH_min > tRC_ps - 5000 ||
1190            timings->tWC_min > 2 * tRC_ps ||
1191            timings->tWH_min > tRC_ps - 2500 ||
1192            timings->tRR_min > 6 * tRC_ps ||
1193            timings->tRP_min > 3 * tRC_ps / 2 ||
1194            timings->tRC_min > 2 * tRC_ps ||
1195            timings->tREH_min > (tRC_ps / 2) - 2500) {
1196                dev_dbg(host->dev, "Timing out of bounds\n");
1197                return -EINVAL;
1198        }
1199
1200        if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1201                return 0;
1202
1203        ret = clk_set_rate(host->clk, rate);
1204        if (ret)
1205                return ret;
1206
1207        writew(config1, NFC_V1_V2_CONFIG1);
1208
1209        dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1210                config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1211                "normal");
1212
1213        return 0;
1214}
1215
1216static void preset_v2(struct mtd_info *mtd)
1217{
1218        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1219        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1220        uint16_t config1 = 0;
1221
1222        config1 |= NFC_V2_CONFIG1_FP_INT;
1223
1224        if (!host->devtype_data->irqpending_quirk)
1225                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1226
1227        if (mtd->writesize) {
1228                uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1229
1230                if (nand_chip->ecc.mode == NAND_ECC_HW)
1231                        config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1232
1233                host->eccsize = get_eccsize(mtd);
1234                if (host->eccsize == 4)
1235                        config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1236
1237                config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1238        } else {
1239                host->eccsize = 1;
1240        }
1241
1242        writew(config1, NFC_V1_V2_CONFIG1);
1243        /* preset operation */
1244
1245        /* spare area size in 16-bit half-words */
1246        writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1247
1248        /* Unlock the internal RAM Buffer */
1249        writew(0x2, NFC_V1_V2_CONFIG);
1250
1251        /* Blocks to be unlocked */
1252        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1253        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1254        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1255        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1256        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1257        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1258        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1259        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1260
1261        /* Unlock Block Command for given address range */
1262        writew(0x4, NFC_V1_V2_WRPROT);
1263}
1264
1265static void preset_v3(struct mtd_info *mtd)
1266{
1267        struct nand_chip *chip = mtd_to_nand(mtd);
1268        struct mxc_nand_host *host = nand_get_controller_data(chip);
1269        uint32_t config2, config3;
1270        int i, addr_phases;
1271
1272        writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1273        writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1274
1275        /* Unlock the internal RAM Buffer */
1276        writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1277                        NFC_V3_WRPROT);
1278
1279        /* Blocks to be unlocked */
1280        for (i = 0; i < NAND_MAX_CHIPS; i++)
1281                writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1282
1283        writel(0, NFC_V3_IPC);
1284
1285        config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1286                NFC_V3_CONFIG2_2CMD_PHASES |
1287                NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1288                NFC_V3_CONFIG2_ST_CMD(0x70) |
1289                NFC_V3_CONFIG2_INT_MSK |
1290                NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1291
1292        addr_phases = fls(chip->pagemask) >> 3;
1293
1294        if (mtd->writesize == 2048) {
1295                config2 |= NFC_V3_CONFIG2_PS_2048;
1296                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1297        } else if (mtd->writesize == 4096) {
1298                config2 |= NFC_V3_CONFIG2_PS_4096;
1299                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1300        } else {
1301                config2 |= NFC_V3_CONFIG2_PS_512;
1302                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1303        }
1304
1305        if (mtd->writesize) {
1306                if (chip->ecc.mode == NAND_ECC_HW)
1307                        config2 |= NFC_V3_CONFIG2_ECC_EN;
1308
1309                config2 |= NFC_V3_CONFIG2_PPB(
1310                                ffs(mtd->erasesize / mtd->writesize) - 6,
1311                                host->devtype_data->ppb_shift);
1312                host->eccsize = get_eccsize(mtd);
1313                if (host->eccsize == 8)
1314                        config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1315        }
1316
1317        writel(config2, NFC_V3_CONFIG2);
1318
1319        config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1320                        NFC_V3_CONFIG3_NO_SDMA |
1321                        NFC_V3_CONFIG3_RBB_MODE |
1322                        NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1323                        NFC_V3_CONFIG3_ADD_OP(0);
1324
1325        if (!(chip->options & NAND_BUSWIDTH_16))
1326                config3 |= NFC_V3_CONFIG3_FW8;
1327
1328        writel(config3, NFC_V3_CONFIG3);
1329
1330        writel(0, NFC_V3_DELAY_LINE);
1331}
1332
1333/* Used by the upper layer to write command to NAND Flash for
1334 * different operations to be carried out on NAND Flash */
1335static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1336                             int column, int page_addr)
1337{
1338        struct mtd_info *mtd = nand_to_mtd(nand_chip);
1339        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1340
1341        dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1342              command, column, page_addr);
1343
1344        /* Reset command state information */
1345        host->status_request = false;
1346
1347        /* Command pre-processing step */
1348        switch (command) {
1349        case NAND_CMD_RESET:
1350                host->devtype_data->preset(mtd);
1351                host->devtype_data->send_cmd(host, command, false);
1352                break;
1353
1354        case NAND_CMD_STATUS:
1355                host->buf_start = 0;
1356                host->status_request = true;
1357
1358                host->devtype_data->send_cmd(host, command, true);
1359                WARN_ONCE(column != -1 || page_addr != -1,
1360                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1361                          command, column, page_addr);
1362                mxc_do_addr_cycle(mtd, column, page_addr);
1363                break;
1364
1365        case NAND_CMD_READID:
1366                host->devtype_data->send_cmd(host, command, true);
1367                mxc_do_addr_cycle(mtd, column, page_addr);
1368                host->devtype_data->send_read_id(host);
1369                host->buf_start = 0;
1370                break;
1371
1372        case NAND_CMD_ERASE1:
1373        case NAND_CMD_ERASE2:
1374                host->devtype_data->send_cmd(host, command, false);
1375                WARN_ONCE(column != -1,
1376                          "Unexpected column value (cmd=%u, col=%d)\n",
1377                          command, column);
1378                mxc_do_addr_cycle(mtd, column, page_addr);
1379
1380                break;
1381        case NAND_CMD_PARAM:
1382                host->devtype_data->send_cmd(host, command, false);
1383                mxc_do_addr_cycle(mtd, column, page_addr);
1384                host->devtype_data->send_page(mtd, NFC_OUTPUT);
1385                memcpy32_fromio(host->data_buf, host->main_area0, 512);
1386                host->buf_start = 0;
1387                break;
1388        default:
1389                WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1390                          command);
1391                break;
1392        }
1393}
1394
1395static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1396                                 u8 *subfeature_param)
1397{
1398        struct mtd_info *mtd = nand_to_mtd(chip);
1399        struct mxc_nand_host *host = nand_get_controller_data(chip);
1400        int i;
1401
1402        host->buf_start = 0;
1403
1404        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1405                chip->legacy.write_byte(chip, subfeature_param[i]);
1406
1407        memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1408        host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1409        mxc_do_addr_cycle(mtd, addr, -1);
1410        host->devtype_data->send_page(mtd, NFC_INPUT);
1411
1412        return 0;
1413}
1414
1415static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1416                                 u8 *subfeature_param)
1417{
1418        struct mtd_info *mtd = nand_to_mtd(chip);
1419        struct mxc_nand_host *host = nand_get_controller_data(chip);
1420        int i;
1421
1422        host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1423        mxc_do_addr_cycle(mtd, addr, -1);
1424        host->devtype_data->send_page(mtd, NFC_OUTPUT);
1425        memcpy32_fromio(host->data_buf, host->main_area0, 512);
1426        host->buf_start = 0;
1427
1428        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1429                *subfeature_param++ = chip->legacy.read_byte(chip);
1430
1431        return 0;
1432}
1433
1434/*
1435 * The generic flash bbt decriptors overlap with our ecc
1436 * hardware, so define some i.MX specific ones.
1437 */
1438static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1439static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1440
1441static struct nand_bbt_descr bbt_main_descr = {
1442        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1443            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1444        .offs = 0,
1445        .len = 4,
1446        .veroffs = 4,
1447        .maxblocks = 4,
1448        .pattern = bbt_pattern,
1449};
1450
1451static struct nand_bbt_descr bbt_mirror_descr = {
1452        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1453            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1454        .offs = 0,
1455        .len = 4,
1456        .veroffs = 4,
1457        .maxblocks = 4,
1458        .pattern = mirror_pattern,
1459};
1460
1461/* v1 + irqpending_quirk: i.MX21 */
1462static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1463        .preset = preset_v1,
1464        .read_page = mxc_nand_read_page_v1,
1465        .send_cmd = send_cmd_v1_v2,
1466        .send_addr = send_addr_v1_v2,
1467        .send_page = send_page_v1,
1468        .send_read_id = send_read_id_v1_v2,
1469        .get_dev_status = get_dev_status_v1_v2,
1470        .check_int = check_int_v1_v2,
1471        .irq_control = irq_control_v1_v2,
1472        .get_ecc_status = get_ecc_status_v1,
1473        .ooblayout = &mxc_v1_ooblayout_ops,
1474        .select_chip = mxc_nand_select_chip_v1_v3,
1475        .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1476        .irqpending_quirk = 1,
1477        .needs_ip = 0,
1478        .regs_offset = 0xe00,
1479        .spare0_offset = 0x800,
1480        .spare_len = 16,
1481        .eccbytes = 3,
1482        .eccsize = 1,
1483};
1484
1485/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1486static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1487        .preset = preset_v1,
1488        .read_page = mxc_nand_read_page_v1,
1489        .send_cmd = send_cmd_v1_v2,
1490        .send_addr = send_addr_v1_v2,
1491        .send_page = send_page_v1,
1492        .send_read_id = send_read_id_v1_v2,
1493        .get_dev_status = get_dev_status_v1_v2,
1494        .check_int = check_int_v1_v2,
1495        .irq_control = irq_control_v1_v2,
1496        .get_ecc_status = get_ecc_status_v1,
1497        .ooblayout = &mxc_v1_ooblayout_ops,
1498        .select_chip = mxc_nand_select_chip_v1_v3,
1499        .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1500        .irqpending_quirk = 0,
1501        .needs_ip = 0,
1502        .regs_offset = 0xe00,
1503        .spare0_offset = 0x800,
1504        .axi_offset = 0,
1505        .spare_len = 16,
1506        .eccbytes = 3,
1507        .eccsize = 1,
1508};
1509
1510/* v21: i.MX25, i.MX35 */
1511static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1512        .preset = preset_v2,
1513        .read_page = mxc_nand_read_page_v2_v3,
1514        .send_cmd = send_cmd_v1_v2,
1515        .send_addr = send_addr_v1_v2,
1516        .send_page = send_page_v2,
1517        .send_read_id = send_read_id_v1_v2,
1518        .get_dev_status = get_dev_status_v1_v2,
1519        .check_int = check_int_v1_v2,
1520        .irq_control = irq_control_v1_v2,
1521        .get_ecc_status = get_ecc_status_v2,
1522        .ooblayout = &mxc_v2_ooblayout_ops,
1523        .select_chip = mxc_nand_select_chip_v2,
1524        .setup_data_interface = mxc_nand_v2_setup_data_interface,
1525        .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1526        .irqpending_quirk = 0,
1527        .needs_ip = 0,
1528        .regs_offset = 0x1e00,
1529        .spare0_offset = 0x1000,
1530        .axi_offset = 0,
1531        .spare_len = 64,
1532        .eccbytes = 9,
1533        .eccsize = 0,
1534};
1535
1536/* v3.2a: i.MX51 */
1537static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1538        .preset = preset_v3,
1539        .read_page = mxc_nand_read_page_v2_v3,
1540        .send_cmd = send_cmd_v3,
1541        .send_addr = send_addr_v3,
1542        .send_page = send_page_v3,
1543        .send_read_id = send_read_id_v3,
1544        .get_dev_status = get_dev_status_v3,
1545        .check_int = check_int_v3,
1546        .irq_control = irq_control_v3,
1547        .get_ecc_status = get_ecc_status_v3,
1548        .ooblayout = &mxc_v2_ooblayout_ops,
1549        .select_chip = mxc_nand_select_chip_v1_v3,
1550        .enable_hwecc = mxc_nand_enable_hwecc_v3,
1551        .irqpending_quirk = 0,
1552        .needs_ip = 1,
1553        .regs_offset = 0,
1554        .spare0_offset = 0x1000,
1555        .axi_offset = 0x1e00,
1556        .spare_len = 64,
1557        .eccbytes = 0,
1558        .eccsize = 0,
1559        .ppb_shift = 7,
1560};
1561
1562/* v3.2b: i.MX53 */
1563static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1564        .preset = preset_v3,
1565        .read_page = mxc_nand_read_page_v2_v3,
1566        .send_cmd = send_cmd_v3,
1567        .send_addr = send_addr_v3,
1568        .send_page = send_page_v3,
1569        .send_read_id = send_read_id_v3,
1570        .get_dev_status = get_dev_status_v3,
1571        .check_int = check_int_v3,
1572        .irq_control = irq_control_v3,
1573        .get_ecc_status = get_ecc_status_v3,
1574        .ooblayout = &mxc_v2_ooblayout_ops,
1575        .select_chip = mxc_nand_select_chip_v1_v3,
1576        .enable_hwecc = mxc_nand_enable_hwecc_v3,
1577        .irqpending_quirk = 0,
1578        .needs_ip = 1,
1579        .regs_offset = 0,
1580        .spare0_offset = 0x1000,
1581        .axi_offset = 0x1e00,
1582        .spare_len = 64,
1583        .eccbytes = 0,
1584        .eccsize = 0,
1585        .ppb_shift = 8,
1586};
1587
1588static inline int is_imx21_nfc(struct mxc_nand_host *host)
1589{
1590        return host->devtype_data == &imx21_nand_devtype_data;
1591}
1592
1593static inline int is_imx27_nfc(struct mxc_nand_host *host)
1594{
1595        return host->devtype_data == &imx27_nand_devtype_data;
1596}
1597
1598static inline int is_imx25_nfc(struct mxc_nand_host *host)
1599{
1600        return host->devtype_data == &imx25_nand_devtype_data;
1601}
1602
1603static inline int is_imx51_nfc(struct mxc_nand_host *host)
1604{
1605        return host->devtype_data == &imx51_nand_devtype_data;
1606}
1607
1608static inline int is_imx53_nfc(struct mxc_nand_host *host)
1609{
1610        return host->devtype_data == &imx53_nand_devtype_data;
1611}
1612
1613static const struct platform_device_id mxcnd_devtype[] = {
1614        {
1615                .name = "imx21-nand",
1616                .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1617        }, {
1618                .name = "imx27-nand",
1619                .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1620        }, {
1621                .name = "imx25-nand",
1622                .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1623        }, {
1624                .name = "imx51-nand",
1625                .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1626        }, {
1627                .name = "imx53-nand",
1628                .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1629        }, {
1630                /* sentinel */
1631        }
1632};
1633MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1634
1635#ifdef CONFIG_OF
1636static const struct of_device_id mxcnd_dt_ids[] = {
1637        {
1638                .compatible = "fsl,imx21-nand",
1639                .data = &imx21_nand_devtype_data,
1640        }, {
1641                .compatible = "fsl,imx27-nand",
1642                .data = &imx27_nand_devtype_data,
1643        }, {
1644                .compatible = "fsl,imx25-nand",
1645                .data = &imx25_nand_devtype_data,
1646        }, {
1647                .compatible = "fsl,imx51-nand",
1648                .data = &imx51_nand_devtype_data,
1649        }, {
1650                .compatible = "fsl,imx53-nand",
1651                .data = &imx53_nand_devtype_data,
1652        },
1653        { /* sentinel */ }
1654};
1655MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1656
1657static int mxcnd_probe_dt(struct mxc_nand_host *host)
1658{
1659        struct device_node *np = host->dev->of_node;
1660        const struct of_device_id *of_id =
1661                of_match_device(mxcnd_dt_ids, host->dev);
1662
1663        if (!np)
1664                return 1;
1665
1666        host->devtype_data = of_id->data;
1667
1668        return 0;
1669}
1670#else
1671static int mxcnd_probe_dt(struct mxc_nand_host *host)
1672{
1673        return 1;
1674}
1675#endif
1676
1677static int mxcnd_attach_chip(struct nand_chip *chip)
1678{
1679        struct mtd_info *mtd = nand_to_mtd(chip);
1680        struct mxc_nand_host *host = nand_get_controller_data(chip);
1681        struct device *dev = mtd->dev.parent;
1682
1683        switch (chip->ecc.mode) {
1684        case NAND_ECC_HW:
1685                chip->ecc.read_page = mxc_nand_read_page;
1686                chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1687                chip->ecc.read_oob = mxc_nand_read_oob;
1688                chip->ecc.write_page = mxc_nand_write_page_ecc;
1689                chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1690                chip->ecc.write_oob = mxc_nand_write_oob;
1691                break;
1692
1693        case NAND_ECC_SOFT:
1694                break;
1695
1696        default:
1697                return -EINVAL;
1698        }
1699
1700        if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1701                chip->bbt_td = &bbt_main_descr;
1702                chip->bbt_md = &bbt_mirror_descr;
1703        }
1704
1705        /* Allocate the right size buffer now */
1706        devm_kfree(dev, (void *)host->data_buf);
1707        host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1708                                      GFP_KERNEL);
1709        if (!host->data_buf)
1710                return -ENOMEM;
1711
1712        /* Call preset again, with correct writesize chip time */
1713        host->devtype_data->preset(mtd);
1714
1715        if (!chip->ecc.bytes) {
1716                if (host->eccsize == 8)
1717                        chip->ecc.bytes = 18;
1718                else if (host->eccsize == 4)
1719                        chip->ecc.bytes = 9;
1720        }
1721
1722        /*
1723         * Experimentation shows that i.MX NFC can only handle up to 218 oob
1724         * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1725         * into copying invalid data to/from the spare IO buffer, as this
1726         * might cause ECC data corruption when doing sub-page write to a
1727         * partially written page.
1728         */
1729        host->used_oobsize = min(mtd->oobsize, 218U);
1730
1731        if (chip->ecc.mode == NAND_ECC_HW) {
1732                if (is_imx21_nfc(host) || is_imx27_nfc(host))
1733                        chip->ecc.strength = 1;
1734                else
1735                        chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1736        }
1737
1738        return 0;
1739}
1740
1741static int mxcnd_setup_data_interface(struct nand_chip *chip, int chipnr,
1742                                      const struct nand_data_interface *conf)
1743{
1744        struct mxc_nand_host *host = nand_get_controller_data(chip);
1745
1746        return host->devtype_data->setup_data_interface(chip, chipnr, conf);
1747}
1748
1749static const struct nand_controller_ops mxcnd_controller_ops = {
1750        .attach_chip = mxcnd_attach_chip,
1751        .setup_data_interface = mxcnd_setup_data_interface,
1752};
1753
1754static int mxcnd_probe(struct platform_device *pdev)
1755{
1756        struct nand_chip *this;
1757        struct mtd_info *mtd;
1758        struct mxc_nand_host *host;
1759        struct resource *res;
1760        int err = 0;
1761
1762        /* Allocate memory for MTD device structure and private data */
1763        host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1764                        GFP_KERNEL);
1765        if (!host)
1766                return -ENOMEM;
1767
1768        /* allocate a temporary buffer for the nand_scan_ident() */
1769        host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1770        if (!host->data_buf)
1771                return -ENOMEM;
1772
1773        host->dev = &pdev->dev;
1774        /* structures must be linked */
1775        this = &host->nand;
1776        mtd = nand_to_mtd(this);
1777        mtd->dev.parent = &pdev->dev;
1778        mtd->name = DRIVER_NAME;
1779
1780        /* 50 us command delay time */
1781        this->legacy.chip_delay = 5;
1782
1783        nand_set_controller_data(this, host);
1784        nand_set_flash_node(this, pdev->dev.of_node),
1785        this->legacy.dev_ready = mxc_nand_dev_ready;
1786        this->legacy.cmdfunc = mxc_nand_command;
1787        this->legacy.read_byte = mxc_nand_read_byte;
1788        this->legacy.write_buf = mxc_nand_write_buf;
1789        this->legacy.read_buf = mxc_nand_read_buf;
1790        this->legacy.set_features = mxc_nand_set_features;
1791        this->legacy.get_features = mxc_nand_get_features;
1792
1793        host->clk = devm_clk_get(&pdev->dev, NULL);
1794        if (IS_ERR(host->clk))
1795                return PTR_ERR(host->clk);
1796
1797        err = mxcnd_probe_dt(host);
1798        if (err > 0) {
1799                struct mxc_nand_platform_data *pdata =
1800                                        dev_get_platdata(&pdev->dev);
1801                if (pdata) {
1802                        host->pdata = *pdata;
1803                        host->devtype_data = (struct mxc_nand_devtype_data *)
1804                                                pdev->id_entry->driver_data;
1805                } else {
1806                        err = -ENODEV;
1807                }
1808        }
1809        if (err < 0)
1810                return err;
1811
1812        if (!host->devtype_data->setup_data_interface)
1813                this->options |= NAND_KEEP_TIMINGS;
1814
1815        if (host->devtype_data->needs_ip) {
1816                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1817                host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1818                if (IS_ERR(host->regs_ip))
1819                        return PTR_ERR(host->regs_ip);
1820
1821                res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1822        } else {
1823                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1824        }
1825
1826        host->base = devm_ioremap_resource(&pdev->dev, res);
1827        if (IS_ERR(host->base))
1828                return PTR_ERR(host->base);
1829
1830        host->main_area0 = host->base;
1831
1832        if (host->devtype_data->regs_offset)
1833                host->regs = host->base + host->devtype_data->regs_offset;
1834        host->spare0 = host->base + host->devtype_data->spare0_offset;
1835        if (host->devtype_data->axi_offset)
1836                host->regs_axi = host->base + host->devtype_data->axi_offset;
1837
1838        this->ecc.bytes = host->devtype_data->eccbytes;
1839        host->eccsize = host->devtype_data->eccsize;
1840
1841        this->legacy.select_chip = host->devtype_data->select_chip;
1842        this->ecc.size = 512;
1843        mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1844
1845        if (host->pdata.hw_ecc) {
1846                this->ecc.mode = NAND_ECC_HW;
1847        } else {
1848                this->ecc.mode = NAND_ECC_SOFT;
1849                this->ecc.algo = NAND_ECC_HAMMING;
1850        }
1851
1852        /* NAND bus width determines access functions used by upper layer */
1853        if (host->pdata.width == 2)
1854                this->options |= NAND_BUSWIDTH_16;
1855
1856        /* update flash based bbt */
1857        if (host->pdata.flash_bbt)
1858                this->bbt_options |= NAND_BBT_USE_FLASH;
1859
1860        init_completion(&host->op_completion);
1861
1862        host->irq = platform_get_irq(pdev, 0);
1863        if (host->irq < 0)
1864                return host->irq;
1865
1866        /*
1867         * Use host->devtype_data->irq_control() here instead of irq_control()
1868         * because we must not disable_irq_nosync without having requested the
1869         * irq.
1870         */
1871        host->devtype_data->irq_control(host, 0);
1872
1873        err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1874                        0, DRIVER_NAME, host);
1875        if (err)
1876                return err;
1877
1878        err = clk_prepare_enable(host->clk);
1879        if (err)
1880                return err;
1881        host->clk_act = 1;
1882
1883        /*
1884         * Now that we "own" the interrupt make sure the interrupt mask bit is
1885         * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1886         * on this machine.
1887         */
1888        if (host->devtype_data->irqpending_quirk) {
1889                disable_irq_nosync(host->irq);
1890                host->devtype_data->irq_control(host, 1);
1891        }
1892
1893        /* Scan the NAND device */
1894        this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1895        err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1896        if (err)
1897                goto escan;
1898
1899        /* Register the partitions */
1900        err = mtd_device_parse_register(mtd, part_probes, NULL,
1901                                        host->pdata.parts,
1902                                        host->pdata.nr_parts);
1903        if (err)
1904                goto cleanup_nand;
1905
1906        platform_set_drvdata(pdev, host);
1907
1908        return 0;
1909
1910cleanup_nand:
1911        nand_cleanup(this);
1912escan:
1913        if (host->clk_act)
1914                clk_disable_unprepare(host->clk);
1915
1916        return err;
1917}
1918
1919static int mxcnd_remove(struct platform_device *pdev)
1920{
1921        struct mxc_nand_host *host = platform_get_drvdata(pdev);
1922
1923        nand_release(&host->nand);
1924        if (host->clk_act)
1925                clk_disable_unprepare(host->clk);
1926
1927        return 0;
1928}
1929
1930static struct platform_driver mxcnd_driver = {
1931        .driver = {
1932                   .name = DRIVER_NAME,
1933                   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1934        },
1935        .id_table = mxcnd_devtype,
1936        .probe = mxcnd_probe,
1937        .remove = mxcnd_remove,
1938};
1939module_platform_driver(mxcnd_driver);
1940
1941MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1942MODULE_DESCRIPTION("MXC NAND MTD driver");
1943MODULE_LICENSE("GPL");
1944