linux/drivers/mtd/nand/raw/s3c2410.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright © 2004-2008 Simtec Electronics
   4 *      http://armlinux.simtec.co.uk/
   5 *      Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
   8*/
   9
  10#define pr_fmt(fmt) "nand-s3c2410: " fmt
  11
  12#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
  13#define DEBUG
  14#endif
  15
  16#include <linux/module.h>
  17#include <linux/types.h>
  18#include <linux/kernel.h>
  19#include <linux/string.h>
  20#include <linux/io.h>
  21#include <linux/ioport.h>
  22#include <linux/platform_device.h>
  23#include <linux/delay.h>
  24#include <linux/err.h>
  25#include <linux/slab.h>
  26#include <linux/clk.h>
  27#include <linux/cpufreq.h>
  28#include <linux/of.h>
  29#include <linux/of_device.h>
  30
  31#include <linux/mtd/mtd.h>
  32#include <linux/mtd/rawnand.h>
  33#include <linux/mtd/nand_ecc.h>
  34#include <linux/mtd/partitions.h>
  35
  36#include <linux/platform_data/mtd-nand-s3c2410.h>
  37
  38#define S3C2410_NFREG(x) (x)
  39
  40#define S3C2410_NFCONF          S3C2410_NFREG(0x00)
  41#define S3C2410_NFCMD           S3C2410_NFREG(0x04)
  42#define S3C2410_NFADDR          S3C2410_NFREG(0x08)
  43#define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
  44#define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
  45#define S3C2410_NFECC           S3C2410_NFREG(0x14)
  46#define S3C2440_NFCONT          S3C2410_NFREG(0x04)
  47#define S3C2440_NFCMD           S3C2410_NFREG(0x08)
  48#define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
  49#define S3C2440_NFDATA          S3C2410_NFREG(0x10)
  50#define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
  51#define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
  52#define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
  53#define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
  54#define S3C2410_NFCONF_EN               (1<<15)
  55#define S3C2410_NFCONF_INITECC          (1<<12)
  56#define S3C2410_NFCONF_nFCE             (1<<11)
  57#define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
  58#define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
  59#define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
  60#define S3C2410_NFSTAT_BUSY             (1<<0)
  61#define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
  62#define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
  63#define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
  64#define S3C2440_NFCONT_INITECC          (1<<4)
  65#define S3C2440_NFCONT_nFCE             (1<<1)
  66#define S3C2440_NFCONT_ENABLE           (1<<0)
  67#define S3C2440_NFSTAT_READY            (1<<0)
  68#define S3C2412_NFCONF_NANDBOOT         (1<<31)
  69#define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
  70#define S3C2412_NFCONT_nFCE0            (1<<1)
  71#define S3C2412_NFSTAT_READY            (1<<0)
  72
  73/* new oob placement block for use with hardware ecc generation
  74 */
  75static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
  76                                 struct mtd_oob_region *oobregion)
  77{
  78        if (section)
  79                return -ERANGE;
  80
  81        oobregion->offset = 0;
  82        oobregion->length = 3;
  83
  84        return 0;
  85}
  86
  87static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
  88                                  struct mtd_oob_region *oobregion)
  89{
  90        if (section)
  91                return -ERANGE;
  92
  93        oobregion->offset = 8;
  94        oobregion->length = 8;
  95
  96        return 0;
  97}
  98
  99static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
 100        .ecc = s3c2410_ooblayout_ecc,
 101        .free = s3c2410_ooblayout_free,
 102};
 103
 104/* controller and mtd information */
 105
 106struct s3c2410_nand_info;
 107
 108/**
 109 * struct s3c2410_nand_mtd - driver MTD structure
 110 * @mtd: The MTD instance to pass to the MTD layer.
 111 * @chip: The NAND chip information.
 112 * @set: The platform information supplied for this set of NAND chips.
 113 * @info: Link back to the hardware information.
 114*/
 115struct s3c2410_nand_mtd {
 116        struct nand_chip                chip;
 117        struct s3c2410_nand_set         *set;
 118        struct s3c2410_nand_info        *info;
 119};
 120
 121enum s3c_cpu_type {
 122        TYPE_S3C2410,
 123        TYPE_S3C2412,
 124        TYPE_S3C2440,
 125};
 126
 127enum s3c_nand_clk_state {
 128        CLOCK_DISABLE   = 0,
 129        CLOCK_ENABLE,
 130        CLOCK_SUSPEND,
 131};
 132
 133/* overview of the s3c2410 nand state */
 134
 135/**
 136 * struct s3c2410_nand_info - NAND controller state.
 137 * @mtds: An array of MTD instances on this controoler.
 138 * @platform: The platform data for this board.
 139 * @device: The platform device we bound to.
 140 * @clk: The clock resource for this controller.
 141 * @regs: The area mapped for the hardware registers.
 142 * @sel_reg: Pointer to the register controlling the NAND selection.
 143 * @sel_bit: The bit in @sel_reg to select the NAND chip.
 144 * @mtd_count: The number of MTDs created from this controller.
 145 * @save_sel: The contents of @sel_reg to be saved over suspend.
 146 * @clk_rate: The clock rate from @clk.
 147 * @clk_state: The current clock state.
 148 * @cpu_type: The exact type of this controller.
 149 */
 150struct s3c2410_nand_info {
 151        /* mtd info */
 152        struct nand_controller          controller;
 153        struct s3c2410_nand_mtd         *mtds;
 154        struct s3c2410_platform_nand    *platform;
 155
 156        /* device info */
 157        struct device                   *device;
 158        struct clk                      *clk;
 159        void __iomem                    *regs;
 160        void __iomem                    *sel_reg;
 161        int                             sel_bit;
 162        int                             mtd_count;
 163        unsigned long                   save_sel;
 164        unsigned long                   clk_rate;
 165        enum s3c_nand_clk_state         clk_state;
 166
 167        enum s3c_cpu_type               cpu_type;
 168
 169#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
 170        struct notifier_block   freq_transition;
 171#endif
 172};
 173
 174struct s3c24XX_nand_devtype_data {
 175        enum s3c_cpu_type type;
 176};
 177
 178static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
 179        .type = TYPE_S3C2410,
 180};
 181
 182static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
 183        .type = TYPE_S3C2412,
 184};
 185
 186static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
 187        .type = TYPE_S3C2440,
 188};
 189
 190/* conversion functions */
 191
 192static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
 193{
 194        return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
 195                            chip);
 196}
 197
 198static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
 199{
 200        return s3c2410_nand_mtd_toours(mtd)->info;
 201}
 202
 203static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
 204{
 205        return platform_get_drvdata(dev);
 206}
 207
 208static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
 209{
 210        return dev_get_platdata(&dev->dev);
 211}
 212
 213static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
 214{
 215#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
 216        return 1;
 217#else
 218        return 0;
 219#endif
 220}
 221
 222/**
 223 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
 224 * @info: The controller instance.
 225 * @new_state: State to which clock should be set.
 226 */
 227static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
 228                enum s3c_nand_clk_state new_state)
 229{
 230        if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
 231                return;
 232
 233        if (info->clk_state == CLOCK_ENABLE) {
 234                if (new_state != CLOCK_ENABLE)
 235                        clk_disable_unprepare(info->clk);
 236        } else {
 237                if (new_state == CLOCK_ENABLE)
 238                        clk_prepare_enable(info->clk);
 239        }
 240
 241        info->clk_state = new_state;
 242}
 243
 244/* timing calculations */
 245
 246#define NS_IN_KHZ 1000000
 247
 248/**
 249 * s3c_nand_calc_rate - calculate timing data.
 250 * @wanted: The cycle time in nanoseconds.
 251 * @clk: The clock rate in kHz.
 252 * @max: The maximum divider value.
 253 *
 254 * Calculate the timing value from the given parameters.
 255 */
 256static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
 257{
 258        int result;
 259
 260        result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
 261
 262        pr_debug("result %d from %ld, %d\n", result, clk, wanted);
 263
 264        if (result > max) {
 265                pr_err("%d ns is too big for current clock rate %ld\n",
 266                        wanted, clk);
 267                return -1;
 268        }
 269
 270        if (result < 1)
 271                result = 1;
 272
 273        return result;
 274}
 275
 276#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
 277
 278/* controller setup */
 279
 280/**
 281 * s3c2410_nand_setrate - setup controller timing information.
 282 * @info: The controller instance.
 283 *
 284 * Given the information supplied by the platform, calculate and set
 285 * the necessary timing registers in the hardware to generate the
 286 * necessary timing cycles to the hardware.
 287 */
 288static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
 289{
 290        struct s3c2410_platform_nand *plat = info->platform;
 291        int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
 292        int tacls, twrph0, twrph1;
 293        unsigned long clkrate = clk_get_rate(info->clk);
 294        unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
 295        unsigned long flags;
 296
 297        /* calculate the timing information for the controller */
 298
 299        info->clk_rate = clkrate;
 300        clkrate /= 1000;        /* turn clock into kHz for ease of use */
 301
 302        if (plat != NULL) {
 303                tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
 304                twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
 305                twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
 306        } else {
 307                /* default timings */
 308                tacls = tacls_max;
 309                twrph0 = 8;
 310                twrph1 = 8;
 311        }
 312
 313        if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
 314                dev_err(info->device, "cannot get suitable timings\n");
 315                return -EINVAL;
 316        }
 317
 318        dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
 319                tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
 320                                                twrph1, to_ns(twrph1, clkrate));
 321
 322        switch (info->cpu_type) {
 323        case TYPE_S3C2410:
 324                mask = (S3C2410_NFCONF_TACLS(3) |
 325                        S3C2410_NFCONF_TWRPH0(7) |
 326                        S3C2410_NFCONF_TWRPH1(7));
 327                set = S3C2410_NFCONF_EN;
 328                set |= S3C2410_NFCONF_TACLS(tacls - 1);
 329                set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
 330                set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
 331                break;
 332
 333        case TYPE_S3C2440:
 334        case TYPE_S3C2412:
 335                mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
 336                        S3C2440_NFCONF_TWRPH0(7) |
 337                        S3C2440_NFCONF_TWRPH1(7));
 338
 339                set = S3C2440_NFCONF_TACLS(tacls - 1);
 340                set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
 341                set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
 342                break;
 343
 344        default:
 345                BUG();
 346        }
 347
 348        local_irq_save(flags);
 349
 350        cfg = readl(info->regs + S3C2410_NFCONF);
 351        cfg &= ~mask;
 352        cfg |= set;
 353        writel(cfg, info->regs + S3C2410_NFCONF);
 354
 355        local_irq_restore(flags);
 356
 357        dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
 358
 359        return 0;
 360}
 361
 362/**
 363 * s3c2410_nand_inithw - basic hardware initialisation
 364 * @info: The hardware state.
 365 *
 366 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
 367 * to setup the hardware access speeds and set the controller to be enabled.
 368*/
 369static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
 370{
 371        int ret;
 372
 373        ret = s3c2410_nand_setrate(info);
 374        if (ret < 0)
 375                return ret;
 376
 377        switch (info->cpu_type) {
 378        case TYPE_S3C2410:
 379        default:
 380                break;
 381
 382        case TYPE_S3C2440:
 383        case TYPE_S3C2412:
 384                /* enable the controller and de-assert nFCE */
 385
 386                writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
 387        }
 388
 389        return 0;
 390}
 391
 392/**
 393 * s3c2410_nand_select_chip - select the given nand chip
 394 * @this: NAND chip object.
 395 * @chip: The chip number.
 396 *
 397 * This is called by the MTD layer to either select a given chip for the
 398 * @mtd instance, or to indicate that the access has finished and the
 399 * chip can be de-selected.
 400 *
 401 * The routine ensures that the nFCE line is correctly setup, and any
 402 * platform specific selection code is called to route nFCE to the specific
 403 * chip.
 404 */
 405static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
 406{
 407        struct s3c2410_nand_info *info;
 408        struct s3c2410_nand_mtd *nmtd;
 409        unsigned long cur;
 410
 411        nmtd = nand_get_controller_data(this);
 412        info = nmtd->info;
 413
 414        if (chip != -1)
 415                s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
 416
 417        cur = readl(info->sel_reg);
 418
 419        if (chip == -1) {
 420                cur |= info->sel_bit;
 421        } else {
 422                if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
 423                        dev_err(info->device, "invalid chip %d\n", chip);
 424                        return;
 425                }
 426
 427                if (info->platform != NULL) {
 428                        if (info->platform->select_chip != NULL)
 429                                (info->platform->select_chip) (nmtd->set, chip);
 430                }
 431
 432                cur &= ~info->sel_bit;
 433        }
 434
 435        writel(cur, info->sel_reg);
 436
 437        if (chip == -1)
 438                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
 439}
 440
 441/* s3c2410_nand_hwcontrol
 442 *
 443 * Issue command and address cycles to the chip
 444*/
 445
 446static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
 447                                   unsigned int ctrl)
 448{
 449        struct mtd_info *mtd = nand_to_mtd(chip);
 450        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 451
 452        if (cmd == NAND_CMD_NONE)
 453                return;
 454
 455        if (ctrl & NAND_CLE)
 456                writeb(cmd, info->regs + S3C2410_NFCMD);
 457        else
 458                writeb(cmd, info->regs + S3C2410_NFADDR);
 459}
 460
 461/* command and control functions */
 462
 463static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
 464                                   unsigned int ctrl)
 465{
 466        struct mtd_info *mtd = nand_to_mtd(chip);
 467        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 468
 469        if (cmd == NAND_CMD_NONE)
 470                return;
 471
 472        if (ctrl & NAND_CLE)
 473                writeb(cmd, info->regs + S3C2440_NFCMD);
 474        else
 475                writeb(cmd, info->regs + S3C2440_NFADDR);
 476}
 477
 478/* s3c2410_nand_devready()
 479 *
 480 * returns 0 if the nand is busy, 1 if it is ready
 481*/
 482
 483static int s3c2410_nand_devready(struct nand_chip *chip)
 484{
 485        struct mtd_info *mtd = nand_to_mtd(chip);
 486        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 487        return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
 488}
 489
 490static int s3c2440_nand_devready(struct nand_chip *chip)
 491{
 492        struct mtd_info *mtd = nand_to_mtd(chip);
 493        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 494        return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
 495}
 496
 497static int s3c2412_nand_devready(struct nand_chip *chip)
 498{
 499        struct mtd_info *mtd = nand_to_mtd(chip);
 500        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 501        return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
 502}
 503
 504/* ECC handling functions */
 505
 506static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
 507                                     u_char *read_ecc, u_char *calc_ecc)
 508{
 509        struct mtd_info *mtd = nand_to_mtd(chip);
 510        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 511        unsigned int diff0, diff1, diff2;
 512        unsigned int bit, byte;
 513
 514        pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
 515
 516        diff0 = read_ecc[0] ^ calc_ecc[0];
 517        diff1 = read_ecc[1] ^ calc_ecc[1];
 518        diff2 = read_ecc[2] ^ calc_ecc[2];
 519
 520        pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
 521                 __func__, 3, read_ecc, 3, calc_ecc,
 522                 diff0, diff1, diff2);
 523
 524        if (diff0 == 0 && diff1 == 0 && diff2 == 0)
 525                return 0;               /* ECC is ok */
 526
 527        /* sometimes people do not think about using the ECC, so check
 528         * to see if we have an 0xff,0xff,0xff read ECC and then ignore
 529         * the error, on the assumption that this is an un-eccd page.
 530         */
 531        if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
 532            && info->platform->ignore_unset_ecc)
 533                return 0;
 534
 535        /* Can we correct this ECC (ie, one row and column change).
 536         * Note, this is similar to the 256 error code on smartmedia */
 537
 538        if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
 539            ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
 540            ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
 541                /* calculate the bit position of the error */
 542
 543                bit  = ((diff2 >> 3) & 1) |
 544                       ((diff2 >> 4) & 2) |
 545                       ((diff2 >> 5) & 4);
 546
 547                /* calculate the byte position of the error */
 548
 549                byte = ((diff2 << 7) & 0x100) |
 550                       ((diff1 << 0) & 0x80)  |
 551                       ((diff1 << 1) & 0x40)  |
 552                       ((diff1 << 2) & 0x20)  |
 553                       ((diff1 << 3) & 0x10)  |
 554                       ((diff0 >> 4) & 0x08)  |
 555                       ((diff0 >> 3) & 0x04)  |
 556                       ((diff0 >> 2) & 0x02)  |
 557                       ((diff0 >> 1) & 0x01);
 558
 559                dev_dbg(info->device, "correcting error bit %d, byte %d\n",
 560                        bit, byte);
 561
 562                dat[byte] ^= (1 << bit);
 563                return 1;
 564        }
 565
 566        /* if there is only one bit difference in the ECC, then
 567         * one of only a row or column parity has changed, which
 568         * means the error is most probably in the ECC itself */
 569
 570        diff0 |= (diff1 << 8);
 571        diff0 |= (diff2 << 16);
 572
 573        /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
 574        if ((diff0 & (diff0 - 1)) == 0)
 575                return 1;
 576
 577        return -1;
 578}
 579
 580/* ECC functions
 581 *
 582 * These allow the s3c2410 and s3c2440 to use the controller's ECC
 583 * generator block to ECC the data as it passes through]
 584*/
 585
 586static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
 587{
 588        struct s3c2410_nand_info *info;
 589        unsigned long ctrl;
 590
 591        info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 592        ctrl = readl(info->regs + S3C2410_NFCONF);
 593        ctrl |= S3C2410_NFCONF_INITECC;
 594        writel(ctrl, info->regs + S3C2410_NFCONF);
 595}
 596
 597static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
 598{
 599        struct s3c2410_nand_info *info;
 600        unsigned long ctrl;
 601
 602        info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 603        ctrl = readl(info->regs + S3C2440_NFCONT);
 604        writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
 605               info->regs + S3C2440_NFCONT);
 606}
 607
 608static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
 609{
 610        struct s3c2410_nand_info *info;
 611        unsigned long ctrl;
 612
 613        info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 614        ctrl = readl(info->regs + S3C2440_NFCONT);
 615        writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
 616}
 617
 618static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
 619                                      const u_char *dat, u_char *ecc_code)
 620{
 621        struct mtd_info *mtd = nand_to_mtd(chip);
 622        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 623
 624        ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
 625        ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
 626        ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
 627
 628        pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
 629
 630        return 0;
 631}
 632
 633static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
 634                                      const u_char *dat, u_char *ecc_code)
 635{
 636        struct mtd_info *mtd = nand_to_mtd(chip);
 637        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 638        unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
 639
 640        ecc_code[0] = ecc;
 641        ecc_code[1] = ecc >> 8;
 642        ecc_code[2] = ecc >> 16;
 643
 644        pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
 645
 646        return 0;
 647}
 648
 649static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
 650                                      const u_char *dat, u_char *ecc_code)
 651{
 652        struct mtd_info *mtd = nand_to_mtd(chip);
 653        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 654        unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
 655
 656        ecc_code[0] = ecc;
 657        ecc_code[1] = ecc >> 8;
 658        ecc_code[2] = ecc >> 16;
 659
 660        pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
 661
 662        return 0;
 663}
 664
 665/* over-ride the standard functions for a little more speed. We can
 666 * use read/write block to move the data buffers to/from the controller
 667*/
 668
 669static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
 670{
 671        readsb(this->legacy.IO_ADDR_R, buf, len);
 672}
 673
 674static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
 675{
 676        struct mtd_info *mtd = nand_to_mtd(this);
 677        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 678
 679        readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
 680
 681        /* cleanup if we've got less than a word to do */
 682        if (len & 3) {
 683                buf += len & ~3;
 684
 685                for (; len & 3; len--)
 686                        *buf++ = readb(info->regs + S3C2440_NFDATA);
 687        }
 688}
 689
 690static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
 691                                   int len)
 692{
 693        writesb(this->legacy.IO_ADDR_W, buf, len);
 694}
 695
 696static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
 697                                   int len)
 698{
 699        struct mtd_info *mtd = nand_to_mtd(this);
 700        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 701
 702        writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
 703
 704        /* cleanup any fractional write */
 705        if (len & 3) {
 706                buf += len & ~3;
 707
 708                for (; len & 3; len--, buf++)
 709                        writeb(*buf, info->regs + S3C2440_NFDATA);
 710        }
 711}
 712
 713/* cpufreq driver support */
 714
 715#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
 716
 717static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
 718                                          unsigned long val, void *data)
 719{
 720        struct s3c2410_nand_info *info;
 721        unsigned long newclk;
 722
 723        info = container_of(nb, struct s3c2410_nand_info, freq_transition);
 724        newclk = clk_get_rate(info->clk);
 725
 726        if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
 727            (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
 728                s3c2410_nand_setrate(info);
 729        }
 730
 731        return 0;
 732}
 733
 734static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
 735{
 736        info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
 737
 738        return cpufreq_register_notifier(&info->freq_transition,
 739                                         CPUFREQ_TRANSITION_NOTIFIER);
 740}
 741
 742static inline void
 743s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
 744{
 745        cpufreq_unregister_notifier(&info->freq_transition,
 746                                    CPUFREQ_TRANSITION_NOTIFIER);
 747}
 748
 749#else
 750static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
 751{
 752        return 0;
 753}
 754
 755static inline void
 756s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
 757{
 758}
 759#endif
 760
 761/* device management functions */
 762
 763static int s3c24xx_nand_remove(struct platform_device *pdev)
 764{
 765        struct s3c2410_nand_info *info = to_nand_info(pdev);
 766
 767        if (info == NULL)
 768                return 0;
 769
 770        s3c2410_nand_cpufreq_deregister(info);
 771
 772        /* Release all our mtds  and their partitions, then go through
 773         * freeing the resources used
 774         */
 775
 776        if (info->mtds != NULL) {
 777                struct s3c2410_nand_mtd *ptr = info->mtds;
 778                int mtdno;
 779
 780                for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
 781                        pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
 782                        nand_release(&ptr->chip);
 783                }
 784        }
 785
 786        /* free the common resources */
 787
 788        if (!IS_ERR(info->clk))
 789                s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
 790
 791        return 0;
 792}
 793
 794static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
 795                                      struct s3c2410_nand_mtd *mtd,
 796                                      struct s3c2410_nand_set *set)
 797{
 798        if (set) {
 799                struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
 800
 801                mtdinfo->name = set->name;
 802
 803                return mtd_device_register(mtdinfo, set->partitions,
 804                                           set->nr_partitions);
 805        }
 806
 807        return -ENODEV;
 808}
 809
 810static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
 811                                        const struct nand_data_interface *conf)
 812{
 813        struct mtd_info *mtd = nand_to_mtd(chip);
 814        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 815        struct s3c2410_platform_nand *pdata = info->platform;
 816        const struct nand_sdr_timings *timings;
 817        int tacls;
 818
 819        timings = nand_get_sdr_timings(conf);
 820        if (IS_ERR(timings))
 821                return -ENOTSUPP;
 822
 823        tacls = timings->tCLS_min - timings->tWP_min;
 824        if (tacls < 0)
 825                tacls = 0;
 826
 827        pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
 828        pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
 829        pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
 830
 831        return s3c2410_nand_setrate(info);
 832}
 833
 834/**
 835 * s3c2410_nand_init_chip - initialise a single instance of an chip
 836 * @info: The base NAND controller the chip is on.
 837 * @nmtd: The new controller MTD instance to fill in.
 838 * @set: The information passed from the board specific platform data.
 839 *
 840 * Initialise the given @nmtd from the information in @info and @set. This
 841 * readies the structure for use with the MTD layer functions by ensuring
 842 * all pointers are setup and the necessary control routines selected.
 843 */
 844static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
 845                                   struct s3c2410_nand_mtd *nmtd,
 846                                   struct s3c2410_nand_set *set)
 847{
 848        struct device_node *np = info->device->of_node;
 849        struct nand_chip *chip = &nmtd->chip;
 850        void __iomem *regs = info->regs;
 851
 852        nand_set_flash_node(chip, set->of_node);
 853
 854        chip->legacy.write_buf    = s3c2410_nand_write_buf;
 855        chip->legacy.read_buf     = s3c2410_nand_read_buf;
 856        chip->legacy.select_chip  = s3c2410_nand_select_chip;
 857        chip->legacy.chip_delay   = 50;
 858        nand_set_controller_data(chip, nmtd);
 859        chip->options      = set->options;
 860        chip->controller   = &info->controller;
 861
 862        /*
 863         * let's keep behavior unchanged for legacy boards booting via pdata and
 864         * auto-detect timings only when booting with a device tree.
 865         */
 866        if (!np)
 867                chip->options |= NAND_KEEP_TIMINGS;
 868
 869        switch (info->cpu_type) {
 870        case TYPE_S3C2410:
 871                chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
 872                info->sel_reg   = regs + S3C2410_NFCONF;
 873                info->sel_bit   = S3C2410_NFCONF_nFCE;
 874                chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
 875                chip->legacy.dev_ready = s3c2410_nand_devready;
 876                break;
 877
 878        case TYPE_S3C2440:
 879                chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
 880                info->sel_reg   = regs + S3C2440_NFCONT;
 881                info->sel_bit   = S3C2440_NFCONT_nFCE;
 882                chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
 883                chip->legacy.dev_ready = s3c2440_nand_devready;
 884                chip->legacy.read_buf  = s3c2440_nand_read_buf;
 885                chip->legacy.write_buf  = s3c2440_nand_write_buf;
 886                break;
 887
 888        case TYPE_S3C2412:
 889                chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
 890                info->sel_reg   = regs + S3C2440_NFCONT;
 891                info->sel_bit   = S3C2412_NFCONT_nFCE0;
 892                chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
 893                chip->legacy.dev_ready = s3c2412_nand_devready;
 894
 895                if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
 896                        dev_info(info->device, "System booted from NAND\n");
 897
 898                break;
 899        }
 900
 901        chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
 902
 903        nmtd->info         = info;
 904        nmtd->set          = set;
 905
 906        chip->ecc.mode = info->platform->ecc_mode;
 907
 908        /*
 909         * If you use u-boot BBT creation code, specifying this flag will
 910         * let the kernel fish out the BBT from the NAND.
 911         */
 912        if (set->flash_bbt)
 913                chip->bbt_options |= NAND_BBT_USE_FLASH;
 914}
 915
 916/**
 917 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
 918 * @chip: The NAND chip
 919 *
 920 * This hook is called by the core after the identification of the NAND chip,
 921 * once the relevant per-chip information is up to date.. This call ensure that
 922 * we update the internal state accordingly.
 923 *
 924 * The internal state is currently limited to the ECC state information.
 925*/
 926static int s3c2410_nand_attach_chip(struct nand_chip *chip)
 927{
 928        struct mtd_info *mtd = nand_to_mtd(chip);
 929        struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 930
 931        switch (chip->ecc.mode) {
 932
 933        case NAND_ECC_NONE:
 934                dev_info(info->device, "ECC disabled\n");
 935                break;
 936
 937        case NAND_ECC_SOFT:
 938                /*
 939                 * This driver expects Hamming based ECC when ecc_mode is set
 940                 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
 941                 * avoid adding an extra ecc_algo field to
 942                 * s3c2410_platform_nand.
 943                 */
 944                chip->ecc.algo = NAND_ECC_HAMMING;
 945                dev_info(info->device, "soft ECC\n");
 946                break;
 947
 948        case NAND_ECC_HW:
 949                chip->ecc.calculate = s3c2410_nand_calculate_ecc;
 950                chip->ecc.correct   = s3c2410_nand_correct_data;
 951                chip->ecc.strength  = 1;
 952
 953                switch (info->cpu_type) {
 954                case TYPE_S3C2410:
 955                        chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
 956                        chip->ecc.calculate = s3c2410_nand_calculate_ecc;
 957                        break;
 958
 959                case TYPE_S3C2412:
 960                        chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
 961                        chip->ecc.calculate = s3c2412_nand_calculate_ecc;
 962                        break;
 963
 964                case TYPE_S3C2440:
 965                        chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
 966                        chip->ecc.calculate = s3c2440_nand_calculate_ecc;
 967                        break;
 968                }
 969
 970                dev_dbg(info->device, "chip %p => page shift %d\n",
 971                        chip, chip->page_shift);
 972
 973                /* change the behaviour depending on whether we are using
 974                 * the large or small page nand device */
 975                if (chip->page_shift > 10) {
 976                        chip->ecc.size      = 256;
 977                        chip->ecc.bytes     = 3;
 978                } else {
 979                        chip->ecc.size      = 512;
 980                        chip->ecc.bytes     = 3;
 981                        mtd_set_ooblayout(nand_to_mtd(chip),
 982                                          &s3c2410_ooblayout_ops);
 983                }
 984
 985                dev_info(info->device, "hardware ECC\n");
 986                break;
 987
 988        default:
 989                dev_err(info->device, "invalid ECC mode!\n");
 990                return -EINVAL;
 991        }
 992
 993        if (chip->bbt_options & NAND_BBT_USE_FLASH)
 994                chip->options |= NAND_SKIP_BBTSCAN;
 995
 996        return 0;
 997}
 998
 999static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1000        .attach_chip = s3c2410_nand_attach_chip,
1001        .setup_data_interface = s3c2410_nand_setup_data_interface,
1002};
1003
1004static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1005        {
1006                .compatible = "samsung,s3c2410-nand",
1007                .data = &s3c2410_nand_devtype_data,
1008        }, {
1009                /* also compatible with s3c6400 */
1010                .compatible = "samsung,s3c2412-nand",
1011                .data = &s3c2412_nand_devtype_data,
1012        }, {
1013                .compatible = "samsung,s3c2440-nand",
1014                .data = &s3c2440_nand_devtype_data,
1015        },
1016        { /* sentinel */ }
1017};
1018MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1019
1020static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1021{
1022        const struct s3c24XX_nand_devtype_data *devtype_data;
1023        struct s3c2410_platform_nand *pdata;
1024        struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1025        struct device_node *np = pdev->dev.of_node, *child;
1026        struct s3c2410_nand_set *sets;
1027
1028        devtype_data = of_device_get_match_data(&pdev->dev);
1029        if (!devtype_data)
1030                return -ENODEV;
1031
1032        info->cpu_type = devtype_data->type;
1033
1034        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1035        if (!pdata)
1036                return -ENOMEM;
1037
1038        pdev->dev.platform_data = pdata;
1039
1040        pdata->nr_sets = of_get_child_count(np);
1041        if (!pdata->nr_sets)
1042                return 0;
1043
1044        sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1045                            GFP_KERNEL);
1046        if (!sets)
1047                return -ENOMEM;
1048
1049        pdata->sets = sets;
1050
1051        for_each_available_child_of_node(np, child) {
1052                sets->name = (char *)child->name;
1053                sets->of_node = child;
1054                sets->nr_chips = 1;
1055
1056                of_node_get(child);
1057
1058                sets++;
1059        }
1060
1061        return 0;
1062}
1063
1064static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1065{
1066        struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1067
1068        info->cpu_type = platform_get_device_id(pdev)->driver_data;
1069
1070        return 0;
1071}
1072
1073/* s3c24xx_nand_probe
1074 *
1075 * called by device layer when it finds a device matching
1076 * one our driver can handled. This code checks to see if
1077 * it can allocate all necessary resources then calls the
1078 * nand layer to look for devices
1079*/
1080static int s3c24xx_nand_probe(struct platform_device *pdev)
1081{
1082        struct s3c2410_platform_nand *plat;
1083        struct s3c2410_nand_info *info;
1084        struct s3c2410_nand_mtd *nmtd;
1085        struct s3c2410_nand_set *sets;
1086        struct resource *res;
1087        int err = 0;
1088        int size;
1089        int nr_sets;
1090        int setno;
1091
1092        info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1093        if (info == NULL) {
1094                err = -ENOMEM;
1095                goto exit_error;
1096        }
1097
1098        platform_set_drvdata(pdev, info);
1099
1100        nand_controller_init(&info->controller);
1101        info->controller.ops = &s3c24xx_nand_controller_ops;
1102
1103        /* get the clock source and enable it */
1104
1105        info->clk = devm_clk_get(&pdev->dev, "nand");
1106        if (IS_ERR(info->clk)) {
1107                dev_err(&pdev->dev, "failed to get clock\n");
1108                err = -ENOENT;
1109                goto exit_error;
1110        }
1111
1112        s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1113
1114        if (pdev->dev.of_node)
1115                err = s3c24xx_nand_probe_dt(pdev);
1116        else
1117                err = s3c24xx_nand_probe_pdata(pdev);
1118
1119        if (err)
1120                goto exit_error;
1121
1122        plat = to_nand_plat(pdev);
1123
1124        /* allocate and map the resource */
1125
1126        /* currently we assume we have the one resource */
1127        res = pdev->resource;
1128        size = resource_size(res);
1129
1130        info->device    = &pdev->dev;
1131        info->platform  = plat;
1132
1133        info->regs = devm_ioremap_resource(&pdev->dev, res);
1134        if (IS_ERR(info->regs)) {
1135                err = PTR_ERR(info->regs);
1136                goto exit_error;
1137        }
1138
1139        dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1140
1141        if (!plat->sets || plat->nr_sets < 1) {
1142                err = -EINVAL;
1143                goto exit_error;
1144        }
1145
1146        sets = plat->sets;
1147        nr_sets = plat->nr_sets;
1148
1149        info->mtd_count = nr_sets;
1150
1151        /* allocate our information */
1152
1153        size = nr_sets * sizeof(*info->mtds);
1154        info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1155        if (info->mtds == NULL) {
1156                err = -ENOMEM;
1157                goto exit_error;
1158        }
1159
1160        /* initialise all possible chips */
1161
1162        nmtd = info->mtds;
1163
1164        for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1165                struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1166
1167                pr_debug("initialising set %d (%p, info %p)\n",
1168                         setno, nmtd, info);
1169
1170                mtd->dev.parent = &pdev->dev;
1171                s3c2410_nand_init_chip(info, nmtd, sets);
1172
1173                err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1174                if (err)
1175                        goto exit_error;
1176
1177                s3c2410_nand_add_partition(info, nmtd, sets);
1178        }
1179
1180        /* initialise the hardware */
1181        err = s3c2410_nand_inithw(info);
1182        if (err != 0)
1183                goto exit_error;
1184
1185        err = s3c2410_nand_cpufreq_register(info);
1186        if (err < 0) {
1187                dev_err(&pdev->dev, "failed to init cpufreq support\n");
1188                goto exit_error;
1189        }
1190
1191        if (allow_clk_suspend(info)) {
1192                dev_info(&pdev->dev, "clock idle support enabled\n");
1193                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1194        }
1195
1196        return 0;
1197
1198 exit_error:
1199        s3c24xx_nand_remove(pdev);
1200
1201        if (err == 0)
1202                err = -EINVAL;
1203        return err;
1204}
1205
1206/* PM Support */
1207#ifdef CONFIG_PM
1208
1209static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1210{
1211        struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1212
1213        if (info) {
1214                info->save_sel = readl(info->sel_reg);
1215
1216                /* For the moment, we must ensure nFCE is high during
1217                 * the time we are suspended. This really should be
1218                 * handled by suspending the MTDs we are using, but
1219                 * that is currently not the case. */
1220
1221                writel(info->save_sel | info->sel_bit, info->sel_reg);
1222
1223                s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1224        }
1225
1226        return 0;
1227}
1228
1229static int s3c24xx_nand_resume(struct platform_device *dev)
1230{
1231        struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1232        unsigned long sel;
1233
1234        if (info) {
1235                s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1236                s3c2410_nand_inithw(info);
1237
1238                /* Restore the state of the nFCE line. */
1239
1240                sel = readl(info->sel_reg);
1241                sel &= ~info->sel_bit;
1242                sel |= info->save_sel & info->sel_bit;
1243                writel(sel, info->sel_reg);
1244
1245                s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1246        }
1247
1248        return 0;
1249}
1250
1251#else
1252#define s3c24xx_nand_suspend NULL
1253#define s3c24xx_nand_resume NULL
1254#endif
1255
1256/* driver device registration */
1257
1258static const struct platform_device_id s3c24xx_driver_ids[] = {
1259        {
1260                .name           = "s3c2410-nand",
1261                .driver_data    = TYPE_S3C2410,
1262        }, {
1263                .name           = "s3c2440-nand",
1264                .driver_data    = TYPE_S3C2440,
1265        }, {
1266                .name           = "s3c2412-nand",
1267                .driver_data    = TYPE_S3C2412,
1268        }, {
1269                .name           = "s3c6400-nand",
1270                .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1271        },
1272        { }
1273};
1274
1275MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1276
1277static struct platform_driver s3c24xx_nand_driver = {
1278        .probe          = s3c24xx_nand_probe,
1279        .remove         = s3c24xx_nand_remove,
1280        .suspend        = s3c24xx_nand_suspend,
1281        .resume         = s3c24xx_nand_resume,
1282        .id_table       = s3c24xx_driver_ids,
1283        .driver         = {
1284                .name   = "s3c24xx-nand",
1285                .of_match_table = s3c24xx_nand_dt_ids,
1286        },
1287};
1288
1289module_platform_driver(s3c24xx_nand_driver);
1290
1291MODULE_LICENSE("GPL");
1292MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1293MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1294