1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17#ifndef BNX2X_INIT_H
18#define BNX2X_INIT_H
19
20
21enum {
22 OP_RD = 0x1,
23 OP_WR,
24 OP_SW,
25 OP_ZR,
26 OP_ZP,
27 OP_WR_64,
28 OP_WB,
29 OP_WB_ZR,
30
31 OP_IF_MODE_OR,
32
33 OP_IF_MODE_AND,
34 OP_MAX
35};
36
37enum {
38 STAGE_START,
39 STAGE_END,
40};
41
42
43#define BLOCK_OPS_IDX(block, stage, end) \
44 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
45
46
47
48struct raw_op {
49 u32 op:8;
50 u32 offset:24;
51 u32 raw_data;
52};
53
54struct op_read {
55 u32 op:8;
56 u32 offset:24;
57 u32 val;
58};
59
60struct op_write {
61 u32 op:8;
62 u32 offset:24;
63 u32 val;
64};
65
66struct op_arr_write {
67 u32 op:8;
68 u32 offset:24;
69#ifdef __BIG_ENDIAN
70 u16 data_len;
71 u16 data_off;
72#else
73 u16 data_off;
74 u16 data_len;
75#endif
76};
77
78struct op_zero {
79 u32 op:8;
80 u32 offset:24;
81 u32 len;
82};
83
84struct op_if_mode {
85 u32 op:8;
86 u32 cmd_offset:24;
87 u32 mode_bit_map;
88};
89
90
91union init_op {
92 struct op_read read;
93 struct op_write write;
94 struct op_arr_write arr_wr;
95 struct op_zero zero;
96 struct raw_op raw;
97 struct op_if_mode if_mode;
98};
99
100
101
102enum {
103 PHASE_COMMON,
104 PHASE_PORT0,
105 PHASE_PORT1,
106 PHASE_PF0,
107 PHASE_PF1,
108 PHASE_PF2,
109 PHASE_PF3,
110 PHASE_PF4,
111 PHASE_PF5,
112 PHASE_PF6,
113 PHASE_PF7,
114 NUM_OF_INIT_PHASES
115};
116
117
118enum {
119 MODE_ASIC = 0x00000001,
120 MODE_FPGA = 0x00000002,
121 MODE_EMUL = 0x00000004,
122 MODE_E2 = 0x00000008,
123 MODE_E3 = 0x00000010,
124 MODE_PORT2 = 0x00000020,
125 MODE_PORT4 = 0x00000040,
126 MODE_SF = 0x00000080,
127 MODE_MF = 0x00000100,
128 MODE_MF_SD = 0x00000200,
129 MODE_MF_SI = 0x00000400,
130 MODE_MF_AFEX = 0x00000800,
131 MODE_E3_A0 = 0x00001000,
132 MODE_E3_B0 = 0x00002000,
133 MODE_COS3 = 0x00004000,
134 MODE_COS6 = 0x00008000,
135 MODE_LITTLE_ENDIAN = 0x00010000,
136 MODE_BIG_ENDIAN = 0x00020000,
137};
138
139
140enum {
141 BLOCK_ATC,
142 BLOCK_BRB1,
143 BLOCK_CCM,
144 BLOCK_CDU,
145 BLOCK_CFC,
146 BLOCK_CSDM,
147 BLOCK_CSEM,
148 BLOCK_DBG,
149 BLOCK_DMAE,
150 BLOCK_DORQ,
151 BLOCK_HC,
152 BLOCK_IGU,
153 BLOCK_MISC,
154 BLOCK_NIG,
155 BLOCK_PBF,
156 BLOCK_PGLUE_B,
157 BLOCK_PRS,
158 BLOCK_PXP2,
159 BLOCK_PXP,
160 BLOCK_QM,
161 BLOCK_SRC,
162 BLOCK_TCM,
163 BLOCK_TM,
164 BLOCK_TSDM,
165 BLOCK_TSEM,
166 BLOCK_UCM,
167 BLOCK_UPB,
168 BLOCK_USDM,
169 BLOCK_USEM,
170 BLOCK_XCM,
171 BLOCK_XPB,
172 BLOCK_XSDM,
173 BLOCK_XSEM,
174 BLOCK_MISC_AEU,
175 NUM_OF_INIT_BLOCKS
176};
177
178
179#define BNX2X_ETH_Q 0
180#define BNX2X_TOE_Q 3
181#define BNX2X_TOE_ACK_Q 6
182#define BNX2X_ISCSI_Q 9
183#define BNX2X_ISCSI_ACK_Q 11
184#define BNX2X_FCOE_Q 10
185
186
187#define BNX2X_PORT2_MODE_NUM_VNICS 4
188#define BNX2X_PORT4_MODE_NUM_VNICS 2
189
190
191#define BNX2X_E3B0_PORT1_COS_OFFSET 3
192
193
194#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
195 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
196#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
197 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
198#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
199 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
200
201
202#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
203 ((((port) << 1) | (vnic)) * 16 + (q_num))
204
205
206
207static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
208{
209
210 u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
211
212
213 if (curr_cos != new_cos) {
214 u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
215 u32 reg_addr, reg_bit_map, vnic;
216
217
218 if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
219 num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
220 if (BP_PORT(bp)) {
221 curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
222 new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
223 }
224 }
225
226
227 for (vnic = 0; vnic < num_vnics; vnic++) {
228 u32 pf_q_num =
229 BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
230 u32 q_bit_map = 1 << (pf_q_num & 0x1f);
231
232
233 REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
234
235
236 reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
237 reg_bit_map = REG_RD(bp, reg_addr);
238 REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
239
240
241 reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
242 reg_bit_map = REG_RD(bp, reg_addr);
243 REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
244
245
246
247
248 if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
249 reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
250 reg_bit_map = REG_RD(bp, reg_addr);
251 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
252 reg_bit_map = new_cos ?
253 (reg_bit_map | q_bit_map) :
254 (reg_bit_map & (~q_bit_map));
255 REG_WR(bp, reg_addr, reg_bit_map);
256 }
257 }
258 }
259}
260
261
262static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
263 struct priority_cos *traffic_cos)
264{
265 bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
266 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
267 bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
268 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
269 bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
270 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
271 if (mode != STATIC_COS) {
272
273 bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
274 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
275 bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
276 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
277 bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
278 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
279 }
280}
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299#define BITS_TO_BYTES(x) ((x)/8)
300
301
302
303
304#define DEF_MIN_RATE 100
305
306
307#define RS_PERIODIC_TIMEOUT_USEC 400
308
309
310
311
312#define QM_ARB_BYTES 160000
313
314
315#define MIN_RES 100
316
317
318
319
320#define MIN_ABOVE_THRESH 32768
321
322
323
324
325#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
326
327
328#define FAIR_MEM 2
329#define SAFC_TIMEOUT_USEC 52
330
331#define SDM_TICKS 4
332
333
334static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
335 u32 r_param, struct cmng_init *ram_data)
336{
337 u32 vnic;
338 struct cmng_vnic *vdata = &ram_data->vnic;
339 struct cmng_struct_per_port *pdata = &ram_data->port;
340
341
342
343
344
345 pdata->rs_vars.rs_periodic_timeout =
346 RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
347
348
349
350
351
352 pdata->rs_vars.rs_threshold =
353 (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
354
355
356 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
357
358 vdata->vnic_max_rate[vnic].vn_counter.rate =
359 input_data->vnic_max_rate[vnic];
360
361
362
363
364 vdata->vnic_max_rate[vnic].vn_counter.quota =
365 RS_PERIODIC_TIMEOUT_USEC *
366 (u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
367 }
368
369}
370
371static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
372 u32 r_param, struct cmng_init *ram_data)
373{
374 u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
375 struct cmng_vnic *vdata = &ram_data->vnic;
376 struct cmng_struct_per_port *pdata = &ram_data->port;
377
378
379 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
380
381
382
383
384 tFair = T_FAIR_COEF / input_data->port_rate;
385
386
387 pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
388
389
390
391
392 pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
393
394
395 pdata->fair_vars.fairness_timeout =
396 fair_periodic_timeout_usec / SDM_TICKS;
397
398
399 vnicWeightSum = 0;
400
401 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
402 vnicWeightSum += input_data->vnic_min_rate[vnic];
403
404
405 if (vnicWeightSum > 0) {
406
407 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
408
409
410
411
412 vdata->vnic_min_rate[vnic].vn_credit_delta =
413 (u32)input_data->vnic_min_rate[vnic] * 100 *
414 (T_FAIR_COEF / (8 * 100 * vnicWeightSum));
415 if (vdata->vnic_min_rate[vnic].vn_credit_delta <
416 pdata->fair_vars.fair_threshold +
417 MIN_ABOVE_THRESH) {
418 vdata->vnic_min_rate[vnic].vn_credit_delta =
419 pdata->fair_vars.fair_threshold +
420 MIN_ABOVE_THRESH;
421 }
422 }
423 }
424}
425
426static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
427 u32 r_param, struct cmng_init *ram_data)
428{
429 u32 vnic, cos;
430 u32 cosWeightSum = 0;
431 struct cmng_vnic *vdata = &ram_data->vnic;
432 struct cmng_struct_per_port *pdata = &ram_data->port;
433
434 for (cos = 0; cos < MAX_COS_NUMBER; cos++)
435 cosWeightSum += input_data->cos_min_rate[cos];
436
437 if (cosWeightSum > 0) {
438
439 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
440
441
442
443 u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
444 for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
445
446
447
448
449 ccd[cos] =
450 (u32)input_data->cos_min_rate[cos] * 100 *
451 (T_FAIR_COEF / (8 * 100 * cosWeightSum));
452 if (ccd[cos] < pdata->fair_vars.fair_threshold
453 + MIN_ABOVE_THRESH) {
454 ccd[cos] =
455 pdata->fair_vars.fair_threshold +
456 MIN_ABOVE_THRESH;
457 }
458 }
459 }
460 }
461}
462
463static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
464 struct cmng_init *ram_data)
465{
466
467 ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
468}
469
470
471static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
472 struct cmng_init *ram_data)
473{
474 u32 r_param;
475 memset(ram_data, 0, sizeof(struct cmng_init));
476
477 ram_data->port.flags = input_data->flags;
478
479
480
481
482 r_param = BITS_TO_BYTES(input_data->port_rate);
483 bnx2x_init_max(input_data, r_param, ram_data);
484 bnx2x_init_min(input_data, r_param, ram_data);
485 bnx2x_init_fw_wrr(input_data, r_param, ram_data);
486 bnx2x_init_safc(input_data, ram_data);
487}
488
489
490
491
492#define BLOCK_OPS_IDX(block, stage, end) \
493 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
494
495
496#define INITOP_SET 0
497#define INITOP_CLEAR 1
498#define INITOP_INIT 2
499
500
501
502
503struct ilt_line {
504 dma_addr_t page_mapping;
505 void *page;
506 u32 size;
507};
508
509struct ilt_client_info {
510 u32 page_size;
511 u16 start;
512 u16 end;
513 u16 client_num;
514 u16 flags;
515#define ILT_CLIENT_SKIP_INIT 0x1
516#define ILT_CLIENT_SKIP_MEM 0x2
517};
518
519struct bnx2x_ilt {
520 u32 start_line;
521 struct ilt_line *lines;
522 struct ilt_client_info clients[4];
523#define ILT_CLIENT_CDU 0
524#define ILT_CLIENT_QM 1
525#define ILT_CLIENT_SRC 2
526#define ILT_CLIENT_TM 3
527};
528
529
530
531
532struct src_ent {
533 u8 opaque[56];
534 u64 next;
535};
536
537
538
539
540#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
541{ \
542 block##_REG_##block##_PRTY_MASK, \
543 block##_REG_##block##_PRTY_STS_CLR, \
544 en_mask, {m1, m1h, m2, m3}, #block \
545}
546
547#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
548{ \
549 block##_REG_##block##_PRTY_MASK_0, \
550 block##_REG_##block##_PRTY_STS_CLR_0, \
551 en_mask, {m1, m1h, m2, m3}, #block"_0" \
552}
553
554#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
555{ \
556 block##_REG_##block##_PRTY_MASK_1, \
557 block##_REG_##block##_PRTY_STS_CLR_1, \
558 en_mask, {m1, m1h, m2, m3}, #block"_1" \
559}
560
561static const struct {
562 u32 mask_addr;
563 u32 sts_clr_addr;
564 u32 en_mask;
565 struct {
566 u32 e1;
567 u32 e1h;
568 u32 e2;
569 u32 e3;
570 } reg_mask;
571 char name[8];
572
573
574} bnx2x_blocks_parity_data[] = {
575
576
577
578
579
580
581
582
583
584
585
586
587 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
588 0x7ffffff),
589 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
590 0xffffffff),
591 BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
592 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
593 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
594 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
595 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
596 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
597 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
598 BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
599 BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
600 BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
601 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
602 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
603 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
604 {0xf, 0xf, 0xf, 0xf}, "UPB"},
605 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
606 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
607 {0xf, 0xf, 0xf, 0xf}, "XPB"},
608 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
609 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
610 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
611 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
612 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
613 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
614 BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
615 BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
616 BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
617 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
618 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
619 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
620 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
621 BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
622 BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
623 BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
624 BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
625 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
626 0xffffffff),
627 BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
628 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
629 0xffffffff),
630 BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
631 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
632 0xffffffff),
633 BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
634 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
635 0xffffffff),
636 BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
637};
638
639
640
641
642
643
644
645#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
646 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
647 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
648 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
649
650#define MISC_AEU_ENABLE_MCP_PRTY_BITS \
651 (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
652 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
653
654
655
656
657
658static const struct {
659 u32 addr;
660 u32 bits;
661} mcp_attn_ctl_regs[] = {
662 { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
663 MISC_AEU_ENABLE_MCP_PRTY_BITS },
664 { MISC_REG_AEU_ENABLE4_NIG_0,
665 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
666 { MISC_REG_AEU_ENABLE4_PXP_0,
667 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
668 { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
669 MISC_AEU_ENABLE_MCP_PRTY_BITS },
670 { MISC_REG_AEU_ENABLE4_NIG_1,
671 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
672 { MISC_REG_AEU_ENABLE4_PXP_1,
673 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
674};
675
676static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
677{
678 int i;
679 u32 reg_val;
680
681 for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
682 reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
683
684 if (enable)
685 reg_val |= mcp_attn_ctl_regs[i].bits;
686 else
687 reg_val &= ~mcp_attn_ctl_regs[i].bits;
688
689 REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
690 }
691}
692
693static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
694{
695 if (CHIP_IS_E1(bp))
696 return bnx2x_blocks_parity_data[idx].reg_mask.e1;
697 else if (CHIP_IS_E1H(bp))
698 return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
699 else if (CHIP_IS_E2(bp))
700 return bnx2x_blocks_parity_data[idx].reg_mask.e2;
701 else
702 return bnx2x_blocks_parity_data[idx].reg_mask.e3;
703}
704
705static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
706{
707 int i;
708
709 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
710 u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
711
712 if (dis_mask) {
713 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
714 dis_mask);
715 DP(NETIF_MSG_HW, "Setting parity mask "
716 "for %s to\t\t0x%x\n",
717 bnx2x_blocks_parity_data[i].name, dis_mask);
718 }
719 }
720
721
722 bnx2x_set_mcp_parity(bp, false);
723}
724
725
726static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
727{
728 int i;
729 u32 reg_val, mcp_aeu_bits =
730 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
731 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
732 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
733 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
734
735
736 REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
737 REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
738 REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
739 REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
740
741 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
742 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
743
744 if (reg_mask) {
745 reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
746 sts_clr_addr);
747 if (reg_val & reg_mask)
748 DP(NETIF_MSG_HW,
749 "Parity errors in %s: 0x%x\n",
750 bnx2x_blocks_parity_data[i].name,
751 reg_val & reg_mask);
752 }
753 }
754
755
756 reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
757 if (reg_val & mcp_aeu_bits)
758 DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
759 reg_val & mcp_aeu_bits);
760
761
762
763
764
765
766
767 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
768}
769
770static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
771{
772 int i;
773
774 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
775 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
776
777 if (reg_mask)
778 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
779 bnx2x_blocks_parity_data[i].en_mask & reg_mask);
780 }
781
782
783 bnx2x_set_mcp_parity(bp, true);
784}
785
786
787#endif
788
789