linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h
<<
>>
Prefs
   1/* bnx2x_init.h: Qlogic Everest network driver.
   2 *               Structures and macroes needed during the initialization.
   3 *
   4 * Copyright (c) 2007-2013 Broadcom Corporation
   5 * Copyright (c) 2014 QLogic Corporation
   6 All rights reserved
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation.
  11 *
  12 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  13 * Written by: Eliezer Tamir
  14 * Modified by: Vladislav Zolotarov
  15 */
  16
  17#ifndef BNX2X_INIT_H
  18#define BNX2X_INIT_H
  19
  20/* Init operation types and structures */
  21enum {
  22        OP_RD = 0x1,    /* read a single register */
  23        OP_WR,          /* write a single register */
  24        OP_SW,          /* copy a string to the device */
  25        OP_ZR,          /* clear memory */
  26        OP_ZP,          /* unzip then copy with DMAE */
  27        OP_WR_64,       /* write 64 bit pattern */
  28        OP_WB,          /* copy a string using DMAE */
  29        OP_WB_ZR,       /* Clear a string using DMAE or indirect-wr */
  30        /* Skip the following ops if all of the init modes don't match */
  31        OP_IF_MODE_OR,
  32        /* Skip the following ops if any of the init modes don't match */
  33        OP_IF_MODE_AND,
  34        OP_MAX
  35};
  36
  37enum {
  38        STAGE_START,
  39        STAGE_END,
  40};
  41
  42/* Returns the index of start or end of a specific block stage in ops array*/
  43#define BLOCK_OPS_IDX(block, stage, end) \
  44        (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
  45
  46
  47/* structs for the various opcodes */
  48struct raw_op {
  49        u32 op:8;
  50        u32 offset:24;
  51        u32 raw_data;
  52};
  53
  54struct op_read {
  55        u32 op:8;
  56        u32 offset:24;
  57        u32 val;
  58};
  59
  60struct op_write {
  61        u32 op:8;
  62        u32 offset:24;
  63        u32 val;
  64};
  65
  66struct op_arr_write {
  67        u32 op:8;
  68        u32 offset:24;
  69#ifdef __BIG_ENDIAN
  70        u16 data_len;
  71        u16 data_off;
  72#else /* __LITTLE_ENDIAN */
  73        u16 data_off;
  74        u16 data_len;
  75#endif
  76};
  77
  78struct op_zero {
  79        u32 op:8;
  80        u32 offset:24;
  81        u32 len;
  82};
  83
  84struct op_if_mode {
  85        u32 op:8;
  86        u32 cmd_offset:24;
  87        u32 mode_bit_map;
  88};
  89
  90
  91union init_op {
  92        struct op_read          read;
  93        struct op_write         write;
  94        struct op_arr_write     arr_wr;
  95        struct op_zero          zero;
  96        struct raw_op           raw;
  97        struct op_if_mode       if_mode;
  98};
  99
 100
 101/* Init Phases */
 102enum {
 103        PHASE_COMMON,
 104        PHASE_PORT0,
 105        PHASE_PORT1,
 106        PHASE_PF0,
 107        PHASE_PF1,
 108        PHASE_PF2,
 109        PHASE_PF3,
 110        PHASE_PF4,
 111        PHASE_PF5,
 112        PHASE_PF6,
 113        PHASE_PF7,
 114        NUM_OF_INIT_PHASES
 115};
 116
 117/* Init Modes */
 118enum {
 119        MODE_ASIC                      = 0x00000001,
 120        MODE_FPGA                      = 0x00000002,
 121        MODE_EMUL                      = 0x00000004,
 122        MODE_E2                        = 0x00000008,
 123        MODE_E3                        = 0x00000010,
 124        MODE_PORT2                     = 0x00000020,
 125        MODE_PORT4                     = 0x00000040,
 126        MODE_SF                        = 0x00000080,
 127        MODE_MF                        = 0x00000100,
 128        MODE_MF_SD                     = 0x00000200,
 129        MODE_MF_SI                     = 0x00000400,
 130        MODE_MF_AFEX                   = 0x00000800,
 131        MODE_E3_A0                     = 0x00001000,
 132        MODE_E3_B0                     = 0x00002000,
 133        MODE_COS3                      = 0x00004000,
 134        MODE_COS6                      = 0x00008000,
 135        MODE_LITTLE_ENDIAN             = 0x00010000,
 136        MODE_BIG_ENDIAN                = 0x00020000,
 137};
 138
 139/* Init Blocks */
 140enum {
 141        BLOCK_ATC,
 142        BLOCK_BRB1,
 143        BLOCK_CCM,
 144        BLOCK_CDU,
 145        BLOCK_CFC,
 146        BLOCK_CSDM,
 147        BLOCK_CSEM,
 148        BLOCK_DBG,
 149        BLOCK_DMAE,
 150        BLOCK_DORQ,
 151        BLOCK_HC,
 152        BLOCK_IGU,
 153        BLOCK_MISC,
 154        BLOCK_NIG,
 155        BLOCK_PBF,
 156        BLOCK_PGLUE_B,
 157        BLOCK_PRS,
 158        BLOCK_PXP2,
 159        BLOCK_PXP,
 160        BLOCK_QM,
 161        BLOCK_SRC,
 162        BLOCK_TCM,
 163        BLOCK_TM,
 164        BLOCK_TSDM,
 165        BLOCK_TSEM,
 166        BLOCK_UCM,
 167        BLOCK_UPB,
 168        BLOCK_USDM,
 169        BLOCK_USEM,
 170        BLOCK_XCM,
 171        BLOCK_XPB,
 172        BLOCK_XSDM,
 173        BLOCK_XSEM,
 174        BLOCK_MISC_AEU,
 175        NUM_OF_INIT_BLOCKS
 176};
 177
 178/* QM queue numbers */
 179#define BNX2X_ETH_Q             0
 180#define BNX2X_TOE_Q             3
 181#define BNX2X_TOE_ACK_Q         6
 182#define BNX2X_ISCSI_Q           9
 183#define BNX2X_ISCSI_ACK_Q       11
 184#define BNX2X_FCOE_Q            10
 185
 186/* Vnics per mode */
 187#define BNX2X_PORT2_MODE_NUM_VNICS 4
 188#define BNX2X_PORT4_MODE_NUM_VNICS 2
 189
 190/* COS offset for port1 in E3 B0 4port mode */
 191#define BNX2X_E3B0_PORT1_COS_OFFSET 3
 192
 193/* QM Register addresses */
 194#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
 195        (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
 196#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
 197        (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
 198#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
 199        (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
 200
 201/* extracts the QM queue number for the specified port and vnic */
 202#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
 203        ((((port) << 1) | (vnic)) * 16 + (q_num))
 204
 205
 206/* Maps the specified queue to the specified COS */
 207static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
 208{
 209        /* find current COS mapping */
 210        u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
 211
 212        /* check if queue->COS mapping has changed */
 213        if (curr_cos != new_cos) {
 214                u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
 215                u32 reg_addr, reg_bit_map, vnic;
 216
 217                /* update parameters for 4port mode */
 218                if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
 219                        num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
 220                        if (BP_PORT(bp)) {
 221                                curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
 222                                new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
 223                        }
 224                }
 225
 226                /* change queue mapping for each VNIC */
 227                for (vnic = 0; vnic < num_vnics; vnic++) {
 228                        u32 pf_q_num =
 229                                BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
 230                        u32 q_bit_map = 1 << (pf_q_num & 0x1f);
 231
 232                        /* overwrite queue->VOQ mapping */
 233                        REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
 234
 235                        /* clear queue bit from current COS bit map */
 236                        reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
 237                        reg_bit_map = REG_RD(bp, reg_addr);
 238                        REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
 239
 240                        /* set queue bit in new COS bit map */
 241                        reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
 242                        reg_bit_map = REG_RD(bp, reg_addr);
 243                        REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
 244
 245                        /* set/clear queue bit in command-queue bit map
 246                         * (E2/E3A0 only, valid COS values are 0/1)
 247                         */
 248                        if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
 249                                reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
 250                                reg_bit_map = REG_RD(bp, reg_addr);
 251                                q_bit_map = 1 << (2 * (pf_q_num & 0xf));
 252                                reg_bit_map = new_cos ?
 253                                              (reg_bit_map | q_bit_map) :
 254                                              (reg_bit_map & (~q_bit_map));
 255                                REG_WR(bp, reg_addr, reg_bit_map);
 256                        }
 257                }
 258        }
 259}
 260
 261/* Configures the QM according to the specified per-traffic-type COSes */
 262static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
 263                                       struct priority_cos *traffic_cos)
 264{
 265        bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
 266                        traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
 267        bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
 268                        traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
 269        bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
 270                traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
 271        if (mode != STATIC_COS) {
 272                /* required only in backward compatible COS mode */
 273                bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
 274                                traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 275                bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
 276                                traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 277                bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
 278                                traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 279        }
 280}
 281
 282
 283/* congestion management port init api description
 284 * the api works as follows:
 285 * the driver should pass the cmng_init_input struct, the port_init function
 286 * will prepare the required internal ram structure which will be passed back
 287 * to the driver (cmng_init) that will write it into the internal ram.
 288 *
 289 * IMPORTANT REMARKS:
 290 * 1. the cmng_init struct does not represent the contiguous internal ram
 291 *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
 292 *    offset in order to write the port sub struct and the
 293 *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
 294 *    words - don't use memcpy!).
 295 * 2. although the cmng_init struct is filled for the maximal vnic number
 296 *    possible, the driver should only write the valid vnics into the internal
 297 *    ram according to the appropriate port mode.
 298 */
 299#define BITS_TO_BYTES(x) ((x)/8)
 300
 301/* CMNG constants, as derived from system spec calculations */
 302
 303/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
 304#define DEF_MIN_RATE 100
 305
 306/* resolution of the rate shaping timer - 400 usec */
 307#define RS_PERIODIC_TIMEOUT_USEC 400
 308
 309/* number of bytes in single QM arbitration cycle -
 310 * coefficient for calculating the fairness timer
 311 */
 312#define QM_ARB_BYTES 160000
 313
 314/* resolution of Min algorithm 1:100 */
 315#define MIN_RES 100
 316
 317/* how many bytes above threshold for
 318 * the minimal credit of Min algorithm
 319 */
 320#define MIN_ABOVE_THRESH 32768
 321
 322/* Fairness algorithm integration time coefficient -
 323 * for calculating the actual Tfair
 324 */
 325#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
 326
 327/* Memory of fairness algorithm - 2 cycles */
 328#define FAIR_MEM 2
 329#define SAFC_TIMEOUT_USEC 52
 330
 331#define SDM_TICKS 4
 332
 333
 334static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
 335                                  u32 r_param, struct cmng_init *ram_data)
 336{
 337        u32 vnic;
 338        struct cmng_vnic *vdata = &ram_data->vnic;
 339        struct cmng_struct_per_port *pdata = &ram_data->port;
 340        /* rate shaping per-port variables
 341         * 100 micro seconds in SDM ticks = 25
 342         * since each tick is 4 microSeconds
 343         */
 344
 345        pdata->rs_vars.rs_periodic_timeout =
 346        RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
 347
 348        /* this is the threshold below which no timer arming will occur.
 349         * 1.25 coefficient is for the threshold to be a little bigger
 350         * then the real time to compensate for timer in-accuracy
 351         */
 352        pdata->rs_vars.rs_threshold =
 353        (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
 354
 355        /* rate shaping per-vnic variables */
 356        for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 357                /* global vnic counter */
 358                vdata->vnic_max_rate[vnic].vn_counter.rate =
 359                input_data->vnic_max_rate[vnic];
 360                /* maximal Mbps for this vnic
 361                 * the quota in each timer period - number of bytes
 362                 * transmitted in this period
 363                 */
 364                vdata->vnic_max_rate[vnic].vn_counter.quota =
 365                        RS_PERIODIC_TIMEOUT_USEC *
 366                        (u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
 367        }
 368
 369}
 370
 371static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
 372                                  u32 r_param, struct cmng_init *ram_data)
 373{
 374        u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
 375        struct cmng_vnic *vdata = &ram_data->vnic;
 376        struct cmng_struct_per_port *pdata = &ram_data->port;
 377
 378        /* this is the resolution of the fairness timer */
 379        fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
 380
 381        /* fairness per-port variables
 382         * for 10G it is 1000usec. for 1G it is 10000usec.
 383         */
 384        tFair = T_FAIR_COEF / input_data->port_rate;
 385
 386        /* this is the threshold below which we won't arm the timer anymore */
 387        pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
 388
 389        /* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
 390         * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
 391         */
 392        pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
 393
 394        /* since each tick is 4 microSeconds */
 395        pdata->fair_vars.fairness_timeout =
 396                                fair_periodic_timeout_usec / SDM_TICKS;
 397
 398        /* calculate sum of weights */
 399        vnicWeightSum = 0;
 400
 401        for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
 402                vnicWeightSum += input_data->vnic_min_rate[vnic];
 403
 404        /* global vnic counter */
 405        if (vnicWeightSum > 0) {
 406                /* fairness per-vnic variables */
 407                for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 408                        /* this is the credit for each period of the fairness
 409                         * algorithm - number of bytes in T_FAIR (this vnic
 410                         * share of the port rate)
 411                         */
 412                        vdata->vnic_min_rate[vnic].vn_credit_delta =
 413                                (u32)input_data->vnic_min_rate[vnic] * 100 *
 414                                (T_FAIR_COEF / (8 * 100 * vnicWeightSum));
 415                        if (vdata->vnic_min_rate[vnic].vn_credit_delta <
 416                            pdata->fair_vars.fair_threshold +
 417                            MIN_ABOVE_THRESH) {
 418                                vdata->vnic_min_rate[vnic].vn_credit_delta =
 419                                        pdata->fair_vars.fair_threshold +
 420                                        MIN_ABOVE_THRESH;
 421                        }
 422                }
 423        }
 424}
 425
 426static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
 427                                     u32 r_param, struct cmng_init *ram_data)
 428{
 429        u32 vnic, cos;
 430        u32 cosWeightSum = 0;
 431        struct cmng_vnic *vdata = &ram_data->vnic;
 432        struct cmng_struct_per_port *pdata = &ram_data->port;
 433
 434        for (cos = 0; cos < MAX_COS_NUMBER; cos++)
 435                cosWeightSum += input_data->cos_min_rate[cos];
 436
 437        if (cosWeightSum > 0) {
 438
 439                for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 440                        /* Since cos and vnic shouldn't work together the rate
 441                         * to divide between the coses is the port rate.
 442                         */
 443                        u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
 444                        for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
 445                                /* this is the credit for each period of
 446                                 * the fairness algorithm - number of bytes
 447                                 * in T_FAIR (this cos share of the vnic rate)
 448                                 */
 449                                ccd[cos] =
 450                                    (u32)input_data->cos_min_rate[cos] * 100 *
 451                                    (T_FAIR_COEF / (8 * 100 * cosWeightSum));
 452                                if (ccd[cos] < pdata->fair_vars.fair_threshold
 453                                                + MIN_ABOVE_THRESH) {
 454                                        ccd[cos] =
 455                                            pdata->fair_vars.fair_threshold +
 456                                            MIN_ABOVE_THRESH;
 457                                }
 458                        }
 459                }
 460        }
 461}
 462
 463static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
 464                                   struct cmng_init *ram_data)
 465{
 466        /* in microSeconds */
 467        ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
 468}
 469
 470/* Congestion management port init */
 471static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
 472                                   struct cmng_init *ram_data)
 473{
 474        u32 r_param;
 475        memset(ram_data, 0, sizeof(struct cmng_init));
 476
 477        ram_data->port.flags = input_data->flags;
 478
 479        /* number of bytes transmitted in a rate of 10Gbps
 480         * in one usec = 1.25KB.
 481         */
 482        r_param = BITS_TO_BYTES(input_data->port_rate);
 483        bnx2x_init_max(input_data, r_param, ram_data);
 484        bnx2x_init_min(input_data, r_param, ram_data);
 485        bnx2x_init_fw_wrr(input_data, r_param, ram_data);
 486        bnx2x_init_safc(input_data, ram_data);
 487}
 488
 489
 490
 491/* Returns the index of start or end of a specific block stage in ops array */
 492#define BLOCK_OPS_IDX(block, stage, end) \
 493                        (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
 494
 495
 496#define INITOP_SET              0       /* set the HW directly */
 497#define INITOP_CLEAR            1       /* clear the HW directly */
 498#define INITOP_INIT             2       /* set the init-value array */
 499
 500/****************************************************************************
 501* ILT management
 502****************************************************************************/
 503struct ilt_line {
 504        dma_addr_t page_mapping;
 505        void *page;
 506        u32 size;
 507};
 508
 509struct ilt_client_info {
 510        u32 page_size;
 511        u16 start;
 512        u16 end;
 513        u16 client_num;
 514        u16 flags;
 515#define ILT_CLIENT_SKIP_INIT    0x1
 516#define ILT_CLIENT_SKIP_MEM     0x2
 517};
 518
 519struct bnx2x_ilt {
 520        u32 start_line;
 521        struct ilt_line         *lines;
 522        struct ilt_client_info  clients[4];
 523#define ILT_CLIENT_CDU  0
 524#define ILT_CLIENT_QM   1
 525#define ILT_CLIENT_SRC  2
 526#define ILT_CLIENT_TM   3
 527};
 528
 529/****************************************************************************
 530* SRC configuration
 531****************************************************************************/
 532struct src_ent {
 533        u8 opaque[56];
 534        u64 next;
 535};
 536
 537/****************************************************************************
 538* Parity configuration
 539****************************************************************************/
 540#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
 541{ \
 542        block##_REG_##block##_PRTY_MASK, \
 543        block##_REG_##block##_PRTY_STS_CLR, \
 544        en_mask, {m1, m1h, m2, m3}, #block \
 545}
 546
 547#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
 548{ \
 549        block##_REG_##block##_PRTY_MASK_0, \
 550        block##_REG_##block##_PRTY_STS_CLR_0, \
 551        en_mask, {m1, m1h, m2, m3}, #block"_0" \
 552}
 553
 554#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
 555{ \
 556        block##_REG_##block##_PRTY_MASK_1, \
 557        block##_REG_##block##_PRTY_STS_CLR_1, \
 558        en_mask, {m1, m1h, m2, m3}, #block"_1" \
 559}
 560
 561static const struct {
 562        u32 mask_addr;
 563        u32 sts_clr_addr;
 564        u32 en_mask;            /* Mask to enable parity attentions */
 565        struct {
 566                u32 e1;         /* 57710 */
 567                u32 e1h;        /* 57711 */
 568                u32 e2;         /* 57712 */
 569                u32 e3;         /* 578xx */
 570        } reg_mask;             /* Register mask (all valid bits) */
 571        char name[8];           /* Block's longest name is 7 characters long
 572                                 * (name + suffix)
 573                                 */
 574} bnx2x_blocks_parity_data[] = {
 575        /* bit 19 masked */
 576        /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
 577        /* bit 5,18,20-31 */
 578        /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
 579        /* bit 5 */
 580        /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
 581        /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
 582        /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
 583
 584        /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
 585         * want to handle "system kill" flow at the moment.
 586         */
 587        BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
 588                        0x7ffffff),
 589        BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
 590                          0xffffffff),
 591        BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
 592        BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
 593        BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
 594        BLOCK_PRTY_INFO_0(NIG,  0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
 595        BLOCK_PRTY_INFO_1(NIG,  0xffff, 0, 0, 0xff, 0xffff),
 596        BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
 597        BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
 598        BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
 599        BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
 600        BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
 601        BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
 602        {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
 603                GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
 604                {0xf, 0xf, 0xf, 0xf}, "UPB"},
 605        {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
 606                GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
 607                {0xf, 0xf, 0xf, 0xf}, "XPB"},
 608        BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
 609        BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
 610        BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
 611        BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
 612        BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
 613        BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
 614        BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
 615        BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
 616        BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
 617        BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 618        BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 619        BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 620        BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 621        BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 622        BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 623        BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 624        BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
 625        BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 626                          0xffffffff),
 627        BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
 628        BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 629                          0xffffffff),
 630        BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
 631        BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 632                          0xffffffff),
 633        BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
 634        BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 635                          0xffffffff),
 636        BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
 637};
 638
 639
 640/* [28] MCP Latched rom_parity
 641 * [29] MCP Latched ump_rx_parity
 642 * [30] MCP Latched ump_tx_parity
 643 * [31] MCP Latched scpad_parity
 644 */
 645#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS       \
 646        (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
 647         AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
 648         AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
 649
 650#define MISC_AEU_ENABLE_MCP_PRTY_BITS   \
 651        (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
 652         AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
 653
 654/* Below registers control the MCP parity attention output. When
 655 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
 656 * enabled, when cleared - disabled.
 657 */
 658static const struct {
 659        u32 addr;
 660        u32 bits;
 661} mcp_attn_ctl_regs[] = {
 662        { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
 663                MISC_AEU_ENABLE_MCP_PRTY_BITS },
 664        { MISC_REG_AEU_ENABLE4_NIG_0,
 665                MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 666        { MISC_REG_AEU_ENABLE4_PXP_0,
 667                MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 668        { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
 669                MISC_AEU_ENABLE_MCP_PRTY_BITS },
 670        { MISC_REG_AEU_ENABLE4_NIG_1,
 671                MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 672        { MISC_REG_AEU_ENABLE4_PXP_1,
 673                MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
 674};
 675
 676static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
 677{
 678        int i;
 679        u32 reg_val;
 680
 681        for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
 682                reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
 683
 684                if (enable)
 685                        reg_val |= mcp_attn_ctl_regs[i].bits;
 686                else
 687                        reg_val &= ~mcp_attn_ctl_regs[i].bits;
 688
 689                REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
 690        }
 691}
 692
 693static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
 694{
 695        if (CHIP_IS_E1(bp))
 696                return bnx2x_blocks_parity_data[idx].reg_mask.e1;
 697        else if (CHIP_IS_E1H(bp))
 698                return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
 699        else if (CHIP_IS_E2(bp))
 700                return bnx2x_blocks_parity_data[idx].reg_mask.e2;
 701        else /* CHIP_IS_E3 */
 702                return bnx2x_blocks_parity_data[idx].reg_mask.e3;
 703}
 704
 705static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
 706{
 707        int i;
 708
 709        for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 710                u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
 711
 712                if (dis_mask) {
 713                        REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
 714                               dis_mask);
 715                        DP(NETIF_MSG_HW, "Setting parity mask "
 716                                                 "for %s to\t\t0x%x\n",
 717                                    bnx2x_blocks_parity_data[i].name, dis_mask);
 718                }
 719        }
 720
 721        /* Disable MCP parity attentions */
 722        bnx2x_set_mcp_parity(bp, false);
 723}
 724
 725/* Clear the parity error status registers. */
 726static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
 727{
 728        int i;
 729        u32 reg_val, mcp_aeu_bits =
 730                AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
 731                AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
 732                AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
 733                AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
 734
 735        /* Clear SEM_FAST parities */
 736        REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 737        REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 738        REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 739        REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 740
 741        for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 742                u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
 743
 744                if (reg_mask) {
 745                        reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
 746                                         sts_clr_addr);
 747                        if (reg_val & reg_mask)
 748                                DP(NETIF_MSG_HW,
 749                                            "Parity errors in %s: 0x%x\n",
 750                                            bnx2x_blocks_parity_data[i].name,
 751                                            reg_val & reg_mask);
 752                }
 753        }
 754
 755        /* Check if there were parity attentions in MCP */
 756        reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
 757        if (reg_val & mcp_aeu_bits)
 758                DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
 759                   reg_val & mcp_aeu_bits);
 760
 761        /* Clear parity attentions in MCP:
 762         * [7]  clears Latched rom_parity
 763         * [8]  clears Latched ump_rx_parity
 764         * [9]  clears Latched ump_tx_parity
 765         * [10] clears Latched scpad_parity (both ports)
 766         */
 767        REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
 768}
 769
 770static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
 771{
 772        int i;
 773
 774        for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 775                u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
 776
 777                if (reg_mask)
 778                        REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
 779                                bnx2x_blocks_parity_data[i].en_mask & reg_mask);
 780        }
 781
 782        /* Enable MCP parity attentions */
 783        bnx2x_set_mcp_parity(bp, true);
 784}
 785
 786
 787#endif /* BNX2X_INIT_H */
 788
 789