linux/drivers/net/ethernet/intel/iavf/iavf_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
   6#include "iavf_client.h"
   7/* All iavf tracepoints are defined by the include below, which must
   8 * be included exactly once across the whole kernel with
   9 * CREATE_TRACE_POINTS defined
  10 */
  11#define CREATE_TRACE_POINTS
  12#include "iavf_trace.h"
  13
  14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  16static int iavf_close(struct net_device *netdev);
  17static int iavf_init_get_resources(struct iavf_adapter *adapter);
  18static int iavf_check_reset_complete(struct iavf_hw *hw);
  19
  20char iavf_driver_name[] = "iavf";
  21static const char iavf_driver_string[] =
  22        "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  23
  24#define DRV_KERN "-k"
  25
  26#define DRV_VERSION_MAJOR 3
  27#define DRV_VERSION_MINOR 2
  28#define DRV_VERSION_BUILD 3
  29#define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
  30             __stringify(DRV_VERSION_MINOR) "." \
  31             __stringify(DRV_VERSION_BUILD) \
  32             DRV_KERN
  33const char iavf_driver_version[] = DRV_VERSION;
  34static const char iavf_copyright[] =
  35        "Copyright (c) 2013 - 2018 Intel Corporation.";
  36
  37/* iavf_pci_tbl - PCI Device ID Table
  38 *
  39 * Wildcard entries (PCI_ANY_ID) should come last
  40 * Last entry must be all 0s
  41 *
  42 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  43 *   Class, Class Mask, private data (not used) }
  44 */
  45static const struct pci_device_id iavf_pci_tbl[] = {
  46        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  47        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  48        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  49        {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  50        /* required last entry */
  51        {0, }
  52};
  53
  54MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  55
  56MODULE_ALIAS("i40evf");
  57MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  58MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  59MODULE_LICENSE("GPL v2");
  60MODULE_VERSION(DRV_VERSION);
  61
  62static const struct net_device_ops iavf_netdev_ops;
  63struct workqueue_struct *iavf_wq;
  64
  65/**
  66 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
  67 * @hw:   pointer to the HW structure
  68 * @mem:  ptr to mem struct to fill out
  69 * @size: size of memory requested
  70 * @alignment: what to align the allocation to
  71 **/
  72enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
  73                                         struct iavf_dma_mem *mem,
  74                                         u64 size, u32 alignment)
  75{
  76        struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  77
  78        if (!mem)
  79                return IAVF_ERR_PARAM;
  80
  81        mem->size = ALIGN(size, alignment);
  82        mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
  83                                     (dma_addr_t *)&mem->pa, GFP_KERNEL);
  84        if (mem->va)
  85                return 0;
  86        else
  87                return IAVF_ERR_NO_MEMORY;
  88}
  89
  90/**
  91 * iavf_free_dma_mem_d - OS specific memory free for shared code
  92 * @hw:   pointer to the HW structure
  93 * @mem:  ptr to mem struct to free
  94 **/
  95enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
  96                                     struct iavf_dma_mem *mem)
  97{
  98        struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  99
 100        if (!mem || !mem->va)
 101                return IAVF_ERR_PARAM;
 102        dma_free_coherent(&adapter->pdev->dev, mem->size,
 103                          mem->va, (dma_addr_t)mem->pa);
 104        return 0;
 105}
 106
 107/**
 108 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
 109 * @hw:   pointer to the HW structure
 110 * @mem:  ptr to mem struct to fill out
 111 * @size: size of memory requested
 112 **/
 113enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
 114                                          struct iavf_virt_mem *mem, u32 size)
 115{
 116        if (!mem)
 117                return IAVF_ERR_PARAM;
 118
 119        mem->size = size;
 120        mem->va = kzalloc(size, GFP_KERNEL);
 121
 122        if (mem->va)
 123                return 0;
 124        else
 125                return IAVF_ERR_NO_MEMORY;
 126}
 127
 128/**
 129 * iavf_free_virt_mem_d - OS specific memory free for shared code
 130 * @hw:   pointer to the HW structure
 131 * @mem:  ptr to mem struct to free
 132 **/
 133enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
 134                                      struct iavf_virt_mem *mem)
 135{
 136        if (!mem)
 137                return IAVF_ERR_PARAM;
 138
 139        /* it's ok to kfree a NULL pointer */
 140        kfree(mem->va);
 141
 142        return 0;
 143}
 144
 145/**
 146 * iavf_schedule_reset - Set the flags and schedule a reset event
 147 * @adapter: board private structure
 148 **/
 149void iavf_schedule_reset(struct iavf_adapter *adapter)
 150{
 151        if (!(adapter->flags &
 152              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 153                adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 154                queue_work(iavf_wq, &adapter->reset_task);
 155        }
 156}
 157
 158/**
 159 * iavf_tx_timeout - Respond to a Tx Hang
 160 * @netdev: network interface device structure
 161 **/
 162static void iavf_tx_timeout(struct net_device *netdev)
 163{
 164        struct iavf_adapter *adapter = netdev_priv(netdev);
 165
 166        adapter->tx_timeout_count++;
 167        iavf_schedule_reset(adapter);
 168}
 169
 170/**
 171 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 172 * @adapter: board private structure
 173 **/
 174static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 175{
 176        struct iavf_hw *hw = &adapter->hw;
 177
 178        if (!adapter->msix_entries)
 179                return;
 180
 181        wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 182
 183        iavf_flush(hw);
 184
 185        synchronize_irq(adapter->msix_entries[0].vector);
 186}
 187
 188/**
 189 * iavf_misc_irq_enable - Enable default interrupt generation settings
 190 * @adapter: board private structure
 191 **/
 192static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 193{
 194        struct iavf_hw *hw = &adapter->hw;
 195
 196        wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 197                                       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 198        wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 199
 200        iavf_flush(hw);
 201}
 202
 203/**
 204 * iavf_irq_disable - Mask off interrupt generation on the NIC
 205 * @adapter: board private structure
 206 **/
 207static void iavf_irq_disable(struct iavf_adapter *adapter)
 208{
 209        int i;
 210        struct iavf_hw *hw = &adapter->hw;
 211
 212        if (!adapter->msix_entries)
 213                return;
 214
 215        for (i = 1; i < adapter->num_msix_vectors; i++) {
 216                wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 217                synchronize_irq(adapter->msix_entries[i].vector);
 218        }
 219        iavf_flush(hw);
 220}
 221
 222/**
 223 * iavf_irq_enable_queues - Enable interrupt for specified queues
 224 * @adapter: board private structure
 225 * @mask: bitmap of queues to enable
 226 **/
 227void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
 228{
 229        struct iavf_hw *hw = &adapter->hw;
 230        int i;
 231
 232        for (i = 1; i < adapter->num_msix_vectors; i++) {
 233                if (mask & BIT(i - 1)) {
 234                        wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 235                             IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 236                             IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 237                }
 238        }
 239}
 240
 241/**
 242 * iavf_irq_enable - Enable default interrupt generation settings
 243 * @adapter: board private structure
 244 * @flush: boolean value whether to run rd32()
 245 **/
 246void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 247{
 248        struct iavf_hw *hw = &adapter->hw;
 249
 250        iavf_misc_irq_enable(adapter);
 251        iavf_irq_enable_queues(adapter, ~0);
 252
 253        if (flush)
 254                iavf_flush(hw);
 255}
 256
 257/**
 258 * iavf_msix_aq - Interrupt handler for vector 0
 259 * @irq: interrupt number
 260 * @data: pointer to netdev
 261 **/
 262static irqreturn_t iavf_msix_aq(int irq, void *data)
 263{
 264        struct net_device *netdev = data;
 265        struct iavf_adapter *adapter = netdev_priv(netdev);
 266        struct iavf_hw *hw = &adapter->hw;
 267
 268        /* handle non-queue interrupts, these reads clear the registers */
 269        rd32(hw, IAVF_VFINT_ICR01);
 270        rd32(hw, IAVF_VFINT_ICR0_ENA1);
 271
 272        /* schedule work on the private workqueue */
 273        queue_work(iavf_wq, &adapter->adminq_task);
 274
 275        return IRQ_HANDLED;
 276}
 277
 278/**
 279 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 280 * @irq: interrupt number
 281 * @data: pointer to a q_vector
 282 **/
 283static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 284{
 285        struct iavf_q_vector *q_vector = data;
 286
 287        if (!q_vector->tx.ring && !q_vector->rx.ring)
 288                return IRQ_HANDLED;
 289
 290        napi_schedule_irqoff(&q_vector->napi);
 291
 292        return IRQ_HANDLED;
 293}
 294
 295/**
 296 * iavf_map_vector_to_rxq - associate irqs with rx queues
 297 * @adapter: board private structure
 298 * @v_idx: interrupt number
 299 * @r_idx: queue number
 300 **/
 301static void
 302iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 303{
 304        struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 305        struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 306        struct iavf_hw *hw = &adapter->hw;
 307
 308        rx_ring->q_vector = q_vector;
 309        rx_ring->next = q_vector->rx.ring;
 310        rx_ring->vsi = &adapter->vsi;
 311        q_vector->rx.ring = rx_ring;
 312        q_vector->rx.count++;
 313        q_vector->rx.next_update = jiffies + 1;
 314        q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 315        q_vector->ring_mask |= BIT(r_idx);
 316        wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 317             q_vector->rx.current_itr >> 1);
 318        q_vector->rx.current_itr = q_vector->rx.target_itr;
 319}
 320
 321/**
 322 * iavf_map_vector_to_txq - associate irqs with tx queues
 323 * @adapter: board private structure
 324 * @v_idx: interrupt number
 325 * @t_idx: queue number
 326 **/
 327static void
 328iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 329{
 330        struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 331        struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 332        struct iavf_hw *hw = &adapter->hw;
 333
 334        tx_ring->q_vector = q_vector;
 335        tx_ring->next = q_vector->tx.ring;
 336        tx_ring->vsi = &adapter->vsi;
 337        q_vector->tx.ring = tx_ring;
 338        q_vector->tx.count++;
 339        q_vector->tx.next_update = jiffies + 1;
 340        q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 341        q_vector->num_ringpairs++;
 342        wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 343             q_vector->tx.target_itr >> 1);
 344        q_vector->tx.current_itr = q_vector->tx.target_itr;
 345}
 346
 347/**
 348 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 349 * @adapter: board private structure to initialize
 350 *
 351 * This function maps descriptor rings to the queue-specific vectors
 352 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 353 * one vector per ring/queue, but on a constrained vector budget, we
 354 * group the rings as "efficiently" as possible.  You would add new
 355 * mapping configurations in here.
 356 **/
 357static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 358{
 359        int rings_remaining = adapter->num_active_queues;
 360        int ridx = 0, vidx = 0;
 361        int q_vectors;
 362
 363        q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 364
 365        for (; ridx < rings_remaining; ridx++) {
 366                iavf_map_vector_to_rxq(adapter, vidx, ridx);
 367                iavf_map_vector_to_txq(adapter, vidx, ridx);
 368
 369                /* In the case where we have more queues than vectors, continue
 370                 * round-robin on vectors until all queues are mapped.
 371                 */
 372                if (++vidx >= q_vectors)
 373                        vidx = 0;
 374        }
 375
 376        adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 377}
 378
 379/**
 380 * iavf_irq_affinity_notify - Callback for affinity changes
 381 * @notify: context as to what irq was changed
 382 * @mask: the new affinity mask
 383 *
 384 * This is a callback function used by the irq_set_affinity_notifier function
 385 * so that we may register to receive changes to the irq affinity masks.
 386 **/
 387static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 388                                     const cpumask_t *mask)
 389{
 390        struct iavf_q_vector *q_vector =
 391                container_of(notify, struct iavf_q_vector, affinity_notify);
 392
 393        cpumask_copy(&q_vector->affinity_mask, mask);
 394}
 395
 396/**
 397 * iavf_irq_affinity_release - Callback for affinity notifier release
 398 * @ref: internal core kernel usage
 399 *
 400 * This is a callback function used by the irq_set_affinity_notifier function
 401 * to inform the current notification subscriber that they will no longer
 402 * receive notifications.
 403 **/
 404static void iavf_irq_affinity_release(struct kref *ref) {}
 405
 406/**
 407 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 408 * @adapter: board private structure
 409 * @basename: device basename
 410 *
 411 * Allocates MSI-X vectors for tx and rx handling, and requests
 412 * interrupts from the kernel.
 413 **/
 414static int
 415iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 416{
 417        unsigned int vector, q_vectors;
 418        unsigned int rx_int_idx = 0, tx_int_idx = 0;
 419        int irq_num, err;
 420        int cpu;
 421
 422        iavf_irq_disable(adapter);
 423        /* Decrement for Other and TCP Timer vectors */
 424        q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 425
 426        for (vector = 0; vector < q_vectors; vector++) {
 427                struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 428
 429                irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 430
 431                if (q_vector->tx.ring && q_vector->rx.ring) {
 432                        snprintf(q_vector->name, sizeof(q_vector->name),
 433                                 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
 434                        tx_int_idx++;
 435                } else if (q_vector->rx.ring) {
 436                        snprintf(q_vector->name, sizeof(q_vector->name),
 437                                 "iavf-%s-rx-%d", basename, rx_int_idx++);
 438                } else if (q_vector->tx.ring) {
 439                        snprintf(q_vector->name, sizeof(q_vector->name),
 440                                 "iavf-%s-tx-%d", basename, tx_int_idx++);
 441                } else {
 442                        /* skip this unused q_vector */
 443                        continue;
 444                }
 445                err = request_irq(irq_num,
 446                                  iavf_msix_clean_rings,
 447                                  0,
 448                                  q_vector->name,
 449                                  q_vector);
 450                if (err) {
 451                        dev_info(&adapter->pdev->dev,
 452                                 "Request_irq failed, error: %d\n", err);
 453                        goto free_queue_irqs;
 454                }
 455                /* register for affinity change notifications */
 456                q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 457                q_vector->affinity_notify.release =
 458                                                   iavf_irq_affinity_release;
 459                irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 460                /* Spread the IRQ affinity hints across online CPUs. Note that
 461                 * get_cpu_mask returns a mask with a permanent lifetime so
 462                 * it's safe to use as a hint for irq_set_affinity_hint.
 463                 */
 464                cpu = cpumask_local_spread(q_vector->v_idx, -1);
 465                irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
 466        }
 467
 468        return 0;
 469
 470free_queue_irqs:
 471        while (vector) {
 472                vector--;
 473                irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 474                irq_set_affinity_notifier(irq_num, NULL);
 475                irq_set_affinity_hint(irq_num, NULL);
 476                free_irq(irq_num, &adapter->q_vectors[vector]);
 477        }
 478        return err;
 479}
 480
 481/**
 482 * iavf_request_misc_irq - Initialize MSI-X interrupts
 483 * @adapter: board private structure
 484 *
 485 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 486 * vector is only for the admin queue, and stays active even when the netdev
 487 * is closed.
 488 **/
 489static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 490{
 491        struct net_device *netdev = adapter->netdev;
 492        int err;
 493
 494        snprintf(adapter->misc_vector_name,
 495                 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 496                 dev_name(&adapter->pdev->dev));
 497        err = request_irq(adapter->msix_entries[0].vector,
 498                          &iavf_msix_aq, 0,
 499                          adapter->misc_vector_name, netdev);
 500        if (err) {
 501                dev_err(&adapter->pdev->dev,
 502                        "request_irq for %s failed: %d\n",
 503                        adapter->misc_vector_name, err);
 504                free_irq(adapter->msix_entries[0].vector, netdev);
 505        }
 506        return err;
 507}
 508
 509/**
 510 * iavf_free_traffic_irqs - Free MSI-X interrupts
 511 * @adapter: board private structure
 512 *
 513 * Frees all MSI-X vectors other than 0.
 514 **/
 515static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 516{
 517        int vector, irq_num, q_vectors;
 518
 519        if (!adapter->msix_entries)
 520                return;
 521
 522        q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 523
 524        for (vector = 0; vector < q_vectors; vector++) {
 525                irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 526                irq_set_affinity_notifier(irq_num, NULL);
 527                irq_set_affinity_hint(irq_num, NULL);
 528                free_irq(irq_num, &adapter->q_vectors[vector]);
 529        }
 530}
 531
 532/**
 533 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 534 * @adapter: board private structure
 535 *
 536 * Frees MSI-X vector 0.
 537 **/
 538static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 539{
 540        struct net_device *netdev = adapter->netdev;
 541
 542        if (!adapter->msix_entries)
 543                return;
 544
 545        free_irq(adapter->msix_entries[0].vector, netdev);
 546}
 547
 548/**
 549 * iavf_configure_tx - Configure Transmit Unit after Reset
 550 * @adapter: board private structure
 551 *
 552 * Configure the Tx unit of the MAC after a reset.
 553 **/
 554static void iavf_configure_tx(struct iavf_adapter *adapter)
 555{
 556        struct iavf_hw *hw = &adapter->hw;
 557        int i;
 558
 559        for (i = 0; i < adapter->num_active_queues; i++)
 560                adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 561}
 562
 563/**
 564 * iavf_configure_rx - Configure Receive Unit after Reset
 565 * @adapter: board private structure
 566 *
 567 * Configure the Rx unit of the MAC after a reset.
 568 **/
 569static void iavf_configure_rx(struct iavf_adapter *adapter)
 570{
 571        unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 572        struct iavf_hw *hw = &adapter->hw;
 573        int i;
 574
 575        /* Legacy Rx will always default to a 2048 buffer size. */
 576#if (PAGE_SIZE < 8192)
 577        if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 578                struct net_device *netdev = adapter->netdev;
 579
 580                /* For jumbo frames on systems with 4K pages we have to use
 581                 * an order 1 page, so we might as well increase the size
 582                 * of our Rx buffer to make better use of the available space
 583                 */
 584                rx_buf_len = IAVF_RXBUFFER_3072;
 585
 586                /* We use a 1536 buffer size for configurations with
 587                 * standard Ethernet mtu.  On x86 this gives us enough room
 588                 * for shared info and 192 bytes of padding.
 589                 */
 590                if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 591                    (netdev->mtu <= ETH_DATA_LEN))
 592                        rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 593        }
 594#endif
 595
 596        for (i = 0; i < adapter->num_active_queues; i++) {
 597                adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 598                adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 599
 600                if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 601                        clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 602                else
 603                        set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 604        }
 605}
 606
 607/**
 608 * iavf_find_vlan - Search filter list for specific vlan filter
 609 * @adapter: board private structure
 610 * @vlan: vlan tag
 611 *
 612 * Returns ptr to the filter object or NULL. Must be called while holding the
 613 * mac_vlan_list_lock.
 614 **/
 615static struct
 616iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
 617{
 618        struct iavf_vlan_filter *f;
 619
 620        list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 621                if (vlan == f->vlan)
 622                        return f;
 623        }
 624        return NULL;
 625}
 626
 627/**
 628 * iavf_add_vlan - Add a vlan filter to the list
 629 * @adapter: board private structure
 630 * @vlan: VLAN tag
 631 *
 632 * Returns ptr to the filter object or NULL when no memory available.
 633 **/
 634static struct
 635iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
 636{
 637        struct iavf_vlan_filter *f = NULL;
 638
 639        spin_lock_bh(&adapter->mac_vlan_list_lock);
 640
 641        f = iavf_find_vlan(adapter, vlan);
 642        if (!f) {
 643                f = kzalloc(sizeof(*f), GFP_ATOMIC);
 644                if (!f)
 645                        goto clearout;
 646
 647                f->vlan = vlan;
 648
 649                list_add_tail(&f->list, &adapter->vlan_filter_list);
 650                f->add = true;
 651                adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 652        }
 653
 654clearout:
 655        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 656        return f;
 657}
 658
 659/**
 660 * iavf_del_vlan - Remove a vlan filter from the list
 661 * @adapter: board private structure
 662 * @vlan: VLAN tag
 663 **/
 664static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
 665{
 666        struct iavf_vlan_filter *f;
 667
 668        spin_lock_bh(&adapter->mac_vlan_list_lock);
 669
 670        f = iavf_find_vlan(adapter, vlan);
 671        if (f) {
 672                f->remove = true;
 673                adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
 674        }
 675
 676        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 677}
 678
 679/**
 680 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 681 * @netdev: network device struct
 682 * @proto: unused protocol data
 683 * @vid: VLAN tag
 684 **/
 685static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 686                                __always_unused __be16 proto, u16 vid)
 687{
 688        struct iavf_adapter *adapter = netdev_priv(netdev);
 689
 690        if (!VLAN_ALLOWED(adapter))
 691                return -EIO;
 692        if (iavf_add_vlan(adapter, vid) == NULL)
 693                return -ENOMEM;
 694        return 0;
 695}
 696
 697/**
 698 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 699 * @netdev: network device struct
 700 * @proto: unused protocol data
 701 * @vid: VLAN tag
 702 **/
 703static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 704                                 __always_unused __be16 proto, u16 vid)
 705{
 706        struct iavf_adapter *adapter = netdev_priv(netdev);
 707
 708        if (VLAN_ALLOWED(adapter)) {
 709                iavf_del_vlan(adapter, vid);
 710                return 0;
 711        }
 712        return -EIO;
 713}
 714
 715/**
 716 * iavf_find_filter - Search filter list for specific mac filter
 717 * @adapter: board private structure
 718 * @macaddr: the MAC address
 719 *
 720 * Returns ptr to the filter object or NULL. Must be called while holding the
 721 * mac_vlan_list_lock.
 722 **/
 723static struct
 724iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 725                                  const u8 *macaddr)
 726{
 727        struct iavf_mac_filter *f;
 728
 729        if (!macaddr)
 730                return NULL;
 731
 732        list_for_each_entry(f, &adapter->mac_filter_list, list) {
 733                if (ether_addr_equal(macaddr, f->macaddr))
 734                        return f;
 735        }
 736        return NULL;
 737}
 738
 739/**
 740 * iavf_add_filter - Add a mac filter to the filter list
 741 * @adapter: board private structure
 742 * @macaddr: the MAC address
 743 *
 744 * Returns ptr to the filter object or NULL when no memory available.
 745 **/
 746static struct
 747iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 748                                 const u8 *macaddr)
 749{
 750        struct iavf_mac_filter *f;
 751
 752        if (!macaddr)
 753                return NULL;
 754
 755        f = iavf_find_filter(adapter, macaddr);
 756        if (!f) {
 757                f = kzalloc(sizeof(*f), GFP_ATOMIC);
 758                if (!f)
 759                        return f;
 760
 761                ether_addr_copy(f->macaddr, macaddr);
 762
 763                list_add_tail(&f->list, &adapter->mac_filter_list);
 764                f->add = true;
 765                adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 766        } else {
 767                f->remove = false;
 768        }
 769
 770        return f;
 771}
 772
 773/**
 774 * iavf_set_mac - NDO callback to set port mac address
 775 * @netdev: network interface device structure
 776 * @p: pointer to an address structure
 777 *
 778 * Returns 0 on success, negative on failure
 779 **/
 780static int iavf_set_mac(struct net_device *netdev, void *p)
 781{
 782        struct iavf_adapter *adapter = netdev_priv(netdev);
 783        struct iavf_hw *hw = &adapter->hw;
 784        struct iavf_mac_filter *f;
 785        struct sockaddr *addr = p;
 786
 787        if (!is_valid_ether_addr(addr->sa_data))
 788                return -EADDRNOTAVAIL;
 789
 790        if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
 791                return 0;
 792
 793        spin_lock_bh(&adapter->mac_vlan_list_lock);
 794
 795        f = iavf_find_filter(adapter, hw->mac.addr);
 796        if (f) {
 797                f->remove = true;
 798                adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 799        }
 800
 801        f = iavf_add_filter(adapter, addr->sa_data);
 802
 803        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 804
 805        if (f) {
 806                ether_addr_copy(hw->mac.addr, addr->sa_data);
 807        }
 808
 809        return (f == NULL) ? -ENOMEM : 0;
 810}
 811
 812/**
 813 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
 814 * @netdev: the netdevice
 815 * @addr: address to add
 816 *
 817 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
 818 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 819 */
 820static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
 821{
 822        struct iavf_adapter *adapter = netdev_priv(netdev);
 823
 824        if (iavf_add_filter(adapter, addr))
 825                return 0;
 826        else
 827                return -ENOMEM;
 828}
 829
 830/**
 831 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
 832 * @netdev: the netdevice
 833 * @addr: address to add
 834 *
 835 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
 836 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 837 */
 838static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
 839{
 840        struct iavf_adapter *adapter = netdev_priv(netdev);
 841        struct iavf_mac_filter *f;
 842
 843        /* Under some circumstances, we might receive a request to delete
 844         * our own device address from our uc list. Because we store the
 845         * device address in the VSI's MAC/VLAN filter list, we need to ignore
 846         * such requests and not delete our device address from this list.
 847         */
 848        if (ether_addr_equal(addr, netdev->dev_addr))
 849                return 0;
 850
 851        f = iavf_find_filter(adapter, addr);
 852        if (f) {
 853                f->remove = true;
 854                adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 855        }
 856        return 0;
 857}
 858
 859/**
 860 * iavf_set_rx_mode - NDO callback to set the netdev filters
 861 * @netdev: network interface device structure
 862 **/
 863static void iavf_set_rx_mode(struct net_device *netdev)
 864{
 865        struct iavf_adapter *adapter = netdev_priv(netdev);
 866
 867        spin_lock_bh(&adapter->mac_vlan_list_lock);
 868        __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 869        __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 870        spin_unlock_bh(&adapter->mac_vlan_list_lock);
 871
 872        if (netdev->flags & IFF_PROMISC &&
 873            !(adapter->flags & IAVF_FLAG_PROMISC_ON))
 874                adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
 875        else if (!(netdev->flags & IFF_PROMISC) &&
 876                 adapter->flags & IAVF_FLAG_PROMISC_ON)
 877                adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
 878
 879        if (netdev->flags & IFF_ALLMULTI &&
 880            !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
 881                adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
 882        else if (!(netdev->flags & IFF_ALLMULTI) &&
 883                 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
 884                adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
 885}
 886
 887/**
 888 * iavf_napi_enable_all - enable NAPI on all queue vectors
 889 * @adapter: board private structure
 890 **/
 891static void iavf_napi_enable_all(struct iavf_adapter *adapter)
 892{
 893        int q_idx;
 894        struct iavf_q_vector *q_vector;
 895        int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 896
 897        for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 898                struct napi_struct *napi;
 899
 900                q_vector = &adapter->q_vectors[q_idx];
 901                napi = &q_vector->napi;
 902                napi_enable(napi);
 903        }
 904}
 905
 906/**
 907 * iavf_napi_disable_all - disable NAPI on all queue vectors
 908 * @adapter: board private structure
 909 **/
 910static void iavf_napi_disable_all(struct iavf_adapter *adapter)
 911{
 912        int q_idx;
 913        struct iavf_q_vector *q_vector;
 914        int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 915
 916        for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 917                q_vector = &adapter->q_vectors[q_idx];
 918                napi_disable(&q_vector->napi);
 919        }
 920}
 921
 922/**
 923 * iavf_configure - set up transmit and receive data structures
 924 * @adapter: board private structure
 925 **/
 926static void iavf_configure(struct iavf_adapter *adapter)
 927{
 928        struct net_device *netdev = adapter->netdev;
 929        int i;
 930
 931        iavf_set_rx_mode(netdev);
 932
 933        iavf_configure_tx(adapter);
 934        iavf_configure_rx(adapter);
 935        adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
 936
 937        for (i = 0; i < adapter->num_active_queues; i++) {
 938                struct iavf_ring *ring = &adapter->rx_rings[i];
 939
 940                iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
 941        }
 942}
 943
 944/**
 945 * iavf_up_complete - Finish the last steps of bringing up a connection
 946 * @adapter: board private structure
 947 *
 948 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 949 **/
 950static void iavf_up_complete(struct iavf_adapter *adapter)
 951{
 952        adapter->state = __IAVF_RUNNING;
 953        clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 954
 955        iavf_napi_enable_all(adapter);
 956
 957        adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
 958        if (CLIENT_ENABLED(adapter))
 959                adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
 960        mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
 961}
 962
 963/**
 964 * iavf_down - Shutdown the connection processing
 965 * @adapter: board private structure
 966 *
 967 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 968 **/
 969void iavf_down(struct iavf_adapter *adapter)
 970{
 971        struct net_device *netdev = adapter->netdev;
 972        struct iavf_vlan_filter *vlf;
 973        struct iavf_mac_filter *f;
 974        struct iavf_cloud_filter *cf;
 975
 976        if (adapter->state <= __IAVF_DOWN_PENDING)
 977                return;
 978
 979        netif_carrier_off(netdev);
 980        netif_tx_disable(netdev);
 981        adapter->link_up = false;
 982        iavf_napi_disable_all(adapter);
 983        iavf_irq_disable(adapter);
 984
 985        spin_lock_bh(&adapter->mac_vlan_list_lock);
 986
 987        /* clear the sync flag on all filters */
 988        __dev_uc_unsync(adapter->netdev, NULL);
 989        __dev_mc_unsync(adapter->netdev, NULL);
 990
 991        /* remove all MAC filters */
 992        list_for_each_entry(f, &adapter->mac_filter_list, list) {
 993                f->remove = true;
 994        }
 995
 996        /* remove all VLAN filters */
 997        list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
 998                vlf->remove = true;
 999        }
1000
1001        spin_unlock_bh(&adapter->mac_vlan_list_lock);
1002
1003        /* remove all cloud filters */
1004        spin_lock_bh(&adapter->cloud_filter_list_lock);
1005        list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1006                cf->del = true;
1007        }
1008        spin_unlock_bh(&adapter->cloud_filter_list_lock);
1009
1010        if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1011            adapter->state != __IAVF_RESETTING) {
1012                /* cancel any current operation */
1013                adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1014                /* Schedule operations to close down the HW. Don't wait
1015                 * here for this to complete. The watchdog is still running
1016                 * and it will take care of this.
1017                 */
1018                adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019                adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1020                adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1021                adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1022        }
1023
1024        mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1025}
1026
1027/**
1028 * iavf_acquire_msix_vectors - Setup the MSIX capability
1029 * @adapter: board private structure
1030 * @vectors: number of vectors to request
1031 *
1032 * Work with the OS to set up the MSIX vectors needed.
1033 *
1034 * Returns 0 on success, negative on failure
1035 **/
1036static int
1037iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1038{
1039        int err, vector_threshold;
1040
1041        /* We'll want at least 3 (vector_threshold):
1042         * 0) Other (Admin Queue and link, mostly)
1043         * 1) TxQ[0] Cleanup
1044         * 2) RxQ[0] Cleanup
1045         */
1046        vector_threshold = MIN_MSIX_COUNT;
1047
1048        /* The more we get, the more we will assign to Tx/Rx Cleanup
1049         * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1050         * Right now, we simply care about how many we'll get; we'll
1051         * set them up later while requesting irq's.
1052         */
1053        err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1054                                    vector_threshold, vectors);
1055        if (err < 0) {
1056                dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1057                kfree(adapter->msix_entries);
1058                adapter->msix_entries = NULL;
1059                return err;
1060        }
1061
1062        /* Adjust for only the vectors we'll use, which is minimum
1063         * of max_msix_q_vectors + NONQ_VECS, or the number of
1064         * vectors we were allocated.
1065         */
1066        adapter->num_msix_vectors = err;
1067        return 0;
1068}
1069
1070/**
1071 * iavf_free_queues - Free memory for all rings
1072 * @adapter: board private structure to initialize
1073 *
1074 * Free all of the memory associated with queue pairs.
1075 **/
1076static void iavf_free_queues(struct iavf_adapter *adapter)
1077{
1078        if (!adapter->vsi_res)
1079                return;
1080        adapter->num_active_queues = 0;
1081        kfree(adapter->tx_rings);
1082        adapter->tx_rings = NULL;
1083        kfree(adapter->rx_rings);
1084        adapter->rx_rings = NULL;
1085}
1086
1087/**
1088 * iavf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1090 *
1091 * We allocate one ring per queue at run-time since we don't know the
1092 * number of queues at compile-time.  The polling_netdev array is
1093 * intended for Multiqueue, but should work fine with a single queue.
1094 **/
1095static int iavf_alloc_queues(struct iavf_adapter *adapter)
1096{
1097        int i, num_active_queues;
1098
1099        /* If we're in reset reallocating queues we don't actually know yet for
1100         * certain the PF gave us the number of queues we asked for but we'll
1101         * assume it did.  Once basic reset is finished we'll confirm once we
1102         * start negotiating config with PF.
1103         */
1104        if (adapter->num_req_queues)
1105                num_active_queues = adapter->num_req_queues;
1106        else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1107                 adapter->num_tc)
1108                num_active_queues = adapter->ch_config.total_qps;
1109        else
1110                num_active_queues = min_t(int,
1111                                          adapter->vsi_res->num_queue_pairs,
1112                                          (int)(num_online_cpus()));
1113
1114
1115        adapter->tx_rings = kcalloc(num_active_queues,
1116                                    sizeof(struct iavf_ring), GFP_KERNEL);
1117        if (!adapter->tx_rings)
1118                goto err_out;
1119        adapter->rx_rings = kcalloc(num_active_queues,
1120                                    sizeof(struct iavf_ring), GFP_KERNEL);
1121        if (!adapter->rx_rings)
1122                goto err_out;
1123
1124        for (i = 0; i < num_active_queues; i++) {
1125                struct iavf_ring *tx_ring;
1126                struct iavf_ring *rx_ring;
1127
1128                tx_ring = &adapter->tx_rings[i];
1129
1130                tx_ring->queue_index = i;
1131                tx_ring->netdev = adapter->netdev;
1132                tx_ring->dev = &adapter->pdev->dev;
1133                tx_ring->count = adapter->tx_desc_count;
1134                tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1135                if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1136                        tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1137
1138                rx_ring = &adapter->rx_rings[i];
1139                rx_ring->queue_index = i;
1140                rx_ring->netdev = adapter->netdev;
1141                rx_ring->dev = &adapter->pdev->dev;
1142                rx_ring->count = adapter->rx_desc_count;
1143                rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1144        }
1145
1146        adapter->num_active_queues = num_active_queues;
1147
1148        return 0;
1149
1150err_out:
1151        iavf_free_queues(adapter);
1152        return -ENOMEM;
1153}
1154
1155/**
1156 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1157 * @adapter: board private structure to initialize
1158 *
1159 * Attempt to configure the interrupts using the best available
1160 * capabilities of the hardware and the kernel.
1161 **/
1162static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1163{
1164        int vector, v_budget;
1165        int pairs = 0;
1166        int err = 0;
1167
1168        if (!adapter->vsi_res) {
1169                err = -EIO;
1170                goto out;
1171        }
1172        pairs = adapter->num_active_queues;
1173
1174        /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1175         * us much good if we have more vectors than CPUs. However, we already
1176         * limit the total number of queues by the number of CPUs so we do not
1177         * need any further limiting here.
1178         */
1179        v_budget = min_t(int, pairs + NONQ_VECS,
1180                         (int)adapter->vf_res->max_vectors);
1181
1182        adapter->msix_entries = kcalloc(v_budget,
1183                                        sizeof(struct msix_entry), GFP_KERNEL);
1184        if (!adapter->msix_entries) {
1185                err = -ENOMEM;
1186                goto out;
1187        }
1188
1189        for (vector = 0; vector < v_budget; vector++)
1190                adapter->msix_entries[vector].entry = vector;
1191
1192        err = iavf_acquire_msix_vectors(adapter, v_budget);
1193
1194out:
1195        netif_set_real_num_rx_queues(adapter->netdev, pairs);
1196        netif_set_real_num_tx_queues(adapter->netdev, pairs);
1197        return err;
1198}
1199
1200/**
1201 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1202 * @adapter: board private structure
1203 *
1204 * Return 0 on success, negative on failure
1205 **/
1206static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1207{
1208        struct iavf_aqc_get_set_rss_key_data *rss_key =
1209                (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1210        struct iavf_hw *hw = &adapter->hw;
1211        int ret = 0;
1212
1213        if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1214                /* bail because we already have a command pending */
1215                dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1216                        adapter->current_op);
1217                return -EBUSY;
1218        }
1219
1220        ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1221        if (ret) {
1222                dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1223                        iavf_stat_str(hw, ret),
1224                        iavf_aq_str(hw, hw->aq.asq_last_status));
1225                return ret;
1226
1227        }
1228
1229        ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1230                                  adapter->rss_lut, adapter->rss_lut_size);
1231        if (ret) {
1232                dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1233                        iavf_stat_str(hw, ret),
1234                        iavf_aq_str(hw, hw->aq.asq_last_status));
1235        }
1236
1237        return ret;
1238
1239}
1240
1241/**
1242 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1243 * @adapter: board private structure
1244 *
1245 * Returns 0 on success, negative on failure
1246 **/
1247static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1248{
1249        struct iavf_hw *hw = &adapter->hw;
1250        u32 *dw;
1251        u16 i;
1252
1253        dw = (u32 *)adapter->rss_key;
1254        for (i = 0; i <= adapter->rss_key_size / 4; i++)
1255                wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1256
1257        dw = (u32 *)adapter->rss_lut;
1258        for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1259                wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1260
1261        iavf_flush(hw);
1262
1263        return 0;
1264}
1265
1266/**
1267 * iavf_config_rss - Configure RSS keys and lut
1268 * @adapter: board private structure
1269 *
1270 * Returns 0 on success, negative on failure
1271 **/
1272int iavf_config_rss(struct iavf_adapter *adapter)
1273{
1274
1275        if (RSS_PF(adapter)) {
1276                adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1277                                        IAVF_FLAG_AQ_SET_RSS_KEY;
1278                return 0;
1279        } else if (RSS_AQ(adapter)) {
1280                return iavf_config_rss_aq(adapter);
1281        } else {
1282                return iavf_config_rss_reg(adapter);
1283        }
1284}
1285
1286/**
1287 * iavf_fill_rss_lut - Fill the lut with default values
1288 * @adapter: board private structure
1289 **/
1290static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1291{
1292        u16 i;
1293
1294        for (i = 0; i < adapter->rss_lut_size; i++)
1295                adapter->rss_lut[i] = i % adapter->num_active_queues;
1296}
1297
1298/**
1299 * iavf_init_rss - Prepare for RSS
1300 * @adapter: board private structure
1301 *
1302 * Return 0 on success, negative on failure
1303 **/
1304static int iavf_init_rss(struct iavf_adapter *adapter)
1305{
1306        struct iavf_hw *hw = &adapter->hw;
1307        int ret;
1308
1309        if (!RSS_PF(adapter)) {
1310                /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1311                if (adapter->vf_res->vf_cap_flags &
1312                    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1313                        adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1314                else
1315                        adapter->hena = IAVF_DEFAULT_RSS_HENA;
1316
1317                wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1318                wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1319        }
1320
1321        iavf_fill_rss_lut(adapter);
1322        netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1323        ret = iavf_config_rss(adapter);
1324
1325        return ret;
1326}
1327
1328/**
1329 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1330 * @adapter: board private structure to initialize
1331 *
1332 * We allocate one q_vector per queue interrupt.  If allocation fails we
1333 * return -ENOMEM.
1334 **/
1335static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1336{
1337        int q_idx = 0, num_q_vectors;
1338        struct iavf_q_vector *q_vector;
1339
1340        num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1341        adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1342                                     GFP_KERNEL);
1343        if (!adapter->q_vectors)
1344                return -ENOMEM;
1345
1346        for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1347                q_vector = &adapter->q_vectors[q_idx];
1348                q_vector->adapter = adapter;
1349                q_vector->vsi = &adapter->vsi;
1350                q_vector->v_idx = q_idx;
1351                q_vector->reg_idx = q_idx;
1352                cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1353                netif_napi_add(adapter->netdev, &q_vector->napi,
1354                               iavf_napi_poll, NAPI_POLL_WEIGHT);
1355        }
1356
1357        return 0;
1358}
1359
1360/**
1361 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1362 * @adapter: board private structure to initialize
1363 *
1364 * This function frees the memory allocated to the q_vectors.  In addition if
1365 * NAPI is enabled it will delete any references to the NAPI struct prior
1366 * to freeing the q_vector.
1367 **/
1368static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1369{
1370        int q_idx, num_q_vectors;
1371        int napi_vectors;
1372
1373        if (!adapter->q_vectors)
1374                return;
1375
1376        num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1377        napi_vectors = adapter->num_active_queues;
1378
1379        for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1380                struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1381
1382                if (q_idx < napi_vectors)
1383                        netif_napi_del(&q_vector->napi);
1384        }
1385        kfree(adapter->q_vectors);
1386        adapter->q_vectors = NULL;
1387}
1388
1389/**
1390 * iavf_reset_interrupt_capability - Reset MSIX setup
1391 * @adapter: board private structure
1392 *
1393 **/
1394void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1395{
1396        if (!adapter->msix_entries)
1397                return;
1398
1399        pci_disable_msix(adapter->pdev);
1400        kfree(adapter->msix_entries);
1401        adapter->msix_entries = NULL;
1402}
1403
1404/**
1405 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1406 * @adapter: board private structure to initialize
1407 *
1408 **/
1409int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1410{
1411        int err;
1412
1413        err = iavf_alloc_queues(adapter);
1414        if (err) {
1415                dev_err(&adapter->pdev->dev,
1416                        "Unable to allocate memory for queues\n");
1417                goto err_alloc_queues;
1418        }
1419
1420        rtnl_lock();
1421        err = iavf_set_interrupt_capability(adapter);
1422        rtnl_unlock();
1423        if (err) {
1424                dev_err(&adapter->pdev->dev,
1425                        "Unable to setup interrupt capabilities\n");
1426                goto err_set_interrupt;
1427        }
1428
1429        err = iavf_alloc_q_vectors(adapter);
1430        if (err) {
1431                dev_err(&adapter->pdev->dev,
1432                        "Unable to allocate memory for queue vectors\n");
1433                goto err_alloc_q_vectors;
1434        }
1435
1436        /* If we've made it so far while ADq flag being ON, then we haven't
1437         * bailed out anywhere in middle. And ADq isn't just enabled but actual
1438         * resources have been allocated in the reset path.
1439         * Now we can truly claim that ADq is enabled.
1440         */
1441        if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1442            adapter->num_tc)
1443                dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1444                         adapter->num_tc);
1445
1446        dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1447                 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1448                 adapter->num_active_queues);
1449
1450        return 0;
1451err_alloc_q_vectors:
1452        iavf_reset_interrupt_capability(adapter);
1453err_set_interrupt:
1454        iavf_free_queues(adapter);
1455err_alloc_queues:
1456        return err;
1457}
1458
1459/**
1460 * iavf_free_rss - Free memory used by RSS structs
1461 * @adapter: board private structure
1462 **/
1463static void iavf_free_rss(struct iavf_adapter *adapter)
1464{
1465        kfree(adapter->rss_key);
1466        adapter->rss_key = NULL;
1467
1468        kfree(adapter->rss_lut);
1469        adapter->rss_lut = NULL;
1470}
1471
1472/**
1473 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1474 * @adapter: board private structure
1475 *
1476 * Returns 0 on success, negative on failure
1477 **/
1478static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1479{
1480        struct net_device *netdev = adapter->netdev;
1481        int err;
1482
1483        if (netif_running(netdev))
1484                iavf_free_traffic_irqs(adapter);
1485        iavf_free_misc_irq(adapter);
1486        iavf_reset_interrupt_capability(adapter);
1487        iavf_free_q_vectors(adapter);
1488        iavf_free_queues(adapter);
1489
1490        err =  iavf_init_interrupt_scheme(adapter);
1491        if (err)
1492                goto err;
1493
1494        netif_tx_stop_all_queues(netdev);
1495
1496        err = iavf_request_misc_irq(adapter);
1497        if (err)
1498                goto err;
1499
1500        set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1501
1502        iavf_map_rings_to_vectors(adapter);
1503
1504        if (RSS_AQ(adapter))
1505                adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1506        else
1507                err = iavf_init_rss(adapter);
1508err:
1509        return err;
1510}
1511
1512/**
1513 * iavf_process_aq_command - process aq_required flags
1514 * and sends aq command
1515 * @adapter: pointer to iavf adapter structure
1516 *
1517 * Returns 0 on success
1518 * Returns error code if no command was sent
1519 * or error code if the command failed.
1520 **/
1521static int iavf_process_aq_command(struct iavf_adapter *adapter)
1522{
1523        if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1524                return iavf_send_vf_config_msg(adapter);
1525        if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1526                iavf_disable_queues(adapter);
1527                return 0;
1528        }
1529
1530        if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1531                iavf_map_queues(adapter);
1532                return 0;
1533        }
1534
1535        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1536                iavf_add_ether_addrs(adapter);
1537                return 0;
1538        }
1539
1540        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1541                iavf_add_vlans(adapter);
1542                return 0;
1543        }
1544
1545        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1546                iavf_del_ether_addrs(adapter);
1547                return 0;
1548        }
1549
1550        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1551                iavf_del_vlans(adapter);
1552                return 0;
1553        }
1554
1555        if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1556                iavf_enable_vlan_stripping(adapter);
1557                return 0;
1558        }
1559
1560        if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1561                iavf_disable_vlan_stripping(adapter);
1562                return 0;
1563        }
1564
1565        if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1566                iavf_configure_queues(adapter);
1567                return 0;
1568        }
1569
1570        if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1571                iavf_enable_queues(adapter);
1572                return 0;
1573        }
1574
1575        if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1576                /* This message goes straight to the firmware, not the
1577                 * PF, so we don't have to set current_op as we will
1578                 * not get a response through the ARQ.
1579                 */
1580                adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1581                return 0;
1582        }
1583        if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1584                iavf_get_hena(adapter);
1585                return 0;
1586        }
1587        if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1588                iavf_set_hena(adapter);
1589                return 0;
1590        }
1591        if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1592                iavf_set_rss_key(adapter);
1593                return 0;
1594        }
1595        if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1596                iavf_set_rss_lut(adapter);
1597                return 0;
1598        }
1599
1600        if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1601                iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1602                                       FLAG_VF_MULTICAST_PROMISC);
1603                return 0;
1604        }
1605
1606        if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1607                iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1608                return 0;
1609        }
1610
1611        if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1612            (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613                iavf_set_promiscuous(adapter, 0);
1614                return 0;
1615        }
1616
1617        if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618                iavf_enable_channels(adapter);
1619                return 0;
1620        }
1621
1622        if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623                iavf_disable_channels(adapter);
1624                return 0;
1625        }
1626        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627                iavf_add_cloud_filter(adapter);
1628                return 0;
1629        }
1630
1631        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632                iavf_del_cloud_filter(adapter);
1633                return 0;
1634        }
1635        if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636                iavf_del_cloud_filter(adapter);
1637                return 0;
1638        }
1639        if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640                iavf_add_cloud_filter(adapter);
1641                return 0;
1642        }
1643        return -EAGAIN;
1644}
1645
1646/**
1647 * iavf_startup - first step of driver startup
1648 * @adapter: board private structure
1649 *
1650 * Function process __IAVF_STARTUP driver state.
1651 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652 * when fails it returns -EAGAIN
1653 **/
1654static int iavf_startup(struct iavf_adapter *adapter)
1655{
1656        struct pci_dev *pdev = adapter->pdev;
1657        struct iavf_hw *hw = &adapter->hw;
1658        int err;
1659
1660        WARN_ON(adapter->state != __IAVF_STARTUP);
1661
1662        /* driver loaded, probe complete */
1663        adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664        adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665        err = iavf_set_mac_type(hw);
1666        if (err) {
1667                dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668                goto err;
1669        }
1670
1671        err = iavf_check_reset_complete(hw);
1672        if (err) {
1673                dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674                         err);
1675                goto err;
1676        }
1677        hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678        hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679        hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680        hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681
1682        err = iavf_init_adminq(hw);
1683        if (err) {
1684                dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1685                goto err;
1686        }
1687        err = iavf_send_api_ver(adapter);
1688        if (err) {
1689                dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690                iavf_shutdown_adminq(hw);
1691                goto err;
1692        }
1693        adapter->state = __IAVF_INIT_VERSION_CHECK;
1694err:
1695        return err;
1696}
1697
1698/**
1699 * iavf_init_version_check - second step of driver startup
1700 * @adapter: board private structure
1701 *
1702 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704 * when fails it returns -EAGAIN
1705 **/
1706static int iavf_init_version_check(struct iavf_adapter *adapter)
1707{
1708        struct pci_dev *pdev = adapter->pdev;
1709        struct iavf_hw *hw = &adapter->hw;
1710        int err = -EAGAIN;
1711
1712        WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713
1714        if (!iavf_asq_done(hw)) {
1715                dev_err(&pdev->dev, "Admin queue command never completed\n");
1716                iavf_shutdown_adminq(hw);
1717                adapter->state = __IAVF_STARTUP;
1718                goto err;
1719        }
1720
1721        /* aq msg sent, awaiting reply */
1722        err = iavf_verify_api_ver(adapter);
1723        if (err) {
1724                if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725                        err = iavf_send_api_ver(adapter);
1726                else
1727                        dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728                                adapter->pf_version.major,
1729                                adapter->pf_version.minor,
1730                                VIRTCHNL_VERSION_MAJOR,
1731                                VIRTCHNL_VERSION_MINOR);
1732                goto err;
1733        }
1734        err = iavf_send_vf_config_msg(adapter);
1735        if (err) {
1736                dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737                        err);
1738                goto err;
1739        }
1740        adapter->state = __IAVF_INIT_GET_RESOURCES;
1741
1742err:
1743        return err;
1744}
1745
1746/**
1747 * iavf_init_get_resources - third step of driver startup
1748 * @adapter: board private structure
1749 *
1750 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1751 * finishes driver initialization procedure.
1752 * When success the state is changed to __IAVF_DOWN
1753 * when fails it returns -EAGAIN
1754 **/
1755static int iavf_init_get_resources(struct iavf_adapter *adapter)
1756{
1757        struct net_device *netdev = adapter->netdev;
1758        struct pci_dev *pdev = adapter->pdev;
1759        struct iavf_hw *hw = &adapter->hw;
1760        int err = 0, bufsz;
1761
1762        WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1763        /* aq msg sent, awaiting reply */
1764        if (!adapter->vf_res) {
1765                bufsz = sizeof(struct virtchnl_vf_resource) +
1766                        (IAVF_MAX_VF_VSI *
1767                        sizeof(struct virtchnl_vsi_resource));
1768                adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1769                if (!adapter->vf_res)
1770                        goto err;
1771        }
1772        err = iavf_get_vf_config(adapter);
1773        if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1774                err = iavf_send_vf_config_msg(adapter);
1775                goto err;
1776        } else if (err == IAVF_ERR_PARAM) {
1777                /* We only get ERR_PARAM if the device is in a very bad
1778                 * state or if we've been disabled for previous bad
1779                 * behavior. Either way, we're done now.
1780                 */
1781                iavf_shutdown_adminq(hw);
1782                dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1783                return 0;
1784        }
1785        if (err) {
1786                dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1787                goto err_alloc;
1788        }
1789
1790        if (iavf_process_config(adapter))
1791                goto err_alloc;
1792        adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793
1794        adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795
1796        netdev->netdev_ops = &iavf_netdev_ops;
1797        iavf_set_ethtool_ops(netdev);
1798        netdev->watchdog_timeo = 5 * HZ;
1799
1800        /* MTU range: 68 - 9710 */
1801        netdev->min_mtu = ETH_MIN_MTU;
1802        netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803
1804        if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805                dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806                         adapter->hw.mac.addr);
1807                eth_hw_addr_random(netdev);
1808                ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809        } else {
1810                ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811                ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812        }
1813
1814        adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815        adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816        err = iavf_init_interrupt_scheme(adapter);
1817        if (err)
1818                goto err_sw_init;
1819        iavf_map_rings_to_vectors(adapter);
1820        if (adapter->vf_res->vf_cap_flags &
1821                VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822                adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823
1824        err = iavf_request_misc_irq(adapter);
1825        if (err)
1826                goto err_sw_init;
1827
1828        netif_carrier_off(netdev);
1829        adapter->link_up = false;
1830
1831        /* set the semaphore to prevent any callbacks after device registration
1832         * up to time when state of driver will be set to __IAVF_DOWN
1833         */
1834        rtnl_lock();
1835        if (!adapter->netdev_registered) {
1836                err = register_netdevice(netdev);
1837                if (err) {
1838                        rtnl_unlock();
1839                        goto err_register;
1840                }
1841        }
1842
1843        adapter->netdev_registered = true;
1844
1845        netif_tx_stop_all_queues(netdev);
1846        if (CLIENT_ALLOWED(adapter)) {
1847                err = iavf_lan_add_device(adapter);
1848                if (err) {
1849                        rtnl_unlock();
1850                        dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1851                                 err);
1852                }
1853        }
1854        dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1855        if (netdev->features & NETIF_F_GRO)
1856                dev_info(&pdev->dev, "GRO is enabled\n");
1857
1858        adapter->state = __IAVF_DOWN;
1859        set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1860        rtnl_unlock();
1861
1862        iavf_misc_irq_enable(adapter);
1863        wake_up(&adapter->down_waitqueue);
1864
1865        adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1866        adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1867        if (!adapter->rss_key || !adapter->rss_lut)
1868                goto err_mem;
1869        if (RSS_AQ(adapter))
1870                adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871        else
1872                iavf_init_rss(adapter);
1873
1874        return err;
1875err_mem:
1876        iavf_free_rss(adapter);
1877err_register:
1878        iavf_free_misc_irq(adapter);
1879err_sw_init:
1880        iavf_reset_interrupt_capability(adapter);
1881err_alloc:
1882        kfree(adapter->vf_res);
1883        adapter->vf_res = NULL;
1884err:
1885        return err;
1886}
1887
1888/**
1889 * iavf_watchdog_task - Periodic call-back task
1890 * @work: pointer to work_struct
1891 **/
1892static void iavf_watchdog_task(struct work_struct *work)
1893{
1894        struct iavf_adapter *adapter = container_of(work,
1895                                                    struct iavf_adapter,
1896                                                    watchdog_task.work);
1897        struct iavf_hw *hw = &adapter->hw;
1898        u32 reg_val;
1899
1900        if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1901                goto restart_watchdog;
1902
1903        if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904                adapter->state = __IAVF_COMM_FAILED;
1905
1906        switch (adapter->state) {
1907        case __IAVF_COMM_FAILED:
1908                reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909                          IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910                if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911                    reg_val == VIRTCHNL_VFR_COMPLETED) {
1912                        /* A chance for redemption! */
1913                        dev_err(&adapter->pdev->dev,
1914                                "Hardware came out of reset. Attempting reinit.\n");
1915                        adapter->state = __IAVF_STARTUP;
1916                        adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917                        queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918                        clear_bit(__IAVF_IN_CRITICAL_TASK,
1919                                  &adapter->crit_section);
1920                        /* Don't reschedule the watchdog, since we've restarted
1921                         * the init task. When init_task contacts the PF and
1922                         * gets everything set up again, it'll restart the
1923                         * watchdog for us. Down, boy. Sit. Stay. Woof.
1924                         */
1925                        return;
1926                }
1927                adapter->aq_required = 0;
1928                adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929                clear_bit(__IAVF_IN_CRITICAL_TASK,
1930                          &adapter->crit_section);
1931                queue_delayed_work(iavf_wq,
1932                                   &adapter->watchdog_task,
1933                                   msecs_to_jiffies(10));
1934                goto watchdog_done;
1935        case __IAVF_RESETTING:
1936                clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937                queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1938                return;
1939        case __IAVF_DOWN:
1940        case __IAVF_DOWN_PENDING:
1941        case __IAVF_TESTING:
1942        case __IAVF_RUNNING:
1943                if (adapter->current_op) {
1944                        if (!iavf_asq_done(hw)) {
1945                                dev_dbg(&adapter->pdev->dev,
1946                                        "Admin queue timeout\n");
1947                                iavf_send_api_ver(adapter);
1948                        }
1949                } else {
1950                        if (!iavf_process_aq_command(adapter) &&
1951                            adapter->state == __IAVF_RUNNING)
1952                                iavf_request_stats(adapter);
1953                }
1954                break;
1955        case __IAVF_REMOVE:
1956                clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1957                return;
1958        default:
1959                goto restart_watchdog;
1960        }
1961
1962                /* check for hw reset */
1963        reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1964        if (!reg_val) {
1965                adapter->state = __IAVF_RESETTING;
1966                adapter->flags |= IAVF_FLAG_RESET_PENDING;
1967                adapter->aq_required = 0;
1968                adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1969                dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1970                queue_work(iavf_wq, &adapter->reset_task);
1971                goto watchdog_done;
1972        }
1973
1974        schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1975watchdog_done:
1976        if (adapter->state == __IAVF_RUNNING ||
1977            adapter->state == __IAVF_COMM_FAILED)
1978                iavf_detect_recover_hung(&adapter->vsi);
1979        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1980restart_watchdog:
1981        if (adapter->aq_required)
1982                queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1983                                   msecs_to_jiffies(20));
1984        else
1985                queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1986        queue_work(iavf_wq, &adapter->adminq_task);
1987}
1988
1989static void iavf_disable_vf(struct iavf_adapter *adapter)
1990{
1991        struct iavf_mac_filter *f, *ftmp;
1992        struct iavf_vlan_filter *fv, *fvtmp;
1993        struct iavf_cloud_filter *cf, *cftmp;
1994
1995        adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1996
1997        /* We don't use netif_running() because it may be true prior to
1998         * ndo_open() returning, so we can't assume it means all our open
1999         * tasks have finished, since we're not holding the rtnl_lock here.
2000         */
2001        if (adapter->state == __IAVF_RUNNING) {
2002                set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2003                netif_carrier_off(adapter->netdev);
2004                netif_tx_disable(adapter->netdev);
2005                adapter->link_up = false;
2006                iavf_napi_disable_all(adapter);
2007                iavf_irq_disable(adapter);
2008                iavf_free_traffic_irqs(adapter);
2009                iavf_free_all_tx_resources(adapter);
2010                iavf_free_all_rx_resources(adapter);
2011        }
2012
2013        spin_lock_bh(&adapter->mac_vlan_list_lock);
2014
2015        /* Delete all of the filters */
2016        list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2017                list_del(&f->list);
2018                kfree(f);
2019        }
2020
2021        list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2022                list_del(&fv->list);
2023                kfree(fv);
2024        }
2025
2026        spin_unlock_bh(&adapter->mac_vlan_list_lock);
2027
2028        spin_lock_bh(&adapter->cloud_filter_list_lock);
2029        list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2030                list_del(&cf->list);
2031                kfree(cf);
2032                adapter->num_cloud_filters--;
2033        }
2034        spin_unlock_bh(&adapter->cloud_filter_list_lock);
2035
2036        iavf_free_misc_irq(adapter);
2037        iavf_reset_interrupt_capability(adapter);
2038        iavf_free_queues(adapter);
2039        iavf_free_q_vectors(adapter);
2040        kfree(adapter->vf_res);
2041        iavf_shutdown_adminq(&adapter->hw);
2042        adapter->netdev->flags &= ~IFF_UP;
2043        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2044        adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2045        adapter->state = __IAVF_DOWN;
2046        wake_up(&adapter->down_waitqueue);
2047        dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2048}
2049
2050#define IAVF_RESET_WAIT_MS 10
2051#define IAVF_RESET_WAIT_COUNT 500
2052/**
2053 * iavf_reset_task - Call-back task to handle hardware reset
2054 * @work: pointer to work_struct
2055 *
2056 * During reset we need to shut down and reinitialize the admin queue
2057 * before we can use it to communicate with the PF again. We also clear
2058 * and reinit the rings because that context is lost as well.
2059 **/
2060static void iavf_reset_task(struct work_struct *work)
2061{
2062        struct iavf_adapter *adapter = container_of(work,
2063                                                      struct iavf_adapter,
2064                                                      reset_task);
2065        struct virtchnl_vf_resource *vfres = adapter->vf_res;
2066        struct net_device *netdev = adapter->netdev;
2067        struct iavf_hw *hw = &adapter->hw;
2068        struct iavf_vlan_filter *vlf;
2069        struct iavf_cloud_filter *cf;
2070        struct iavf_mac_filter *f;
2071        u32 reg_val;
2072        int i = 0, err;
2073        bool running;
2074
2075        /* When device is being removed it doesn't make sense to run the reset
2076         * task, just return in such a case.
2077         */
2078        if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2079                return;
2080
2081        while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2082                                &adapter->crit_section))
2083                usleep_range(500, 1000);
2084        if (CLIENT_ENABLED(adapter)) {
2085                adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2086                                    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2087                                    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2088                                    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2089                cancel_delayed_work_sync(&adapter->client_task);
2090                iavf_notify_client_close(&adapter->vsi, true);
2091        }
2092        iavf_misc_irq_disable(adapter);
2093        if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2094                adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2095                /* Restart the AQ here. If we have been reset but didn't
2096                 * detect it, or if the PF had to reinit, our AQ will be hosed.
2097                 */
2098                iavf_shutdown_adminq(hw);
2099                iavf_init_adminq(hw);
2100                iavf_request_reset(adapter);
2101        }
2102        adapter->flags |= IAVF_FLAG_RESET_PENDING;
2103
2104        /* poll until we see the reset actually happen */
2105        for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2106                reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2107                          IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2108                if (!reg_val)
2109                        break;
2110                usleep_range(5000, 10000);
2111        }
2112        if (i == IAVF_RESET_WAIT_COUNT) {
2113                dev_info(&adapter->pdev->dev, "Never saw reset\n");
2114                goto continue_reset; /* act like the reset happened */
2115        }
2116
2117        /* wait until the reset is complete and the PF is responding to us */
2118        for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2119                /* sleep first to make sure a minimum wait time is met */
2120                msleep(IAVF_RESET_WAIT_MS);
2121
2122                reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2123                          IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2124                if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2125                        break;
2126        }
2127
2128        pci_set_master(adapter->pdev);
2129
2130        if (i == IAVF_RESET_WAIT_COUNT) {
2131                dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2132                        reg_val);
2133                iavf_disable_vf(adapter);
2134                clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2135                return; /* Do not attempt to reinit. It's dead, Jim. */
2136        }
2137
2138continue_reset:
2139        /* We don't use netif_running() because it may be true prior to
2140         * ndo_open() returning, so we can't assume it means all our open
2141         * tasks have finished, since we're not holding the rtnl_lock here.
2142         */
2143        running = ((adapter->state == __IAVF_RUNNING) ||
2144                   (adapter->state == __IAVF_RESETTING));
2145
2146        if (running) {
2147                netif_carrier_off(netdev);
2148                netif_tx_stop_all_queues(netdev);
2149                adapter->link_up = false;
2150                iavf_napi_disable_all(adapter);
2151        }
2152        iavf_irq_disable(adapter);
2153
2154        adapter->state = __IAVF_RESETTING;
2155        adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2156
2157        /* free the Tx/Rx rings and descriptors, might be better to just
2158         * re-use them sometime in the future
2159         */
2160        iavf_free_all_rx_resources(adapter);
2161        iavf_free_all_tx_resources(adapter);
2162
2163        adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2164        /* kill and reinit the admin queue */
2165        iavf_shutdown_adminq(hw);
2166        adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2167        err = iavf_init_adminq(hw);
2168        if (err)
2169                dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2170                         err);
2171        adapter->aq_required = 0;
2172
2173        if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2174                err = iavf_reinit_interrupt_scheme(adapter);
2175                if (err)
2176                        goto reset_err;
2177        }
2178
2179        adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2180        adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2181
2182        spin_lock_bh(&adapter->mac_vlan_list_lock);
2183
2184        /* re-add all MAC filters */
2185        list_for_each_entry(f, &adapter->mac_filter_list, list) {
2186                f->add = true;
2187        }
2188        /* re-add all VLAN filters */
2189        list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2190                vlf->add = true;
2191        }
2192
2193        spin_unlock_bh(&adapter->mac_vlan_list_lock);
2194
2195        /* check if TCs are running and re-add all cloud filters */
2196        spin_lock_bh(&adapter->cloud_filter_list_lock);
2197        if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2198            adapter->num_tc) {
2199                list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2200                        cf->add = true;
2201                }
2202        }
2203        spin_unlock_bh(&adapter->cloud_filter_list_lock);
2204
2205        adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2206        adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2207        adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2208        iavf_misc_irq_enable(adapter);
2209
2210        mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2211
2212        /* We were running when the reset started, so we need to restore some
2213         * state here.
2214         */
2215        if (running) {
2216                /* allocate transmit descriptors */
2217                err = iavf_setup_all_tx_resources(adapter);
2218                if (err)
2219                        goto reset_err;
2220
2221                /* allocate receive descriptors */
2222                err = iavf_setup_all_rx_resources(adapter);
2223                if (err)
2224                        goto reset_err;
2225
2226                if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2227                        err = iavf_request_traffic_irqs(adapter, netdev->name);
2228                        if (err)
2229                                goto reset_err;
2230
2231                        adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2232                }
2233
2234                iavf_configure(adapter);
2235
2236                iavf_up_complete(adapter);
2237
2238                iavf_irq_enable(adapter, true);
2239        } else {
2240                adapter->state = __IAVF_DOWN;
2241                wake_up(&adapter->down_waitqueue);
2242        }
2243        clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2244        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2245
2246        return;
2247reset_err:
2248        clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2249        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2250        dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2251        iavf_close(netdev);
2252}
2253
2254/**
2255 * iavf_adminq_task - worker thread to clean the admin queue
2256 * @work: pointer to work_struct containing our data
2257 **/
2258static void iavf_adminq_task(struct work_struct *work)
2259{
2260        struct iavf_adapter *adapter =
2261                container_of(work, struct iavf_adapter, adminq_task);
2262        struct iavf_hw *hw = &adapter->hw;
2263        struct iavf_arq_event_info event;
2264        enum virtchnl_ops v_op;
2265        enum iavf_status ret, v_ret;
2266        u32 val, oldval;
2267        u16 pending;
2268
2269        if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2270                goto out;
2271
2272        event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2273        event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2274        if (!event.msg_buf)
2275                goto out;
2276
2277        do {
2278                ret = iavf_clean_arq_element(hw, &event, &pending);
2279                v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2280                v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2281
2282                if (ret || !v_op)
2283                        break; /* No event to process or error cleaning ARQ */
2284
2285                iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2286                                         event.msg_len);
2287                if (pending != 0)
2288                        memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2289        } while (pending);
2290
2291        if ((adapter->flags &
2292             (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2293            adapter->state == __IAVF_RESETTING)
2294                goto freedom;
2295
2296        /* check for error indications */
2297        val = rd32(hw, hw->aq.arq.len);
2298        if (val == 0xdeadbeef) /* indicates device in reset */
2299                goto freedom;
2300        oldval = val;
2301        if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2302                dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2303                val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2304        }
2305        if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2306                dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2307                val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2308        }
2309        if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2310                dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2311                val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2312        }
2313        if (oldval != val)
2314                wr32(hw, hw->aq.arq.len, val);
2315
2316        val = rd32(hw, hw->aq.asq.len);
2317        oldval = val;
2318        if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2319                dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2320                val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2321        }
2322        if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2323                dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2324                val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2325        }
2326        if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2327                dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2328                val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2329        }
2330        if (oldval != val)
2331                wr32(hw, hw->aq.asq.len, val);
2332
2333freedom:
2334        kfree(event.msg_buf);
2335out:
2336        /* re-enable Admin queue interrupt cause */
2337        iavf_misc_irq_enable(adapter);
2338}
2339
2340/**
2341 * iavf_client_task - worker thread to perform client work
2342 * @work: pointer to work_struct containing our data
2343 *
2344 * This task handles client interactions. Because client calls can be
2345 * reentrant, we can't handle them in the watchdog.
2346 **/
2347static void iavf_client_task(struct work_struct *work)
2348{
2349        struct iavf_adapter *adapter =
2350                container_of(work, struct iavf_adapter, client_task.work);
2351
2352        /* If we can't get the client bit, just give up. We'll be rescheduled
2353         * later.
2354         */
2355
2356        if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2357                return;
2358
2359        if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2360                iavf_client_subtask(adapter);
2361                adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2362                goto out;
2363        }
2364        if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2365                iavf_notify_client_l2_params(&adapter->vsi);
2366                adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2367                goto out;
2368        }
2369        if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2370                iavf_notify_client_close(&adapter->vsi, false);
2371                adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2372                goto out;
2373        }
2374        if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2375                iavf_notify_client_open(&adapter->vsi);
2376                adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2377        }
2378out:
2379        clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2380}
2381
2382/**
2383 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2384 * @adapter: board private structure
2385 *
2386 * Free all transmit software resources
2387 **/
2388void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2389{
2390        int i;
2391
2392        if (!adapter->tx_rings)
2393                return;
2394
2395        for (i = 0; i < adapter->num_active_queues; i++)
2396                if (adapter->tx_rings[i].desc)
2397                        iavf_free_tx_resources(&adapter->tx_rings[i]);
2398}
2399
2400/**
2401 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2402 * @adapter: board private structure
2403 *
2404 * If this function returns with an error, then it's possible one or
2405 * more of the rings is populated (while the rest are not).  It is the
2406 * callers duty to clean those orphaned rings.
2407 *
2408 * Return 0 on success, negative on failure
2409 **/
2410static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2411{
2412        int i, err = 0;
2413
2414        for (i = 0; i < adapter->num_active_queues; i++) {
2415                adapter->tx_rings[i].count = adapter->tx_desc_count;
2416                err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2417                if (!err)
2418                        continue;
2419                dev_err(&adapter->pdev->dev,
2420                        "Allocation for Tx Queue %u failed\n", i);
2421                break;
2422        }
2423
2424        return err;
2425}
2426
2427/**
2428 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2429 * @adapter: board private structure
2430 *
2431 * If this function returns with an error, then it's possible one or
2432 * more of the rings is populated (while the rest are not).  It is the
2433 * callers duty to clean those orphaned rings.
2434 *
2435 * Return 0 on success, negative on failure
2436 **/
2437static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2438{
2439        int i, err = 0;
2440
2441        for (i = 0; i < adapter->num_active_queues; i++) {
2442                adapter->rx_rings[i].count = adapter->rx_desc_count;
2443                err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2444                if (!err)
2445                        continue;
2446                dev_err(&adapter->pdev->dev,
2447                        "Allocation for Rx Queue %u failed\n", i);
2448                break;
2449        }
2450        return err;
2451}
2452
2453/**
2454 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2455 * @adapter: board private structure
2456 *
2457 * Free all receive software resources
2458 **/
2459void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2460{
2461        int i;
2462
2463        if (!adapter->rx_rings)
2464                return;
2465
2466        for (i = 0; i < adapter->num_active_queues; i++)
2467                if (adapter->rx_rings[i].desc)
2468                        iavf_free_rx_resources(&adapter->rx_rings[i]);
2469}
2470
2471/**
2472 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2473 * @adapter: board private structure
2474 * @max_tx_rate: max Tx bw for a tc
2475 **/
2476static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2477                                      u64 max_tx_rate)
2478{
2479        int speed = 0, ret = 0;
2480
2481        switch (adapter->link_speed) {
2482        case IAVF_LINK_SPEED_40GB:
2483                speed = 40000;
2484                break;
2485        case IAVF_LINK_SPEED_25GB:
2486                speed = 25000;
2487                break;
2488        case IAVF_LINK_SPEED_20GB:
2489                speed = 20000;
2490                break;
2491        case IAVF_LINK_SPEED_10GB:
2492                speed = 10000;
2493                break;
2494        case IAVF_LINK_SPEED_1GB:
2495                speed = 1000;
2496                break;
2497        case IAVF_LINK_SPEED_100MB:
2498                speed = 100;
2499                break;
2500        default:
2501                break;
2502        }
2503
2504        if (max_tx_rate > speed) {
2505                dev_err(&adapter->pdev->dev,
2506                        "Invalid tx rate specified\n");
2507                ret = -EINVAL;
2508        }
2509
2510        return ret;
2511}
2512
2513/**
2514 * iavf_validate_channel_config - validate queue mapping info
2515 * @adapter: board private structure
2516 * @mqprio_qopt: queue parameters
2517 *
2518 * This function validates if the config provided by the user to
2519 * configure queue channels is valid or not. Returns 0 on a valid
2520 * config.
2521 **/
2522static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2523                                   struct tc_mqprio_qopt_offload *mqprio_qopt)
2524{
2525        u64 total_max_rate = 0;
2526        int i, num_qps = 0;
2527        u64 tx_rate = 0;
2528        int ret = 0;
2529
2530        if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2531            mqprio_qopt->qopt.num_tc < 1)
2532                return -EINVAL;
2533
2534        for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2535                if (!mqprio_qopt->qopt.count[i] ||
2536                    mqprio_qopt->qopt.offset[i] != num_qps)
2537                        return -EINVAL;
2538                if (mqprio_qopt->min_rate[i]) {
2539                        dev_err(&adapter->pdev->dev,
2540                                "Invalid min tx rate (greater than 0) specified\n");
2541                        return -EINVAL;
2542                }
2543                /*convert to Mbps */
2544                tx_rate = div_u64(mqprio_qopt->max_rate[i],
2545                                  IAVF_MBPS_DIVISOR);
2546                total_max_rate += tx_rate;
2547                num_qps += mqprio_qopt->qopt.count[i];
2548        }
2549        if (num_qps > IAVF_MAX_REQ_QUEUES)
2550                return -EINVAL;
2551
2552        ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2553        return ret;
2554}
2555
2556/**
2557 * iavf_del_all_cloud_filters - delete all cloud filters
2558 * on the traffic classes
2559 **/
2560static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2561{
2562        struct iavf_cloud_filter *cf, *cftmp;
2563
2564        spin_lock_bh(&adapter->cloud_filter_list_lock);
2565        list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2566                                 list) {
2567                list_del(&cf->list);
2568                kfree(cf);
2569                adapter->num_cloud_filters--;
2570        }
2571        spin_unlock_bh(&adapter->cloud_filter_list_lock);
2572}
2573
2574/**
2575 * __iavf_setup_tc - configure multiple traffic classes
2576 * @netdev: network interface device structure
2577 * @type_date: tc offload data
2578 *
2579 * This function processes the config information provided by the
2580 * user to configure traffic classes/queue channels and packages the
2581 * information to request the PF to setup traffic classes.
2582 *
2583 * Returns 0 on success.
2584 **/
2585static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2586{
2587        struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2588        struct iavf_adapter *adapter = netdev_priv(netdev);
2589        struct virtchnl_vf_resource *vfres = adapter->vf_res;
2590        u8 num_tc = 0, total_qps = 0;
2591        int ret = 0, netdev_tc = 0;
2592        u64 max_tx_rate;
2593        u16 mode;
2594        int i;
2595
2596        num_tc = mqprio_qopt->qopt.num_tc;
2597        mode = mqprio_qopt->mode;
2598
2599        /* delete queue_channel */
2600        if (!mqprio_qopt->qopt.hw) {
2601                if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2602                        /* reset the tc configuration */
2603                        netdev_reset_tc(netdev);
2604                        adapter->num_tc = 0;
2605                        netif_tx_stop_all_queues(netdev);
2606                        netif_tx_disable(netdev);
2607                        iavf_del_all_cloud_filters(adapter);
2608                        adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2609                        goto exit;
2610                } else {
2611                        return -EINVAL;
2612                }
2613        }
2614
2615        /* add queue channel */
2616        if (mode == TC_MQPRIO_MODE_CHANNEL) {
2617                if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2618                        dev_err(&adapter->pdev->dev, "ADq not supported\n");
2619                        return -EOPNOTSUPP;
2620                }
2621                if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2622                        dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2623                        return -EINVAL;
2624                }
2625
2626                ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2627                if (ret)
2628                        return ret;
2629                /* Return if same TC config is requested */
2630                if (adapter->num_tc == num_tc)
2631                        return 0;
2632                adapter->num_tc = num_tc;
2633
2634                for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2635                        if (i < num_tc) {
2636                                adapter->ch_config.ch_info[i].count =
2637                                        mqprio_qopt->qopt.count[i];
2638                                adapter->ch_config.ch_info[i].offset =
2639                                        mqprio_qopt->qopt.offset[i];
2640                                total_qps += mqprio_qopt->qopt.count[i];
2641                                max_tx_rate = mqprio_qopt->max_rate[i];
2642                                /* convert to Mbps */
2643                                max_tx_rate = div_u64(max_tx_rate,
2644                                                      IAVF_MBPS_DIVISOR);
2645                                adapter->ch_config.ch_info[i].max_tx_rate =
2646                                        max_tx_rate;
2647                        } else {
2648                                adapter->ch_config.ch_info[i].count = 1;
2649                                adapter->ch_config.ch_info[i].offset = 0;
2650                        }
2651                }
2652                adapter->ch_config.total_qps = total_qps;
2653                netif_tx_stop_all_queues(netdev);
2654                netif_tx_disable(netdev);
2655                adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2656                netdev_reset_tc(netdev);
2657                /* Report the tc mapping up the stack */
2658                netdev_set_num_tc(adapter->netdev, num_tc);
2659                for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2660                        u16 qcount = mqprio_qopt->qopt.count[i];
2661                        u16 qoffset = mqprio_qopt->qopt.offset[i];
2662
2663                        if (i < num_tc)
2664                                netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2665                                                    qoffset);
2666                }
2667        }
2668exit:
2669        return ret;
2670}
2671
2672/**
2673 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2674 * @adapter: board private structure
2675 * @cls_flower: pointer to struct flow_cls_offload
2676 * @filter: pointer to cloud filter structure
2677 */
2678static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2679                                 struct flow_cls_offload *f,
2680                                 struct iavf_cloud_filter *filter)
2681{
2682        struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2683        struct flow_dissector *dissector = rule->match.dissector;
2684        u16 n_proto_mask = 0;
2685        u16 n_proto_key = 0;
2686        u8 field_flags = 0;
2687        u16 addr_type = 0;
2688        u16 n_proto = 0;
2689        int i = 0;
2690        struct virtchnl_filter *vf = &filter->f;
2691
2692        if (dissector->used_keys &
2693            ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2694              BIT(FLOW_DISSECTOR_KEY_BASIC) |
2695              BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2696              BIT(FLOW_DISSECTOR_KEY_VLAN) |
2697              BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2698              BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2699              BIT(FLOW_DISSECTOR_KEY_PORTS) |
2700              BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2701                dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2702                        dissector->used_keys);
2703                return -EOPNOTSUPP;
2704        }
2705
2706        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2707                struct flow_match_enc_keyid match;
2708
2709                flow_rule_match_enc_keyid(rule, &match);
2710                if (match.mask->keyid != 0)
2711                        field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2712        }
2713
2714        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2715                struct flow_match_basic match;
2716
2717                flow_rule_match_basic(rule, &match);
2718                n_proto_key = ntohs(match.key->n_proto);
2719                n_proto_mask = ntohs(match.mask->n_proto);
2720
2721                if (n_proto_key == ETH_P_ALL) {
2722                        n_proto_key = 0;
2723                        n_proto_mask = 0;
2724                }
2725                n_proto = n_proto_key & n_proto_mask;
2726                if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2727                        return -EINVAL;
2728                if (n_proto == ETH_P_IPV6) {
2729                        /* specify flow type as TCP IPv6 */
2730                        vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2731                }
2732
2733                if (match.key->ip_proto != IPPROTO_TCP) {
2734                        dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2735                        return -EINVAL;
2736                }
2737        }
2738
2739        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2740                struct flow_match_eth_addrs match;
2741
2742                flow_rule_match_eth_addrs(rule, &match);
2743
2744                /* use is_broadcast and is_zero to check for all 0xf or 0 */
2745                if (!is_zero_ether_addr(match.mask->dst)) {
2746                        if (is_broadcast_ether_addr(match.mask->dst)) {
2747                                field_flags |= IAVF_CLOUD_FIELD_OMAC;
2748                        } else {
2749                                dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2750                                        match.mask->dst);
2751                                return IAVF_ERR_CONFIG;
2752                        }
2753                }
2754
2755                if (!is_zero_ether_addr(match.mask->src)) {
2756                        if (is_broadcast_ether_addr(match.mask->src)) {
2757                                field_flags |= IAVF_CLOUD_FIELD_IMAC;
2758                        } else {
2759                                dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2760                                        match.mask->src);
2761                                return IAVF_ERR_CONFIG;
2762                        }
2763                }
2764
2765                if (!is_zero_ether_addr(match.key->dst))
2766                        if (is_valid_ether_addr(match.key->dst) ||
2767                            is_multicast_ether_addr(match.key->dst)) {
2768                                /* set the mask if a valid dst_mac address */
2769                                for (i = 0; i < ETH_ALEN; i++)
2770                                        vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2771                                ether_addr_copy(vf->data.tcp_spec.dst_mac,
2772                                                match.key->dst);
2773                        }
2774
2775                if (!is_zero_ether_addr(match.key->src))
2776                        if (is_valid_ether_addr(match.key->src) ||
2777                            is_multicast_ether_addr(match.key->src)) {
2778                                /* set the mask if a valid dst_mac address */
2779                                for (i = 0; i < ETH_ALEN; i++)
2780                                        vf->mask.tcp_spec.src_mac[i] |= 0xff;
2781                                ether_addr_copy(vf->data.tcp_spec.src_mac,
2782                                                match.key->src);
2783                }
2784        }
2785
2786        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2787                struct flow_match_vlan match;
2788
2789                flow_rule_match_vlan(rule, &match);
2790                if (match.mask->vlan_id) {
2791                        if (match.mask->vlan_id == VLAN_VID_MASK) {
2792                                field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2793                        } else {
2794                                dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2795                                        match.mask->vlan_id);
2796                                return IAVF_ERR_CONFIG;
2797                        }
2798                }
2799                vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2800                vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2801        }
2802
2803        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2804                struct flow_match_control match;
2805
2806                flow_rule_match_control(rule, &match);
2807                addr_type = match.key->addr_type;
2808        }
2809
2810        if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2811                struct flow_match_ipv4_addrs match;
2812
2813                flow_rule_match_ipv4_addrs(rule, &match);
2814                if (match.mask->dst) {
2815                        if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2816                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2817                        } else {
2818                                dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2819                                        be32_to_cpu(match.mask->dst));
2820                                return IAVF_ERR_CONFIG;
2821                        }
2822                }
2823
2824                if (match.mask->src) {
2825                        if (match.mask->src == cpu_to_be32(0xffffffff)) {
2826                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2827                        } else {
2828                                dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2829                                        be32_to_cpu(match.mask->dst));
2830                                return IAVF_ERR_CONFIG;
2831                        }
2832                }
2833
2834                if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2835                        dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2836                        return IAVF_ERR_CONFIG;
2837                }
2838                if (match.key->dst) {
2839                        vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2840                        vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2841                }
2842                if (match.key->src) {
2843                        vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2844                        vf->data.tcp_spec.src_ip[0] = match.key->src;
2845                }
2846        }
2847
2848        if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2849                struct flow_match_ipv6_addrs match;
2850
2851                flow_rule_match_ipv6_addrs(rule, &match);
2852
2853                /* validate mask, make sure it is not IPV6_ADDR_ANY */
2854                if (ipv6_addr_any(&match.mask->dst)) {
2855                        dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2856                                IPV6_ADDR_ANY);
2857                        return IAVF_ERR_CONFIG;
2858                }
2859
2860                /* src and dest IPv6 address should not be LOOPBACK
2861                 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2862                 */
2863                if (ipv6_addr_loopback(&match.key->dst) ||
2864                    ipv6_addr_loopback(&match.key->src)) {
2865                        dev_err(&adapter->pdev->dev,
2866                                "ipv6 addr should not be loopback\n");
2867                        return IAVF_ERR_CONFIG;
2868                }
2869                if (!ipv6_addr_any(&match.mask->dst) ||
2870                    !ipv6_addr_any(&match.mask->src))
2871                        field_flags |= IAVF_CLOUD_FIELD_IIP;
2872
2873                for (i = 0; i < 4; i++)
2874                        vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2875                memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2876                       sizeof(vf->data.tcp_spec.dst_ip));
2877                for (i = 0; i < 4; i++)
2878                        vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2879                memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2880                       sizeof(vf->data.tcp_spec.src_ip));
2881        }
2882        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2883                struct flow_match_ports match;
2884
2885                flow_rule_match_ports(rule, &match);
2886                if (match.mask->src) {
2887                        if (match.mask->src == cpu_to_be16(0xffff)) {
2888                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2889                        } else {
2890                                dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2891                                        be16_to_cpu(match.mask->src));
2892                                return IAVF_ERR_CONFIG;
2893                        }
2894                }
2895
2896                if (match.mask->dst) {
2897                        if (match.mask->dst == cpu_to_be16(0xffff)) {
2898                                field_flags |= IAVF_CLOUD_FIELD_IIP;
2899                        } else {
2900                                dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2901                                        be16_to_cpu(match.mask->dst));
2902                                return IAVF_ERR_CONFIG;
2903                        }
2904                }
2905                if (match.key->dst) {
2906                        vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2907                        vf->data.tcp_spec.dst_port = match.key->dst;
2908                }
2909
2910                if (match.key->src) {
2911                        vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2912                        vf->data.tcp_spec.src_port = match.key->src;
2913                }
2914        }
2915        vf->field_flags = field_flags;
2916
2917        return 0;
2918}
2919
2920/**
2921 * iavf_handle_tclass - Forward to a traffic class on the device
2922 * @adapter: board private structure
2923 * @tc: traffic class index on the device
2924 * @filter: pointer to cloud filter structure
2925 */
2926static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2927                              struct iavf_cloud_filter *filter)
2928{
2929        if (tc == 0)
2930                return 0;
2931        if (tc < adapter->num_tc) {
2932                if (!filter->f.data.tcp_spec.dst_port) {
2933                        dev_err(&adapter->pdev->dev,
2934                                "Specify destination port to redirect to traffic class other than TC0\n");
2935                        return -EINVAL;
2936                }
2937        }
2938        /* redirect to a traffic class on the same device */
2939        filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2940        filter->f.action_meta = tc;
2941        return 0;
2942}
2943
2944/**
2945 * iavf_configure_clsflower - Add tc flower filters
2946 * @adapter: board private structure
2947 * @cls_flower: Pointer to struct flow_cls_offload
2948 */
2949static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2950                                    struct flow_cls_offload *cls_flower)
2951{
2952        int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2953        struct iavf_cloud_filter *filter = NULL;
2954        int err = -EINVAL, count = 50;
2955
2956        if (tc < 0) {
2957                dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2958                return -EINVAL;
2959        }
2960
2961        filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2962        if (!filter)
2963                return -ENOMEM;
2964
2965        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2966                                &adapter->crit_section)) {
2967                if (--count == 0)
2968                        goto err;
2969                udelay(1);
2970        }
2971
2972        filter->cookie = cls_flower->cookie;
2973
2974        /* set the mask to all zeroes to begin with */
2975        memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2976        /* start out with flow type and eth type IPv4 to begin with */
2977        filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2978        err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2979        if (err < 0)
2980                goto err;
2981
2982        err = iavf_handle_tclass(adapter, tc, filter);
2983        if (err < 0)
2984                goto err;
2985
2986        /* add filter to the list */
2987        spin_lock_bh(&adapter->cloud_filter_list_lock);
2988        list_add_tail(&filter->list, &adapter->cloud_filter_list);
2989        adapter->num_cloud_filters++;
2990        filter->add = true;
2991        adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2992        spin_unlock_bh(&adapter->cloud_filter_list_lock);
2993err:
2994        if (err)
2995                kfree(filter);
2996
2997        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2998        return err;
2999}
3000
3001/* iavf_find_cf - Find the cloud filter in the list
3002 * @adapter: Board private structure
3003 * @cookie: filter specific cookie
3004 *
3005 * Returns ptr to the filter object or NULL. Must be called while holding the
3006 * cloud_filter_list_lock.
3007 */
3008static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3009                                              unsigned long *cookie)
3010{
3011        struct iavf_cloud_filter *filter = NULL;
3012
3013        if (!cookie)
3014                return NULL;
3015
3016        list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3017                if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3018                        return filter;
3019        }
3020        return NULL;
3021}
3022
3023/**
3024 * iavf_delete_clsflower - Remove tc flower filters
3025 * @adapter: board private structure
3026 * @cls_flower: Pointer to struct flow_cls_offload
3027 */
3028static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3029                                 struct flow_cls_offload *cls_flower)
3030{
3031        struct iavf_cloud_filter *filter = NULL;
3032        int err = 0;
3033
3034        spin_lock_bh(&adapter->cloud_filter_list_lock);
3035        filter = iavf_find_cf(adapter, &cls_flower->cookie);
3036        if (filter) {
3037                filter->del = true;
3038                adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3039        } else {
3040                err = -EINVAL;
3041        }
3042        spin_unlock_bh(&adapter->cloud_filter_list_lock);
3043
3044        return err;
3045}
3046
3047/**
3048 * iavf_setup_tc_cls_flower - flower classifier offloads
3049 * @netdev: net device to configure
3050 * @type_data: offload data
3051 */
3052static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3053                                    struct flow_cls_offload *cls_flower)
3054{
3055        if (cls_flower->common.chain_index)
3056                return -EOPNOTSUPP;
3057
3058        switch (cls_flower->command) {
3059        case FLOW_CLS_REPLACE:
3060                return iavf_configure_clsflower(adapter, cls_flower);
3061        case FLOW_CLS_DESTROY:
3062                return iavf_delete_clsflower(adapter, cls_flower);
3063        case FLOW_CLS_STATS:
3064                return -EOPNOTSUPP;
3065        default:
3066                return -EOPNOTSUPP;
3067        }
3068}
3069
3070/**
3071 * iavf_setup_tc_block_cb - block callback for tc
3072 * @type: type of offload
3073 * @type_data: offload data
3074 * @cb_priv:
3075 *
3076 * This function is the block callback for traffic classes
3077 **/
3078static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3079                                  void *cb_priv)
3080{
3081        switch (type) {
3082        case TC_SETUP_CLSFLOWER:
3083                return iavf_setup_tc_cls_flower(cb_priv, type_data);
3084        default:
3085                return -EOPNOTSUPP;
3086        }
3087}
3088
3089static LIST_HEAD(iavf_block_cb_list);
3090
3091/**
3092 * iavf_setup_tc - configure multiple traffic classes
3093 * @netdev: network interface device structure
3094 * @type: type of offload
3095 * @type_date: tc offload data
3096 *
3097 * This function is the callback to ndo_setup_tc in the
3098 * netdev_ops.
3099 *
3100 * Returns 0 on success
3101 **/
3102static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3103                         void *type_data)
3104{
3105        struct iavf_adapter *adapter = netdev_priv(netdev);
3106
3107        switch (type) {
3108        case TC_SETUP_QDISC_MQPRIO:
3109                return __iavf_setup_tc(netdev, type_data);
3110        case TC_SETUP_BLOCK:
3111                return flow_block_cb_setup_simple(type_data,
3112                                                  &iavf_block_cb_list,
3113                                                  iavf_setup_tc_block_cb,
3114                                                  adapter, adapter, true);
3115        default:
3116                return -EOPNOTSUPP;
3117        }
3118}
3119
3120/**
3121 * iavf_open - Called when a network interface is made active
3122 * @netdev: network interface device structure
3123 *
3124 * Returns 0 on success, negative value on failure
3125 *
3126 * The open entry point is called when a network interface is made
3127 * active by the system (IFF_UP).  At this point all resources needed
3128 * for transmit and receive operations are allocated, the interrupt
3129 * handler is registered with the OS, the watchdog is started,
3130 * and the stack is notified that the interface is ready.
3131 **/
3132static int iavf_open(struct net_device *netdev)
3133{
3134        struct iavf_adapter *adapter = netdev_priv(netdev);
3135        int err;
3136
3137        if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3138                dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3139                return -EIO;
3140        }
3141
3142        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3143                                &adapter->crit_section))
3144                usleep_range(500, 1000);
3145
3146        if (adapter->state != __IAVF_DOWN) {
3147                err = -EBUSY;
3148                goto err_unlock;
3149        }
3150
3151        /* allocate transmit descriptors */
3152        err = iavf_setup_all_tx_resources(adapter);
3153        if (err)
3154                goto err_setup_tx;
3155
3156        /* allocate receive descriptors */
3157        err = iavf_setup_all_rx_resources(adapter);
3158        if (err)
3159                goto err_setup_rx;
3160
3161        /* clear any pending interrupts, may auto mask */
3162        err = iavf_request_traffic_irqs(adapter, netdev->name);
3163        if (err)
3164                goto err_req_irq;
3165
3166        spin_lock_bh(&adapter->mac_vlan_list_lock);
3167
3168        iavf_add_filter(adapter, adapter->hw.mac.addr);
3169
3170        spin_unlock_bh(&adapter->mac_vlan_list_lock);
3171
3172        iavf_configure(adapter);
3173
3174        iavf_up_complete(adapter);
3175
3176        iavf_irq_enable(adapter, true);
3177
3178        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3179
3180        return 0;
3181
3182err_req_irq:
3183        iavf_down(adapter);
3184        iavf_free_traffic_irqs(adapter);
3185err_setup_rx:
3186        iavf_free_all_rx_resources(adapter);
3187err_setup_tx:
3188        iavf_free_all_tx_resources(adapter);
3189err_unlock:
3190        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3191
3192        return err;
3193}
3194
3195/**
3196 * iavf_close - Disables a network interface
3197 * @netdev: network interface device structure
3198 *
3199 * Returns 0, this is not allowed to fail
3200 *
3201 * The close entry point is called when an interface is de-activated
3202 * by the OS.  The hardware is still under the drivers control, but
3203 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3204 * are freed, along with all transmit and receive resources.
3205 **/
3206static int iavf_close(struct net_device *netdev)
3207{
3208        struct iavf_adapter *adapter = netdev_priv(netdev);
3209        int status;
3210
3211        if (adapter->state <= __IAVF_DOWN_PENDING)
3212                return 0;
3213
3214        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3215                                &adapter->crit_section))
3216                usleep_range(500, 1000);
3217
3218        set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3219        if (CLIENT_ENABLED(adapter))
3220                adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3221
3222        iavf_down(adapter);
3223        adapter->state = __IAVF_DOWN_PENDING;
3224        iavf_free_traffic_irqs(adapter);
3225
3226        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3227
3228        /* We explicitly don't free resources here because the hardware is
3229         * still active and can DMA into memory. Resources are cleared in
3230         * iavf_virtchnl_completion() after we get confirmation from the PF
3231         * driver that the rings have been stopped.
3232         *
3233         * Also, we wait for state to transition to __IAVF_DOWN before
3234         * returning. State change occurs in iavf_virtchnl_completion() after
3235         * VF resources are released (which occurs after PF driver processes and
3236         * responds to admin queue commands).
3237         */
3238
3239        status = wait_event_timeout(adapter->down_waitqueue,
3240                                    adapter->state == __IAVF_DOWN,
3241                                    msecs_to_jiffies(500));
3242        if (!status)
3243                netdev_warn(netdev, "Device resources not yet released\n");
3244        return 0;
3245}
3246
3247/**
3248 * iavf_change_mtu - Change the Maximum Transfer Unit
3249 * @netdev: network interface device structure
3250 * @new_mtu: new value for maximum frame size
3251 *
3252 * Returns 0 on success, negative on failure
3253 **/
3254static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3255{
3256        struct iavf_adapter *adapter = netdev_priv(netdev);
3257
3258        netdev->mtu = new_mtu;
3259        if (CLIENT_ENABLED(adapter)) {
3260                iavf_notify_client_l2_params(&adapter->vsi);
3261                adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3262        }
3263        adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3264        queue_work(iavf_wq, &adapter->reset_task);
3265
3266        return 0;
3267}
3268
3269/**
3270 * iavf_set_features - set the netdev feature flags
3271 * @netdev: ptr to the netdev being adjusted
3272 * @features: the feature set that the stack is suggesting
3273 * Note: expects to be called while under rtnl_lock()
3274 **/
3275static int iavf_set_features(struct net_device *netdev,
3276                             netdev_features_t features)
3277{
3278        struct iavf_adapter *adapter = netdev_priv(netdev);
3279
3280        /* Don't allow changing VLAN_RX flag when adapter is not capable
3281         * of VLAN offload
3282         */
3283        if (!VLAN_ALLOWED(adapter)) {
3284                if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3285                        return -EINVAL;
3286        } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3287                if (features & NETIF_F_HW_VLAN_CTAG_RX)
3288                        adapter->aq_required |=
3289                                IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3290                else
3291                        adapter->aq_required |=
3292                                IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3293        }
3294
3295        return 0;
3296}
3297
3298/**
3299 * iavf_features_check - Validate encapsulated packet conforms to limits
3300 * @skb: skb buff
3301 * @dev: This physical port's netdev
3302 * @features: Offload features that the stack believes apply
3303 **/
3304static netdev_features_t iavf_features_check(struct sk_buff *skb,
3305                                             struct net_device *dev,
3306                                             netdev_features_t features)
3307{
3308        size_t len;
3309
3310        /* No point in doing any of this if neither checksum nor GSO are
3311         * being requested for this frame.  We can rule out both by just
3312         * checking for CHECKSUM_PARTIAL
3313         */
3314        if (skb->ip_summed != CHECKSUM_PARTIAL)
3315                return features;
3316
3317        /* We cannot support GSO if the MSS is going to be less than
3318         * 64 bytes.  If it is then we need to drop support for GSO.
3319         */
3320        if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3321                features &= ~NETIF_F_GSO_MASK;
3322
3323        /* MACLEN can support at most 63 words */
3324        len = skb_network_header(skb) - skb->data;
3325        if (len & ~(63 * 2))
3326                goto out_err;
3327
3328        /* IPLEN and EIPLEN can support at most 127 dwords */
3329        len = skb_transport_header(skb) - skb_network_header(skb);
3330        if (len & ~(127 * 4))
3331                goto out_err;
3332
3333        if (skb->encapsulation) {
3334                /* L4TUNLEN can support 127 words */
3335                len = skb_inner_network_header(skb) - skb_transport_header(skb);
3336                if (len & ~(127 * 2))
3337                        goto out_err;
3338
3339                /* IPLEN can support at most 127 dwords */
3340                len = skb_inner_transport_header(skb) -
3341                      skb_inner_network_header(skb);
3342                if (len & ~(127 * 4))
3343                        goto out_err;
3344        }
3345
3346        /* No need to validate L4LEN as TCP is the only protocol with a
3347         * a flexible value and we support all possible values supported
3348         * by TCP, which is at most 15 dwords
3349         */
3350
3351        return features;
3352out_err:
3353        return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3354}
3355
3356/**
3357 * iavf_fix_features - fix up the netdev feature bits
3358 * @netdev: our net device
3359 * @features: desired feature bits
3360 *
3361 * Returns fixed-up features bits
3362 **/
3363static netdev_features_t iavf_fix_features(struct net_device *netdev,
3364                                           netdev_features_t features)
3365{
3366        struct iavf_adapter *adapter = netdev_priv(netdev);
3367
3368        if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3369                features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3370                              NETIF_F_HW_VLAN_CTAG_RX |
3371                              NETIF_F_HW_VLAN_CTAG_FILTER);
3372
3373        return features;
3374}
3375
3376static const struct net_device_ops iavf_netdev_ops = {
3377        .ndo_open               = iavf_open,
3378        .ndo_stop               = iavf_close,
3379        .ndo_start_xmit         = iavf_xmit_frame,
3380        .ndo_set_rx_mode        = iavf_set_rx_mode,
3381        .ndo_validate_addr      = eth_validate_addr,
3382        .ndo_set_mac_address    = iavf_set_mac,
3383        .ndo_change_mtu         = iavf_change_mtu,
3384        .ndo_tx_timeout         = iavf_tx_timeout,
3385        .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
3386        .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
3387        .ndo_features_check     = iavf_features_check,
3388        .ndo_fix_features       = iavf_fix_features,
3389        .ndo_set_features       = iavf_set_features,
3390        .ndo_setup_tc           = iavf_setup_tc,
3391};
3392
3393/**
3394 * iavf_check_reset_complete - check that VF reset is complete
3395 * @hw: pointer to hw struct
3396 *
3397 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3398 **/
3399static int iavf_check_reset_complete(struct iavf_hw *hw)
3400{
3401        u32 rstat;
3402        int i;
3403
3404        for (i = 0; i < 100; i++) {
3405                rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3406                             IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3407                if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3408                    (rstat == VIRTCHNL_VFR_COMPLETED))
3409                        return 0;
3410                usleep_range(10, 20);
3411        }
3412        return -EBUSY;
3413}
3414
3415/**
3416 * iavf_process_config - Process the config information we got from the PF
3417 * @adapter: board private structure
3418 *
3419 * Verify that we have a valid config struct, and set up our netdev features
3420 * and our VSI struct.
3421 **/
3422int iavf_process_config(struct iavf_adapter *adapter)
3423{
3424        struct virtchnl_vf_resource *vfres = adapter->vf_res;
3425        int i, num_req_queues = adapter->num_req_queues;
3426        struct net_device *netdev = adapter->netdev;
3427        struct iavf_vsi *vsi = &adapter->vsi;
3428        netdev_features_t hw_enc_features;
3429        netdev_features_t hw_features;
3430
3431        /* got VF config message back from PF, now we can parse it */
3432        for (i = 0; i < vfres->num_vsis; i++) {
3433                if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3434                        adapter->vsi_res = &vfres->vsi_res[i];
3435        }
3436        if (!adapter->vsi_res) {
3437                dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3438                return -ENODEV;
3439        }
3440
3441        if (num_req_queues &&
3442            num_req_queues != adapter->vsi_res->num_queue_pairs) {
3443                /* Problem.  The PF gave us fewer queues than what we had
3444                 * negotiated in our request.  Need a reset to see if we can't
3445                 * get back to a working state.
3446                 */
3447                dev_err(&adapter->pdev->dev,
3448                        "Requested %d queues, but PF only gave us %d.\n",
3449                        num_req_queues,
3450                        adapter->vsi_res->num_queue_pairs);
3451                adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3452                adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3453                iavf_schedule_reset(adapter);
3454                return -ENODEV;
3455        }
3456        adapter->num_req_queues = 0;
3457
3458        hw_enc_features = NETIF_F_SG                    |
3459                          NETIF_F_IP_CSUM               |
3460                          NETIF_F_IPV6_CSUM             |
3461                          NETIF_F_HIGHDMA               |
3462                          NETIF_F_SOFT_FEATURES |
3463                          NETIF_F_TSO                   |
3464                          NETIF_F_TSO_ECN               |
3465                          NETIF_F_TSO6                  |
3466                          NETIF_F_SCTP_CRC              |
3467                          NETIF_F_RXHASH                |
3468                          NETIF_F_RXCSUM                |
3469                          0;
3470
3471        /* advertise to stack only if offloads for encapsulated packets is
3472         * supported
3473         */
3474        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3475                hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
3476                                   NETIF_F_GSO_GRE              |
3477                                   NETIF_F_GSO_GRE_CSUM         |
3478                                   NETIF_F_GSO_IPXIP4           |
3479                                   NETIF_F_GSO_IPXIP6           |
3480                                   NETIF_F_GSO_UDP_TUNNEL_CSUM  |
3481                                   NETIF_F_GSO_PARTIAL          |
3482                                   0;
3483
3484                if (!(vfres->vf_cap_flags &
3485                      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3486                        netdev->gso_partial_features |=
3487                                NETIF_F_GSO_UDP_TUNNEL_CSUM;
3488
3489                netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3490                netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3491                netdev->hw_enc_features |= hw_enc_features;
3492        }
3493        /* record features VLANs can make use of */
3494        netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3495
3496        /* Write features and hw_features separately to avoid polluting
3497         * with, or dropping, features that are set when we registered.
3498         */
3499        hw_features = hw_enc_features;
3500
3501        /* Enable VLAN features if supported */
3502        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3503                hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3504                                NETIF_F_HW_VLAN_CTAG_RX);
3505        /* Enable cloud filter if ADQ is supported */
3506        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3507                hw_features |= NETIF_F_HW_TC;
3508
3509        netdev->hw_features |= hw_features;
3510
3511        netdev->features |= hw_features;
3512
3513        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3514                netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3515
3516        netdev->priv_flags |= IFF_UNICAST_FLT;
3517
3518        /* Do not turn on offloads when they are requested to be turned off.
3519         * TSO needs minimum 576 bytes to work correctly.
3520         */
3521        if (netdev->wanted_features) {
3522                if (!(netdev->wanted_features & NETIF_F_TSO) ||
3523                    netdev->mtu < 576)
3524                        netdev->features &= ~NETIF_F_TSO;
3525                if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3526                    netdev->mtu < 576)
3527                        netdev->features &= ~NETIF_F_TSO6;
3528                if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3529                        netdev->features &= ~NETIF_F_TSO_ECN;
3530                if (!(netdev->wanted_features & NETIF_F_GRO))
3531                        netdev->features &= ~NETIF_F_GRO;
3532                if (!(netdev->wanted_features & NETIF_F_GSO))
3533                        netdev->features &= ~NETIF_F_GSO;
3534        }
3535
3536        adapter->vsi.id = adapter->vsi_res->vsi_id;
3537
3538        adapter->vsi.back = adapter;
3539        adapter->vsi.base_vector = 1;
3540        adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3541        vsi->netdev = adapter->netdev;
3542        vsi->qs_handle = adapter->vsi_res->qset_handle;
3543        if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3544                adapter->rss_key_size = vfres->rss_key_size;
3545                adapter->rss_lut_size = vfres->rss_lut_size;
3546        } else {
3547                adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3548                adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3549        }
3550
3551        return 0;
3552}
3553
3554/**
3555 * iavf_init_task - worker thread to perform delayed initialization
3556 * @work: pointer to work_struct containing our data
3557 *
3558 * This task completes the work that was begun in probe. Due to the nature
3559 * of VF-PF communications, we may need to wait tens of milliseconds to get
3560 * responses back from the PF. Rather than busy-wait in probe and bog down the
3561 * whole system, we'll do it in a task so we can sleep.
3562 * This task only runs during driver init. Once we've established
3563 * communications with the PF driver and set up our netdev, the watchdog
3564 * takes over.
3565 **/
3566static void iavf_init_task(struct work_struct *work)
3567{
3568        struct iavf_adapter *adapter = container_of(work,
3569                                                    struct iavf_adapter,
3570                                                    init_task.work);
3571        struct iavf_hw *hw = &adapter->hw;
3572
3573        switch (adapter->state) {
3574        case __IAVF_STARTUP:
3575                if (iavf_startup(adapter) < 0)
3576                        goto init_failed;
3577                break;
3578        case __IAVF_INIT_VERSION_CHECK:
3579                if (iavf_init_version_check(adapter) < 0)
3580                        goto init_failed;
3581                break;
3582        case __IAVF_INIT_GET_RESOURCES:
3583                if (iavf_init_get_resources(adapter) < 0)
3584                        goto init_failed;
3585                return;
3586        default:
3587                goto init_failed;
3588        }
3589
3590        queue_delayed_work(iavf_wq, &adapter->init_task,
3591                           msecs_to_jiffies(30));
3592        return;
3593init_failed:
3594        if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3595                dev_err(&adapter->pdev->dev,
3596                        "Failed to communicate with PF; waiting before retry\n");
3597                adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3598                iavf_shutdown_adminq(hw);
3599                adapter->state = __IAVF_STARTUP;
3600                queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3601                return;
3602        }
3603        queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3604}
3605
3606/**
3607 * iavf_shutdown - Shutdown the device in preparation for a reboot
3608 * @pdev: pci device structure
3609 **/
3610static void iavf_shutdown(struct pci_dev *pdev)
3611{
3612        struct net_device *netdev = pci_get_drvdata(pdev);
3613        struct iavf_adapter *adapter = netdev_priv(netdev);
3614
3615        netif_device_detach(netdev);
3616
3617        if (netif_running(netdev))
3618                iavf_close(netdev);
3619
3620        /* Prevent the watchdog from running. */
3621        adapter->state = __IAVF_REMOVE;
3622        adapter->aq_required = 0;
3623
3624#ifdef CONFIG_PM
3625        pci_save_state(pdev);
3626
3627#endif
3628        pci_disable_device(pdev);
3629}
3630
3631/**
3632 * iavf_probe - Device Initialization Routine
3633 * @pdev: PCI device information struct
3634 * @ent: entry in iavf_pci_tbl
3635 *
3636 * Returns 0 on success, negative on failure
3637 *
3638 * iavf_probe initializes an adapter identified by a pci_dev structure.
3639 * The OS initialization, configuring of the adapter private structure,
3640 * and a hardware reset occur.
3641 **/
3642static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3643{
3644        struct net_device *netdev;
3645        struct iavf_adapter *adapter = NULL;
3646        struct iavf_hw *hw = NULL;
3647        int err;
3648
3649        err = pci_enable_device(pdev);
3650        if (err)
3651                return err;
3652
3653        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3654        if (err) {
3655                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3656                if (err) {
3657                        dev_err(&pdev->dev,
3658                                "DMA configuration failed: 0x%x\n", err);
3659                        goto err_dma;
3660                }
3661        }
3662
3663        err = pci_request_regions(pdev, iavf_driver_name);
3664        if (err) {
3665                dev_err(&pdev->dev,
3666                        "pci_request_regions failed 0x%x\n", err);
3667                goto err_pci_reg;
3668        }
3669
3670        pci_enable_pcie_error_reporting(pdev);
3671
3672        pci_set_master(pdev);
3673
3674        netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3675                                   IAVF_MAX_REQ_QUEUES);
3676        if (!netdev) {
3677                err = -ENOMEM;
3678                goto err_alloc_etherdev;
3679        }
3680
3681        SET_NETDEV_DEV(netdev, &pdev->dev);
3682
3683        pci_set_drvdata(pdev, netdev);
3684        adapter = netdev_priv(netdev);
3685
3686        adapter->netdev = netdev;
3687        adapter->pdev = pdev;
3688
3689        hw = &adapter->hw;
3690        hw->back = adapter;
3691
3692        adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3693        adapter->state = __IAVF_STARTUP;
3694
3695        /* Call save state here because it relies on the adapter struct. */
3696        pci_save_state(pdev);
3697
3698        hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3699                              pci_resource_len(pdev, 0));
3700        if (!hw->hw_addr) {
3701                err = -EIO;
3702                goto err_ioremap;
3703        }
3704        hw->vendor_id = pdev->vendor;
3705        hw->device_id = pdev->device;
3706        pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3707        hw->subsystem_vendor_id = pdev->subsystem_vendor;
3708        hw->subsystem_device_id = pdev->subsystem_device;
3709        hw->bus.device = PCI_SLOT(pdev->devfn);
3710        hw->bus.func = PCI_FUNC(pdev->devfn);
3711        hw->bus.bus_id = pdev->bus->number;
3712
3713        /* set up the locks for the AQ, do this only once in probe
3714         * and destroy them only once in remove
3715         */
3716        mutex_init(&hw->aq.asq_mutex);
3717        mutex_init(&hw->aq.arq_mutex);
3718
3719        spin_lock_init(&adapter->mac_vlan_list_lock);
3720        spin_lock_init(&adapter->cloud_filter_list_lock);
3721
3722        INIT_LIST_HEAD(&adapter->mac_filter_list);
3723        INIT_LIST_HEAD(&adapter->vlan_filter_list);
3724        INIT_LIST_HEAD(&adapter->cloud_filter_list);
3725
3726        INIT_WORK(&adapter->reset_task, iavf_reset_task);
3727        INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3728        INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3729        INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3730        INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3731        queue_delayed_work(iavf_wq, &adapter->init_task,
3732                           msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3733
3734        /* Setup the wait queue for indicating transition to down status */
3735        init_waitqueue_head(&adapter->down_waitqueue);
3736
3737        return 0;
3738
3739err_ioremap:
3740        free_netdev(netdev);
3741err_alloc_etherdev:
3742        pci_release_regions(pdev);
3743err_pci_reg:
3744err_dma:
3745        pci_disable_device(pdev);
3746        return err;
3747}
3748
3749#ifdef CONFIG_PM
3750/**
3751 * iavf_suspend - Power management suspend routine
3752 * @pdev: PCI device information struct
3753 * @state: unused
3754 *
3755 * Called when the system (VM) is entering sleep/suspend.
3756 **/
3757static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3758{
3759        struct net_device *netdev = pci_get_drvdata(pdev);
3760        struct iavf_adapter *adapter = netdev_priv(netdev);
3761        int retval = 0;
3762
3763        netif_device_detach(netdev);
3764
3765        while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3766                                &adapter->crit_section))
3767                usleep_range(500, 1000);
3768
3769        if (netif_running(netdev)) {
3770                rtnl_lock();
3771                iavf_down(adapter);
3772                rtnl_unlock();
3773        }
3774        iavf_free_misc_irq(adapter);
3775        iavf_reset_interrupt_capability(adapter);
3776
3777        clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3778
3779        retval = pci_save_state(pdev);
3780        if (retval)
3781                return retval;
3782
3783        pci_disable_device(pdev);
3784
3785        return 0;
3786}
3787
3788/**
3789 * iavf_resume - Power management resume routine
3790 * @pdev: PCI device information struct
3791 *
3792 * Called when the system (VM) is resumed from sleep/suspend.
3793 **/
3794static int iavf_resume(struct pci_dev *pdev)
3795{
3796        struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3797        struct net_device *netdev = adapter->netdev;
3798        u32 err;
3799
3800        pci_set_power_state(pdev, PCI_D0);
3801        pci_restore_state(pdev);
3802        /* pci_restore_state clears dev->state_saved so call
3803         * pci_save_state to restore it.
3804         */
3805        pci_save_state(pdev);
3806
3807        err = pci_enable_device_mem(pdev);
3808        if (err) {
3809                dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3810                return err;
3811        }
3812        pci_set_master(pdev);
3813
3814        rtnl_lock();
3815        err = iavf_set_interrupt_capability(adapter);
3816        if (err) {
3817                rtnl_unlock();
3818                dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3819                return err;
3820        }
3821        err = iavf_request_misc_irq(adapter);
3822        rtnl_unlock();
3823        if (err) {
3824                dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3825                return err;
3826        }
3827
3828        queue_work(iavf_wq, &adapter->reset_task);
3829
3830        netif_device_attach(netdev);
3831
3832        return err;
3833}
3834
3835#endif /* CONFIG_PM */
3836/**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device.  The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845static void iavf_remove(struct pci_dev *pdev)
3846{
3847        struct net_device *netdev = pci_get_drvdata(pdev);
3848        struct iavf_adapter *adapter = netdev_priv(netdev);
3849        struct iavf_vlan_filter *vlf, *vlftmp;
3850        struct iavf_mac_filter *f, *ftmp;
3851        struct iavf_cloud_filter *cf, *cftmp;
3852        struct iavf_hw *hw = &adapter->hw;
3853        int err;
3854        /* Indicate we are in remove and not to run reset_task */
3855        set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856        cancel_delayed_work_sync(&adapter->init_task);
3857        cancel_work_sync(&adapter->reset_task);
3858        cancel_delayed_work_sync(&adapter->client_task);
3859        if (adapter->netdev_registered) {
3860                unregister_netdev(netdev);
3861                adapter->netdev_registered = false;
3862        }
3863        if (CLIENT_ALLOWED(adapter)) {
3864                err = iavf_lan_del_device(adapter);
3865                if (err)
3866                        dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867                                 err);
3868        }
3869
3870        /* Shut down all the garbage mashers on the detention level */
3871        adapter->state = __IAVF_REMOVE;
3872        adapter->aq_required = 0;
3873        adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874        iavf_request_reset(adapter);
3875        msleep(50);
3876        /* If the FW isn't responding, kick it once, but only once. */
3877        if (!iavf_asq_done(hw)) {
3878                iavf_request_reset(adapter);
3879                msleep(50);
3880        }
3881        iavf_free_all_tx_resources(adapter);
3882        iavf_free_all_rx_resources(adapter);
3883        iavf_misc_irq_disable(adapter);
3884        iavf_free_misc_irq(adapter);
3885        iavf_reset_interrupt_capability(adapter);
3886        iavf_free_q_vectors(adapter);
3887
3888        cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890        cancel_work_sync(&adapter->adminq_task);
3891
3892        iavf_free_rss(adapter);
3893
3894        if (hw->aq.asq.count)
3895                iavf_shutdown_adminq(hw);
3896
3897        /* destroy the locks only once, here */
3898        mutex_destroy(&hw->aq.arq_mutex);
3899        mutex_destroy(&hw->aq.asq_mutex);
3900
3901        iounmap(hw->hw_addr);
3902        pci_release_regions(pdev);
3903        iavf_free_all_tx_resources(adapter);
3904        iavf_free_all_rx_resources(adapter);
3905        iavf_free_queues(adapter);
3906        kfree(adapter->vf_res);
3907        spin_lock_bh(&adapter->mac_vlan_list_lock);
3908        /* If we got removed before an up/down sequence, we've got a filter
3909         * hanging out there that we need to get rid of.
3910         */
3911        list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912                list_del(&f->list);
3913                kfree(f);
3914        }
3915        list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916                                 list) {
3917                list_del(&vlf->list);
3918                kfree(vlf);
3919        }
3920
3921        spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923        spin_lock_bh(&adapter->cloud_filter_list_lock);
3924        list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925                list_del(&cf->list);
3926                kfree(cf);
3927        }
3928        spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930        free_netdev(netdev);
3931
3932        pci_disable_pcie_error_reporting(pdev);
3933
3934        pci_disable_device(pdev);
3935}
3936
3937static struct pci_driver iavf_driver = {
3938        .name     = iavf_driver_name,
3939        .id_table = iavf_pci_tbl,
3940        .probe    = iavf_probe,
3941        .remove   = iavf_remove,
3942#ifdef CONFIG_PM
3943        .suspend  = iavf_suspend,
3944        .resume   = iavf_resume,
3945#endif
3946        .shutdown = iavf_shutdown,
3947};
3948
3949/**
3950 * iavf_init_module - Driver Registration Routine
3951 *
3952 * iavf_init_module is the first routine called when the driver is
3953 * loaded. All it does is register with the PCI subsystem.
3954 **/
3955static int __init iavf_init_module(void)
3956{
3957        int ret;
3958
3959        pr_info("iavf: %s - version %s\n", iavf_driver_string,
3960                iavf_driver_version);
3961
3962        pr_info("%s\n", iavf_copyright);
3963
3964        iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3965                                  iavf_driver_name);
3966        if (!iavf_wq) {
3967                pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3968                return -ENOMEM;
3969        }
3970        ret = pci_register_driver(&iavf_driver);
3971        return ret;
3972}
3973
3974module_init(iavf_init_module);
3975
3976/**
3977 * iavf_exit_module - Driver Exit Cleanup Routine
3978 *
3979 * iavf_exit_module is called just before the driver is removed
3980 * from memory.
3981 **/
3982static void __exit iavf_exit_module(void)
3983{
3984        pci_unregister_driver(&iavf_driver);
3985        destroy_workqueue(iavf_wq);
3986}
3987
3988module_exit(iavf_exit_module);
3989
3990/* iavf_main.c */
3991