linux/drivers/net/wireless/ath/ath9k/hw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  38MODULE_LICENSE("Dual BSD/GPL");
  39
  40static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  41{
  42        struct ath_common *common = ath9k_hw_common(ah);
  43        struct ath9k_channel *chan = ah->curchan;
  44        unsigned int clockrate;
  45
  46        /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  47        if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  48                clockrate = 117;
  49        else if (!chan) /* should really check for CCK instead */
  50                clockrate = ATH9K_CLOCK_RATE_CCK;
  51        else if (IS_CHAN_2GHZ(chan))
  52                clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53        else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  54                clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  55        else
  56                clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  57
  58        if (chan) {
  59                if (IS_CHAN_HT40(chan))
  60                        clockrate *= 2;
  61                if (IS_CHAN_HALF_RATE(chan))
  62                        clockrate /= 2;
  63                if (IS_CHAN_QUARTER_RATE(chan))
  64                        clockrate /= 4;
  65        }
  66
  67        common->clockrate = clockrate;
  68}
  69
  70static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  71{
  72        struct ath_common *common = ath9k_hw_common(ah);
  73
  74        return usecs * common->clockrate;
  75}
  76
  77bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  78{
  79        int i;
  80
  81        BUG_ON(timeout < AH_TIME_QUANTUM);
  82
  83        for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  84                if ((REG_READ(ah, reg) & mask) == val)
  85                        return true;
  86
  87                udelay(AH_TIME_QUANTUM);
  88        }
  89
  90        ath_dbg(ath9k_hw_common(ah), ANY,
  91                "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92                timeout, reg, REG_READ(ah, reg), mask, val);
  93
  94        return false;
  95}
  96EXPORT_SYMBOL(ath9k_hw_wait);
  97
  98void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  99                          int hw_delay)
 100{
 101        hw_delay /= 10;
 102
 103        if (IS_CHAN_HALF_RATE(chan))
 104                hw_delay *= 2;
 105        else if (IS_CHAN_QUARTER_RATE(chan))
 106                hw_delay *= 4;
 107
 108        udelay(hw_delay + BASE_ACTIVATE_DELAY);
 109}
 110
 111void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 112                          int column, unsigned int *writecnt)
 113{
 114        int r;
 115
 116        ENABLE_REGWRITE_BUFFER(ah);
 117        for (r = 0; r < array->ia_rows; r++) {
 118                REG_WRITE(ah, INI_RA(array, r, 0),
 119                          INI_RA(array, r, column));
 120                DO_DELAY(*writecnt);
 121        }
 122        REGWRITE_BUFFER_FLUSH(ah);
 123}
 124
 125void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 126{
 127        u32 *tmp_reg_list, *tmp_data;
 128        int i;
 129
 130        tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 131        if (!tmp_reg_list) {
 132                dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 133                return;
 134        }
 135
 136        tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 137        if (!tmp_data) {
 138                dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 139                goto error_tmp_data;
 140        }
 141
 142        for (i = 0; i < size; i++)
 143                tmp_reg_list[i] = array[i][0];
 144
 145        REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 146
 147        for (i = 0; i < size; i++)
 148                array[i][1] = tmp_data[i];
 149
 150        kfree(tmp_data);
 151error_tmp_data:
 152        kfree(tmp_reg_list);
 153}
 154
 155u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 156{
 157        u32 retval;
 158        int i;
 159
 160        for (i = 0, retval = 0; i < n; i++) {
 161                retval = (retval << 1) | (val & 1);
 162                val >>= 1;
 163        }
 164        return retval;
 165}
 166
 167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 168                           u8 phy, int kbps,
 169                           u32 frameLen, u16 rateix,
 170                           bool shortPreamble)
 171{
 172        u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 173
 174        if (kbps == 0)
 175                return 0;
 176
 177        switch (phy) {
 178        case WLAN_RC_PHY_CCK:
 179                phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 180                if (shortPreamble)
 181                        phyTime >>= 1;
 182                numBits = frameLen << 3;
 183                txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 184                break;
 185        case WLAN_RC_PHY_OFDM:
 186                if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 187                        bitsPerSymbol =
 188                                ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 189                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 190                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 191                        txTime = OFDM_SIFS_TIME_QUARTER
 192                                + OFDM_PREAMBLE_TIME_QUARTER
 193                                + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 194                } else if (ah->curchan &&
 195                           IS_CHAN_HALF_RATE(ah->curchan)) {
 196                        bitsPerSymbol =
 197                                ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
 198                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 199                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 200                        txTime = OFDM_SIFS_TIME_HALF +
 201                                OFDM_PREAMBLE_TIME_HALF
 202                                + (numSymbols * OFDM_SYMBOL_TIME_HALF);
 203                } else {
 204                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 205                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 206                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 207                        txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 208                                + (numSymbols * OFDM_SYMBOL_TIME);
 209                }
 210                break;
 211        default:
 212                ath_err(ath9k_hw_common(ah),
 213                        "Unknown phy %u (rate ix %u)\n", phy, rateix);
 214                txTime = 0;
 215                break;
 216        }
 217
 218        return txTime;
 219}
 220EXPORT_SYMBOL(ath9k_hw_computetxtime);
 221
 222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 223                                  struct ath9k_channel *chan,
 224                                  struct chan_centers *centers)
 225{
 226        int8_t extoff;
 227
 228        if (!IS_CHAN_HT40(chan)) {
 229                centers->ctl_center = centers->ext_center =
 230                        centers->synth_center = chan->channel;
 231                return;
 232        }
 233
 234        if (IS_CHAN_HT40PLUS(chan)) {
 235                centers->synth_center =
 236                        chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 237                extoff = 1;
 238        } else {
 239                centers->synth_center =
 240                        chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 241                extoff = -1;
 242        }
 243
 244        centers->ctl_center =
 245                centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 246        /* 25 MHz spacing is supported by hw but not on upper layers */
 247        centers->ext_center =
 248                centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 249}
 250
 251/******************/
 252/* Chip Revisions */
 253/******************/
 254
 255static bool ath9k_hw_read_revisions(struct ath_hw *ah)
 256{
 257        u32 srev;
 258        u32 val;
 259
 260        if (ah->get_mac_revision)
 261                ah->hw_version.macRev = ah->get_mac_revision();
 262
 263        switch (ah->hw_version.devid) {
 264        case AR5416_AR9100_DEVID:
 265                ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 266                break;
 267        case AR9300_DEVID_AR9330:
 268                ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 269                if (!ah->get_mac_revision) {
 270                        val = REG_READ(ah, AR_SREV);
 271                        ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 272                }
 273                return true;
 274        case AR9300_DEVID_AR9340:
 275                ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 276                return true;
 277        case AR9300_DEVID_QCA955X:
 278                ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 279                return true;
 280        case AR9300_DEVID_AR953X:
 281                ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 282                return true;
 283        case AR9300_DEVID_QCA956X:
 284                ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 285                return true;
 286        }
 287
 288        srev = REG_READ(ah, AR_SREV);
 289
 290        if (srev == -EIO) {
 291                ath_err(ath9k_hw_common(ah),
 292                        "Failed to read SREV register");
 293                return false;
 294        }
 295
 296        val = srev & AR_SREV_ID;
 297
 298        if (val == 0xFF) {
 299                val = srev;
 300                ah->hw_version.macVersion =
 301                        (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 302                ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 303
 304                if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 305                        ah->is_pciexpress = true;
 306                else
 307                        ah->is_pciexpress = (val &
 308                                             AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 309        } else {
 310                if (!AR_SREV_9100(ah))
 311                        ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 312
 313                ah->hw_version.macRev = val & AR_SREV_REVISION;
 314
 315                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 316                        ah->is_pciexpress = true;
 317        }
 318
 319        return true;
 320}
 321
 322/************************************/
 323/* HW Attach, Detach, Init Routines */
 324/************************************/
 325
 326static void ath9k_hw_disablepcie(struct ath_hw *ah)
 327{
 328        if (!AR_SREV_5416(ah))
 329                return;
 330
 331        REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 332        REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 333        REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 334        REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 335        REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 336        REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 337        REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 338        REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 339        REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 340
 341        REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 342}
 343
 344/* This should work for all families including legacy */
 345static bool ath9k_hw_chip_test(struct ath_hw *ah)
 346{
 347        struct ath_common *common = ath9k_hw_common(ah);
 348        u32 regAddr[2] = { AR_STA_ID0 };
 349        u32 regHold[2];
 350        static const u32 patternData[4] = {
 351                0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 352        };
 353        int i, j, loop_max;
 354
 355        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 356                loop_max = 2;
 357                regAddr[1] = AR_PHY_BASE + (8 << 2);
 358        } else
 359                loop_max = 1;
 360
 361        for (i = 0; i < loop_max; i++) {
 362                u32 addr = regAddr[i];
 363                u32 wrData, rdData;
 364
 365                regHold[i] = REG_READ(ah, addr);
 366                for (j = 0; j < 0x100; j++) {
 367                        wrData = (j << 16) | j;
 368                        REG_WRITE(ah, addr, wrData);
 369                        rdData = REG_READ(ah, addr);
 370                        if (rdData != wrData) {
 371                                ath_err(common,
 372                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 373                                        addr, wrData, rdData);
 374                                return false;
 375                        }
 376                }
 377                for (j = 0; j < 4; j++) {
 378                        wrData = patternData[j];
 379                        REG_WRITE(ah, addr, wrData);
 380                        rdData = REG_READ(ah, addr);
 381                        if (wrData != rdData) {
 382                                ath_err(common,
 383                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 384                                        addr, wrData, rdData);
 385                                return false;
 386                        }
 387                }
 388                REG_WRITE(ah, regAddr[i], regHold[i]);
 389        }
 390        udelay(100);
 391
 392        return true;
 393}
 394
 395static void ath9k_hw_init_config(struct ath_hw *ah)
 396{
 397        struct ath_common *common = ath9k_hw_common(ah);
 398
 399        ah->config.dma_beacon_response_time = 1;
 400        ah->config.sw_beacon_response_time = 6;
 401        ah->config.cwm_ignore_extcca = false;
 402        ah->config.analog_shiftreg = 1;
 403
 404        ah->config.rx_intr_mitigation = true;
 405
 406        if (AR_SREV_9300_20_OR_LATER(ah)) {
 407                ah->config.rimt_last = 500;
 408                ah->config.rimt_first = 2000;
 409        } else {
 410                ah->config.rimt_last = 250;
 411                ah->config.rimt_first = 700;
 412        }
 413
 414        if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 415                ah->config.pll_pwrsave = 7;
 416
 417        /*
 418         * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 419         * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 420         * This means we use it for all AR5416 devices, and the few
 421         * minor PCI AR9280 devices out there.
 422         *
 423         * Serialization is required because these devices do not handle
 424         * well the case of two concurrent reads/writes due to the latency
 425         * involved. During one read/write another read/write can be issued
 426         * on another CPU while the previous read/write may still be working
 427         * on our hardware, if we hit this case the hardware poops in a loop.
 428         * We prevent this by serializing reads and writes.
 429         *
 430         * This issue is not present on PCI-Express devices or pre-AR5416
 431         * devices (legacy, 802.11abg).
 432         */
 433        if (num_possible_cpus() > 1)
 434                ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 435
 436        if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 437                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 438                    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 439                     !ah->is_pciexpress)) {
 440                        ah->config.serialize_regmode = SER_REG_MODE_ON;
 441                } else {
 442                        ah->config.serialize_regmode = SER_REG_MODE_OFF;
 443                }
 444        }
 445
 446        ath_dbg(common, RESET, "serialize_regmode is %d\n",
 447                ah->config.serialize_regmode);
 448
 449        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 450                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 451        else
 452                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 453}
 454
 455static void ath9k_hw_init_defaults(struct ath_hw *ah)
 456{
 457        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 458
 459        regulatory->country_code = CTRY_DEFAULT;
 460        regulatory->power_limit = MAX_COMBINED_POWER;
 461
 462        ah->hw_version.magic = AR5416_MAGIC;
 463        ah->hw_version.subvendorid = 0;
 464
 465        ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 466                               AR_STA_ID1_MCAST_KSRCH;
 467        if (AR_SREV_9100(ah))
 468                ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 469
 470        ah->slottime = 9;
 471        ah->globaltxtimeout = (u32) -1;
 472        ah->power_mode = ATH9K_PM_UNDEFINED;
 473        ah->htc_reset_init = true;
 474
 475        ah->tpc_enabled = false;
 476
 477        ah->ani_function = ATH9K_ANI_ALL;
 478        if (!AR_SREV_9300_20_OR_LATER(ah))
 479                ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 480
 481        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 482                ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 483        else
 484                ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 485}
 486
 487static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 488{
 489        struct ath_common *common = ath9k_hw_common(ah);
 490        int i;
 491        u16 eeval;
 492        static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 493
 494        /* MAC address may already be loaded via ath9k_platform_data */
 495        if (is_valid_ether_addr(common->macaddr))
 496                return;
 497
 498        for (i = 0; i < 3; i++) {
 499                eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 500                common->macaddr[2 * i] = eeval >> 8;
 501                common->macaddr[2 * i + 1] = eeval & 0xff;
 502        }
 503
 504        if (is_valid_ether_addr(common->macaddr))
 505                return;
 506
 507        ath_err(common, "eeprom contains invalid mac address: %pM\n",
 508                common->macaddr);
 509
 510        eth_random_addr(common->macaddr);
 511        ath_err(common, "random mac address will be used: %pM\n",
 512                common->macaddr);
 513
 514        return;
 515}
 516
 517static int ath9k_hw_post_init(struct ath_hw *ah)
 518{
 519        struct ath_common *common = ath9k_hw_common(ah);
 520        int ecode;
 521
 522        if (common->bus_ops->ath_bus_type != ATH_USB) {
 523                if (!ath9k_hw_chip_test(ah))
 524                        return -ENODEV;
 525        }
 526
 527        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 528                ecode = ar9002_hw_rf_claim(ah);
 529                if (ecode != 0)
 530                        return ecode;
 531        }
 532
 533        ecode = ath9k_hw_eeprom_init(ah);
 534        if (ecode != 0)
 535                return ecode;
 536
 537        ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 538                ah->eep_ops->get_eeprom_ver(ah),
 539                ah->eep_ops->get_eeprom_rev(ah));
 540
 541        ath9k_hw_ani_init(ah);
 542
 543        /*
 544         * EEPROM needs to be initialized before we do this.
 545         * This is required for regulatory compliance.
 546         */
 547        if (AR_SREV_9300_20_OR_LATER(ah)) {
 548                u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 549                if ((regdmn & 0xF0) == CTL_FCC) {
 550                        ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 551                        ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 552                }
 553        }
 554
 555        return 0;
 556}
 557
 558static int ath9k_hw_attach_ops(struct ath_hw *ah)
 559{
 560        if (!AR_SREV_9300_20_OR_LATER(ah))
 561                return ar9002_hw_attach_ops(ah);
 562
 563        ar9003_hw_attach_ops(ah);
 564        return 0;
 565}
 566
 567/* Called for all hardware families */
 568static int __ath9k_hw_init(struct ath_hw *ah)
 569{
 570        struct ath_common *common = ath9k_hw_common(ah);
 571        int r = 0;
 572
 573        if (!ath9k_hw_read_revisions(ah)) {
 574                ath_err(common, "Could not read hardware revisions");
 575                return -EOPNOTSUPP;
 576        }
 577
 578        switch (ah->hw_version.macVersion) {
 579        case AR_SREV_VERSION_5416_PCI:
 580        case AR_SREV_VERSION_5416_PCIE:
 581        case AR_SREV_VERSION_9160:
 582        case AR_SREV_VERSION_9100:
 583        case AR_SREV_VERSION_9280:
 584        case AR_SREV_VERSION_9285:
 585        case AR_SREV_VERSION_9287:
 586        case AR_SREV_VERSION_9271:
 587        case AR_SREV_VERSION_9300:
 588        case AR_SREV_VERSION_9330:
 589        case AR_SREV_VERSION_9485:
 590        case AR_SREV_VERSION_9340:
 591        case AR_SREV_VERSION_9462:
 592        case AR_SREV_VERSION_9550:
 593        case AR_SREV_VERSION_9565:
 594        case AR_SREV_VERSION_9531:
 595        case AR_SREV_VERSION_9561:
 596                break;
 597        default:
 598                ath_err(common,
 599                        "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 600                        ah->hw_version.macVersion, ah->hw_version.macRev);
 601                return -EOPNOTSUPP;
 602        }
 603
 604        /*
 605         * Read back AR_WA into a permanent copy and set bits 14 and 17.
 606         * We need to do this to avoid RMW of this register. We cannot
 607         * read the reg when chip is asleep.
 608         */
 609        if (AR_SREV_9300_20_OR_LATER(ah)) {
 610                ah->WARegVal = REG_READ(ah, AR_WA);
 611                ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 612                                 AR_WA_ASPM_TIMER_BASED_DISABLE);
 613        }
 614
 615        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 616                ath_err(common, "Couldn't reset chip\n");
 617                return -EIO;
 618        }
 619
 620        if (AR_SREV_9565(ah)) {
 621                ah->WARegVal |= AR_WA_BIT22;
 622                REG_WRITE(ah, AR_WA, ah->WARegVal);
 623        }
 624
 625        ath9k_hw_init_defaults(ah);
 626        ath9k_hw_init_config(ah);
 627
 628        r = ath9k_hw_attach_ops(ah);
 629        if (r)
 630                return r;
 631
 632        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 633                ath_err(common, "Couldn't wakeup chip\n");
 634                return -EIO;
 635        }
 636
 637        if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 638            AR_SREV_9330(ah) || AR_SREV_9550(ah))
 639                ah->is_pciexpress = false;
 640
 641        ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 642        ath9k_hw_init_cal_settings(ah);
 643
 644        if (!ah->is_pciexpress)
 645                ath9k_hw_disablepcie(ah);
 646
 647        r = ath9k_hw_post_init(ah);
 648        if (r)
 649                return r;
 650
 651        ath9k_hw_init_mode_gain_regs(ah);
 652        r = ath9k_hw_fill_cap_info(ah);
 653        if (r)
 654                return r;
 655
 656        ath9k_hw_init_macaddr(ah);
 657        ath9k_hw_init_hang_checks(ah);
 658
 659        common->state = ATH_HW_INITIALIZED;
 660
 661        return 0;
 662}
 663
 664int ath9k_hw_init(struct ath_hw *ah)
 665{
 666        int ret;
 667        struct ath_common *common = ath9k_hw_common(ah);
 668
 669        /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 670        switch (ah->hw_version.devid) {
 671        case AR5416_DEVID_PCI:
 672        case AR5416_DEVID_PCIE:
 673        case AR5416_AR9100_DEVID:
 674        case AR9160_DEVID_PCI:
 675        case AR9280_DEVID_PCI:
 676        case AR9280_DEVID_PCIE:
 677        case AR9285_DEVID_PCIE:
 678        case AR9287_DEVID_PCI:
 679        case AR9287_DEVID_PCIE:
 680        case AR2427_DEVID_PCIE:
 681        case AR9300_DEVID_PCIE:
 682        case AR9300_DEVID_AR9485_PCIE:
 683        case AR9300_DEVID_AR9330:
 684        case AR9300_DEVID_AR9340:
 685        case AR9300_DEVID_QCA955X:
 686        case AR9300_DEVID_AR9580:
 687        case AR9300_DEVID_AR9462:
 688        case AR9485_DEVID_AR1111:
 689        case AR9300_DEVID_AR9565:
 690        case AR9300_DEVID_AR953X:
 691        case AR9300_DEVID_QCA956X:
 692                break;
 693        default:
 694                if (common->bus_ops->ath_bus_type == ATH_USB)
 695                        break;
 696                ath_err(common, "Hardware device ID 0x%04x not supported\n",
 697                        ah->hw_version.devid);
 698                return -EOPNOTSUPP;
 699        }
 700
 701        ret = __ath9k_hw_init(ah);
 702        if (ret) {
 703                ath_err(common,
 704                        "Unable to initialize hardware; initialization status: %d\n",
 705                        ret);
 706                return ret;
 707        }
 708
 709        ath_dynack_init(ah);
 710
 711        return 0;
 712}
 713EXPORT_SYMBOL(ath9k_hw_init);
 714
 715static void ath9k_hw_init_qos(struct ath_hw *ah)
 716{
 717        ENABLE_REGWRITE_BUFFER(ah);
 718
 719        REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 720        REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 721
 722        REG_WRITE(ah, AR_QOS_NO_ACK,
 723                  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 724                  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 725                  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 726
 727        REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 728        REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 729        REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 730        REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 731        REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 732
 733        REGWRITE_BUFFER_FLUSH(ah);
 734}
 735
 736u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 737{
 738        struct ath_common *common = ath9k_hw_common(ah);
 739        int i = 0;
 740
 741        REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 742        udelay(100);
 743        REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 744
 745        while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 746
 747                udelay(100);
 748
 749                if (WARN_ON_ONCE(i >= 100)) {
 750                        ath_err(common, "PLL4 measurement not done\n");
 751                        break;
 752                }
 753
 754                i++;
 755        }
 756
 757        return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 758}
 759EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 760
 761static void ath9k_hw_init_pll(struct ath_hw *ah,
 762                              struct ath9k_channel *chan)
 763{
 764        u32 pll;
 765
 766        pll = ath9k_hw_compute_pll_control(ah, chan);
 767
 768        if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 769                /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 770                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 771                              AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 772                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 773                              AR_CH0_DPLL2_KD, 0x40);
 774                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 775                              AR_CH0_DPLL2_KI, 0x4);
 776
 777                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 778                              AR_CH0_BB_DPLL1_REFDIV, 0x5);
 779                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 780                              AR_CH0_BB_DPLL1_NINI, 0x58);
 781                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 782                              AR_CH0_BB_DPLL1_NFRAC, 0x0);
 783
 784                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 785                              AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 786                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 787                              AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 788                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 789                              AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 790
 791                /* program BB PLL phase_shift to 0x6 */
 792                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 793                              AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 794
 795                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 796                              AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 797                udelay(1000);
 798        } else if (AR_SREV_9330(ah)) {
 799                u32 ddr_dpll2, pll_control2, kd;
 800
 801                if (ah->is_clk_25mhz) {
 802                        ddr_dpll2 = 0x18e82f01;
 803                        pll_control2 = 0xe04a3d;
 804                        kd = 0x1d;
 805                } else {
 806                        ddr_dpll2 = 0x19e82f01;
 807                        pll_control2 = 0x886666;
 808                        kd = 0x3d;
 809                }
 810
 811                /* program DDR PLL ki and kd value */
 812                REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 813
 814                /* program DDR PLL phase_shift */
 815                REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 816                              AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 817
 818                REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 819                          pll | AR_RTC_9300_PLL_BYPASS);
 820                udelay(1000);
 821
 822                /* program refdiv, nint, frac to RTC register */
 823                REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 824
 825                /* program BB PLL kd and ki value */
 826                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 827                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 828
 829                /* program BB PLL phase_shift */
 830                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 831                              AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 832        } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 833                   AR_SREV_9561(ah)) {
 834                u32 regval, pll2_divint, pll2_divfrac, refdiv;
 835
 836                REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 837                          pll | AR_RTC_9300_SOC_PLL_BYPASS);
 838                udelay(1000);
 839
 840                REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 841                udelay(100);
 842
 843                if (ah->is_clk_25mhz) {
 844                        if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 845                                pll2_divint = 0x1c;
 846                                pll2_divfrac = 0xa3d2;
 847                                refdiv = 1;
 848                        } else {
 849                                pll2_divint = 0x54;
 850                                pll2_divfrac = 0x1eb85;
 851                                refdiv = 3;
 852                        }
 853                } else {
 854                        if (AR_SREV_9340(ah)) {
 855                                pll2_divint = 88;
 856                                pll2_divfrac = 0;
 857                                refdiv = 5;
 858                        } else {
 859                                pll2_divint = 0x11;
 860                                pll2_divfrac = (AR_SREV_9531(ah) ||
 861                                                AR_SREV_9561(ah)) ?
 862                                                0x26665 : 0x26666;
 863                                refdiv = 1;
 864                        }
 865                }
 866
 867                regval = REG_READ(ah, AR_PHY_PLL_MODE);
 868                if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 869                        regval |= (0x1 << 22);
 870                else
 871                        regval |= (0x1 << 16);
 872                REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 873                udelay(100);
 874
 875                REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 876                          (pll2_divint << 18) | pll2_divfrac);
 877                udelay(100);
 878
 879                regval = REG_READ(ah, AR_PHY_PLL_MODE);
 880                if (AR_SREV_9340(ah))
 881                        regval = (regval & 0x80071fff) |
 882                                (0x1 << 30) |
 883                                (0x1 << 13) |
 884                                (0x4 << 26) |
 885                                (0x18 << 19);
 886                else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 887                        regval = (regval & 0x01c00fff) |
 888                                (0x1 << 31) |
 889                                (0x2 << 29) |
 890                                (0xa << 25) |
 891                                (0x1 << 19);
 892
 893                        if (AR_SREV_9531(ah))
 894                                regval |= (0x6 << 12);
 895                } else
 896                        regval = (regval & 0x80071fff) |
 897                                (0x3 << 30) |
 898                                (0x1 << 13) |
 899                                (0x4 << 26) |
 900                                (0x60 << 19);
 901                REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 902
 903                if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 904                        REG_WRITE(ah, AR_PHY_PLL_MODE,
 905                                  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 906                else
 907                        REG_WRITE(ah, AR_PHY_PLL_MODE,
 908                                  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 909
 910                udelay(1000);
 911        }
 912
 913        if (AR_SREV_9565(ah))
 914                pll |= 0x40000;
 915        REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 916
 917        if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 918            AR_SREV_9550(ah))
 919                udelay(1000);
 920
 921        /* Switch the core clock for ar9271 to 117Mhz */
 922        if (AR_SREV_9271(ah)) {
 923                udelay(500);
 924                REG_WRITE(ah, 0x50040, 0x304);
 925        }
 926
 927        udelay(RTC_PLL_SETTLE_DELAY);
 928
 929        REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 930}
 931
 932static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 933                                          enum nl80211_iftype opmode)
 934{
 935        u32 sync_default = AR_INTR_SYNC_DEFAULT;
 936        u32 imr_reg = AR_IMR_TXERR |
 937                AR_IMR_TXURN |
 938                AR_IMR_RXERR |
 939                AR_IMR_RXORN |
 940                AR_IMR_BCNMISC;
 941        u32 msi_cfg = 0;
 942
 943        if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 944            AR_SREV_9561(ah))
 945                sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 946
 947        if (AR_SREV_9300_20_OR_LATER(ah)) {
 948                imr_reg |= AR_IMR_RXOK_HP;
 949                if (ah->config.rx_intr_mitigation) {
 950                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 951                        msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 952                } else {
 953                        imr_reg |= AR_IMR_RXOK_LP;
 954                        msi_cfg |= AR_INTCFG_MSI_RXOK;
 955                }
 956        } else {
 957                if (ah->config.rx_intr_mitigation) {
 958                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 959                        msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 960                } else {
 961                        imr_reg |= AR_IMR_RXOK;
 962                        msi_cfg |= AR_INTCFG_MSI_RXOK;
 963                }
 964        }
 965
 966        if (ah->config.tx_intr_mitigation) {
 967                imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 968                msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
 969        } else {
 970                imr_reg |= AR_IMR_TXOK;
 971                msi_cfg |= AR_INTCFG_MSI_TXOK;
 972        }
 973
 974        ENABLE_REGWRITE_BUFFER(ah);
 975
 976        REG_WRITE(ah, AR_IMR, imr_reg);
 977        ah->imrs2_reg |= AR_IMR_S2_GTT;
 978        REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 979
 980        if (ah->msi_enabled) {
 981                ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
 982                ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
 983                ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 984                REG_WRITE(ah, AR_INTCFG, msi_cfg);
 985                ath_dbg(ath9k_hw_common(ah), ANY,
 986                        "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
 987                        REG_READ(ah, AR_INTCFG), msi_cfg);
 988        }
 989
 990        if (!AR_SREV_9100(ah)) {
 991                REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 992                REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 993                REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 994        }
 995
 996        REGWRITE_BUFFER_FLUSH(ah);
 997
 998        if (AR_SREV_9300_20_OR_LATER(ah)) {
 999                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1000                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1001                REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1002                REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1003        }
1004}
1005
1006static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1007{
1008        u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1009        val = min(val, (u32) 0xFFFF);
1010        REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1011}
1012
1013void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1014{
1015        u32 val = ath9k_hw_mac_to_clks(ah, us);
1016        val = min(val, (u32) 0xFFFF);
1017        REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1018}
1019
1020void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1021{
1022        u32 val = ath9k_hw_mac_to_clks(ah, us);
1023        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1024        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1025}
1026
1027void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1028{
1029        u32 val = ath9k_hw_mac_to_clks(ah, us);
1030        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1031        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1032}
1033
1034static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1035{
1036        if (tu > 0xFFFF) {
1037                ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1038                        tu);
1039                ah->globaltxtimeout = (u32) -1;
1040                return false;
1041        } else {
1042                REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1043                ah->globaltxtimeout = tu;
1044                return true;
1045        }
1046}
1047
1048void ath9k_hw_init_global_settings(struct ath_hw *ah)
1049{
1050        struct ath_common *common = ath9k_hw_common(ah);
1051        const struct ath9k_channel *chan = ah->curchan;
1052        int acktimeout, ctstimeout, ack_offset = 0;
1053        int slottime;
1054        int sifstime;
1055        int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1056        u32 reg;
1057
1058        ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1059                ah->misc_mode);
1060
1061        if (!chan)
1062                return;
1063
1064        if (ah->misc_mode != 0)
1065                REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1066
1067        if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1068                rx_lat = 41;
1069        else
1070                rx_lat = 37;
1071        tx_lat = 54;
1072
1073        if (IS_CHAN_5GHZ(chan))
1074                sifstime = 16;
1075        else
1076                sifstime = 10;
1077
1078        if (IS_CHAN_HALF_RATE(chan)) {
1079                eifs = 175;
1080                rx_lat *= 2;
1081                tx_lat *= 2;
1082                if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1083                    tx_lat += 11;
1084
1085                sifstime = 32;
1086                ack_offset = 16;
1087                ack_shift = 3;
1088                slottime = 13;
1089        } else if (IS_CHAN_QUARTER_RATE(chan)) {
1090                eifs = 340;
1091                rx_lat = (rx_lat * 4) - 1;
1092                tx_lat *= 4;
1093                if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1094                    tx_lat += 22;
1095
1096                sifstime = 64;
1097                ack_offset = 32;
1098                ack_shift = 1;
1099                slottime = 21;
1100        } else {
1101                if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1102                        eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1103                        reg = AR_USEC_ASYNC_FIFO;
1104                } else {
1105                        eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1106                                common->clockrate;
1107                        reg = REG_READ(ah, AR_USEC);
1108                }
1109                rx_lat = MS(reg, AR_USEC_RX_LAT);
1110                tx_lat = MS(reg, AR_USEC_TX_LAT);
1111
1112                slottime = ah->slottime;
1113        }
1114
1115        /* As defined by IEEE 802.11-2007 17.3.8.6 */
1116        slottime += 3 * ah->coverage_class;
1117        acktimeout = slottime + sifstime + ack_offset;
1118        ctstimeout = acktimeout;
1119
1120        /*
1121         * Workaround for early ACK timeouts, add an offset to match the
1122         * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123         * This was initially only meant to work around an issue with delayed
1124         * BA frames in some implementations, but it has been found to fix ACK
1125         * timeout issues in other cases as well.
1126         */
1127        if (IS_CHAN_2GHZ(chan) &&
1128            !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1129                acktimeout += 64 - sifstime - ah->slottime;
1130                ctstimeout += 48 - sifstime - ah->slottime;
1131        }
1132
1133        if (ah->dynack.enabled) {
1134                acktimeout = ah->dynack.ackto;
1135                ctstimeout = acktimeout;
1136                slottime = (acktimeout - 3) / 2;
1137        } else {
1138                ah->dynack.ackto = acktimeout;
1139        }
1140
1141        ath9k_hw_set_sifs_time(ah, sifstime);
1142        ath9k_hw_setslottime(ah, slottime);
1143        ath9k_hw_set_ack_timeout(ah, acktimeout);
1144        ath9k_hw_set_cts_timeout(ah, ctstimeout);
1145        if (ah->globaltxtimeout != (u32) -1)
1146                ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1147
1148        REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1149        REG_RMW(ah, AR_USEC,
1150                (common->clockrate - 1) |
1151                SM(rx_lat, AR_USEC_RX_LAT) |
1152                SM(tx_lat, AR_USEC_TX_LAT),
1153                AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1154
1155        if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1156                REG_RMW(ah, AR_TXSIFS,
1157                        sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1158                        (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1159}
1160EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1161
1162void ath9k_hw_deinit(struct ath_hw *ah)
1163{
1164        struct ath_common *common = ath9k_hw_common(ah);
1165
1166        if (common->state < ATH_HW_INITIALIZED)
1167                return;
1168
1169        ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1170}
1171EXPORT_SYMBOL(ath9k_hw_deinit);
1172
1173/*******/
1174/* INI */
1175/*******/
1176
1177u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1178{
1179        u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1180
1181        if (IS_CHAN_2GHZ(chan))
1182                ctl |= CTL_11G;
1183        else
1184                ctl |= CTL_11A;
1185
1186        return ctl;
1187}
1188
1189/****************************************/
1190/* Reset and Channel Switching Routines */
1191/****************************************/
1192
1193static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1194{
1195        struct ath_common *common = ath9k_hw_common(ah);
1196        int txbuf_size;
1197
1198        ENABLE_REGWRITE_BUFFER(ah);
1199
1200        /*
1201         * set AHB_MODE not to do cacheline prefetches
1202        */
1203        if (!AR_SREV_9300_20_OR_LATER(ah))
1204                REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1205
1206        /*
1207         * let mac dma reads be in 128 byte chunks
1208         */
1209        REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1210
1211        REGWRITE_BUFFER_FLUSH(ah);
1212
1213        /*
1214         * Restore TX Trigger Level to its pre-reset value.
1215         * The initial value depends on whether aggregation is enabled, and is
1216         * adjusted whenever underruns are detected.
1217         */
1218        if (!AR_SREV_9300_20_OR_LATER(ah))
1219                REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1220
1221        ENABLE_REGWRITE_BUFFER(ah);
1222
1223        /*
1224         * let mac dma writes be in 128 byte chunks
1225         */
1226        REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1227
1228        /*
1229         * Setup receive FIFO threshold to hold off TX activities
1230         */
1231        REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1232
1233        if (AR_SREV_9300_20_OR_LATER(ah)) {
1234                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1235                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1236
1237                ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1238                        ah->caps.rx_status_len);
1239        }
1240
1241        /*
1242         * reduce the number of usable entries in PCU TXBUF to avoid
1243         * wrap around issues.
1244         */
1245        if (AR_SREV_9285(ah)) {
1246                /* For AR9285 the number of Fifos are reduced to half.
1247                 * So set the usable tx buf size also to half to
1248                 * avoid data/delimiter underruns
1249                 */
1250                txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1251        } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1252                /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1253                txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1254        } else {
1255                txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1256        }
1257
1258        if (!AR_SREV_9271(ah))
1259                REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1260
1261        REGWRITE_BUFFER_FLUSH(ah);
1262
1263        if (AR_SREV_9300_20_OR_LATER(ah))
1264                ath9k_hw_reset_txstatus_ring(ah);
1265}
1266
1267static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1268{
1269        u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1270        u32 set = AR_STA_ID1_KSRCH_MODE;
1271
1272        ENABLE_REG_RMW_BUFFER(ah);
1273        switch (opmode) {
1274        case NL80211_IFTYPE_ADHOC:
1275                if (!AR_SREV_9340_13(ah)) {
1276                        set |= AR_STA_ID1_ADHOC;
1277                        REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1278                        break;
1279                }
1280                /* fall through */
1281        case NL80211_IFTYPE_OCB:
1282        case NL80211_IFTYPE_MESH_POINT:
1283        case NL80211_IFTYPE_AP:
1284                set |= AR_STA_ID1_STA_AP;
1285                /* fall through */
1286        case NL80211_IFTYPE_STATION:
1287                REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1288                break;
1289        default:
1290                if (!ah->is_monitoring)
1291                        set = 0;
1292                break;
1293        }
1294        REG_RMW(ah, AR_STA_ID1, set, mask);
1295        REG_RMW_BUFFER_FLUSH(ah);
1296}
1297
1298void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1299                                   u32 *coef_mantissa, u32 *coef_exponent)
1300{
1301        u32 coef_exp, coef_man;
1302
1303        for (coef_exp = 31; coef_exp > 0; coef_exp--)
1304                if ((coef_scaled >> coef_exp) & 0x1)
1305                        break;
1306
1307        coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1308
1309        coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1310
1311        *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1312        *coef_exponent = coef_exp - 16;
1313}
1314
1315/* AR9330 WAR:
1316 * call external reset function to reset WMAC if:
1317 * - doing a cold reset
1318 * - we have pending frames in the TX queues.
1319 */
1320static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1321{
1322        int i, npend = 0;
1323
1324        for (i = 0; i < AR_NUM_QCU; i++) {
1325                npend = ath9k_hw_numtxpending(ah, i);
1326                if (npend)
1327                        break;
1328        }
1329
1330        if (ah->external_reset &&
1331            (npend || type == ATH9K_RESET_COLD)) {
1332                int reset_err = 0;
1333
1334                ath_dbg(ath9k_hw_common(ah), RESET,
1335                        "reset MAC via external reset\n");
1336
1337                reset_err = ah->external_reset();
1338                if (reset_err) {
1339                        ath_err(ath9k_hw_common(ah),
1340                                "External reset failed, err=%d\n",
1341                                reset_err);
1342                        return false;
1343                }
1344
1345                REG_WRITE(ah, AR_RTC_RESET, 1);
1346        }
1347
1348        return true;
1349}
1350
1351static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1352{
1353        u32 rst_flags;
1354        u32 tmpReg;
1355
1356        if (AR_SREV_9100(ah)) {
1357                REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1358                              AR_RTC_DERIVED_CLK_PERIOD, 1);
1359                (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1360        }
1361
1362        ENABLE_REGWRITE_BUFFER(ah);
1363
1364        if (AR_SREV_9300_20_OR_LATER(ah)) {
1365                REG_WRITE(ah, AR_WA, ah->WARegVal);
1366                udelay(10);
1367        }
1368
1369        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1370                  AR_RTC_FORCE_WAKE_ON_INT);
1371
1372        if (AR_SREV_9100(ah)) {
1373                rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1374                        AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1375        } else {
1376                tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1377                if (AR_SREV_9340(ah))
1378                        tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1379                else
1380                        tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1381                                  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1382
1383                if (tmpReg) {
1384                        u32 val;
1385                        REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1386
1387                        val = AR_RC_HOSTIF;
1388                        if (!AR_SREV_9300_20_OR_LATER(ah))
1389                                val |= AR_RC_AHB;
1390                        REG_WRITE(ah, AR_RC, val);
1391
1392                } else if (!AR_SREV_9300_20_OR_LATER(ah))
1393                        REG_WRITE(ah, AR_RC, AR_RC_AHB);
1394
1395                rst_flags = AR_RTC_RC_MAC_WARM;
1396                if (type == ATH9K_RESET_COLD)
1397                        rst_flags |= AR_RTC_RC_MAC_COLD;
1398        }
1399
1400        if (AR_SREV_9330(ah)) {
1401                if (!ath9k_hw_ar9330_reset_war(ah, type))
1402                        return false;
1403        }
1404
1405        if (ath9k_hw_mci_is_enabled(ah))
1406                ar9003_mci_check_gpm_offset(ah);
1407
1408        /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1409         * RTC_RC reg read
1410         */
1411        if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1412                REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1413                ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1414                              20 * AH_WAIT_TIMEOUT);
1415                REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1416        }
1417
1418        REG_WRITE(ah, AR_RTC_RC, rst_flags);
1419
1420        REGWRITE_BUFFER_FLUSH(ah);
1421
1422        if (AR_SREV_9300_20_OR_LATER(ah))
1423                udelay(50);
1424        else if (AR_SREV_9100(ah))
1425                mdelay(10);
1426        else
1427                udelay(100);
1428
1429        REG_WRITE(ah, AR_RTC_RC, 0);
1430        if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1431                ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1432                return false;
1433        }
1434
1435        if (!AR_SREV_9100(ah))
1436                REG_WRITE(ah, AR_RC, 0);
1437
1438        if (AR_SREV_9100(ah))
1439                udelay(50);
1440
1441        return true;
1442}
1443
1444static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1445{
1446        ENABLE_REGWRITE_BUFFER(ah);
1447
1448        if (AR_SREV_9300_20_OR_LATER(ah)) {
1449                REG_WRITE(ah, AR_WA, ah->WARegVal);
1450                udelay(10);
1451        }
1452
1453        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1454                  AR_RTC_FORCE_WAKE_ON_INT);
1455
1456        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1457                REG_WRITE(ah, AR_RC, AR_RC_AHB);
1458
1459        REG_WRITE(ah, AR_RTC_RESET, 0);
1460
1461        REGWRITE_BUFFER_FLUSH(ah);
1462
1463        udelay(2);
1464
1465        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1466                REG_WRITE(ah, AR_RC, 0);
1467
1468        REG_WRITE(ah, AR_RTC_RESET, 1);
1469
1470        if (!ath9k_hw_wait(ah,
1471                           AR_RTC_STATUS,
1472                           AR_RTC_STATUS_M,
1473                           AR_RTC_STATUS_ON,
1474                           AH_WAIT_TIMEOUT)) {
1475                ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1476                return false;
1477        }
1478
1479        return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1480}
1481
1482static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1483{
1484        bool ret = false;
1485
1486        if (AR_SREV_9300_20_OR_LATER(ah)) {
1487                REG_WRITE(ah, AR_WA, ah->WARegVal);
1488                udelay(10);
1489        }
1490
1491        REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1492                  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1493
1494        if (!ah->reset_power_on)
1495                type = ATH9K_RESET_POWER_ON;
1496
1497        switch (type) {
1498        case ATH9K_RESET_POWER_ON:
1499                ret = ath9k_hw_set_reset_power_on(ah);
1500                if (ret)
1501                        ah->reset_power_on = true;
1502                break;
1503        case ATH9K_RESET_WARM:
1504        case ATH9K_RESET_COLD:
1505                ret = ath9k_hw_set_reset(ah, type);
1506                break;
1507        default:
1508                break;
1509        }
1510
1511        return ret;
1512}
1513
1514static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1515                                struct ath9k_channel *chan)
1516{
1517        int reset_type = ATH9K_RESET_WARM;
1518
1519        if (AR_SREV_9280(ah)) {
1520                if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1521                        reset_type = ATH9K_RESET_POWER_ON;
1522                else
1523                        reset_type = ATH9K_RESET_COLD;
1524        } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1525                   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1526                reset_type = ATH9K_RESET_COLD;
1527
1528        if (!ath9k_hw_set_reset_reg(ah, reset_type))
1529                return false;
1530
1531        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1532                return false;
1533
1534        ah->chip_fullsleep = false;
1535
1536        if (AR_SREV_9330(ah))
1537                ar9003_hw_internal_regulator_apply(ah);
1538        ath9k_hw_init_pll(ah, chan);
1539
1540        return true;
1541}
1542
1543static bool ath9k_hw_channel_change(struct ath_hw *ah,
1544                                    struct ath9k_channel *chan)
1545{
1546        struct ath_common *common = ath9k_hw_common(ah);
1547        struct ath9k_hw_capabilities *pCap = &ah->caps;
1548        bool band_switch = false, mode_diff = false;
1549        u8 ini_reloaded = 0;
1550        u32 qnum;
1551        int r;
1552
1553        if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1554                u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1555                band_switch = !!(flags_diff & CHANNEL_5GHZ);
1556                mode_diff = !!(flags_diff & ~CHANNEL_HT);
1557        }
1558
1559        for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1560                if (ath9k_hw_numtxpending(ah, qnum)) {
1561                        ath_dbg(common, QUEUE,
1562                                "Transmit frames pending on queue %d\n", qnum);
1563                        return false;
1564                }
1565        }
1566
1567        if (!ath9k_hw_rfbus_req(ah)) {
1568                ath_err(common, "Could not kill baseband RX\n");
1569                return false;
1570        }
1571
1572        if (band_switch || mode_diff) {
1573                ath9k_hw_mark_phy_inactive(ah);
1574                udelay(5);
1575
1576                if (band_switch)
1577                        ath9k_hw_init_pll(ah, chan);
1578
1579                if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1580                        ath_err(common, "Failed to do fast channel change\n");
1581                        return false;
1582                }
1583        }
1584
1585        ath9k_hw_set_channel_regs(ah, chan);
1586
1587        r = ath9k_hw_rf_set_freq(ah, chan);
1588        if (r) {
1589                ath_err(common, "Failed to set channel\n");
1590                return false;
1591        }
1592        ath9k_hw_set_clockrate(ah);
1593        ath9k_hw_apply_txpower(ah, chan, false);
1594
1595        ath9k_hw_set_delta_slope(ah, chan);
1596        ath9k_hw_spur_mitigate_freq(ah, chan);
1597
1598        if (band_switch || ini_reloaded)
1599                ah->eep_ops->set_board_values(ah, chan);
1600
1601        ath9k_hw_init_bb(ah, chan);
1602        ath9k_hw_rfbus_done(ah);
1603
1604        if (band_switch || ini_reloaded) {
1605                ah->ah_flags |= AH_FASTCC;
1606                ath9k_hw_init_cal(ah, chan);
1607                ah->ah_flags &= ~AH_FASTCC;
1608        }
1609
1610        return true;
1611}
1612
1613static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1614{
1615        u32 gpio_mask = ah->gpio_mask;
1616        int i;
1617
1618        for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1619                if (!(gpio_mask & 1))
1620                        continue;
1621
1622                ath9k_hw_gpio_request_out(ah, i, NULL,
1623                                          AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1624                ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1625                ath9k_hw_gpio_free(ah, i);
1626        }
1627}
1628
1629void ath9k_hw_check_nav(struct ath_hw *ah)
1630{
1631        struct ath_common *common = ath9k_hw_common(ah);
1632        u32 val;
1633
1634        val = REG_READ(ah, AR_NAV);
1635        if (val != 0xdeadbeef && val > 0x7fff) {
1636                ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1637                REG_WRITE(ah, AR_NAV, 0);
1638        }
1639}
1640EXPORT_SYMBOL(ath9k_hw_check_nav);
1641
1642bool ath9k_hw_check_alive(struct ath_hw *ah)
1643{
1644        int count = 50;
1645        u32 reg, last_val;
1646
1647        /* Check if chip failed to wake up */
1648        if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1649                return false;
1650
1651        if (AR_SREV_9300(ah))
1652                return !ath9k_hw_detect_mac_hang(ah);
1653
1654        if (AR_SREV_9285_12_OR_LATER(ah))
1655                return true;
1656
1657        last_val = REG_READ(ah, AR_OBS_BUS_1);
1658        do {
1659                reg = REG_READ(ah, AR_OBS_BUS_1);
1660                if (reg != last_val)
1661                        return true;
1662
1663                udelay(1);
1664                last_val = reg;
1665                if ((reg & 0x7E7FFFEF) == 0x00702400)
1666                        continue;
1667
1668                switch (reg & 0x7E000B00) {
1669                case 0x1E000000:
1670                case 0x52000B00:
1671                case 0x18000B00:
1672                        continue;
1673                default:
1674                        return true;
1675                }
1676        } while (count-- > 0);
1677
1678        return false;
1679}
1680EXPORT_SYMBOL(ath9k_hw_check_alive);
1681
1682static void ath9k_hw_init_mfp(struct ath_hw *ah)
1683{
1684        /* Setup MFP options for CCMP */
1685        if (AR_SREV_9280_20_OR_LATER(ah)) {
1686                /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1687                 * frames when constructing CCMP AAD. */
1688                REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1689                              0xc7ff);
1690                if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1691                        ah->sw_mgmt_crypto_tx = true;
1692                else
1693                        ah->sw_mgmt_crypto_tx = false;
1694                ah->sw_mgmt_crypto_rx = false;
1695        } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1696                /* Disable hardware crypto for management frames */
1697                REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1698                            AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1699                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1700                            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1701                ah->sw_mgmt_crypto_tx = true;
1702                ah->sw_mgmt_crypto_rx = true;
1703        } else {
1704                ah->sw_mgmt_crypto_tx = true;
1705                ah->sw_mgmt_crypto_rx = true;
1706        }
1707}
1708
1709static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1710                                  u32 macStaId1, u32 saveDefAntenna)
1711{
1712        struct ath_common *common = ath9k_hw_common(ah);
1713
1714        ENABLE_REGWRITE_BUFFER(ah);
1715
1716        REG_RMW(ah, AR_STA_ID1, macStaId1
1717                  | AR_STA_ID1_RTS_USE_DEF
1718                  | ah->sta_id1_defaults,
1719                  ~AR_STA_ID1_SADH_MASK);
1720        ath_hw_setbssidmask(common);
1721        REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1722        ath9k_hw_write_associd(ah);
1723        REG_WRITE(ah, AR_ISR, ~0);
1724        REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1725
1726        REGWRITE_BUFFER_FLUSH(ah);
1727
1728        ath9k_hw_set_operating_mode(ah, ah->opmode);
1729}
1730
1731static void ath9k_hw_init_queues(struct ath_hw *ah)
1732{
1733        int i;
1734
1735        ENABLE_REGWRITE_BUFFER(ah);
1736
1737        for (i = 0; i < AR_NUM_DCU; i++)
1738                REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1739
1740        REGWRITE_BUFFER_FLUSH(ah);
1741
1742        ah->intr_txqs = 0;
1743        for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1744                ath9k_hw_resettxqueue(ah, i);
1745}
1746
1747/*
1748 * For big endian systems turn on swapping for descriptors
1749 */
1750static void ath9k_hw_init_desc(struct ath_hw *ah)
1751{
1752        struct ath_common *common = ath9k_hw_common(ah);
1753
1754        if (AR_SREV_9100(ah)) {
1755                u32 mask;
1756                mask = REG_READ(ah, AR_CFG);
1757                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1758                        ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1759                                mask);
1760                } else {
1761                        mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1762                        REG_WRITE(ah, AR_CFG, mask);
1763                        ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1764                                REG_READ(ah, AR_CFG));
1765                }
1766        } else {
1767                if (common->bus_ops->ath_bus_type == ATH_USB) {
1768                        /* Configure AR9271 target WLAN */
1769                        if (AR_SREV_9271(ah))
1770                                REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1771                        else
1772                                REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1773                }
1774#ifdef __BIG_ENDIAN
1775                else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1776                         AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1777                         AR_SREV_9561(ah))
1778                        REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1779                else
1780                        REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1781#endif
1782        }
1783}
1784
1785/*
1786 * Fast channel change:
1787 * (Change synthesizer based on channel freq without resetting chip)
1788 */
1789static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1790{
1791        struct ath_common *common = ath9k_hw_common(ah);
1792        struct ath9k_hw_capabilities *pCap = &ah->caps;
1793        int ret;
1794
1795        if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1796                goto fail;
1797
1798        if (ah->chip_fullsleep)
1799                goto fail;
1800
1801        if (!ah->curchan)
1802                goto fail;
1803
1804        if (chan->channel == ah->curchan->channel)
1805                goto fail;
1806
1807        if ((ah->curchan->channelFlags | chan->channelFlags) &
1808            (CHANNEL_HALF | CHANNEL_QUARTER))
1809                goto fail;
1810
1811        /*
1812         * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1813         */
1814        if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1815            ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1816                goto fail;
1817
1818        if (!ath9k_hw_check_alive(ah))
1819                goto fail;
1820
1821        /*
1822         * For AR9462, make sure that calibration data for
1823         * re-using are present.
1824         */
1825        if (AR_SREV_9462(ah) && (ah->caldata &&
1826                                 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1827                                  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1828                                  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1829                goto fail;
1830
1831        ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1832                ah->curchan->channel, chan->channel);
1833
1834        ret = ath9k_hw_channel_change(ah, chan);
1835        if (!ret)
1836                goto fail;
1837
1838        if (ath9k_hw_mci_is_enabled(ah))
1839                ar9003_mci_2g5g_switch(ah, false);
1840
1841        ath9k_hw_loadnf(ah, ah->curchan);
1842        ath9k_hw_start_nfcal(ah, true);
1843
1844        if (AR_SREV_9271(ah))
1845                ar9002_hw_load_ani_reg(ah, chan);
1846
1847        return 0;
1848fail:
1849        return -EINVAL;
1850}
1851
1852u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1853{
1854        struct timespec64 ts;
1855        s64 usec;
1856
1857        if (!cur) {
1858                ktime_get_raw_ts64(&ts);
1859                cur = &ts;
1860        }
1861
1862        usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1863        usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1864
1865        return (u32) usec;
1866}
1867EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1868
1869int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1870                   struct ath9k_hw_cal_data *caldata, bool fastcc)
1871{
1872        struct ath_common *common = ath9k_hw_common(ah);
1873        u32 saveLedState;
1874        u32 saveDefAntenna;
1875        u32 macStaId1;
1876        struct timespec64 tsf_ts;
1877        u32 tsf_offset;
1878        u64 tsf = 0;
1879        int r;
1880        bool start_mci_reset = false;
1881        bool save_fullsleep = ah->chip_fullsleep;
1882
1883        if (ath9k_hw_mci_is_enabled(ah)) {
1884                start_mci_reset = ar9003_mci_start_reset(ah, chan);
1885                if (start_mci_reset)
1886                        return 0;
1887        }
1888
1889        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1890                return -EIO;
1891
1892        if (ah->curchan && !ah->chip_fullsleep)
1893                ath9k_hw_getnf(ah, ah->curchan);
1894
1895        ah->caldata = caldata;
1896        if (caldata && (chan->channel != caldata->channel ||
1897                        chan->channelFlags != caldata->channelFlags)) {
1898                /* Operating channel changed, reset channel calibration data */
1899                memset(caldata, 0, sizeof(*caldata));
1900                ath9k_init_nfcal_hist_buffer(ah, chan);
1901        } else if (caldata) {
1902                clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1903        }
1904        ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1905
1906        if (fastcc) {
1907                r = ath9k_hw_do_fastcc(ah, chan);
1908                if (!r)
1909                        return r;
1910        }
1911
1912        if (ath9k_hw_mci_is_enabled(ah))
1913                ar9003_mci_stop_bt(ah, save_fullsleep);
1914
1915        saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1916        if (saveDefAntenna == 0)
1917                saveDefAntenna = 1;
1918
1919        macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1920
1921        /* Save TSF before chip reset, a cold reset clears it */
1922        ktime_get_raw_ts64(&tsf_ts);
1923        tsf = ath9k_hw_gettsf64(ah);
1924
1925        saveLedState = REG_READ(ah, AR_CFG_LED) &
1926                (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1927                 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1928
1929        ath9k_hw_mark_phy_inactive(ah);
1930
1931        ah->paprd_table_write_done = false;
1932
1933        /* Only required on the first reset */
1934        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1935                REG_WRITE(ah,
1936                          AR9271_RESET_POWER_DOWN_CONTROL,
1937                          AR9271_RADIO_RF_RST);
1938                udelay(50);
1939        }
1940
1941        if (!ath9k_hw_chip_reset(ah, chan)) {
1942                ath_err(common, "Chip reset failed\n");
1943                return -EINVAL;
1944        }
1945
1946        /* Only required on the first reset */
1947        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1948                ah->htc_reset_init = false;
1949                REG_WRITE(ah,
1950                          AR9271_RESET_POWER_DOWN_CONTROL,
1951                          AR9271_GATE_MAC_CTL);
1952                udelay(50);
1953        }
1954
1955        /* Restore TSF */
1956        tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1957        ath9k_hw_settsf64(ah, tsf + tsf_offset);
1958
1959        if (AR_SREV_9280_20_OR_LATER(ah))
1960                REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1961
1962        if (!AR_SREV_9300_20_OR_LATER(ah))
1963                ar9002_hw_enable_async_fifo(ah);
1964
1965        r = ath9k_hw_process_ini(ah, chan);
1966        if (r)
1967                return r;
1968
1969        ath9k_hw_set_rfmode(ah, chan);
1970
1971        if (ath9k_hw_mci_is_enabled(ah))
1972                ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1973
1974        /*
1975         * Some AR91xx SoC devices frequently fail to accept TSF writes
1976         * right after the chip reset. When that happens, write a new
1977         * value after the initvals have been applied.
1978         */
1979        if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1980                tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1981                ath9k_hw_settsf64(ah, tsf + tsf_offset);
1982        }
1983
1984        ath9k_hw_init_mfp(ah);
1985
1986        ath9k_hw_set_delta_slope(ah, chan);
1987        ath9k_hw_spur_mitigate_freq(ah, chan);
1988        ah->eep_ops->set_board_values(ah, chan);
1989
1990        ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1991
1992        r = ath9k_hw_rf_set_freq(ah, chan);
1993        if (r)
1994                return r;
1995
1996        ath9k_hw_set_clockrate(ah);
1997
1998        ath9k_hw_init_queues(ah);
1999        ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2000        ath9k_hw_ani_cache_ini_regs(ah);
2001        ath9k_hw_init_qos(ah);
2002
2003        if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2004                ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2005
2006        ath9k_hw_init_global_settings(ah);
2007
2008        if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2009                REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2010                            AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2011                REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2012                              AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2013                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2014                            AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2015        }
2016
2017        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2018
2019        ath9k_hw_set_dma(ah);
2020
2021        if (!ath9k_hw_mci_is_enabled(ah))
2022                REG_WRITE(ah, AR_OBS, 8);
2023
2024        ENABLE_REG_RMW_BUFFER(ah);
2025        if (ah->config.rx_intr_mitigation) {
2026                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2027                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2028        }
2029
2030        if (ah->config.tx_intr_mitigation) {
2031                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2032                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2033        }
2034        REG_RMW_BUFFER_FLUSH(ah);
2035
2036        ath9k_hw_init_bb(ah, chan);
2037
2038        if (caldata) {
2039                clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2040                clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2041        }
2042        if (!ath9k_hw_init_cal(ah, chan))
2043                return -EIO;
2044
2045        if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2046                return -EIO;
2047
2048        ENABLE_REGWRITE_BUFFER(ah);
2049
2050        ath9k_hw_restore_chainmask(ah);
2051        REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2052
2053        REGWRITE_BUFFER_FLUSH(ah);
2054
2055        ath9k_hw_gen_timer_start_tsf2(ah);
2056
2057        ath9k_hw_init_desc(ah);
2058
2059        if (ath9k_hw_btcoex_is_enabled(ah))
2060                ath9k_hw_btcoex_enable(ah);
2061
2062        if (ath9k_hw_mci_is_enabled(ah))
2063                ar9003_mci_check_bt(ah);
2064
2065        if (AR_SREV_9300_20_OR_LATER(ah)) {
2066                ath9k_hw_loadnf(ah, chan);
2067                ath9k_hw_start_nfcal(ah, true);
2068        }
2069
2070        if (AR_SREV_9300_20_OR_LATER(ah))
2071                ar9003_hw_bb_watchdog_config(ah);
2072
2073        if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2074                ar9003_hw_disable_phy_restart(ah);
2075
2076        ath9k_hw_apply_gpio_override(ah);
2077
2078        if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2079                REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2080
2081        if (ah->hw->conf.radar_enabled) {
2082                /* set HW specific DFS configuration */
2083                ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2084                ath9k_hw_set_radar_params(ah);
2085        }
2086
2087        return 0;
2088}
2089EXPORT_SYMBOL(ath9k_hw_reset);
2090
2091/******************************/
2092/* Power Management (Chipset) */
2093/******************************/
2094
2095/*
2096 * Notify Power Mgt is disabled in self-generated frames.
2097 * If requested, force chip to sleep.
2098 */
2099static void ath9k_set_power_sleep(struct ath_hw *ah)
2100{
2101        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2102
2103        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2104                REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2105                REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2106                REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2107                /* xxx Required for WLAN only case ? */
2108                REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2109                udelay(100);
2110        }
2111
2112        /*
2113         * Clear the RTC force wake bit to allow the
2114         * mac to go to sleep.
2115         */
2116        REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2117
2118        if (ath9k_hw_mci_is_enabled(ah))
2119                udelay(100);
2120
2121        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2122                REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2123
2124        /* Shutdown chip. Active low */
2125        if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2126                REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2127                udelay(2);
2128        }
2129
2130        /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2131        if (AR_SREV_9300_20_OR_LATER(ah))
2132                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2133}
2134
2135/*
2136 * Notify Power Management is enabled in self-generating
2137 * frames. If request, set power mode of chip to
2138 * auto/normal.  Duration in units of 128us (1/8 TU).
2139 */
2140static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2141{
2142        struct ath9k_hw_capabilities *pCap = &ah->caps;
2143
2144        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2145
2146        if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2147                /* Set WakeOnInterrupt bit; clear ForceWake bit */
2148                REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2149                          AR_RTC_FORCE_WAKE_ON_INT);
2150        } else {
2151
2152                /* When chip goes into network sleep, it could be waken
2153                 * up by MCI_INT interrupt caused by BT's HW messages
2154                 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2155                 * rate (~100us). This will cause chip to leave and
2156                 * re-enter network sleep mode frequently, which in
2157                 * consequence will have WLAN MCI HW to generate lots of
2158                 * SYS_WAKING and SYS_SLEEPING messages which will make
2159                 * BT CPU to busy to process.
2160                 */
2161                if (ath9k_hw_mci_is_enabled(ah))
2162                        REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2163                                    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2164                /*
2165                 * Clear the RTC force wake bit to allow the
2166                 * mac to go to sleep.
2167                 */
2168                REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2169
2170                if (ath9k_hw_mci_is_enabled(ah))
2171                        udelay(30);
2172        }
2173
2174        /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2175        if (AR_SREV_9300_20_OR_LATER(ah))
2176                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2177}
2178
2179static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2180{
2181        u32 val;
2182        int i;
2183
2184        /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2185        if (AR_SREV_9300_20_OR_LATER(ah)) {
2186                REG_WRITE(ah, AR_WA, ah->WARegVal);
2187                udelay(10);
2188        }
2189
2190        if ((REG_READ(ah, AR_RTC_STATUS) &
2191             AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2192                if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2193                        return false;
2194                }
2195                if (!AR_SREV_9300_20_OR_LATER(ah))
2196                        ath9k_hw_init_pll(ah, NULL);
2197        }
2198        if (AR_SREV_9100(ah))
2199                REG_SET_BIT(ah, AR_RTC_RESET,
2200                            AR_RTC_RESET_EN);
2201
2202        REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2203                    AR_RTC_FORCE_WAKE_EN);
2204        if (AR_SREV_9100(ah))
2205                mdelay(10);
2206        else
2207                udelay(50);
2208
2209        for (i = POWER_UP_TIME / 50; i > 0; i--) {
2210                val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2211                if (val == AR_RTC_STATUS_ON)
2212                        break;
2213                udelay(50);
2214                REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2215                            AR_RTC_FORCE_WAKE_EN);
2216        }
2217        if (i == 0) {
2218                ath_err(ath9k_hw_common(ah),
2219                        "Failed to wakeup in %uus\n",
2220                        POWER_UP_TIME / 20);
2221                return false;
2222        }
2223
2224        if (ath9k_hw_mci_is_enabled(ah))
2225                ar9003_mci_set_power_awake(ah);
2226
2227        REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2228
2229        return true;
2230}
2231
2232bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2233{
2234        struct ath_common *common = ath9k_hw_common(ah);
2235        int status = true;
2236        static const char *modes[] = {
2237                "AWAKE",
2238                "FULL-SLEEP",
2239                "NETWORK SLEEP",
2240                "UNDEFINED"
2241        };
2242
2243        if (ah->power_mode == mode)
2244                return status;
2245
2246        ath_dbg(common, RESET, "%s -> %s\n",
2247                modes[ah->power_mode], modes[mode]);
2248
2249        switch (mode) {
2250        case ATH9K_PM_AWAKE:
2251                status = ath9k_hw_set_power_awake(ah);
2252                break;
2253        case ATH9K_PM_FULL_SLEEP:
2254                if (ath9k_hw_mci_is_enabled(ah))
2255                        ar9003_mci_set_full_sleep(ah);
2256
2257                ath9k_set_power_sleep(ah);
2258                ah->chip_fullsleep = true;
2259                break;
2260        case ATH9K_PM_NETWORK_SLEEP:
2261                ath9k_set_power_network_sleep(ah);
2262                break;
2263        default:
2264                ath_err(common, "Unknown power mode %u\n", mode);
2265                return false;
2266        }
2267        ah->power_mode = mode;
2268
2269        /*
2270         * XXX: If this warning never comes up after a while then
2271         * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2272         * ath9k_hw_setpower() return type void.
2273         */
2274
2275        if (!(ah->ah_flags & AH_UNPLUGGED))
2276                ATH_DBG_WARN_ON_ONCE(!status);
2277
2278        return status;
2279}
2280EXPORT_SYMBOL(ath9k_hw_setpower);
2281
2282/*******************/
2283/* Beacon Handling */
2284/*******************/
2285
2286void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2287{
2288        int flags = 0;
2289
2290        ENABLE_REGWRITE_BUFFER(ah);
2291
2292        switch (ah->opmode) {
2293        case NL80211_IFTYPE_ADHOC:
2294                REG_SET_BIT(ah, AR_TXCFG,
2295                            AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2296                /* fall through */
2297        case NL80211_IFTYPE_MESH_POINT:
2298        case NL80211_IFTYPE_AP:
2299                REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2300                REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2301                          TU_TO_USEC(ah->config.dma_beacon_response_time));
2302                REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2303                          TU_TO_USEC(ah->config.sw_beacon_response_time));
2304                flags |=
2305                        AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2306                break;
2307        default:
2308                ath_dbg(ath9k_hw_common(ah), BEACON,
2309                        "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2310                return;
2311                break;
2312        }
2313
2314        REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2315        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2316        REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2317
2318        REGWRITE_BUFFER_FLUSH(ah);
2319
2320        REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2321}
2322EXPORT_SYMBOL(ath9k_hw_beaconinit);
2323
2324void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2325                                    const struct ath9k_beacon_state *bs)
2326{
2327        u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2328        struct ath9k_hw_capabilities *pCap = &ah->caps;
2329        struct ath_common *common = ath9k_hw_common(ah);
2330
2331        ENABLE_REGWRITE_BUFFER(ah);
2332
2333        REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2334        REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2335        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2336
2337        REGWRITE_BUFFER_FLUSH(ah);
2338
2339        REG_RMW_FIELD(ah, AR_RSSI_THR,
2340                      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2341
2342        beaconintval = bs->bs_intval;
2343
2344        if (bs->bs_sleepduration > beaconintval)
2345                beaconintval = bs->bs_sleepduration;
2346
2347        dtimperiod = bs->bs_dtimperiod;
2348        if (bs->bs_sleepduration > dtimperiod)
2349                dtimperiod = bs->bs_sleepduration;
2350
2351        if (beaconintval == dtimperiod)
2352                nextTbtt = bs->bs_nextdtim;
2353        else
2354                nextTbtt = bs->bs_nexttbtt;
2355
2356        ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2357        ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2358        ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2359        ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2360
2361        ENABLE_REGWRITE_BUFFER(ah);
2362
2363        REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2364        REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2365
2366        REG_WRITE(ah, AR_SLEEP1,
2367                  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2368                  | AR_SLEEP1_ASSUME_DTIM);
2369
2370        if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2371                beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2372        else
2373                beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2374
2375        REG_WRITE(ah, AR_SLEEP2,
2376                  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2377
2378        REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2379        REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2380
2381        REGWRITE_BUFFER_FLUSH(ah);
2382
2383        REG_SET_BIT(ah, AR_TIMER_MODE,
2384                    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2385                    AR_DTIM_TIMER_EN);
2386
2387        /* TSF Out of Range Threshold */
2388        REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2389}
2390EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2391
2392/*******************/
2393/* HW Capabilities */
2394/*******************/
2395
2396static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2397{
2398        eeprom_chainmask &= chip_chainmask;
2399        if (eeprom_chainmask)
2400                return eeprom_chainmask;
2401        else
2402                return chip_chainmask;
2403}
2404
2405/**
2406 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2407 * @ah: the atheros hardware data structure
2408 *
2409 * We enable DFS support upstream on chipsets which have passed a series
2410 * of tests. The testing requirements are going to be documented. Desired
2411 * test requirements are documented at:
2412 *
2413 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2414 *
2415 * Once a new chipset gets properly tested an individual commit can be used
2416 * to document the testing for DFS for that chipset.
2417 */
2418static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2419{
2420
2421        switch (ah->hw_version.macVersion) {
2422        /* for temporary testing DFS with 9280 */
2423        case AR_SREV_VERSION_9280:
2424        /* AR9580 will likely be our first target to get testing on */
2425        case AR_SREV_VERSION_9580:
2426                return true;
2427        default:
2428                return false;
2429        }
2430}
2431
2432static void ath9k_gpio_cap_init(struct ath_hw *ah)
2433{
2434        struct ath9k_hw_capabilities *pCap = &ah->caps;
2435
2436        if (AR_SREV_9271(ah)) {
2437                pCap->num_gpio_pins = AR9271_NUM_GPIO;
2438                pCap->gpio_mask = AR9271_GPIO_MASK;
2439        } else if (AR_DEVID_7010(ah)) {
2440                pCap->num_gpio_pins = AR7010_NUM_GPIO;
2441                pCap->gpio_mask = AR7010_GPIO_MASK;
2442        } else if (AR_SREV_9287(ah)) {
2443                pCap->num_gpio_pins = AR9287_NUM_GPIO;
2444                pCap->gpio_mask = AR9287_GPIO_MASK;
2445        } else if (AR_SREV_9285(ah)) {
2446                pCap->num_gpio_pins = AR9285_NUM_GPIO;
2447                pCap->gpio_mask = AR9285_GPIO_MASK;
2448        } else if (AR_SREV_9280(ah)) {
2449                pCap->num_gpio_pins = AR9280_NUM_GPIO;
2450                pCap->gpio_mask = AR9280_GPIO_MASK;
2451        } else if (AR_SREV_9300(ah)) {
2452                pCap->num_gpio_pins = AR9300_NUM_GPIO;
2453                pCap->gpio_mask = AR9300_GPIO_MASK;
2454        } else if (AR_SREV_9330(ah)) {
2455                pCap->num_gpio_pins = AR9330_NUM_GPIO;
2456                pCap->gpio_mask = AR9330_GPIO_MASK;
2457        } else if (AR_SREV_9340(ah)) {
2458                pCap->num_gpio_pins = AR9340_NUM_GPIO;
2459                pCap->gpio_mask = AR9340_GPIO_MASK;
2460        } else if (AR_SREV_9462(ah)) {
2461                pCap->num_gpio_pins = AR9462_NUM_GPIO;
2462                pCap->gpio_mask = AR9462_GPIO_MASK;
2463        } else if (AR_SREV_9485(ah)) {
2464                pCap->num_gpio_pins = AR9485_NUM_GPIO;
2465                pCap->gpio_mask = AR9485_GPIO_MASK;
2466        } else if (AR_SREV_9531(ah)) {
2467                pCap->num_gpio_pins = AR9531_NUM_GPIO;
2468                pCap->gpio_mask = AR9531_GPIO_MASK;
2469        } else if (AR_SREV_9550(ah)) {
2470                pCap->num_gpio_pins = AR9550_NUM_GPIO;
2471                pCap->gpio_mask = AR9550_GPIO_MASK;
2472        } else if (AR_SREV_9561(ah)) {
2473                pCap->num_gpio_pins = AR9561_NUM_GPIO;
2474                pCap->gpio_mask = AR9561_GPIO_MASK;
2475        } else if (AR_SREV_9565(ah)) {
2476                pCap->num_gpio_pins = AR9565_NUM_GPIO;
2477                pCap->gpio_mask = AR9565_GPIO_MASK;
2478        } else if (AR_SREV_9580(ah)) {
2479                pCap->num_gpio_pins = AR9580_NUM_GPIO;
2480                pCap->gpio_mask = AR9580_GPIO_MASK;
2481        } else {
2482                pCap->num_gpio_pins = AR_NUM_GPIO;
2483                pCap->gpio_mask = AR_GPIO_MASK;
2484        }
2485}
2486
2487int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2488{
2489        struct ath9k_hw_capabilities *pCap = &ah->caps;
2490        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2491        struct ath_common *common = ath9k_hw_common(ah);
2492
2493        u16 eeval;
2494        u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2495
2496        eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2497        regulatory->current_rd = eeval;
2498
2499        if (ah->opmode != NL80211_IFTYPE_AP &&
2500            ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2501                if (regulatory->current_rd == 0x64 ||
2502                    regulatory->current_rd == 0x65)
2503                        regulatory->current_rd += 5;
2504                else if (regulatory->current_rd == 0x41)
2505                        regulatory->current_rd = 0x43;
2506                ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2507                        regulatory->current_rd);
2508        }
2509
2510        eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2511
2512        if (eeval & AR5416_OPFLAGS_11A) {
2513                if (ah->disable_5ghz)
2514                        ath_warn(common, "disabling 5GHz band\n");
2515                else
2516                        pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2517        }
2518
2519        if (eeval & AR5416_OPFLAGS_11G) {
2520                if (ah->disable_2ghz)
2521                        ath_warn(common, "disabling 2GHz band\n");
2522                else
2523                        pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2524        }
2525
2526        if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2527                ath_err(common, "both bands are disabled\n");
2528                return -EINVAL;
2529        }
2530
2531        ath9k_gpio_cap_init(ah);
2532
2533        if (AR_SREV_9485(ah) ||
2534            AR_SREV_9285(ah) ||
2535            AR_SREV_9330(ah) ||
2536            AR_SREV_9565(ah))
2537                pCap->chip_chainmask = 1;
2538        else if (!AR_SREV_9280_20_OR_LATER(ah))
2539                pCap->chip_chainmask = 7;
2540        else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2541                 AR_SREV_9340(ah) ||
2542                 AR_SREV_9462(ah) ||
2543                 AR_SREV_9531(ah))
2544                pCap->chip_chainmask = 3;
2545        else
2546                pCap->chip_chainmask = 7;
2547
2548        pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2549        /*
2550         * For AR9271 we will temporarilly uses the rx chainmax as read from
2551         * the EEPROM.
2552         */
2553        if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2554            !(eeval & AR5416_OPFLAGS_11A) &&
2555            !(AR_SREV_9271(ah)))
2556                /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2557                pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2558        else if (AR_SREV_9100(ah))
2559                pCap->rx_chainmask = 0x7;
2560        else
2561                /* Use rx_chainmask from EEPROM. */
2562                pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2563
2564        pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2565        pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2566        ah->txchainmask = pCap->tx_chainmask;
2567        ah->rxchainmask = pCap->rx_chainmask;
2568
2569        ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2570
2571        /* enable key search for every frame in an aggregate */
2572        if (AR_SREV_9300_20_OR_LATER(ah))
2573                ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2574
2575        common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2576
2577        if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2578                pCap->hw_caps |= ATH9K_HW_CAP_HT;
2579        else
2580                pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2581
2582        if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2583                pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2584        else
2585                pCap->rts_aggr_limit = (8 * 1024);
2586
2587#ifdef CONFIG_ATH9K_RFKILL
2588        ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2589        if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2590                ah->rfkill_gpio =
2591                        MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2592                ah->rfkill_polarity =
2593                        MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2594
2595                pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2596        }
2597#endif
2598        if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2599                pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2600        else
2601                pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2602
2603        if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2604                pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2605        else
2606                pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2607
2608        if (AR_SREV_9300_20_OR_LATER(ah)) {
2609                pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2610                if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2611                    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2612                        pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2613
2614                pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2615                pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2616                pCap->rx_status_len = sizeof(struct ar9003_rxs);
2617                pCap->tx_desc_len = sizeof(struct ar9003_txc);
2618                pCap->txs_len = sizeof(struct ar9003_txs);
2619        } else {
2620                pCap->tx_desc_len = sizeof(struct ath_desc);
2621                if (AR_SREV_9280_20(ah))
2622                        pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2623        }
2624
2625        if (AR_SREV_9300_20_OR_LATER(ah))
2626                pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2627
2628        if (AR_SREV_9561(ah))
2629                ah->ent_mode = 0x3BDA000;
2630        else if (AR_SREV_9300_20_OR_LATER(ah))
2631                ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2632
2633        if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2634                pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2635
2636        if (AR_SREV_9285(ah)) {
2637                if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2638                        ant_div_ctl1 =
2639                                ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2640                        if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2641                                pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2642                                ath_info(common, "Enable LNA combining\n");
2643                        }
2644                }
2645        }
2646
2647        if (AR_SREV_9300_20_OR_LATER(ah)) {
2648                if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2649                        pCap->hw_caps |= ATH9K_HW_CAP_APM;
2650        }
2651
2652        if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2653                ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2654                if ((ant_div_ctl1 >> 0x6) == 0x3) {
2655                        pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2656                        ath_info(common, "Enable LNA combining\n");
2657                }
2658        }
2659
2660        if (ath9k_hw_dfs_tested(ah))
2661                pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2662
2663        tx_chainmask = pCap->tx_chainmask;
2664        rx_chainmask = pCap->rx_chainmask;
2665        while (tx_chainmask || rx_chainmask) {
2666                if (tx_chainmask & BIT(0))
2667                        pCap->max_txchains++;
2668                if (rx_chainmask & BIT(0))
2669                        pCap->max_rxchains++;
2670
2671                tx_chainmask >>= 1;
2672                rx_chainmask >>= 1;
2673        }
2674
2675        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2676                if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2677                        pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2678
2679                if (AR_SREV_9462_20_OR_LATER(ah))
2680                        pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2681        }
2682
2683        if (AR_SREV_9300_20_OR_LATER(ah) &&
2684            ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2685                        pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2686
2687#ifdef CONFIG_ATH9K_WOW
2688        if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2689                ah->wow.max_patterns = MAX_NUM_PATTERN;
2690        else
2691                ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2692#endif
2693
2694        return 0;
2695}
2696
2697/****************************/
2698/* GPIO / RFKILL / Antennae */
2699/****************************/
2700
2701static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2702{
2703        int addr;
2704        u32 gpio_shift, tmp;
2705
2706        if (gpio > 11)
2707                addr = AR_GPIO_OUTPUT_MUX3;
2708        else if (gpio > 5)
2709                addr = AR_GPIO_OUTPUT_MUX2;
2710        else
2711                addr = AR_GPIO_OUTPUT_MUX1;
2712
2713        gpio_shift = (gpio % 6) * 5;
2714
2715        if (AR_SREV_9280_20_OR_LATER(ah) ||
2716            (addr != AR_GPIO_OUTPUT_MUX1)) {
2717                REG_RMW(ah, addr, (type << gpio_shift),
2718                        (0x1f << gpio_shift));
2719        } else {
2720                tmp = REG_READ(ah, addr);
2721                tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2722                tmp &= ~(0x1f << gpio_shift);
2723                tmp |= (type << gpio_shift);
2724                REG_WRITE(ah, addr, tmp);
2725        }
2726}
2727
2728/* BSP should set the corresponding MUX register correctly.
2729 */
2730static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2731                                  const char *label)
2732{
2733        if (ah->caps.gpio_requested & BIT(gpio))
2734                return;
2735
2736        /* may be requested by BSP, free anyway */
2737        gpio_free(gpio);
2738
2739        if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2740                return;
2741
2742        ah->caps.gpio_requested |= BIT(gpio);
2743}
2744
2745static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746                                   u32 ah_signal_type)
2747{
2748        u32 gpio_set, gpio_shift = gpio;
2749
2750        if (AR_DEVID_7010(ah)) {
2751                gpio_set = out ?
2752                        AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753                REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754                        AR7010_GPIO_OE_MASK << gpio_shift);
2755        } else if (AR_SREV_SOC(ah)) {
2756                gpio_set = out ? 1 : 0;
2757                REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2758                        gpio_set << gpio_shift);
2759        } else {
2760                gpio_shift = gpio << 1;
2761                gpio_set = out ?
2762                        AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763                REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2764                        AR_GPIO_OE_OUT_DRV << gpio_shift);
2765
2766                if (out)
2767                        ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768        }
2769}
2770
2771static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772                                  const char *label, u32 ah_signal_type)
2773{
2774        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775
2776        if (BIT(gpio) & ah->caps.gpio_mask)
2777                ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778        else if (AR_SREV_SOC(ah))
2779                ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780        else
2781                WARN_ON(1);
2782}
2783
2784void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785{
2786        ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787}
2788EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789
2790void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791                               u32 ah_signal_type)
2792{
2793        ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794}
2795EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796
2797void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798{
2799        if (!AR_SREV_SOC(ah))
2800                return;
2801
2802        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803
2804        if (ah->caps.gpio_requested & BIT(gpio)) {
2805                gpio_free(gpio);
2806                ah->caps.gpio_requested &= ~BIT(gpio);
2807        }
2808}
2809EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810
2811u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812{
2813        u32 val = 0xffffffff;
2814
2815#define MS_REG_READ(x, y) \
2816        (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2817
2818        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819
2820        if (BIT(gpio) & ah->caps.gpio_mask) {
2821                if (AR_SREV_9271(ah))
2822                        val = MS_REG_READ(AR9271, gpio);
2823                else if (AR_SREV_9287(ah))
2824                        val = MS_REG_READ(AR9287, gpio);
2825                else if (AR_SREV_9285(ah))
2826                        val = MS_REG_READ(AR9285, gpio);
2827                else if (AR_SREV_9280(ah))
2828                        val = MS_REG_READ(AR928X, gpio);
2829                else if (AR_DEVID_7010(ah))
2830                        val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831                else if (AR_SREV_9300_20_OR_LATER(ah))
2832                        val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2833                else
2834                        val = MS_REG_READ(AR, gpio);
2835        } else if (BIT(gpio) & ah->caps.gpio_requested) {
2836                val = gpio_get_value(gpio) & BIT(gpio);
2837        } else {
2838                WARN_ON(1);
2839        }
2840
2841        return !!val;
2842}
2843EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844
2845void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846{
2847        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2848
2849        if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850                val = !val;
2851        else
2852                val = !!val;
2853
2854        if (BIT(gpio) & ah->caps.gpio_mask) {
2855                u32 out_addr = AR_DEVID_7010(ah) ?
2856                        AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2857
2858                REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859        } else if (BIT(gpio) & ah->caps.gpio_requested) {
2860                gpio_set_value(gpio, val);
2861        } else {
2862                WARN_ON(1);
2863        }
2864}
2865EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866
2867void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868{
2869        REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870}
2871EXPORT_SYMBOL(ath9k_hw_setantenna);
2872
2873/*********************/
2874/* General Operation */
2875/*********************/
2876
2877u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878{
2879        u32 bits = REG_READ(ah, AR_RX_FILTER);
2880        u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881
2882        if (phybits & AR_PHY_ERR_RADAR)
2883                bits |= ATH9K_RX_FILTER_PHYRADAR;
2884        if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885                bits |= ATH9K_RX_FILTER_PHYERR;
2886
2887        return bits;
2888}
2889EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890
2891void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892{
2893        u32 phybits;
2894
2895        ENABLE_REGWRITE_BUFFER(ah);
2896
2897        REG_WRITE(ah, AR_RX_FILTER, bits);
2898
2899        phybits = 0;
2900        if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901                phybits |= AR_PHY_ERR_RADAR;
2902        if (bits & ATH9K_RX_FILTER_PHYERR)
2903                phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904        REG_WRITE(ah, AR_PHY_ERR, phybits);
2905
2906        if (phybits)
2907                REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908        else
2909                REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910
2911        REGWRITE_BUFFER_FLUSH(ah);
2912}
2913EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914
2915bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916{
2917        if (ath9k_hw_mci_is_enabled(ah))
2918                ar9003_mci_bt_gain_ctrl(ah);
2919
2920        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921                return false;
2922
2923        ath9k_hw_init_pll(ah, NULL);
2924        ah->htc_reset_init = true;
2925        return true;
2926}
2927EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928
2929bool ath9k_hw_disable(struct ath_hw *ah)
2930{
2931        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932                return false;
2933
2934        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935                return false;
2936
2937        ath9k_hw_init_pll(ah, NULL);
2938        return true;
2939}
2940EXPORT_SYMBOL(ath9k_hw_disable);
2941
2942static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943{
2944        enum eeprom_param gain_param;
2945
2946        if (IS_CHAN_2GHZ(chan))
2947                gain_param = EEP_ANTENNA_GAIN_2G;
2948        else
2949                gain_param = EEP_ANTENNA_GAIN_5G;
2950
2951        return ah->eep_ops->get_eeprom(ah, gain_param);
2952}
2953
2954void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955                            bool test)
2956{
2957        struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958        struct ieee80211_channel *channel;
2959        int chan_pwr, new_pwr;
2960        u16 ctl = NO_CTL;
2961
2962        if (!chan)
2963                return;
2964
2965        if (!test)
2966                ctl = ath9k_regd_get_ctl(reg, chan);
2967
2968        channel = chan->chan;
2969        chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970        new_pwr = min_t(int, chan_pwr, reg->power_limit);
2971
2972        ah->eep_ops->set_txpower(ah, chan, ctl,
2973                                 get_antenna_gain(ah, chan), new_pwr, test);
2974}
2975
2976void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977{
2978        struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979        struct ath9k_channel *chan = ah->curchan;
2980        struct ieee80211_channel *channel = chan->chan;
2981
2982        reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983        if (test)
2984                channel->max_power = MAX_COMBINED_POWER / 2;
2985
2986        ath9k_hw_apply_txpower(ah, chan, test);
2987
2988        if (test)
2989                channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990}
2991EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992
2993void ath9k_hw_setopmode(struct ath_hw *ah)
2994{
2995        ath9k_hw_set_operating_mode(ah, ah->opmode);
2996}
2997EXPORT_SYMBOL(ath9k_hw_setopmode);
2998
2999void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000{
3001        REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002        REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003}
3004EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005
3006void ath9k_hw_write_associd(struct ath_hw *ah)
3007{
3008        struct ath_common *common = ath9k_hw_common(ah);
3009
3010        REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011        REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012                  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013}
3014EXPORT_SYMBOL(ath9k_hw_write_associd);
3015
3016#define ATH9K_MAX_TSF_READ 10
3017
3018u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019{
3020        u32 tsf_lower, tsf_upper1, tsf_upper2;
3021        int i;
3022
3023        tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024        for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025                tsf_lower = REG_READ(ah, AR_TSF_L32);
3026                tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027                if (tsf_upper2 == tsf_upper1)
3028                        break;
3029                tsf_upper1 = tsf_upper2;
3030        }
3031
3032        WARN_ON( i == ATH9K_MAX_TSF_READ );
3033
3034        return (((u64)tsf_upper1 << 32) | tsf_lower);
3035}
3036EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037
3038void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039{
3040        REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041        REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042}
3043EXPORT_SYMBOL(ath9k_hw_settsf64);
3044
3045void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046{
3047        if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048                           AH_TSF_WRITE_TIMEOUT))
3049                ath_dbg(ath9k_hw_common(ah), RESET,
3050                        "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051
3052        REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053}
3054EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055
3056void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057{
3058        if (set)
3059                ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060        else
3061                ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062}
3063EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064
3065void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066{
3067        u32 macmode;
3068
3069        if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070                macmode = AR_2040_JOINED_RX_CLEAR;
3071        else
3072                macmode = 0;
3073
3074        REG_WRITE(ah, AR_2040_MODE, macmode);
3075}
3076
3077/* HW Generic timers configuration */
3078
3079static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080{
3081        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089        {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090        {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091                                AR_NDP2_TIMER_MODE, 0x0002},
3092        {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093                                AR_NDP2_TIMER_MODE, 0x0004},
3094        {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095                                AR_NDP2_TIMER_MODE, 0x0008},
3096        {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097                                AR_NDP2_TIMER_MODE, 0x0010},
3098        {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099                                AR_NDP2_TIMER_MODE, 0x0020},
3100        {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101                                AR_NDP2_TIMER_MODE, 0x0040},
3102        {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103                                AR_NDP2_TIMER_MODE, 0x0080}
3104};
3105
3106/* HW generic timer primitives */
3107
3108u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109{
3110        return REG_READ(ah, AR_TSF_L32);
3111}
3112EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113
3114void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115{
3116        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117
3118        if (timer_table->tsf2_enabled) {
3119                REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120                REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121        }
3122}
3123
3124struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125                                          void (*trigger)(void *),
3126                                          void (*overflow)(void *),
3127                                          void *arg,
3128                                          u8 timer_index)
3129{
3130        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131        struct ath_gen_timer *timer;
3132
3133        if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134            (timer_index >= ATH_MAX_GEN_TIMER))
3135                return NULL;
3136
3137        if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138            !AR_SREV_9300_20_OR_LATER(ah))
3139                return NULL;
3140
3141        timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142        if (timer == NULL)
3143                return NULL;
3144
3145        /* allocate a hardware generic timer slot */
3146        timer_table->timers[timer_index] = timer;
3147        timer->index = timer_index;
3148        timer->trigger = trigger;
3149        timer->overflow = overflow;
3150        timer->arg = arg;
3151
3152        if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153                timer_table->tsf2_enabled = true;
3154                ath9k_hw_gen_timer_start_tsf2(ah);
3155        }
3156
3157        return timer;
3158}
3159EXPORT_SYMBOL(ath_gen_timer_alloc);
3160
3161void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162                              struct ath_gen_timer *timer,
3163                              u32 timer_next,
3164                              u32 timer_period)
3165{
3166        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167        u32 mask = 0;
3168
3169        timer_table->timer_mask |= BIT(timer->index);
3170
3171        /*
3172         * Program generic timer registers
3173         */
3174        REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175                 timer_next);
3176        REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177                  timer_period);
3178        REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179                    gen_tmr_configuration[timer->index].mode_mask);
3180
3181        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182                /*
3183                 * Starting from AR9462, each generic timer can select which tsf
3184                 * to use. But we still follow the old rule, 0 - 7 use tsf and
3185                 * 8 - 15  use tsf2.
3186                 */
3187                if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188                        REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189                                       (1 << timer->index));
3190                else
3191                        REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192                                       (1 << timer->index));
3193        }
3194
3195        if (timer->trigger)
3196                mask |= SM(AR_GENTMR_BIT(timer->index),
3197                           AR_IMR_S5_GENTIMER_TRIG);
3198        if (timer->overflow)
3199                mask |= SM(AR_GENTMR_BIT(timer->index),
3200                           AR_IMR_S5_GENTIMER_THRESH);
3201
3202        REG_SET_BIT(ah, AR_IMR_S5, mask);
3203
3204        if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205                ah->imask |= ATH9K_INT_GENTIMER;
3206                ath9k_hw_set_interrupts(ah);
3207        }
3208}
3209EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210
3211void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212{
3213        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214
3215        /* Clear generic timer enable bits. */
3216        REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217                        gen_tmr_configuration[timer->index].mode_mask);
3218
3219        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220                /*
3221                 * Need to switch back to TSF if it was using TSF2.
3222                 */
3223                if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224                        REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225                                    (1 << timer->index));
3226                }
3227        }
3228
3229        /* Disable both trigger and thresh interrupt masks */
3230        REG_CLR_BIT(ah, AR_IMR_S5,
3231                (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232                SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233
3234        timer_table->timer_mask &= ~BIT(timer->index);
3235
3236        if (timer_table->timer_mask == 0) {
3237                ah->imask &= ~ATH9K_INT_GENTIMER;
3238                ath9k_hw_set_interrupts(ah);
3239        }
3240}
3241EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242
3243void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244{
3245        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246
3247        /* free the hardware generic timer slot */
3248        timer_table->timers[timer->index] = NULL;
3249        kfree(timer);
3250}
3251EXPORT_SYMBOL(ath_gen_timer_free);
3252
3253/*
3254 * Generic Timer Interrupts handling
3255 */
3256void ath_gen_timer_isr(struct ath_hw *ah)
3257{
3258        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259        struct ath_gen_timer *timer;
3260        unsigned long trigger_mask, thresh_mask;
3261        unsigned int index;
3262
3263        /* get hardware generic timer interrupt status */
3264        trigger_mask = ah->intr_gen_timer_trigger;
3265        thresh_mask = ah->intr_gen_timer_thresh;
3266        trigger_mask &= timer_table->timer_mask;
3267        thresh_mask &= timer_table->timer_mask;
3268
3269        for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270                timer = timer_table->timers[index];
3271                if (!timer)
3272                    continue;
3273                if (!timer->overflow)
3274                    continue;
3275
3276                trigger_mask &= ~BIT(index);
3277                timer->overflow(timer->arg);
3278        }
3279
3280        for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281                timer = timer_table->timers[index];
3282                if (!timer)
3283                    continue;
3284                if (!timer->trigger)
3285                    continue;
3286                timer->trigger(timer->arg);
3287        }
3288}
3289EXPORT_SYMBOL(ath_gen_timer_isr);
3290
3291/********/
3292/* HTC  */
3293/********/
3294
3295static struct {
3296        u32 version;
3297        const char * name;
3298} ath_mac_bb_names[] = {
3299        /* Devices with external radios */
3300        { AR_SREV_VERSION_5416_PCI,     "5416" },
3301        { AR_SREV_VERSION_5416_PCIE,    "5418" },
3302        { AR_SREV_VERSION_9100,         "9100" },
3303        { AR_SREV_VERSION_9160,         "9160" },
3304        /* Single-chip solutions */
3305        { AR_SREV_VERSION_9280,         "9280" },
3306        { AR_SREV_VERSION_9285,         "9285" },
3307        { AR_SREV_VERSION_9287,         "9287" },
3308        { AR_SREV_VERSION_9271,         "9271" },
3309        { AR_SREV_VERSION_9300,         "9300" },
3310        { AR_SREV_VERSION_9330,         "9330" },
3311        { AR_SREV_VERSION_9340,         "9340" },
3312        { AR_SREV_VERSION_9485,         "9485" },
3313        { AR_SREV_VERSION_9462,         "9462" },
3314        { AR_SREV_VERSION_9550,         "9550" },
3315        { AR_SREV_VERSION_9565,         "9565" },
3316        { AR_SREV_VERSION_9531,         "9531" },
3317        { AR_SREV_VERSION_9561,         "9561" },
3318};
3319
3320/* For devices with external radios */
3321static struct {
3322        u16 version;
3323        const char * name;
3324} ath_rf_names[] = {
3325        { 0,                            "5133" },
3326        { AR_RAD5133_SREV_MAJOR,        "5133" },
3327        { AR_RAD5122_SREV_MAJOR,        "5122" },
3328        { AR_RAD2133_SREV_MAJOR,        "2133" },
3329        { AR_RAD2122_SREV_MAJOR,        "2122" }
3330};
3331
3332/*
3333 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334 */
3335static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336{
3337        int i;
3338
3339        for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340                if (ath_mac_bb_names[i].version == mac_bb_version) {
3341                        return ath_mac_bb_names[i].name;
3342                }
3343        }
3344
3345        return "????";
3346}
3347
3348/*
3349 * Return the RF name. "????" is returned if the RF is unknown.
3350 * Used for devices with external radios.
3351 */
3352static const char *ath9k_hw_rf_name(u16 rf_version)
3353{
3354        int i;
3355
3356        for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357                if (ath_rf_names[i].version == rf_version) {
3358                        return ath_rf_names[i].name;
3359                }
3360        }
3361
3362        return "????";
3363}
3364
3365void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366{
3367        int used;
3368
3369        /* chipsets >= AR9280 are single-chip */
3370        if (AR_SREV_9280_20_OR_LATER(ah)) {
3371                used = scnprintf(hw_name, len,
3372                                 "Atheros AR%s Rev:%x",
3373                                 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374                                 ah->hw_version.macRev);
3375        }
3376        else {
3377                used = scnprintf(hw_name, len,
3378                                 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379                                 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380                                 ah->hw_version.macRev,
3381                                 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382                                                  & AR_RADIO_SREV_MAJOR)),
3383                                 ah->hw_version.phyRev);
3384        }
3385
3386        hw_name[used] = '\0';
3387}
3388EXPORT_SYMBOL(ath9k_hw_name);
3389