linux/drivers/nvdimm/pmem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Persistent Memory Driver
   4 *
   5 * Copyright (c) 2014-2015, Intel Corporation.
   6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
   7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
   8 */
   9
  10#include <asm/cacheflush.h>
  11#include <linux/blkdev.h>
  12#include <linux/hdreg.h>
  13#include <linux/init.h>
  14#include <linux/platform_device.h>
  15#include <linux/set_memory.h>
  16#include <linux/module.h>
  17#include <linux/moduleparam.h>
  18#include <linux/badblocks.h>
  19#include <linux/memremap.h>
  20#include <linux/vmalloc.h>
  21#include <linux/blk-mq.h>
  22#include <linux/pfn_t.h>
  23#include <linux/slab.h>
  24#include <linux/uio.h>
  25#include <linux/dax.h>
  26#include <linux/nd.h>
  27#include <linux/backing-dev.h>
  28#include "pmem.h"
  29#include "pfn.h"
  30#include "nd.h"
  31#include "nd-core.h"
  32
  33static struct device *to_dev(struct pmem_device *pmem)
  34{
  35        /*
  36         * nvdimm bus services need a 'dev' parameter, and we record the device
  37         * at init in bb.dev.
  38         */
  39        return pmem->bb.dev;
  40}
  41
  42static struct nd_region *to_region(struct pmem_device *pmem)
  43{
  44        return to_nd_region(to_dev(pmem)->parent);
  45}
  46
  47static void hwpoison_clear(struct pmem_device *pmem,
  48                phys_addr_t phys, unsigned int len)
  49{
  50        unsigned long pfn_start, pfn_end, pfn;
  51
  52        /* only pmem in the linear map supports HWPoison */
  53        if (is_vmalloc_addr(pmem->virt_addr))
  54                return;
  55
  56        pfn_start = PHYS_PFN(phys);
  57        pfn_end = pfn_start + PHYS_PFN(len);
  58        for (pfn = pfn_start; pfn < pfn_end; pfn++) {
  59                struct page *page = pfn_to_page(pfn);
  60
  61                /*
  62                 * Note, no need to hold a get_dev_pagemap() reference
  63                 * here since we're in the driver I/O path and
  64                 * outstanding I/O requests pin the dev_pagemap.
  65                 */
  66                if (test_and_clear_pmem_poison(page))
  67                        clear_mce_nospec(pfn);
  68        }
  69}
  70
  71static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
  72                phys_addr_t offset, unsigned int len)
  73{
  74        struct device *dev = to_dev(pmem);
  75        sector_t sector;
  76        long cleared;
  77        blk_status_t rc = BLK_STS_OK;
  78
  79        sector = (offset - pmem->data_offset) / 512;
  80
  81        cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
  82        if (cleared < len)
  83                rc = BLK_STS_IOERR;
  84        if (cleared > 0 && cleared / 512) {
  85                hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
  86                cleared /= 512;
  87                dev_dbg(dev, "%#llx clear %ld sector%s\n",
  88                                (unsigned long long) sector, cleared,
  89                                cleared > 1 ? "s" : "");
  90                badblocks_clear(&pmem->bb, sector, cleared);
  91                if (pmem->bb_state)
  92                        sysfs_notify_dirent(pmem->bb_state);
  93        }
  94
  95        arch_invalidate_pmem(pmem->virt_addr + offset, len);
  96
  97        return rc;
  98}
  99
 100static void write_pmem(void *pmem_addr, struct page *page,
 101                unsigned int off, unsigned int len)
 102{
 103        unsigned int chunk;
 104        void *mem;
 105
 106        while (len) {
 107                mem = kmap_atomic(page);
 108                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 109                memcpy_flushcache(pmem_addr, mem + off, chunk);
 110                kunmap_atomic(mem);
 111                len -= chunk;
 112                off = 0;
 113                page++;
 114                pmem_addr += chunk;
 115        }
 116}
 117
 118static blk_status_t read_pmem(struct page *page, unsigned int off,
 119                void *pmem_addr, unsigned int len)
 120{
 121        unsigned int chunk;
 122        unsigned long rem;
 123        void *mem;
 124
 125        while (len) {
 126                mem = kmap_atomic(page);
 127                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 128                rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
 129                kunmap_atomic(mem);
 130                if (rem)
 131                        return BLK_STS_IOERR;
 132                len -= chunk;
 133                off = 0;
 134                page++;
 135                pmem_addr += chunk;
 136        }
 137        return BLK_STS_OK;
 138}
 139
 140static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
 141                        unsigned int len, unsigned int off, unsigned int op,
 142                        sector_t sector)
 143{
 144        blk_status_t rc = BLK_STS_OK;
 145        bool bad_pmem = false;
 146        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 147        void *pmem_addr = pmem->virt_addr + pmem_off;
 148
 149        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 150                bad_pmem = true;
 151
 152        if (!op_is_write(op)) {
 153                if (unlikely(bad_pmem))
 154                        rc = BLK_STS_IOERR;
 155                else {
 156                        rc = read_pmem(page, off, pmem_addr, len);
 157                        flush_dcache_page(page);
 158                }
 159        } else {
 160                /*
 161                 * Note that we write the data both before and after
 162                 * clearing poison.  The write before clear poison
 163                 * handles situations where the latest written data is
 164                 * preserved and the clear poison operation simply marks
 165                 * the address range as valid without changing the data.
 166                 * In this case application software can assume that an
 167                 * interrupted write will either return the new good
 168                 * data or an error.
 169                 *
 170                 * However, if pmem_clear_poison() leaves the data in an
 171                 * indeterminate state we need to perform the write
 172                 * after clear poison.
 173                 */
 174                flush_dcache_page(page);
 175                write_pmem(pmem_addr, page, off, len);
 176                if (unlikely(bad_pmem)) {
 177                        rc = pmem_clear_poison(pmem, pmem_off, len);
 178                        write_pmem(pmem_addr, page, off, len);
 179                }
 180        }
 181
 182        return rc;
 183}
 184
 185static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
 186{
 187        int ret = 0;
 188        blk_status_t rc = 0;
 189        bool do_acct;
 190        unsigned long start;
 191        struct bio_vec bvec;
 192        struct bvec_iter iter;
 193        struct pmem_device *pmem = q->queuedata;
 194        struct nd_region *nd_region = to_region(pmem);
 195
 196        if (bio->bi_opf & REQ_PREFLUSH)
 197                ret = nvdimm_flush(nd_region, bio);
 198
 199        do_acct = nd_iostat_start(bio, &start);
 200        bio_for_each_segment(bvec, bio, iter) {
 201                rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
 202                                bvec.bv_offset, bio_op(bio), iter.bi_sector);
 203                if (rc) {
 204                        bio->bi_status = rc;
 205                        break;
 206                }
 207        }
 208        if (do_acct)
 209                nd_iostat_end(bio, start);
 210
 211        if (bio->bi_opf & REQ_FUA)
 212                ret = nvdimm_flush(nd_region, bio);
 213
 214        if (ret)
 215                bio->bi_status = errno_to_blk_status(ret);
 216
 217        bio_endio(bio);
 218        return BLK_QC_T_NONE;
 219}
 220
 221static int pmem_rw_page(struct block_device *bdev, sector_t sector,
 222                       struct page *page, unsigned int op)
 223{
 224        struct pmem_device *pmem = bdev->bd_queue->queuedata;
 225        blk_status_t rc;
 226
 227        rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
 228                          0, op, sector);
 229
 230        /*
 231         * The ->rw_page interface is subtle and tricky.  The core
 232         * retries on any error, so we can only invoke page_endio() in
 233         * the successful completion case.  Otherwise, we'll see crashes
 234         * caused by double completion.
 235         */
 236        if (rc == 0)
 237                page_endio(page, op_is_write(op), 0);
 238
 239        return blk_status_to_errno(rc);
 240}
 241
 242/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
 243__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
 244                long nr_pages, void **kaddr, pfn_t *pfn)
 245{
 246        resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
 247
 248        if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
 249                                        PFN_PHYS(nr_pages))))
 250                return -EIO;
 251
 252        if (kaddr)
 253                *kaddr = pmem->virt_addr + offset;
 254        if (pfn)
 255                *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 256
 257        /*
 258         * If badblocks are present, limit known good range to the
 259         * requested range.
 260         */
 261        if (unlikely(pmem->bb.count))
 262                return nr_pages;
 263        return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
 264}
 265
 266static const struct block_device_operations pmem_fops = {
 267        .owner =                THIS_MODULE,
 268        .rw_page =              pmem_rw_page,
 269        .revalidate_disk =      nvdimm_revalidate_disk,
 270};
 271
 272static long pmem_dax_direct_access(struct dax_device *dax_dev,
 273                pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
 274{
 275        struct pmem_device *pmem = dax_get_private(dax_dev);
 276
 277        return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
 278}
 279
 280/*
 281 * Use the 'no check' versions of copy_from_iter_flushcache() and
 282 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
 283 * checking, both file offset and device offset, is handled by
 284 * dax_iomap_actor()
 285 */
 286static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 287                void *addr, size_t bytes, struct iov_iter *i)
 288{
 289        return _copy_from_iter_flushcache(addr, bytes, i);
 290}
 291
 292static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 293                void *addr, size_t bytes, struct iov_iter *i)
 294{
 295        return _copy_to_iter_mcsafe(addr, bytes, i);
 296}
 297
 298static const struct dax_operations pmem_dax_ops = {
 299        .direct_access = pmem_dax_direct_access,
 300        .dax_supported = generic_fsdax_supported,
 301        .copy_from_iter = pmem_copy_from_iter,
 302        .copy_to_iter = pmem_copy_to_iter,
 303};
 304
 305static const struct attribute_group *pmem_attribute_groups[] = {
 306        &dax_attribute_group,
 307        NULL,
 308};
 309
 310static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
 311{
 312        struct request_queue *q =
 313                container_of(pgmap->ref, struct request_queue, q_usage_counter);
 314
 315        blk_cleanup_queue(q);
 316}
 317
 318static void pmem_release_queue(void *pgmap)
 319{
 320        pmem_pagemap_cleanup(pgmap);
 321}
 322
 323static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
 324{
 325        struct request_queue *q =
 326                container_of(pgmap->ref, struct request_queue, q_usage_counter);
 327
 328        blk_freeze_queue_start(q);
 329}
 330
 331static void pmem_release_disk(void *__pmem)
 332{
 333        struct pmem_device *pmem = __pmem;
 334
 335        kill_dax(pmem->dax_dev);
 336        put_dax(pmem->dax_dev);
 337        del_gendisk(pmem->disk);
 338        put_disk(pmem->disk);
 339}
 340
 341static void pmem_pagemap_page_free(struct page *page)
 342{
 343        wake_up_var(&page->_refcount);
 344}
 345
 346static const struct dev_pagemap_ops fsdax_pagemap_ops = {
 347        .page_free              = pmem_pagemap_page_free,
 348        .kill                   = pmem_pagemap_kill,
 349        .cleanup                = pmem_pagemap_cleanup,
 350};
 351
 352static int pmem_attach_disk(struct device *dev,
 353                struct nd_namespace_common *ndns)
 354{
 355        struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
 356        struct nd_region *nd_region = to_nd_region(dev->parent);
 357        int nid = dev_to_node(dev), fua;
 358        struct resource *res = &nsio->res;
 359        struct resource bb_res;
 360        struct nd_pfn *nd_pfn = NULL;
 361        struct dax_device *dax_dev;
 362        struct nd_pfn_sb *pfn_sb;
 363        struct pmem_device *pmem;
 364        struct request_queue *q;
 365        struct device *gendev;
 366        struct gendisk *disk;
 367        void *addr;
 368        int rc;
 369        unsigned long flags = 0UL;
 370
 371        pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
 372        if (!pmem)
 373                return -ENOMEM;
 374
 375        /* while nsio_rw_bytes is active, parse a pfn info block if present */
 376        if (is_nd_pfn(dev)) {
 377                nd_pfn = to_nd_pfn(dev);
 378                rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
 379                if (rc)
 380                        return rc;
 381        }
 382
 383        /* we're attaching a block device, disable raw namespace access */
 384        devm_nsio_disable(dev, nsio);
 385
 386        dev_set_drvdata(dev, pmem);
 387        pmem->phys_addr = res->start;
 388        pmem->size = resource_size(res);
 389        fua = nvdimm_has_flush(nd_region);
 390        if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
 391                dev_warn(dev, "unable to guarantee persistence of writes\n");
 392                fua = 0;
 393        }
 394
 395        if (!devm_request_mem_region(dev, res->start, resource_size(res),
 396                                dev_name(&ndns->dev))) {
 397                dev_warn(dev, "could not reserve region %pR\n", res);
 398                return -EBUSY;
 399        }
 400
 401        q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
 402        if (!q)
 403                return -ENOMEM;
 404
 405        pmem->pfn_flags = PFN_DEV;
 406        pmem->pgmap.ref = &q->q_usage_counter;
 407        if (is_nd_pfn(dev)) {
 408                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 409                pmem->pgmap.ops = &fsdax_pagemap_ops;
 410                addr = devm_memremap_pages(dev, &pmem->pgmap);
 411                pfn_sb = nd_pfn->pfn_sb;
 412                pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
 413                pmem->pfn_pad = resource_size(res) -
 414                        resource_size(&pmem->pgmap.res);
 415                pmem->pfn_flags |= PFN_MAP;
 416                memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 417                bb_res.start += pmem->data_offset;
 418        } else if (pmem_should_map_pages(dev)) {
 419                memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
 420                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 421                pmem->pgmap.ops = &fsdax_pagemap_ops;
 422                addr = devm_memremap_pages(dev, &pmem->pgmap);
 423                pmem->pfn_flags |= PFN_MAP;
 424                memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 425        } else {
 426                if (devm_add_action_or_reset(dev, pmem_release_queue,
 427                                        &pmem->pgmap))
 428                        return -ENOMEM;
 429                addr = devm_memremap(dev, pmem->phys_addr,
 430                                pmem->size, ARCH_MEMREMAP_PMEM);
 431                memcpy(&bb_res, &nsio->res, sizeof(bb_res));
 432        }
 433
 434        if (IS_ERR(addr))
 435                return PTR_ERR(addr);
 436        pmem->virt_addr = addr;
 437
 438        blk_queue_write_cache(q, true, fua);
 439        blk_queue_make_request(q, pmem_make_request);
 440        blk_queue_physical_block_size(q, PAGE_SIZE);
 441        blk_queue_logical_block_size(q, pmem_sector_size(ndns));
 442        blk_queue_max_hw_sectors(q, UINT_MAX);
 443        blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 444        if (pmem->pfn_flags & PFN_MAP)
 445                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
 446        q->queuedata = pmem;
 447
 448        disk = alloc_disk_node(0, nid);
 449        if (!disk)
 450                return -ENOMEM;
 451        pmem->disk = disk;
 452
 453        disk->fops              = &pmem_fops;
 454        disk->queue             = q;
 455        disk->flags             = GENHD_FL_EXT_DEVT;
 456        disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
 457        nvdimm_namespace_disk_name(ndns, disk->disk_name);
 458        set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
 459                        / 512);
 460        if (devm_init_badblocks(dev, &pmem->bb))
 461                return -ENOMEM;
 462        nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
 463        disk->bb = &pmem->bb;
 464
 465        if (is_nvdimm_sync(nd_region))
 466                flags = DAXDEV_F_SYNC;
 467        dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
 468        if (!dax_dev) {
 469                put_disk(disk);
 470                return -ENOMEM;
 471        }
 472        dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
 473        pmem->dax_dev = dax_dev;
 474        gendev = disk_to_dev(disk);
 475        gendev->groups = pmem_attribute_groups;
 476
 477        device_add_disk(dev, disk, NULL);
 478        if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
 479                return -ENOMEM;
 480
 481        revalidate_disk(disk);
 482
 483        pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
 484                                          "badblocks");
 485        if (!pmem->bb_state)
 486                dev_warn(dev, "'badblocks' notification disabled\n");
 487
 488        return 0;
 489}
 490
 491static int nd_pmem_probe(struct device *dev)
 492{
 493        int ret;
 494        struct nd_namespace_common *ndns;
 495
 496        ndns = nvdimm_namespace_common_probe(dev);
 497        if (IS_ERR(ndns))
 498                return PTR_ERR(ndns);
 499
 500        if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
 501                return -ENXIO;
 502
 503        if (is_nd_btt(dev))
 504                return nvdimm_namespace_attach_btt(ndns);
 505
 506        if (is_nd_pfn(dev))
 507                return pmem_attach_disk(dev, ndns);
 508
 509        ret = nd_btt_probe(dev, ndns);
 510        if (ret == 0)
 511                return -ENXIO;
 512
 513        /*
 514         * We have two failure conditions here, there is no
 515         * info reserver block or we found a valid info reserve block
 516         * but failed to initialize the pfn superblock.
 517         *
 518         * For the first case consider namespace as a raw pmem namespace
 519         * and attach a disk.
 520         *
 521         * For the latter, consider this a success and advance the namespace
 522         * seed.
 523         */
 524        ret = nd_pfn_probe(dev, ndns);
 525        if (ret == 0)
 526                return -ENXIO;
 527        else if (ret == -EOPNOTSUPP)
 528                return ret;
 529
 530        ret = nd_dax_probe(dev, ndns);
 531        if (ret == 0)
 532                return -ENXIO;
 533        else if (ret == -EOPNOTSUPP)
 534                return ret;
 535        return pmem_attach_disk(dev, ndns);
 536}
 537
 538static int nd_pmem_remove(struct device *dev)
 539{
 540        struct pmem_device *pmem = dev_get_drvdata(dev);
 541
 542        if (is_nd_btt(dev))
 543                nvdimm_namespace_detach_btt(to_nd_btt(dev));
 544        else {
 545                /*
 546                 * Note, this assumes nd_device_lock() context to not
 547                 * race nd_pmem_notify()
 548                 */
 549                sysfs_put(pmem->bb_state);
 550                pmem->bb_state = NULL;
 551        }
 552        nvdimm_flush(to_nd_region(dev->parent), NULL);
 553
 554        return 0;
 555}
 556
 557static void nd_pmem_shutdown(struct device *dev)
 558{
 559        nvdimm_flush(to_nd_region(dev->parent), NULL);
 560}
 561
 562static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
 563{
 564        struct nd_region *nd_region;
 565        resource_size_t offset = 0, end_trunc = 0;
 566        struct nd_namespace_common *ndns;
 567        struct nd_namespace_io *nsio;
 568        struct resource res;
 569        struct badblocks *bb;
 570        struct kernfs_node *bb_state;
 571
 572        if (event != NVDIMM_REVALIDATE_POISON)
 573                return;
 574
 575        if (is_nd_btt(dev)) {
 576                struct nd_btt *nd_btt = to_nd_btt(dev);
 577
 578                ndns = nd_btt->ndns;
 579                nd_region = to_nd_region(ndns->dev.parent);
 580                nsio = to_nd_namespace_io(&ndns->dev);
 581                bb = &nsio->bb;
 582                bb_state = NULL;
 583        } else {
 584                struct pmem_device *pmem = dev_get_drvdata(dev);
 585
 586                nd_region = to_region(pmem);
 587                bb = &pmem->bb;
 588                bb_state = pmem->bb_state;
 589
 590                if (is_nd_pfn(dev)) {
 591                        struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 592                        struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
 593
 594                        ndns = nd_pfn->ndns;
 595                        offset = pmem->data_offset +
 596                                        __le32_to_cpu(pfn_sb->start_pad);
 597                        end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
 598                } else {
 599                        ndns = to_ndns(dev);
 600                }
 601
 602                nsio = to_nd_namespace_io(&ndns->dev);
 603        }
 604
 605        res.start = nsio->res.start + offset;
 606        res.end = nsio->res.end - end_trunc;
 607        nvdimm_badblocks_populate(nd_region, bb, &res);
 608        if (bb_state)
 609                sysfs_notify_dirent(bb_state);
 610}
 611
 612MODULE_ALIAS("pmem");
 613MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
 614MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
 615static struct nd_device_driver nd_pmem_driver = {
 616        .probe = nd_pmem_probe,
 617        .remove = nd_pmem_remove,
 618        .notify = nd_pmem_notify,
 619        .shutdown = nd_pmem_shutdown,
 620        .drv = {
 621                .name = "nd_pmem",
 622        },
 623        .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
 624};
 625
 626module_nd_driver(nd_pmem_driver);
 627
 628MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
 629MODULE_LICENSE("GPL v2");
 630