linux/drivers/rtc/rtc-mxc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
   4
   5#include <linux/io.h>
   6#include <linux/rtc.h>
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/platform_device.h>
  11#include <linux/pm_wakeirq.h>
  12#include <linux/clk.h>
  13#include <linux/of.h>
  14#include <linux/of_device.h>
  15
  16#define RTC_INPUT_CLK_32768HZ   (0x00 << 5)
  17#define RTC_INPUT_CLK_32000HZ   (0x01 << 5)
  18#define RTC_INPUT_CLK_38400HZ   (0x02 << 5)
  19
  20#define RTC_SW_BIT      (1 << 0)
  21#define RTC_ALM_BIT     (1 << 2)
  22#define RTC_1HZ_BIT     (1 << 4)
  23#define RTC_2HZ_BIT     (1 << 7)
  24#define RTC_SAM0_BIT    (1 << 8)
  25#define RTC_SAM1_BIT    (1 << 9)
  26#define RTC_SAM2_BIT    (1 << 10)
  27#define RTC_SAM3_BIT    (1 << 11)
  28#define RTC_SAM4_BIT    (1 << 12)
  29#define RTC_SAM5_BIT    (1 << 13)
  30#define RTC_SAM6_BIT    (1 << 14)
  31#define RTC_SAM7_BIT    (1 << 15)
  32#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  33                         RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  34                         RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  35
  36#define RTC_ENABLE_BIT  (1 << 7)
  37
  38#define MAX_PIE_NUM     9
  39#define MAX_PIE_FREQ    512
  40
  41#define MXC_RTC_TIME    0
  42#define MXC_RTC_ALARM   1
  43
  44#define RTC_HOURMIN     0x00    /*  32bit rtc hour/min counter reg */
  45#define RTC_SECOND      0x04    /*  32bit rtc seconds counter reg */
  46#define RTC_ALRM_HM     0x08    /*  32bit rtc alarm hour/min reg */
  47#define RTC_ALRM_SEC    0x0C    /*  32bit rtc alarm seconds reg */
  48#define RTC_RTCCTL      0x10    /*  32bit rtc control reg */
  49#define RTC_RTCISR      0x14    /*  32bit rtc interrupt status reg */
  50#define RTC_RTCIENR     0x18    /*  32bit rtc interrupt enable reg */
  51#define RTC_STPWCH      0x1C    /*  32bit rtc stopwatch min reg */
  52#define RTC_DAYR        0x20    /*  32bit rtc days counter reg */
  53#define RTC_DAYALARM    0x24    /*  32bit rtc day alarm reg */
  54#define RTC_TEST1       0x28    /*  32bit rtc test reg 1 */
  55#define RTC_TEST2       0x2C    /*  32bit rtc test reg 2 */
  56#define RTC_TEST3       0x30    /*  32bit rtc test reg 3 */
  57
  58enum imx_rtc_type {
  59        IMX1_RTC,
  60        IMX21_RTC,
  61};
  62
  63struct rtc_plat_data {
  64        struct rtc_device *rtc;
  65        void __iomem *ioaddr;
  66        int irq;
  67        struct clk *clk_ref;
  68        struct clk *clk_ipg;
  69        struct rtc_time g_rtc_alarm;
  70        enum imx_rtc_type devtype;
  71};
  72
  73static const struct platform_device_id imx_rtc_devtype[] = {
  74        {
  75                .name = "imx1-rtc",
  76                .driver_data = IMX1_RTC,
  77        }, {
  78                .name = "imx21-rtc",
  79                .driver_data = IMX21_RTC,
  80        }, {
  81                /* sentinel */
  82        }
  83};
  84MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
  85
  86#ifdef CONFIG_OF
  87static const struct of_device_id imx_rtc_dt_ids[] = {
  88        { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
  89        { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
  90        {}
  91};
  92MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
  93#endif
  94
  95static inline int is_imx1_rtc(struct rtc_plat_data *data)
  96{
  97        return data->devtype == IMX1_RTC;
  98}
  99
 100/*
 101 * This function is used to obtain the RTC time or the alarm value in
 102 * second.
 103 */
 104static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
 105{
 106        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 107        void __iomem *ioaddr = pdata->ioaddr;
 108        u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 109
 110        switch (time_alarm) {
 111        case MXC_RTC_TIME:
 112                day = readw(ioaddr + RTC_DAYR);
 113                hr_min = readw(ioaddr + RTC_HOURMIN);
 114                sec = readw(ioaddr + RTC_SECOND);
 115                break;
 116        case MXC_RTC_ALARM:
 117                day = readw(ioaddr + RTC_DAYALARM);
 118                hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
 119                sec = readw(ioaddr + RTC_ALRM_SEC);
 120                break;
 121        }
 122
 123        hr = hr_min >> 8;
 124        min = hr_min & 0xff;
 125
 126        return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
 127}
 128
 129/*
 130 * This function sets the RTC alarm value or the time value.
 131 */
 132static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
 133{
 134        u32 tod, day, hr, min, sec, temp;
 135        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 136        void __iomem *ioaddr = pdata->ioaddr;
 137
 138        day = div_s64_rem(time, 86400, &tod);
 139
 140        /* time is within a day now */
 141        hr = tod / 3600;
 142        tod -= hr * 3600;
 143
 144        /* time is within an hour now */
 145        min = tod / 60;
 146        sec = tod - min * 60;
 147
 148        temp = (hr << 8) + min;
 149
 150        switch (time_alarm) {
 151        case MXC_RTC_TIME:
 152                writew(day, ioaddr + RTC_DAYR);
 153                writew(sec, ioaddr + RTC_SECOND);
 154                writew(temp, ioaddr + RTC_HOURMIN);
 155                break;
 156        case MXC_RTC_ALARM:
 157                writew(day, ioaddr + RTC_DAYALARM);
 158                writew(sec, ioaddr + RTC_ALRM_SEC);
 159                writew(temp, ioaddr + RTC_ALRM_HM);
 160                break;
 161        }
 162}
 163
 164/*
 165 * This function updates the RTC alarm registers and then clears all the
 166 * interrupt status bits.
 167 */
 168static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
 169{
 170        time64_t time;
 171        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 172        void __iomem *ioaddr = pdata->ioaddr;
 173
 174        time = rtc_tm_to_time64(alrm);
 175
 176        /* clear all the interrupt status bits */
 177        writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
 178        set_alarm_or_time(dev, MXC_RTC_ALARM, time);
 179}
 180
 181static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
 182                                unsigned int enabled)
 183{
 184        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 185        void __iomem *ioaddr = pdata->ioaddr;
 186        u32 reg;
 187        unsigned long flags;
 188
 189        spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
 190        reg = readw(ioaddr + RTC_RTCIENR);
 191
 192        if (enabled)
 193                reg |= bit;
 194        else
 195                reg &= ~bit;
 196
 197        writew(reg, ioaddr + RTC_RTCIENR);
 198        spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
 199}
 200
 201/* This function is the RTC interrupt service routine. */
 202static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
 203{
 204        struct platform_device *pdev = dev_id;
 205        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 206        void __iomem *ioaddr = pdata->ioaddr;
 207        unsigned long flags;
 208        u32 status;
 209        u32 events = 0;
 210
 211        spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
 212        status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
 213        /* clear interrupt sources */
 214        writew(status, ioaddr + RTC_RTCISR);
 215
 216        /* update irq data & counter */
 217        if (status & RTC_ALM_BIT) {
 218                events |= (RTC_AF | RTC_IRQF);
 219                /* RTC alarm should be one-shot */
 220                mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
 221        }
 222
 223        if (status & PIT_ALL_ON)
 224                events |= (RTC_PF | RTC_IRQF);
 225
 226        rtc_update_irq(pdata->rtc, 1, events);
 227        spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
 228
 229        return IRQ_HANDLED;
 230}
 231
 232static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 233{
 234        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
 235        return 0;
 236}
 237
 238/*
 239 * This function reads the current RTC time into tm in Gregorian date.
 240 */
 241static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
 242{
 243        time64_t val;
 244
 245        /* Avoid roll-over from reading the different registers */
 246        do {
 247                val = get_alarm_or_time(dev, MXC_RTC_TIME);
 248        } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
 249
 250        rtc_time64_to_tm(val, tm);
 251
 252        return 0;
 253}
 254
 255/*
 256 * This function sets the internal RTC time based on tm in Gregorian date.
 257 */
 258static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
 259{
 260        time64_t time = rtc_tm_to_time64(tm);
 261
 262        /* Avoid roll-over from reading the different registers */
 263        do {
 264                set_alarm_or_time(dev, MXC_RTC_TIME, time);
 265        } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
 266
 267        return 0;
 268}
 269
 270/*
 271 * This function reads the current alarm value into the passed in 'alrm'
 272 * argument. It updates the alrm's pending field value based on the whether
 273 * an alarm interrupt occurs or not.
 274 */
 275static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 276{
 277        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 278        void __iomem *ioaddr = pdata->ioaddr;
 279
 280        rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
 281        alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
 282
 283        return 0;
 284}
 285
 286/*
 287 * This function sets the RTC alarm based on passed in alrm.
 288 */
 289static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 290{
 291        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 292
 293        rtc_update_alarm(dev, &alrm->time);
 294
 295        memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
 296        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
 297
 298        return 0;
 299}
 300
 301/* RTC layer */
 302static const struct rtc_class_ops mxc_rtc_ops = {
 303        .read_time              = mxc_rtc_read_time,
 304        .set_time               = mxc_rtc_set_time,
 305        .read_alarm             = mxc_rtc_read_alarm,
 306        .set_alarm              = mxc_rtc_set_alarm,
 307        .alarm_irq_enable       = mxc_rtc_alarm_irq_enable,
 308};
 309
 310static int mxc_rtc_probe(struct platform_device *pdev)
 311{
 312        struct rtc_device *rtc;
 313        struct rtc_plat_data *pdata = NULL;
 314        u32 reg;
 315        unsigned long rate;
 316        int ret;
 317        const struct of_device_id *of_id;
 318
 319        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
 320        if (!pdata)
 321                return -ENOMEM;
 322
 323        of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
 324        if (of_id)
 325                pdata->devtype = (enum imx_rtc_type)of_id->data;
 326        else
 327                pdata->devtype = pdev->id_entry->driver_data;
 328
 329        pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
 330        if (IS_ERR(pdata->ioaddr))
 331                return PTR_ERR(pdata->ioaddr);
 332
 333        rtc = devm_rtc_allocate_device(&pdev->dev);
 334        if (IS_ERR(rtc))
 335                return PTR_ERR(rtc);
 336
 337        pdata->rtc = rtc;
 338        rtc->ops = &mxc_rtc_ops;
 339        if (is_imx1_rtc(pdata)) {
 340                struct rtc_time tm;
 341
 342                /* 9bit days + hours minutes seconds */
 343                rtc->range_max = (1 << 9) * 86400 - 1;
 344
 345                /*
 346                 * Set the start date as beginning of the current year. This can
 347                 * be overridden using device tree.
 348                 */
 349                rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
 350                rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
 351                rtc->set_start_time = true;
 352        } else {
 353                /* 16bit days + hours minutes seconds */
 354                rtc->range_max = (1 << 16) * 86400ULL - 1;
 355        }
 356
 357        pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
 358        if (IS_ERR(pdata->clk_ipg)) {
 359                dev_err(&pdev->dev, "unable to get ipg clock!\n");
 360                return PTR_ERR(pdata->clk_ipg);
 361        }
 362
 363        ret = clk_prepare_enable(pdata->clk_ipg);
 364        if (ret)
 365                return ret;
 366
 367        pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
 368        if (IS_ERR(pdata->clk_ref)) {
 369                dev_err(&pdev->dev, "unable to get ref clock!\n");
 370                ret = PTR_ERR(pdata->clk_ref);
 371                goto exit_put_clk_ipg;
 372        }
 373
 374        ret = clk_prepare_enable(pdata->clk_ref);
 375        if (ret)
 376                goto exit_put_clk_ipg;
 377
 378        rate = clk_get_rate(pdata->clk_ref);
 379
 380        if (rate == 32768)
 381                reg = RTC_INPUT_CLK_32768HZ;
 382        else if (rate == 32000)
 383                reg = RTC_INPUT_CLK_32000HZ;
 384        else if (rate == 38400)
 385                reg = RTC_INPUT_CLK_38400HZ;
 386        else {
 387                dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
 388                ret = -EINVAL;
 389                goto exit_put_clk_ref;
 390        }
 391
 392        reg |= RTC_ENABLE_BIT;
 393        writew(reg, (pdata->ioaddr + RTC_RTCCTL));
 394        if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
 395                dev_err(&pdev->dev, "hardware module can't be enabled!\n");
 396                ret = -EIO;
 397                goto exit_put_clk_ref;
 398        }
 399
 400        platform_set_drvdata(pdev, pdata);
 401
 402        /* Configure and enable the RTC */
 403        pdata->irq = platform_get_irq(pdev, 0);
 404
 405        if (pdata->irq >= 0 &&
 406            devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
 407                             IRQF_SHARED, pdev->name, pdev) < 0) {
 408                dev_warn(&pdev->dev, "interrupt not available.\n");
 409                pdata->irq = -1;
 410        }
 411
 412        if (pdata->irq >= 0) {
 413                device_init_wakeup(&pdev->dev, 1);
 414                ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
 415                if (ret)
 416                        dev_err(&pdev->dev, "failed to enable irq wake\n");
 417        }
 418
 419        ret = rtc_register_device(rtc);
 420        if (ret)
 421                goto exit_put_clk_ref;
 422
 423        return 0;
 424
 425exit_put_clk_ref:
 426        clk_disable_unprepare(pdata->clk_ref);
 427exit_put_clk_ipg:
 428        clk_disable_unprepare(pdata->clk_ipg);
 429
 430        return ret;
 431}
 432
 433static int mxc_rtc_remove(struct platform_device *pdev)
 434{
 435        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 436
 437        clk_disable_unprepare(pdata->clk_ref);
 438        clk_disable_unprepare(pdata->clk_ipg);
 439
 440        return 0;
 441}
 442
 443static struct platform_driver mxc_rtc_driver = {
 444        .driver = {
 445                   .name        = "mxc_rtc",
 446                   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
 447        },
 448        .id_table = imx_rtc_devtype,
 449        .probe = mxc_rtc_probe,
 450        .remove = mxc_rtc_remove,
 451};
 452
 453module_platform_driver(mxc_rtc_driver)
 454
 455MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
 456MODULE_DESCRIPTION("RTC driver for Freescale MXC");
 457MODULE_LICENSE("GPL");
 458
 459