linux/drivers/spi/spi-bcm2835.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom BCM2835 SPI Controllers
   4 *
   5 * Copyright (C) 2012 Chris Boot
   6 * Copyright (C) 2013 Stephen Warren
   7 * Copyright (C) 2015 Martin Sperl
   8 *
   9 * This driver is inspired by:
  10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
  11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/debugfs.h>
  17#include <linux/delay.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dmaengine.h>
  20#include <linux/err.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_device.h>
  28#include <linux/gpio/consumer.h>
  29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
  30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
  31#include <linux/of_irq.h>
  32#include <linux/spi/spi.h>
  33
  34/* SPI register offsets */
  35#define BCM2835_SPI_CS                  0x00
  36#define BCM2835_SPI_FIFO                0x04
  37#define BCM2835_SPI_CLK                 0x08
  38#define BCM2835_SPI_DLEN                0x0c
  39#define BCM2835_SPI_LTOH                0x10
  40#define BCM2835_SPI_DC                  0x14
  41
  42/* Bitfields in CS */
  43#define BCM2835_SPI_CS_LEN_LONG         0x02000000
  44#define BCM2835_SPI_CS_DMA_LEN          0x01000000
  45#define BCM2835_SPI_CS_CSPOL2           0x00800000
  46#define BCM2835_SPI_CS_CSPOL1           0x00400000
  47#define BCM2835_SPI_CS_CSPOL0           0x00200000
  48#define BCM2835_SPI_CS_RXF              0x00100000
  49#define BCM2835_SPI_CS_RXR              0x00080000
  50#define BCM2835_SPI_CS_TXD              0x00040000
  51#define BCM2835_SPI_CS_RXD              0x00020000
  52#define BCM2835_SPI_CS_DONE             0x00010000
  53#define BCM2835_SPI_CS_LEN              0x00002000
  54#define BCM2835_SPI_CS_REN              0x00001000
  55#define BCM2835_SPI_CS_ADCS             0x00000800
  56#define BCM2835_SPI_CS_INTR             0x00000400
  57#define BCM2835_SPI_CS_INTD             0x00000200
  58#define BCM2835_SPI_CS_DMAEN            0x00000100
  59#define BCM2835_SPI_CS_TA               0x00000080
  60#define BCM2835_SPI_CS_CSPOL            0x00000040
  61#define BCM2835_SPI_CS_CLEAR_RX         0x00000020
  62#define BCM2835_SPI_CS_CLEAR_TX         0x00000010
  63#define BCM2835_SPI_CS_CPOL             0x00000008
  64#define BCM2835_SPI_CS_CPHA             0x00000004
  65#define BCM2835_SPI_CS_CS_10            0x00000002
  66#define BCM2835_SPI_CS_CS_01            0x00000001
  67
  68#define BCM2835_SPI_FIFO_SIZE           64
  69#define BCM2835_SPI_FIFO_SIZE_3_4       48
  70#define BCM2835_SPI_DMA_MIN_LENGTH      96
  71#define BCM2835_SPI_NUM_CS              3   /* raise as necessary */
  72#define BCM2835_SPI_MODE_BITS   (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  73                                | SPI_NO_CS | SPI_3WIRE)
  74
  75#define DRV_NAME        "spi-bcm2835"
  76
  77/* define polling limits */
  78unsigned int polling_limit_us = 30;
  79module_param(polling_limit_us, uint, 0664);
  80MODULE_PARM_DESC(polling_limit_us,
  81                 "time in us to run a transfer in polling mode\n");
  82
  83/**
  84 * struct bcm2835_spi - BCM2835 SPI controller
  85 * @regs: base address of register map
  86 * @clk: core clock, divided to calculate serial clock
  87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
  88 * @tfr: SPI transfer currently processed
  89 * @tx_buf: pointer whence next transmitted byte is read
  90 * @rx_buf: pointer where next received byte is written
  91 * @tx_len: remaining bytes to transmit
  92 * @rx_len: remaining bytes to receive
  93 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
  94 *      length is not a multiple of 4 (to overcome hardware limitation)
  95 * @rx_prologue: bytes received without DMA if first RX sglist entry's
  96 *      length is not a multiple of 4 (to overcome hardware limitation)
  97 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
  98 * @prepare_cs: precalculated CS register value for ->prepare_message()
  99 *      (uses slave-specific clock polarity and phase settings)
 100 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 101 *      unloading the module
 102 * @count_transfer_polling: count of how often polling mode is used
 103 * @count_transfer_irq: count of how often interrupt mode is used
 104 * @count_transfer_irq_after_polling: count of how often we fall back to
 105 *      interrupt mode after starting in polling mode.
 106 *      These are counted as well in @count_transfer_polling and
 107 *      @count_transfer_irq
 108 * @count_transfer_dma: count how often dma mode is used
 109 * @chip_select: SPI slave currently selected
 110 *      (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 111 * @tx_dma_active: whether a TX DMA descriptor is in progress
 112 * @rx_dma_active: whether a RX DMA descriptor is in progress
 113 *      (used by bcm2835_spi_dma_tx_done() to handle a race)
 114 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 115 *      (cyclically copies from zero page to TX FIFO)
 116 * @fill_tx_addr: bus address of zero page
 117 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 118 *      (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 119 * @clear_rx_addr: bus address of @clear_rx_cs
 120 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 121 *      (uses slave-specific clock polarity and phase settings)
 122 */
 123struct bcm2835_spi {
 124        void __iomem *regs;
 125        struct clk *clk;
 126        int irq;
 127        struct spi_transfer *tfr;
 128        const u8 *tx_buf;
 129        u8 *rx_buf;
 130        int tx_len;
 131        int rx_len;
 132        int tx_prologue;
 133        int rx_prologue;
 134        unsigned int tx_spillover;
 135        u32 prepare_cs[BCM2835_SPI_NUM_CS];
 136
 137        struct dentry *debugfs_dir;
 138        u64 count_transfer_polling;
 139        u64 count_transfer_irq;
 140        u64 count_transfer_irq_after_polling;
 141        u64 count_transfer_dma;
 142
 143        u8 chip_select;
 144        unsigned int tx_dma_active;
 145        unsigned int rx_dma_active;
 146        struct dma_async_tx_descriptor *fill_tx_desc;
 147        dma_addr_t fill_tx_addr;
 148        struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
 149        dma_addr_t clear_rx_addr;
 150        u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
 151};
 152
 153#if defined(CONFIG_DEBUG_FS)
 154static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 155                                   const char *dname)
 156{
 157        char name[64];
 158        struct dentry *dir;
 159
 160        /* get full name */
 161        snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
 162
 163        /* the base directory */
 164        dir = debugfs_create_dir(name, NULL);
 165        bs->debugfs_dir = dir;
 166
 167        /* the counters */
 168        debugfs_create_u64("count_transfer_polling", 0444, dir,
 169                           &bs->count_transfer_polling);
 170        debugfs_create_u64("count_transfer_irq", 0444, dir,
 171                           &bs->count_transfer_irq);
 172        debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
 173                           &bs->count_transfer_irq_after_polling);
 174        debugfs_create_u64("count_transfer_dma", 0444, dir,
 175                           &bs->count_transfer_dma);
 176}
 177
 178static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 179{
 180        debugfs_remove_recursive(bs->debugfs_dir);
 181        bs->debugfs_dir = NULL;
 182}
 183#else
 184static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 185                                   const char *dname)
 186{
 187}
 188
 189static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 190{
 191}
 192#endif /* CONFIG_DEBUG_FS */
 193
 194static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
 195{
 196        return readl(bs->regs + reg);
 197}
 198
 199static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
 200{
 201        writel(val, bs->regs + reg);
 202}
 203
 204static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
 205{
 206        u8 byte;
 207
 208        while ((bs->rx_len) &&
 209               (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
 210                byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 211                if (bs->rx_buf)
 212                        *bs->rx_buf++ = byte;
 213                bs->rx_len--;
 214        }
 215}
 216
 217static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
 218{
 219        u8 byte;
 220
 221        while ((bs->tx_len) &&
 222               (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
 223                byte = bs->tx_buf ? *bs->tx_buf++ : 0;
 224                bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
 225                bs->tx_len--;
 226        }
 227}
 228
 229/**
 230 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 231 * @bs: BCM2835 SPI controller
 232 * @count: bytes to read from RX FIFO
 233 *
 234 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 235 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 236 * in the CS register is set (such that a read from the FIFO register receives
 237 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 238 */
 239static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
 240{
 241        u32 val;
 242        int len;
 243
 244        bs->rx_len -= count;
 245
 246        while (count > 0) {
 247                val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 248                len = min(count, 4);
 249                memcpy(bs->rx_buf, &val, len);
 250                bs->rx_buf += len;
 251                count -= 4;
 252        }
 253}
 254
 255/**
 256 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 257 * @bs: BCM2835 SPI controller
 258 * @count: bytes to write to TX FIFO
 259 *
 260 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 261 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 262 * in the CS register is set (such that a write to the FIFO register transmits
 263 * 32-bit instead of just 8-bit).
 264 */
 265static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
 266{
 267        u32 val;
 268        int len;
 269
 270        bs->tx_len -= count;
 271
 272        while (count > 0) {
 273                if (bs->tx_buf) {
 274                        len = min(count, 4);
 275                        memcpy(&val, bs->tx_buf, len);
 276                        bs->tx_buf += len;
 277                } else {
 278                        val = 0;
 279                }
 280                bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 281                count -= 4;
 282        }
 283}
 284
 285/**
 286 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 287 * @bs: BCM2835 SPI controller
 288 *
 289 * The caller must ensure that the RX FIFO can accommodate as many bytes
 290 * as have been written to the TX FIFO:  Transmission is halted once the
 291 * RX FIFO is full, causing this function to spin forever.
 292 */
 293static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
 294{
 295        while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 296                cpu_relax();
 297}
 298
 299/**
 300 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 301 * @bs: BCM2835 SPI controller
 302 * @count: bytes available for reading in RX FIFO
 303 */
 304static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
 305{
 306        u8 val;
 307
 308        count = min(count, bs->rx_len);
 309        bs->rx_len -= count;
 310
 311        while (count) {
 312                val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 313                if (bs->rx_buf)
 314                        *bs->rx_buf++ = val;
 315                count--;
 316        }
 317}
 318
 319/**
 320 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 321 * @bs: BCM2835 SPI controller
 322 * @count: bytes available for writing in TX FIFO
 323 */
 324static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
 325{
 326        u8 val;
 327
 328        count = min(count, bs->tx_len);
 329        bs->tx_len -= count;
 330
 331        while (count) {
 332                val = bs->tx_buf ? *bs->tx_buf++ : 0;
 333                bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 334                count--;
 335        }
 336}
 337
 338static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
 339{
 340        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 341        u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 342
 343        /* Disable SPI interrupts and transfer */
 344        cs &= ~(BCM2835_SPI_CS_INTR |
 345                BCM2835_SPI_CS_INTD |
 346                BCM2835_SPI_CS_DMAEN |
 347                BCM2835_SPI_CS_TA);
 348        /*
 349         * Transmission sometimes breaks unless the DONE bit is written at the
 350         * end of every transfer.  The spec says it's a RO bit.  Either the
 351         * spec is wrong and the bit is actually of type RW1C, or it's a
 352         * hardware erratum.
 353         */
 354        cs |= BCM2835_SPI_CS_DONE;
 355        /* and reset RX/TX FIFOS */
 356        cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
 357
 358        /* and reset the SPI_HW */
 359        bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 360        /* as well as DLEN */
 361        bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
 362}
 363
 364static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
 365{
 366        struct spi_controller *ctlr = dev_id;
 367        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 368        u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 369
 370        /*
 371         * An interrupt is signaled either if DONE is set (TX FIFO empty)
 372         * or if RXR is set (RX FIFO >= ¾ full).
 373         */
 374        if (cs & BCM2835_SPI_CS_RXF)
 375                bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 376        else if (cs & BCM2835_SPI_CS_RXR)
 377                bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
 378
 379        if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
 380                bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 381
 382        /* Read as many bytes as possible from FIFO */
 383        bcm2835_rd_fifo(bs);
 384        /* Write as many bytes as possible to FIFO */
 385        bcm2835_wr_fifo(bs);
 386
 387        if (!bs->rx_len) {
 388                /* Transfer complete - reset SPI HW */
 389                bcm2835_spi_reset_hw(ctlr);
 390                /* wake up the framework */
 391                complete(&ctlr->xfer_completion);
 392        }
 393
 394        return IRQ_HANDLED;
 395}
 396
 397static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
 398                                        struct spi_device *spi,
 399                                        struct spi_transfer *tfr,
 400                                        u32 cs, bool fifo_empty)
 401{
 402        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 403
 404        /* update usage statistics */
 405        bs->count_transfer_irq++;
 406
 407        /*
 408         * Enable HW block, but with interrupts still disabled.
 409         * Otherwise the empty TX FIFO would immediately trigger an interrupt.
 410         */
 411        bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
 412
 413        /* fill TX FIFO as much as possible */
 414        if (fifo_empty)
 415                bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 416        bcm2835_wr_fifo(bs);
 417
 418        /* enable interrupts */
 419        cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
 420        bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 421
 422        /* signal that we need to wait for completion */
 423        return 1;
 424}
 425
 426/**
 427 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 428 * @ctlr: SPI master controller
 429 * @tfr: SPI transfer
 430 * @bs: BCM2835 SPI controller
 431 * @cs: CS register
 432 *
 433 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 434 * Only the final write access is permitted to transmit less than 4 bytes, the
 435 * SPI controller deduces its intended size from the DLEN register.
 436 *
 437 * If a TX or RX sglist contains multiple entries, one per page, and the first
 438 * entry starts in the middle of a page, that first entry's length may not be
 439 * a multiple of 4.  Subsequent entries are fine because they span an entire
 440 * page, hence do have a length that's a multiple of 4.
 441 *
 442 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 443 * because they are contiguous in physical memory and therefore not split on
 444 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 445 * buffers.
 446 *
 447 * The DMA engine is incapable of combining sglist entries into a continuous
 448 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 449 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 450 * entry is rounded up by throwing away received bytes.
 451 *
 452 * Overcome this limitation by transferring the first few bytes without DMA:
 453 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 454 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 455 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 456 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 457 *
 458 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 459 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 460 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 461 * if the length of the first is *exactly* 1.
 462 *
 463 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 464 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 465 *
 466 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 467 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 468 * the width but also garbles the FIFO's contents.  The prologue must therefore
 469 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 470 * pick up the residue in the RX FIFO in ungarbled form.
 471 */
 472static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
 473                                          struct spi_transfer *tfr,
 474                                          struct bcm2835_spi *bs,
 475                                          u32 cs)
 476{
 477        int tx_remaining;
 478
 479        bs->tfr          = tfr;
 480        bs->tx_prologue  = 0;
 481        bs->rx_prologue  = 0;
 482        bs->tx_spillover = false;
 483
 484        if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
 485                bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
 486
 487        if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
 488                bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
 489
 490                if (bs->rx_prologue > bs->tx_prologue) {
 491                        if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
 492                                bs->tx_prologue  = bs->rx_prologue;
 493                        } else {
 494                                bs->tx_prologue += 4;
 495                                bs->tx_spillover =
 496                                        !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
 497                        }
 498                }
 499        }
 500
 501        /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
 502        if (!bs->tx_prologue)
 503                return;
 504
 505        /* Write and read RX prologue.  Adjust first entry in RX sglist. */
 506        if (bs->rx_prologue) {
 507                bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
 508                bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 509                                                  | BCM2835_SPI_CS_DMAEN);
 510                bcm2835_wr_fifo_count(bs, bs->rx_prologue);
 511                bcm2835_wait_tx_fifo_empty(bs);
 512                bcm2835_rd_fifo_count(bs, bs->rx_prologue);
 513                bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
 514                                                  | BCM2835_SPI_CS_CLEAR_TX
 515                                                  | BCM2835_SPI_CS_DONE);
 516
 517                dma_sync_single_for_device(ctlr->dma_rx->device->dev,
 518                                           sg_dma_address(&tfr->rx_sg.sgl[0]),
 519                                           bs->rx_prologue, DMA_FROM_DEVICE);
 520
 521                sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
 522                sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
 523        }
 524
 525        if (!bs->tx_buf)
 526                return;
 527
 528        /*
 529         * Write remaining TX prologue.  Adjust first entry in TX sglist.
 530         * Also adjust second entry if prologue spills over to it.
 531         */
 532        tx_remaining = bs->tx_prologue - bs->rx_prologue;
 533        if (tx_remaining) {
 534                bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
 535                bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 536                                                  | BCM2835_SPI_CS_DMAEN);
 537                bcm2835_wr_fifo_count(bs, tx_remaining);
 538                bcm2835_wait_tx_fifo_empty(bs);
 539                bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
 540                                                  | BCM2835_SPI_CS_DONE);
 541        }
 542
 543        if (likely(!bs->tx_spillover)) {
 544                sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
 545                sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
 546        } else {
 547                sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
 548                sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
 549                sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
 550        }
 551}
 552
 553/**
 554 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 555 * @bs: BCM2835 SPI controller
 556 *
 557 * Undo changes which were made to an SPI transfer's sglist when transmitting
 558 * the prologue.  This is necessary to ensure the same memory ranges are
 559 * unmapped that were originally mapped.
 560 */
 561static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
 562{
 563        struct spi_transfer *tfr = bs->tfr;
 564
 565        if (!bs->tx_prologue)
 566                return;
 567
 568        if (bs->rx_prologue) {
 569                sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
 570                sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
 571        }
 572
 573        if (!bs->tx_buf)
 574                goto out;
 575
 576        if (likely(!bs->tx_spillover)) {
 577                sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
 578                sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
 579        } else {
 580                sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
 581                sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
 582                sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
 583        }
 584out:
 585        bs->tx_prologue = 0;
 586}
 587
 588/**
 589 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 590 * @data: SPI master controller
 591 *
 592 * Used for bidirectional and RX-only transfers.
 593 */
 594static void bcm2835_spi_dma_rx_done(void *data)
 595{
 596        struct spi_controller *ctlr = data;
 597        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 598
 599        /* terminate tx-dma as we do not have an irq for it
 600         * because when the rx dma will terminate and this callback
 601         * is called the tx-dma must have finished - can't get to this
 602         * situation otherwise...
 603         */
 604        dmaengine_terminate_async(ctlr->dma_tx);
 605        bs->tx_dma_active = false;
 606        bs->rx_dma_active = false;
 607        bcm2835_spi_undo_prologue(bs);
 608
 609        /* reset fifo and HW */
 610        bcm2835_spi_reset_hw(ctlr);
 611
 612        /* and mark as completed */;
 613        complete(&ctlr->xfer_completion);
 614}
 615
 616/**
 617 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 618 * @data: SPI master controller
 619 *
 620 * Used for TX-only transfers.
 621 */
 622static void bcm2835_spi_dma_tx_done(void *data)
 623{
 624        struct spi_controller *ctlr = data;
 625        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 626
 627        /* busy-wait for TX FIFO to empty */
 628        while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 629                bcm2835_wr(bs, BCM2835_SPI_CS,
 630                           bs->clear_rx_cs[bs->chip_select]);
 631
 632        bs->tx_dma_active = false;
 633        smp_wmb();
 634
 635        /*
 636         * In case of a very short transfer, RX DMA may not have been
 637         * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
 638         * to terminate it immediately after issuing.
 639         */
 640        if (cmpxchg(&bs->rx_dma_active, true, false))
 641                dmaengine_terminate_async(ctlr->dma_rx);
 642
 643        bcm2835_spi_undo_prologue(bs);
 644        bcm2835_spi_reset_hw(ctlr);
 645        complete(&ctlr->xfer_completion);
 646}
 647
 648/**
 649 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 650 * @ctlr: SPI master controller
 651 * @spi: SPI slave
 652 * @tfr: SPI transfer
 653 * @bs: BCM2835 SPI controller
 654 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 655 *
 656 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 657 * Return 0 on success or a negative error number.
 658 */
 659static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
 660                                  struct spi_device *spi,
 661                                  struct spi_transfer *tfr,
 662                                  struct bcm2835_spi *bs,
 663                                  bool is_tx)
 664{
 665        struct dma_chan *chan;
 666        struct scatterlist *sgl;
 667        unsigned int nents;
 668        enum dma_transfer_direction dir;
 669        unsigned long flags;
 670
 671        struct dma_async_tx_descriptor *desc;
 672        dma_cookie_t cookie;
 673
 674        if (is_tx) {
 675                dir   = DMA_MEM_TO_DEV;
 676                chan  = ctlr->dma_tx;
 677                nents = tfr->tx_sg.nents;
 678                sgl   = tfr->tx_sg.sgl;
 679                flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
 680        } else {
 681                dir   = DMA_DEV_TO_MEM;
 682                chan  = ctlr->dma_rx;
 683                nents = tfr->rx_sg.nents;
 684                sgl   = tfr->rx_sg.sgl;
 685                flags = DMA_PREP_INTERRUPT;
 686        }
 687        /* prepare the channel */
 688        desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 689        if (!desc)
 690                return -EINVAL;
 691
 692        /*
 693         * Completion is signaled by the RX channel for bidirectional and
 694         * RX-only transfers; else by the TX channel for TX-only transfers.
 695         */
 696        if (!is_tx) {
 697                desc->callback = bcm2835_spi_dma_rx_done;
 698                desc->callback_param = ctlr;
 699        } else if (!tfr->rx_buf) {
 700                desc->callback = bcm2835_spi_dma_tx_done;
 701                desc->callback_param = ctlr;
 702                bs->chip_select = spi->chip_select;
 703        }
 704
 705        /* submit it to DMA-engine */
 706        cookie = dmaengine_submit(desc);
 707
 708        return dma_submit_error(cookie);
 709}
 710
 711/**
 712 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 713 * @ctlr: SPI master controller
 714 * @spi: SPI slave
 715 * @tfr: SPI transfer
 716 * @cs: CS register
 717 *
 718 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 719 * the TX and RX DMA channel to copy between memory and FIFO register.
 720 *
 721 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 722 * memory is pointless.  However not reading the RX FIFO isn't an option either
 723 * because transmission is halted once it's full.  As a workaround, cyclically
 724 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 725 *
 726 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 727 * this is called only once, on slave registration.  A DMA descriptor to write
 728 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 729 * when performing a TX-only transfer is to submit this descriptor to the RX
 730 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 731 * generate any interrupts while running.  It must be terminated once the
 732 * TX DMA channel is done.
 733 *
 734 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 735 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 736 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 737 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 738 * reduction in bus traffic and thus energy consumption is achieved.
 739 *
 740 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 741 * copying from the zero page.  The DMA descriptor to do this is preallocated
 742 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 743 * done and can then be reused.
 744 *
 745 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 746 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 747 * of copying them from memory.  This reduces traffic on the memory bus.  The
 748 * feature is not available on so-called "lite" channels, but normally TX DMA
 749 * is backed by a full-featured channel.
 750 *
 751 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 752 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 753 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 754 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 755 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 756 * performed at the end of an RX-only transfer.
 757 */
 758static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
 759                                        struct spi_device *spi,
 760                                        struct spi_transfer *tfr,
 761                                        u32 cs)
 762{
 763        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 764        dma_cookie_t cookie;
 765        int ret;
 766
 767        /* update usage statistics */
 768        bs->count_transfer_dma++;
 769
 770        /*
 771         * Transfer first few bytes without DMA if length of first TX or RX
 772         * sglist entry is not a multiple of 4 bytes (hardware limitation).
 773         */
 774        bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
 775
 776        /* setup tx-DMA */
 777        if (bs->tx_buf) {
 778                ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
 779        } else {
 780                cookie = dmaengine_submit(bs->fill_tx_desc);
 781                ret = dma_submit_error(cookie);
 782        }
 783        if (ret)
 784                goto err_reset_hw;
 785
 786        /* set the DMA length */
 787        bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
 788
 789        /* start the HW */
 790        bcm2835_wr(bs, BCM2835_SPI_CS,
 791                   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
 792
 793        bs->tx_dma_active = true;
 794        smp_wmb();
 795
 796        /* start TX early */
 797        dma_async_issue_pending(ctlr->dma_tx);
 798
 799        /* setup rx-DMA late - to run transfers while
 800         * mapping of the rx buffers still takes place
 801         * this saves 10us or more.
 802         */
 803        if (bs->rx_buf) {
 804                ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
 805        } else {
 806                cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
 807                ret = dma_submit_error(cookie);
 808        }
 809        if (ret) {
 810                /* need to reset on errors */
 811                dmaengine_terminate_sync(ctlr->dma_tx);
 812                bs->tx_dma_active = false;
 813                goto err_reset_hw;
 814        }
 815
 816        /* start rx dma late */
 817        dma_async_issue_pending(ctlr->dma_rx);
 818        bs->rx_dma_active = true;
 819        smp_mb();
 820
 821        /*
 822         * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
 823         * may run before RX DMA is issued.  Terminate RX DMA if so.
 824         */
 825        if (!bs->rx_buf && !bs->tx_dma_active &&
 826            cmpxchg(&bs->rx_dma_active, true, false)) {
 827                dmaengine_terminate_async(ctlr->dma_rx);
 828                bcm2835_spi_reset_hw(ctlr);
 829        }
 830
 831        /* wait for wakeup in framework */
 832        return 1;
 833
 834err_reset_hw:
 835        bcm2835_spi_reset_hw(ctlr);
 836        bcm2835_spi_undo_prologue(bs);
 837        return ret;
 838}
 839
 840static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
 841                                struct spi_device *spi,
 842                                struct spi_transfer *tfr)
 843{
 844        /* we start DMA efforts only on bigger transfers */
 845        if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
 846                return false;
 847
 848        /* return OK */
 849        return true;
 850}
 851
 852static void bcm2835_dma_release(struct spi_controller *ctlr,
 853                                struct bcm2835_spi *bs)
 854{
 855        int i;
 856
 857        if (ctlr->dma_tx) {
 858                dmaengine_terminate_sync(ctlr->dma_tx);
 859
 860                if (bs->fill_tx_desc)
 861                        dmaengine_desc_free(bs->fill_tx_desc);
 862
 863                if (bs->fill_tx_addr)
 864                        dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
 865                                             bs->fill_tx_addr, sizeof(u32),
 866                                             DMA_TO_DEVICE,
 867                                             DMA_ATTR_SKIP_CPU_SYNC);
 868
 869                dma_release_channel(ctlr->dma_tx);
 870                ctlr->dma_tx = NULL;
 871        }
 872
 873        if (ctlr->dma_rx) {
 874                dmaengine_terminate_sync(ctlr->dma_rx);
 875
 876                for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
 877                        if (bs->clear_rx_desc[i])
 878                                dmaengine_desc_free(bs->clear_rx_desc[i]);
 879
 880                if (bs->clear_rx_addr)
 881                        dma_unmap_single(ctlr->dma_rx->device->dev,
 882                                         bs->clear_rx_addr,
 883                                         sizeof(bs->clear_rx_cs),
 884                                         DMA_TO_DEVICE);
 885
 886                dma_release_channel(ctlr->dma_rx);
 887                ctlr->dma_rx = NULL;
 888        }
 889}
 890
 891static void bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
 892                             struct bcm2835_spi *bs)
 893{
 894        struct dma_slave_config slave_config;
 895        const __be32 *addr;
 896        dma_addr_t dma_reg_base;
 897        int ret, i;
 898
 899        /* base address in dma-space */
 900        addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
 901        if (!addr) {
 902                dev_err(dev, "could not get DMA-register address - not using dma mode\n");
 903                goto err;
 904        }
 905        dma_reg_base = be32_to_cpup(addr);
 906
 907        /* get tx/rx dma */
 908        ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
 909        if (!ctlr->dma_tx) {
 910                dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
 911                goto err;
 912        }
 913        ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
 914        if (!ctlr->dma_rx) {
 915                dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
 916                goto err_release;
 917        }
 918
 919        /*
 920         * The TX DMA channel either copies a transfer's TX buffer to the FIFO
 921         * or, in case of an RX-only transfer, cyclically copies from the zero
 922         * page to the FIFO using a preallocated, reusable descriptor.
 923         */
 924        slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 925        slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 926
 927        ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
 928        if (ret)
 929                goto err_config;
 930
 931        bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
 932                                              ZERO_PAGE(0), 0, sizeof(u32),
 933                                              DMA_TO_DEVICE,
 934                                              DMA_ATTR_SKIP_CPU_SYNC);
 935        if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
 936                dev_err(dev, "cannot map zero page - not using DMA mode\n");
 937                bs->fill_tx_addr = 0;
 938                goto err_release;
 939        }
 940
 941        bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
 942                                                     bs->fill_tx_addr,
 943                                                     sizeof(u32), 0,
 944                                                     DMA_MEM_TO_DEV, 0);
 945        if (!bs->fill_tx_desc) {
 946                dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
 947                goto err_release;
 948        }
 949
 950        ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
 951        if (ret) {
 952                dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
 953                goto err_release;
 954        }
 955
 956        /*
 957         * The RX DMA channel is used bidirectionally:  It either reads the
 958         * RX FIFO or, in case of a TX-only transfer, cyclically writes a
 959         * precalculated value to the CS register to clear the RX FIFO.
 960         */
 961        slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 962        slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 963        slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
 964        slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 965
 966        ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
 967        if (ret)
 968                goto err_config;
 969
 970        bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
 971                                           bs->clear_rx_cs,
 972                                           sizeof(bs->clear_rx_cs),
 973                                           DMA_TO_DEVICE);
 974        if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
 975                dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
 976                bs->clear_rx_addr = 0;
 977                goto err_release;
 978        }
 979
 980        for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
 981                bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
 982                                           bs->clear_rx_addr + i * sizeof(u32),
 983                                           sizeof(u32), 0,
 984                                           DMA_MEM_TO_DEV, 0);
 985                if (!bs->clear_rx_desc[i]) {
 986                        dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
 987                        goto err_release;
 988                }
 989
 990                ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
 991                if (ret) {
 992                        dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
 993                        goto err_release;
 994                }
 995        }
 996
 997        /* all went well, so set can_dma */
 998        ctlr->can_dma = bcm2835_spi_can_dma;
 999
1000        return;
1001
1002err_config:
1003        dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1004                ret);
1005err_release:
1006        bcm2835_dma_release(ctlr, bs);
1007err:
1008        return;
1009}
1010
1011static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
1012                                         struct spi_device *spi,
1013                                         struct spi_transfer *tfr,
1014                                         u32 cs)
1015{
1016        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1017        unsigned long timeout;
1018
1019        /* update usage statistics */
1020        bs->count_transfer_polling++;
1021
1022        /* enable HW block without interrupts */
1023        bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1024
1025        /* fill in the fifo before timeout calculations
1026         * if we are interrupted here, then the data is
1027         * getting transferred by the HW while we are interrupted
1028         */
1029        bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1030
1031        /* set the timeout to at least 2 jiffies */
1032        timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1033
1034        /* loop until finished the transfer */
1035        while (bs->rx_len) {
1036                /* fill in tx fifo with remaining data */
1037                bcm2835_wr_fifo(bs);
1038
1039                /* read from fifo as much as possible */
1040                bcm2835_rd_fifo(bs);
1041
1042                /* if there is still data pending to read
1043                 * then check the timeout
1044                 */
1045                if (bs->rx_len && time_after(jiffies, timeout)) {
1046                        dev_dbg_ratelimited(&spi->dev,
1047                                            "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1048                                            jiffies - timeout,
1049                                            bs->tx_len, bs->rx_len);
1050                        /* fall back to interrupt mode */
1051
1052                        /* update usage statistics */
1053                        bs->count_transfer_irq_after_polling++;
1054
1055                        return bcm2835_spi_transfer_one_irq(ctlr, spi,
1056                                                            tfr, cs, false);
1057                }
1058        }
1059
1060        /* Transfer complete - reset SPI HW */
1061        bcm2835_spi_reset_hw(ctlr);
1062        /* and return without waiting for completion */
1063        return 0;
1064}
1065
1066static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1067                                    struct spi_device *spi,
1068                                    struct spi_transfer *tfr)
1069{
1070        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1071        unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
1072        unsigned long hz_per_byte, byte_limit;
1073        u32 cs = bs->prepare_cs[spi->chip_select];
1074
1075        /* set clock */
1076        spi_hz = tfr->speed_hz;
1077        clk_hz = clk_get_rate(bs->clk);
1078
1079        if (spi_hz >= clk_hz / 2) {
1080                cdiv = 2; /* clk_hz/2 is the fastest we can go */
1081        } else if (spi_hz) {
1082                /* CDIV must be a multiple of two */
1083                cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1084                cdiv += (cdiv % 2);
1085
1086                if (cdiv >= 65536)
1087                        cdiv = 0; /* 0 is the slowest we can go */
1088        } else {
1089                cdiv = 0; /* 0 is the slowest we can go */
1090        }
1091        spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
1092        bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1093
1094        /* handle all the 3-wire mode */
1095        if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1096                cs |= BCM2835_SPI_CS_REN;
1097
1098        /* set transmit buffers and length */
1099        bs->tx_buf = tfr->tx_buf;
1100        bs->rx_buf = tfr->rx_buf;
1101        bs->tx_len = tfr->len;
1102        bs->rx_len = tfr->len;
1103
1104        /* Calculate the estimated time in us the transfer runs.  Note that
1105         * there is 1 idle clocks cycles after each byte getting transferred
1106         * so we have 9 cycles/byte.  This is used to find the number of Hz
1107         * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1108         * per 300,000 Hz of bus clock.
1109         */
1110        hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1111        byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
1112
1113        /* run in polling mode for short transfers */
1114        if (tfr->len < byte_limit)
1115                return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1116
1117        /* run in dma mode if conditions are right
1118         * Note that unlike poll or interrupt mode DMA mode does not have
1119         * this 1 idle clock cycle pattern but runs the spi clock without gaps
1120         */
1121        if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1122                return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
1123
1124        /* run in interrupt-mode */
1125        return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1126}
1127
1128static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1129                                       struct spi_message *msg)
1130{
1131        struct spi_device *spi = msg->spi;
1132        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1133        int ret;
1134
1135        if (ctlr->can_dma) {
1136                /*
1137                 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1138                 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1139                 * aligned) if the limit is exceeded.
1140                 */
1141                ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1142                                                  GFP_KERNEL | GFP_DMA);
1143                if (ret)
1144                        return ret;
1145        }
1146
1147        /*
1148         * Set up clock polarity before spi_transfer_one_message() asserts
1149         * chip select to avoid a gratuitous clock signal edge.
1150         */
1151        bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
1152
1153        return 0;
1154}
1155
1156static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1157                                   struct spi_message *msg)
1158{
1159        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1160
1161        /* if an error occurred and we have an active dma, then terminate */
1162        dmaengine_terminate_sync(ctlr->dma_tx);
1163        bs->tx_dma_active = false;
1164        dmaengine_terminate_sync(ctlr->dma_rx);
1165        bs->rx_dma_active = false;
1166        bcm2835_spi_undo_prologue(bs);
1167
1168        /* and reset */
1169        bcm2835_spi_reset_hw(ctlr);
1170}
1171
1172static int chip_match_name(struct gpio_chip *chip, void *data)
1173{
1174        return !strcmp(chip->label, data);
1175}
1176
1177static int bcm2835_spi_setup(struct spi_device *spi)
1178{
1179        struct spi_controller *ctlr = spi->controller;
1180        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1181        struct gpio_chip *chip;
1182        enum gpio_lookup_flags lflags;
1183        u32 cs;
1184
1185        /*
1186         * Precalculate SPI slave's CS register value for ->prepare_message():
1187         * The driver always uses software-controlled GPIO chip select, hence
1188         * set the hardware-controlled native chip select to an invalid value
1189         * to prevent it from interfering.
1190         */
1191        cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1192        if (spi->mode & SPI_CPOL)
1193                cs |= BCM2835_SPI_CS_CPOL;
1194        if (spi->mode & SPI_CPHA)
1195                cs |= BCM2835_SPI_CS_CPHA;
1196        bs->prepare_cs[spi->chip_select] = cs;
1197
1198        /*
1199         * Precalculate SPI slave's CS register value to clear RX FIFO
1200         * in case of a TX-only DMA transfer.
1201         */
1202        if (ctlr->dma_rx) {
1203                bs->clear_rx_cs[spi->chip_select] = cs |
1204                                                    BCM2835_SPI_CS_TA |
1205                                                    BCM2835_SPI_CS_DMAEN |
1206                                                    BCM2835_SPI_CS_CLEAR_RX;
1207                dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1208                                           bs->clear_rx_addr,
1209                                           sizeof(bs->clear_rx_cs),
1210                                           DMA_TO_DEVICE);
1211        }
1212
1213        /*
1214         * sanity checking the native-chipselects
1215         */
1216        if (spi->mode & SPI_NO_CS)
1217                return 0;
1218        /*
1219         * The SPI core has successfully requested the CS GPIO line from the
1220         * device tree, so we are done.
1221         */
1222        if (spi->cs_gpiod)
1223                return 0;
1224        if (spi->chip_select > 1) {
1225                /* error in the case of native CS requested with CS > 1
1226                 * officially there is a CS2, but it is not documented
1227                 * which GPIO is connected with that...
1228                 */
1229                dev_err(&spi->dev,
1230                        "setup: only two native chip-selects are supported\n");
1231                return -EINVAL;
1232        }
1233
1234        /*
1235         * Translate native CS to GPIO
1236         *
1237         * FIXME: poking around in the gpiolib internals like this is
1238         * not very good practice. Find a way to locate the real problem
1239         * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1240         * sometimes not assigned correctly? Erroneous device trees?
1241         */
1242
1243        /* get the gpio chip for the base */
1244        chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1245        if (!chip)
1246                return 0;
1247
1248        /*
1249         * Retrieve the corresponding GPIO line used for CS.
1250         * The inversion semantics will be handled by the GPIO core
1251         * code, so we pass GPIOS_OUT_LOW for "unasserted" and
1252         * the correct flag for inversion semantics. The SPI_CS_HIGH
1253         * on spi->mode cannot be checked for polarity in this case
1254         * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1255         */
1256        if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
1257                lflags = GPIO_ACTIVE_HIGH;
1258        else
1259                lflags = GPIO_ACTIVE_LOW;
1260        spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1261                                                  DRV_NAME,
1262                                                  lflags,
1263                                                  GPIOD_OUT_LOW);
1264        if (IS_ERR(spi->cs_gpiod))
1265                return PTR_ERR(spi->cs_gpiod);
1266
1267        /* and set up the "mode" and level */
1268        dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1269                 spi->chip_select);
1270
1271        return 0;
1272}
1273
1274static int bcm2835_spi_probe(struct platform_device *pdev)
1275{
1276        struct spi_controller *ctlr;
1277        struct bcm2835_spi *bs;
1278        int err;
1279
1280        ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1281                                                  dma_get_cache_alignment()));
1282        if (!ctlr)
1283                return -ENOMEM;
1284
1285        platform_set_drvdata(pdev, ctlr);
1286
1287        ctlr->use_gpio_descriptors = true;
1288        ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1289        ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1290        ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
1291        ctlr->setup = bcm2835_spi_setup;
1292        ctlr->transfer_one = bcm2835_spi_transfer_one;
1293        ctlr->handle_err = bcm2835_spi_handle_err;
1294        ctlr->prepare_message = bcm2835_spi_prepare_message;
1295        ctlr->dev.of_node = pdev->dev.of_node;
1296
1297        bs = spi_controller_get_devdata(ctlr);
1298
1299        bs->regs = devm_platform_ioremap_resource(pdev, 0);
1300        if (IS_ERR(bs->regs)) {
1301                err = PTR_ERR(bs->regs);
1302                goto out_controller_put;
1303        }
1304
1305        bs->clk = devm_clk_get(&pdev->dev, NULL);
1306        if (IS_ERR(bs->clk)) {
1307                err = PTR_ERR(bs->clk);
1308                dev_err(&pdev->dev, "could not get clk: %d\n", err);
1309                goto out_controller_put;
1310        }
1311
1312        bs->irq = platform_get_irq(pdev, 0);
1313        if (bs->irq <= 0) {
1314                err = bs->irq ? bs->irq : -ENODEV;
1315                goto out_controller_put;
1316        }
1317
1318        clk_prepare_enable(bs->clk);
1319
1320        bcm2835_dma_init(ctlr, &pdev->dev, bs);
1321
1322        /* initialise the hardware with the default polarities */
1323        bcm2835_wr(bs, BCM2835_SPI_CS,
1324                   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1325
1326        err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1327                               dev_name(&pdev->dev), ctlr);
1328        if (err) {
1329                dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1330                goto out_clk_disable;
1331        }
1332
1333        err = devm_spi_register_controller(&pdev->dev, ctlr);
1334        if (err) {
1335                dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1336                        err);
1337                goto out_clk_disable;
1338        }
1339
1340        bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1341
1342        return 0;
1343
1344out_clk_disable:
1345        clk_disable_unprepare(bs->clk);
1346out_controller_put:
1347        spi_controller_put(ctlr);
1348        return err;
1349}
1350
1351static int bcm2835_spi_remove(struct platform_device *pdev)
1352{
1353        struct spi_controller *ctlr = platform_get_drvdata(pdev);
1354        struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1355
1356        bcm2835_debugfs_remove(bs);
1357
1358        /* Clear FIFOs, and disable the HW block */
1359        bcm2835_wr(bs, BCM2835_SPI_CS,
1360                   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1361
1362        clk_disable_unprepare(bs->clk);
1363
1364        bcm2835_dma_release(ctlr, bs);
1365
1366        return 0;
1367}
1368
1369static const struct of_device_id bcm2835_spi_match[] = {
1370        { .compatible = "brcm,bcm2835-spi", },
1371        {}
1372};
1373MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1374
1375static struct platform_driver bcm2835_spi_driver = {
1376        .driver         = {
1377                .name           = DRV_NAME,
1378                .of_match_table = bcm2835_spi_match,
1379        },
1380        .probe          = bcm2835_spi_probe,
1381        .remove         = bcm2835_spi_remove,
1382};
1383module_platform_driver(bcm2835_spi_driver);
1384
1385MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1386MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1387MODULE_LICENSE("GPL");
1388