linux/drivers/spi/spi-stm32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver (master mode only)
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
   8#include <linux/debugfs.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/gpio.h>
  13#include <linux/interrupt.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/of_platform.h>
  17#include <linux/pm_runtime.h>
  18#include <linux/reset.h>
  19#include <linux/spi/spi.h>
  20
  21#define DRIVER_NAME "spi_stm32"
  22
  23/* STM32F4 SPI registers */
  24#define STM32F4_SPI_CR1                 0x00
  25#define STM32F4_SPI_CR2                 0x04
  26#define STM32F4_SPI_SR                  0x08
  27#define STM32F4_SPI_DR                  0x0C
  28#define STM32F4_SPI_I2SCFGR             0x1C
  29
  30/* STM32F4_SPI_CR1 bit fields */
  31#define STM32F4_SPI_CR1_CPHA            BIT(0)
  32#define STM32F4_SPI_CR1_CPOL            BIT(1)
  33#define STM32F4_SPI_CR1_MSTR            BIT(2)
  34#define STM32F4_SPI_CR1_BR_SHIFT        3
  35#define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
  36#define STM32F4_SPI_CR1_SPE             BIT(6)
  37#define STM32F4_SPI_CR1_LSBFRST         BIT(7)
  38#define STM32F4_SPI_CR1_SSI             BIT(8)
  39#define STM32F4_SPI_CR1_SSM             BIT(9)
  40#define STM32F4_SPI_CR1_RXONLY          BIT(10)
  41#define STM32F4_SPI_CR1_DFF             BIT(11)
  42#define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
  43#define STM32F4_SPI_CR1_CRCEN           BIT(13)
  44#define STM32F4_SPI_CR1_BIDIOE          BIT(14)
  45#define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
  46#define STM32F4_SPI_CR1_BR_MIN          0
  47#define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
  48
  49/* STM32F4_SPI_CR2 bit fields */
  50#define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
  51#define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
  52#define STM32F4_SPI_CR2_SSOE            BIT(2)
  53#define STM32F4_SPI_CR2_FRF             BIT(4)
  54#define STM32F4_SPI_CR2_ERRIE           BIT(5)
  55#define STM32F4_SPI_CR2_RXNEIE          BIT(6)
  56#define STM32F4_SPI_CR2_TXEIE           BIT(7)
  57
  58/* STM32F4_SPI_SR bit fields */
  59#define STM32F4_SPI_SR_RXNE             BIT(0)
  60#define STM32F4_SPI_SR_TXE              BIT(1)
  61#define STM32F4_SPI_SR_CHSIDE           BIT(2)
  62#define STM32F4_SPI_SR_UDR              BIT(3)
  63#define STM32F4_SPI_SR_CRCERR           BIT(4)
  64#define STM32F4_SPI_SR_MODF             BIT(5)
  65#define STM32F4_SPI_SR_OVR              BIT(6)
  66#define STM32F4_SPI_SR_BSY              BIT(7)
  67#define STM32F4_SPI_SR_FRE              BIT(8)
  68
  69/* STM32F4_SPI_I2SCFGR bit fields */
  70#define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
  71
  72/* STM32F4 SPI Baud Rate min/max divisor */
  73#define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
  74#define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
  75
  76/* STM32H7 SPI registers */
  77#define STM32H7_SPI_CR1                 0x00
  78#define STM32H7_SPI_CR2                 0x04
  79#define STM32H7_SPI_CFG1                0x08
  80#define STM32H7_SPI_CFG2                0x0C
  81#define STM32H7_SPI_IER                 0x10
  82#define STM32H7_SPI_SR                  0x14
  83#define STM32H7_SPI_IFCR                0x18
  84#define STM32H7_SPI_TXDR                0x20
  85#define STM32H7_SPI_RXDR                0x30
  86#define STM32H7_SPI_I2SCFGR             0x50
  87
  88/* STM32H7_SPI_CR1 bit fields */
  89#define STM32H7_SPI_CR1_SPE             BIT(0)
  90#define STM32H7_SPI_CR1_MASRX           BIT(8)
  91#define STM32H7_SPI_CR1_CSTART          BIT(9)
  92#define STM32H7_SPI_CR1_CSUSP           BIT(10)
  93#define STM32H7_SPI_CR1_HDDIR           BIT(11)
  94#define STM32H7_SPI_CR1_SSI             BIT(12)
  95
  96/* STM32H7_SPI_CR2 bit fields */
  97#define STM32H7_SPI_CR2_TSIZE_SHIFT     0
  98#define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
  99
 100/* STM32H7_SPI_CFG1 bit fields */
 101#define STM32H7_SPI_CFG1_DSIZE_SHIFT    0
 102#define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
 103#define STM32H7_SPI_CFG1_FTHLV_SHIFT    5
 104#define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
 105#define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
 106#define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
 107#define STM32H7_SPI_CFG1_MBR_SHIFT      28
 108#define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
 109#define STM32H7_SPI_CFG1_MBR_MIN        0
 110#define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
 111
 112/* STM32H7_SPI_CFG2 bit fields */
 113#define STM32H7_SPI_CFG2_MIDI_SHIFT     4
 114#define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
 115#define STM32H7_SPI_CFG2_COMM_SHIFT     17
 116#define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
 117#define STM32H7_SPI_CFG2_SP_SHIFT       19
 118#define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
 119#define STM32H7_SPI_CFG2_MASTER         BIT(22)
 120#define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
 121#define STM32H7_SPI_CFG2_CPHA           BIT(24)
 122#define STM32H7_SPI_CFG2_CPOL           BIT(25)
 123#define STM32H7_SPI_CFG2_SSM            BIT(26)
 124#define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
 125
 126/* STM32H7_SPI_IER bit fields */
 127#define STM32H7_SPI_IER_RXPIE           BIT(0)
 128#define STM32H7_SPI_IER_TXPIE           BIT(1)
 129#define STM32H7_SPI_IER_DXPIE           BIT(2)
 130#define STM32H7_SPI_IER_EOTIE           BIT(3)
 131#define STM32H7_SPI_IER_TXTFIE          BIT(4)
 132#define STM32H7_SPI_IER_OVRIE           BIT(6)
 133#define STM32H7_SPI_IER_MODFIE          BIT(9)
 134#define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
 135
 136/* STM32H7_SPI_SR bit fields */
 137#define STM32H7_SPI_SR_RXP              BIT(0)
 138#define STM32H7_SPI_SR_TXP              BIT(1)
 139#define STM32H7_SPI_SR_EOT              BIT(3)
 140#define STM32H7_SPI_SR_OVR              BIT(6)
 141#define STM32H7_SPI_SR_MODF             BIT(9)
 142#define STM32H7_SPI_SR_SUSP             BIT(11)
 143#define STM32H7_SPI_SR_RXPLVL_SHIFT     13
 144#define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
 145#define STM32H7_SPI_SR_RXWNE            BIT(15)
 146
 147/* STM32H7_SPI_IFCR bit fields */
 148#define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
 149
 150/* STM32H7_SPI_I2SCFGR bit fields */
 151#define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
 152
 153/* STM32H7 SPI Master Baud Rate min/max divisor */
 154#define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
 155#define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
 156
 157/* STM32H7 SPI Communication mode */
 158#define STM32H7_SPI_FULL_DUPLEX         0
 159#define STM32H7_SPI_SIMPLEX_TX          1
 160#define STM32H7_SPI_SIMPLEX_RX          2
 161#define STM32H7_SPI_HALF_DUPLEX         3
 162
 163/* SPI Communication type */
 164#define SPI_FULL_DUPLEX         0
 165#define SPI_SIMPLEX_TX          1
 166#define SPI_SIMPLEX_RX          2
 167#define SPI_3WIRE_TX            3
 168#define SPI_3WIRE_RX            4
 169
 170#define SPI_1HZ_NS              1000000000
 171
 172/*
 173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 174 * without fifo buffers.
 175 */
 176#define SPI_DMA_MIN_BYTES       16
 177
 178/**
 179 * stm32_spi_reg - stm32 SPI register & bitfield desc
 180 * @reg:                register offset
 181 * @mask:               bitfield mask
 182 * @shift:              left shift
 183 */
 184struct stm32_spi_reg {
 185        int reg;
 186        int mask;
 187        int shift;
 188};
 189
 190/**
 191 * stm32_spi_regspec - stm32 registers definition, compatible dependent data
 192 * en: enable register and SPI enable bit
 193 * dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 194 * dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 195 * cpol: clock polarity register and polarity bit
 196 * cpha: clock phase register and phase bit
 197 * lsb_first: LSB transmitted first register and bit
 198 * br: baud rate register and bitfields
 199 * rx: SPI RX data register
 200 * tx: SPI TX data register
 201 */
 202struct stm32_spi_regspec {
 203        const struct stm32_spi_reg en;
 204        const struct stm32_spi_reg dma_rx_en;
 205        const struct stm32_spi_reg dma_tx_en;
 206        const struct stm32_spi_reg cpol;
 207        const struct stm32_spi_reg cpha;
 208        const struct stm32_spi_reg lsb_first;
 209        const struct stm32_spi_reg br;
 210        const struct stm32_spi_reg rx;
 211        const struct stm32_spi_reg tx;
 212};
 213
 214struct stm32_spi;
 215
 216/**
 217 * stm32_spi_cfg - stm32 compatible configuration data
 218 * @regs: registers descriptions
 219 * @get_fifo_size: routine to get fifo size
 220 * @get_bpw_mask: routine to get bits per word mask
 221 * @disable: routine to disable controller
 222 * @config: routine to configure controller as SPI Master
 223 * @set_bpw: routine to configure registers to for bits per word
 224 * @set_mode: routine to configure registers to desired mode
 225 * @set_data_idleness: optional routine to configure registers to desired idle
 226 * time between frames (if driver has this functionality)
 227 * set_number_of_data: optional routine to configure registers to desired
 228 * number of data (if driver has this functionality)
 229 * @can_dma: routine to determine if the transfer is eligible for DMA use
 230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 231 * using DMA
 232 * @dma_rx cb: routine to call after DMA RX channel operation is complete
 233 * @dma_tx cb: routine to call after DMA TX channel operation is complete
 234 * @transfer_one_irq: routine to configure interrupts for driver
 235 * @irq_handler_event: Interrupt handler for SPI controller events
 236 * @irq_handler_thread: thread of interrupt handler for SPI controller
 237 * @baud_rate_div_min: minimum baud rate divisor
 238 * @baud_rate_div_max: maximum baud rate divisor
 239 * @has_fifo: boolean to know if fifo is used for driver
 240 * @has_startbit: boolean to know if start bit is used to start transfer
 241 */
 242struct stm32_spi_cfg {
 243        const struct stm32_spi_regspec *regs;
 244        int (*get_fifo_size)(struct stm32_spi *spi);
 245        int (*get_bpw_mask)(struct stm32_spi *spi);
 246        void (*disable)(struct stm32_spi *spi);
 247        int (*config)(struct stm32_spi *spi);
 248        void (*set_bpw)(struct stm32_spi *spi);
 249        int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 250        void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 251        int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 252        void (*transfer_one_dma_start)(struct stm32_spi *spi);
 253        void (*dma_rx_cb)(void *data);
 254        void (*dma_tx_cb)(void *data);
 255        int (*transfer_one_irq)(struct stm32_spi *spi);
 256        irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 257        irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 258        unsigned int baud_rate_div_min;
 259        unsigned int baud_rate_div_max;
 260        bool has_fifo;
 261};
 262
 263/**
 264 * struct stm32_spi - private data of the SPI controller
 265 * @dev: driver model representation of the controller
 266 * @master: controller master interface
 267 * @cfg: compatible configuration data
 268 * @base: virtual memory area
 269 * @clk: hw kernel clock feeding the SPI clock generator
 270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 271 * @rst: SPI controller reset line
 272 * @lock: prevent I/O concurrent access
 273 * @irq: SPI controller interrupt line
 274 * @fifo_size: size of the embedded fifo in bytes
 275 * @cur_midi: master inter-data idleness in ns
 276 * @cur_speed: speed configured in Hz
 277 * @cur_bpw: number of bits in a single SPI data frame
 278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 279 * @cur_comm: SPI communication mode
 280 * @cur_xferlen: current transfer length in bytes
 281 * @cur_usedma: boolean to know if dma is used in current transfer
 282 * @tx_buf: data to be written, or NULL
 283 * @rx_buf: data to be read, or NULL
 284 * @tx_len: number of data to be written in bytes
 285 * @rx_len: number of data to be read in bytes
 286 * @dma_tx: dma channel for TX transfer
 287 * @dma_rx: dma channel for RX transfer
 288 * @phys_addr: SPI registers physical base address
 289 */
 290struct stm32_spi {
 291        struct device *dev;
 292        struct spi_master *master;
 293        const struct stm32_spi_cfg *cfg;
 294        void __iomem *base;
 295        struct clk *clk;
 296        u32 clk_rate;
 297        struct reset_control *rst;
 298        spinlock_t lock; /* prevent I/O concurrent access */
 299        int irq;
 300        unsigned int fifo_size;
 301
 302        unsigned int cur_midi;
 303        unsigned int cur_speed;
 304        unsigned int cur_bpw;
 305        unsigned int cur_fthlv;
 306        unsigned int cur_comm;
 307        unsigned int cur_xferlen;
 308        bool cur_usedma;
 309
 310        const void *tx_buf;
 311        void *rx_buf;
 312        int tx_len;
 313        int rx_len;
 314        struct dma_chan *dma_tx;
 315        struct dma_chan *dma_rx;
 316        dma_addr_t phys_addr;
 317};
 318
 319static const struct stm32_spi_regspec stm32f4_spi_regspec = {
 320        .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
 321
 322        .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
 323        .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
 324
 325        .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
 326        .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
 327        .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
 328        .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
 329
 330        .rx = { STM32F4_SPI_DR },
 331        .tx = { STM32F4_SPI_DR },
 332};
 333
 334static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 335        /* SPI data transfer is enabled but spi_ker_ck is idle.
 336         * CFG1 and CFG2 registers are write protected when SPE is enabled.
 337         */
 338        .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 339
 340        .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 341        .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 342
 343        .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 344        .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 345        .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 346        .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 347                STM32H7_SPI_CFG1_MBR_SHIFT },
 348
 349        .rx = { STM32H7_SPI_RXDR },
 350        .tx = { STM32H7_SPI_TXDR },
 351};
 352
 353static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 354                                      u32 offset, u32 bits)
 355{
 356        writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 357                       spi->base + offset);
 358}
 359
 360static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 361                                      u32 offset, u32 bits)
 362{
 363        writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 364                       spi->base + offset);
 365}
 366
 367/**
 368 * stm32h7_spi_get_fifo_size - Return fifo size
 369 * @spi: pointer to the spi controller data structure
 370 */
 371static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 372{
 373        unsigned long flags;
 374        u32 count = 0;
 375
 376        spin_lock_irqsave(&spi->lock, flags);
 377
 378        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 379
 380        while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 381                writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 382
 383        stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 384
 385        spin_unlock_irqrestore(&spi->lock, flags);
 386
 387        dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 388
 389        return count;
 390}
 391
 392/**
 393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 394 * @spi: pointer to the spi controller data structure
 395 */
 396static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 397{
 398        dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 399        return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 400}
 401
 402/**
 403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 404 * @spi: pointer to the spi controller data structure
 405 */
 406static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 407{
 408        unsigned long flags;
 409        u32 cfg1, max_bpw;
 410
 411        spin_lock_irqsave(&spi->lock, flags);
 412
 413        /*
 414         * The most significant bit at DSIZE bit field is reserved when the
 415         * maximum data size of periperal instances is limited to 16-bit
 416         */
 417        stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 418
 419        cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 420        max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
 421                  STM32H7_SPI_CFG1_DSIZE_SHIFT;
 422        max_bpw += 1;
 423
 424        spin_unlock_irqrestore(&spi->lock, flags);
 425
 426        dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 427
 428        return SPI_BPW_RANGE_MASK(4, max_bpw);
 429}
 430
 431/**
 432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 433 * @spi: pointer to the spi controller data structure
 434 * @speed_hz: requested speed
 435 * @min_div: minimum baud rate divisor
 436 * @max_div: maximum baud rate divisor
 437 *
 438 * Return baud rate divisor value in case of success or -EINVAL
 439 */
 440static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 441                                 u32 min_div, u32 max_div)
 442{
 443        u32 div, mbrdiv;
 444
 445        div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
 446
 447        /*
 448         * SPI framework set xfer->speed_hz to master->max_speed_hz if
 449         * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 450         * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 451         * no need to check it there.
 452         * However, we need to ensure the following calculations.
 453         */
 454        if ((div < min_div) || (div > max_div))
 455                return -EINVAL;
 456
 457        /* Determine the first power of 2 greater than or equal to div */
 458        if (div & (div - 1))
 459                mbrdiv = fls(div);
 460        else
 461                mbrdiv = fls(div) - 1;
 462
 463        spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 464
 465        return mbrdiv - 1;
 466}
 467
 468/**
 469 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 470 * @spi: pointer to the spi controller data structure
 471 */
 472static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
 473{
 474        u32 fthlv, half_fifo;
 475
 476        /* data packet should not exceed 1/2 of fifo space */
 477        half_fifo = (spi->fifo_size / 2);
 478
 479        if (spi->cur_bpw <= 8)
 480                fthlv = half_fifo;
 481        else if (spi->cur_bpw <= 16)
 482                fthlv = half_fifo / 2;
 483        else
 484                fthlv = half_fifo / 4;
 485
 486        /* align packet size with data registers access */
 487        if (spi->cur_bpw > 8)
 488                fthlv -= (fthlv % 2); /* multiple of 2 */
 489        else
 490                fthlv -= (fthlv % 4); /* multiple of 4 */
 491
 492        return fthlv;
 493}
 494
 495/**
 496 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 497 * @spi: pointer to the spi controller data structure
 498 *
 499 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 500 * tx_buf end.
 501 */
 502static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 503{
 504        if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 505                                  STM32F4_SPI_SR_TXE)) {
 506                u32 offs = spi->cur_xferlen - spi->tx_len;
 507
 508                if (spi->cur_bpw == 16) {
 509                        const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 510
 511                        writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
 512                        spi->tx_len -= sizeof(u16);
 513                } else {
 514                        const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 515
 516                        writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
 517                        spi->tx_len -= sizeof(u8);
 518                }
 519        }
 520
 521        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 522}
 523
 524/**
 525 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 526 * @spi: pointer to the spi controller data structure
 527 *
 528 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 529 * tx_buf end.
 530 */
 531static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 532{
 533        while ((spi->tx_len > 0) &&
 534                       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 535                        STM32H7_SPI_SR_TXP)) {
 536                u32 offs = spi->cur_xferlen - spi->tx_len;
 537
 538                if (spi->tx_len >= sizeof(u32)) {
 539                        const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 540
 541                        writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 542                        spi->tx_len -= sizeof(u32);
 543                } else if (spi->tx_len >= sizeof(u16)) {
 544                        const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 545
 546                        writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 547                        spi->tx_len -= sizeof(u16);
 548                } else {
 549                        const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 550
 551                        writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 552                        spi->tx_len -= sizeof(u8);
 553                }
 554        }
 555
 556        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 557}
 558
 559/**
 560 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 561 * @spi: pointer to the spi controller data structure
 562 *
 563 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 564 * rx_buf end.
 565 */
 566static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 567{
 568        if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 569                                  STM32F4_SPI_SR_RXNE)) {
 570                u32 offs = spi->cur_xferlen - spi->rx_len;
 571
 572                if (spi->cur_bpw == 16) {
 573                        u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 574
 575                        *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
 576                        spi->rx_len -= sizeof(u16);
 577                } else {
 578                        u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 579
 580                        *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
 581                        spi->rx_len -= sizeof(u8);
 582                }
 583        }
 584
 585        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 586}
 587
 588/**
 589 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 590 * @spi: pointer to the spi controller data structure
 591 *
 592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 593 * rx_buf end.
 594 */
 595static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 596{
 597        u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 598        u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 599                     STM32H7_SPI_SR_RXPLVL_SHIFT;
 600
 601        while ((spi->rx_len > 0) &&
 602               ((sr & STM32H7_SPI_SR_RXP) ||
 603                (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 604                u32 offs = spi->cur_xferlen - spi->rx_len;
 605
 606                if ((spi->rx_len >= sizeof(u32)) ||
 607                    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
 608                        u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 609
 610                        *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 611                        spi->rx_len -= sizeof(u32);
 612                } else if ((spi->rx_len >= sizeof(u16)) ||
 613                           (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 614                        u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 615
 616                        *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 617                        spi->rx_len -= sizeof(u16);
 618                } else {
 619                        u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 620
 621                        *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 622                        spi->rx_len -= sizeof(u8);
 623                }
 624
 625                sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 626                rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 627                         STM32H7_SPI_SR_RXPLVL_SHIFT;
 628        }
 629
 630        dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 631                flush ? "(flush)" : "", spi->rx_len);
 632}
 633
 634/**
 635 * stm32_spi_enable - Enable SPI controller
 636 * @spi: pointer to the spi controller data structure
 637 */
 638static void stm32_spi_enable(struct stm32_spi *spi)
 639{
 640        dev_dbg(spi->dev, "enable controller\n");
 641
 642        stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 643                           spi->cfg->regs->en.mask);
 644}
 645
 646/**
 647 * stm32f4_spi_disable - Disable SPI controller
 648 * @spi: pointer to the spi controller data structure
 649 */
 650static void stm32f4_spi_disable(struct stm32_spi *spi)
 651{
 652        unsigned long flags;
 653        u32 sr;
 654
 655        dev_dbg(spi->dev, "disable controller\n");
 656
 657        spin_lock_irqsave(&spi->lock, flags);
 658
 659        if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
 660              STM32F4_SPI_CR1_SPE)) {
 661                spin_unlock_irqrestore(&spi->lock, flags);
 662                return;
 663        }
 664
 665        /* Disable interrupts */
 666        stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
 667                                                 STM32F4_SPI_CR2_RXNEIE |
 668                                                 STM32F4_SPI_CR2_ERRIE);
 669
 670        /* Wait until BSY = 0 */
 671        if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
 672                                              sr, !(sr & STM32F4_SPI_SR_BSY),
 673                                              10, 100000) < 0) {
 674                dev_warn(spi->dev, "disabling condition timeout\n");
 675        }
 676
 677        if (spi->cur_usedma && spi->dma_tx)
 678                dmaengine_terminate_all(spi->dma_tx);
 679        if (spi->cur_usedma && spi->dma_rx)
 680                dmaengine_terminate_all(spi->dma_rx);
 681
 682        stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
 683
 684        stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
 685                                                 STM32F4_SPI_CR2_RXDMAEN);
 686
 687        /* Sequence to clear OVR flag */
 688        readl_relaxed(spi->base + STM32F4_SPI_DR);
 689        readl_relaxed(spi->base + STM32F4_SPI_SR);
 690
 691        spin_unlock_irqrestore(&spi->lock, flags);
 692}
 693
 694/**
 695 * stm32h7_spi_disable - Disable SPI controller
 696 * @spi: pointer to the spi controller data structure
 697 *
 698 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 699 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
 700 * RX-Fifo.
 701 * Normally, if TSIZE has been configured, we should relax the hardware at the
 702 * reception of the EOT interrupt. But in case of error, EOT will not be
 703 * raised. So the subsystem unprepare_message call allows us to properly
 704 * complete the transfer from an hardware point of view.
 705 */
 706static void stm32h7_spi_disable(struct stm32_spi *spi)
 707{
 708        unsigned long flags;
 709        u32 cr1, sr;
 710
 711        dev_dbg(spi->dev, "disable controller\n");
 712
 713        spin_lock_irqsave(&spi->lock, flags);
 714
 715        cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 716
 717        if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 718                spin_unlock_irqrestore(&spi->lock, flags);
 719                return;
 720        }
 721
 722        /* Wait on EOT or suspend the flow */
 723        if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
 724                                              sr, !(sr & STM32H7_SPI_SR_EOT),
 725                                              10, 100000) < 0) {
 726                if (cr1 & STM32H7_SPI_CR1_CSTART) {
 727                        writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
 728                                       spi->base + STM32H7_SPI_CR1);
 729                        if (readl_relaxed_poll_timeout_atomic(
 730                                                spi->base + STM32H7_SPI_SR,
 731                                                sr, !(sr & STM32H7_SPI_SR_SUSP),
 732                                                10, 100000) < 0)
 733                                dev_warn(spi->dev,
 734                                         "Suspend request timeout\n");
 735                }
 736        }
 737
 738        if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 739                stm32h7_spi_read_rxfifo(spi, true);
 740
 741        if (spi->cur_usedma && spi->dma_tx)
 742                dmaengine_terminate_all(spi->dma_tx);
 743        if (spi->cur_usedma && spi->dma_rx)
 744                dmaengine_terminate_all(spi->dma_rx);
 745
 746        stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 747
 748        stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 749                                                STM32H7_SPI_CFG1_RXDMAEN);
 750
 751        /* Disable interrupts and clear status flags */
 752        writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 753        writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 754
 755        spin_unlock_irqrestore(&spi->lock, flags);
 756}
 757
 758/**
 759 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 760 *
 761 * If driver has fifo and the current transfer size is greater than fifo size,
 762 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 763 */
 764static bool stm32_spi_can_dma(struct spi_master *master,
 765                              struct spi_device *spi_dev,
 766                              struct spi_transfer *transfer)
 767{
 768        unsigned int dma_size;
 769        struct stm32_spi *spi = spi_master_get_devdata(master);
 770
 771        if (spi->cfg->has_fifo)
 772                dma_size = spi->fifo_size;
 773        else
 774                dma_size = SPI_DMA_MIN_BYTES;
 775
 776        dev_dbg(spi->dev, "%s: %s\n", __func__,
 777                (transfer->len > dma_size) ? "true" : "false");
 778
 779        return (transfer->len > dma_size);
 780}
 781
 782/**
 783 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 784 * @irq: interrupt line
 785 * @dev_id: SPI controller master interface
 786 */
 787static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
 788{
 789        struct spi_master *master = dev_id;
 790        struct stm32_spi *spi = spi_master_get_devdata(master);
 791        u32 sr, mask = 0;
 792        unsigned long flags;
 793        bool end = false;
 794
 795        spin_lock_irqsave(&spi->lock, flags);
 796
 797        sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
 798        /*
 799         * BSY flag is not handled in interrupt but it is normal behavior when
 800         * this flag is set.
 801         */
 802        sr &= ~STM32F4_SPI_SR_BSY;
 803
 804        if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 805                                 spi->cur_comm == SPI_3WIRE_TX)) {
 806                /* OVR flag shouldn't be handled for TX only mode */
 807                sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
 808                mask |= STM32F4_SPI_SR_TXE;
 809        }
 810
 811        if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
 812                /* TXE flag is set and is handled when RXNE flag occurs */
 813                sr &= ~STM32F4_SPI_SR_TXE;
 814                mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
 815        }
 816
 817        if (!(sr & mask)) {
 818                dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 819                spin_unlock_irqrestore(&spi->lock, flags);
 820                return IRQ_NONE;
 821        }
 822
 823        if (sr & STM32F4_SPI_SR_OVR) {
 824                dev_warn(spi->dev, "Overrun: received value discarded\n");
 825
 826                /* Sequence to clear OVR flag */
 827                readl_relaxed(spi->base + STM32F4_SPI_DR);
 828                readl_relaxed(spi->base + STM32F4_SPI_SR);
 829
 830                /*
 831                 * If overrun is detected, it means that something went wrong,
 832                 * so stop the current transfer. Transfer can wait for next
 833                 * RXNE but DR is already read and end never happens.
 834                 */
 835                end = true;
 836                goto end_irq;
 837        }
 838
 839        if (sr & STM32F4_SPI_SR_TXE) {
 840                if (spi->tx_buf)
 841                        stm32f4_spi_write_tx(spi);
 842                if (spi->tx_len == 0)
 843                        end = true;
 844        }
 845
 846        if (sr & STM32F4_SPI_SR_RXNE) {
 847                stm32f4_spi_read_rx(spi);
 848                if (spi->rx_len == 0)
 849                        end = true;
 850                else /* Load data for discontinuous mode */
 851                        stm32f4_spi_write_tx(spi);
 852        }
 853
 854end_irq:
 855        if (end) {
 856                /* Immediately disable interrupts to do not generate new one */
 857                stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
 858                                        STM32F4_SPI_CR2_TXEIE |
 859                                        STM32F4_SPI_CR2_RXNEIE |
 860                                        STM32F4_SPI_CR2_ERRIE);
 861                spin_unlock_irqrestore(&spi->lock, flags);
 862                return IRQ_WAKE_THREAD;
 863        }
 864
 865        spin_unlock_irqrestore(&spi->lock, flags);
 866        return IRQ_HANDLED;
 867}
 868
 869/**
 870 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 871 * @irq: interrupt line
 872 * @dev_id: SPI controller master interface
 873 */
 874static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
 875{
 876        struct spi_master *master = dev_id;
 877        struct stm32_spi *spi = spi_master_get_devdata(master);
 878
 879        spi_finalize_current_transfer(master);
 880        stm32f4_spi_disable(spi);
 881
 882        return IRQ_HANDLED;
 883}
 884
 885/**
 886 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 887 * @irq: interrupt line
 888 * @dev_id: SPI controller master interface
 889 */
 890static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
 891{
 892        struct spi_master *master = dev_id;
 893        struct stm32_spi *spi = spi_master_get_devdata(master);
 894        u32 sr, ier, mask;
 895        unsigned long flags;
 896        bool end = false;
 897
 898        spin_lock_irqsave(&spi->lock, flags);
 899
 900        sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 901        ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
 902
 903        mask = ier;
 904        /* EOTIE is triggered on EOT, SUSP and TXC events. */
 905        mask |= STM32H7_SPI_SR_SUSP;
 906        /*
 907         * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
 908         * Full-Duplex, need to poll RXP event to know if there are remaining
 909         * data, before disabling SPI.
 910         */
 911        if (spi->rx_buf && !spi->cur_usedma)
 912                mask |= STM32H7_SPI_SR_RXP;
 913
 914        if (!(sr & mask)) {
 915                dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 916                        sr, ier);
 917                spin_unlock_irqrestore(&spi->lock, flags);
 918                return IRQ_NONE;
 919        }
 920
 921        if (sr & STM32H7_SPI_SR_SUSP) {
 922                dev_warn(spi->dev, "Communication suspended\n");
 923                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 924                        stm32h7_spi_read_rxfifo(spi, false);
 925                /*
 926                 * If communication is suspended while using DMA, it means
 927                 * that something went wrong, so stop the current transfer
 928                 */
 929                if (spi->cur_usedma)
 930                        end = true;
 931        }
 932
 933        if (sr & STM32H7_SPI_SR_MODF) {
 934                dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 935                end = true;
 936        }
 937
 938        if (sr & STM32H7_SPI_SR_OVR) {
 939                dev_warn(spi->dev, "Overrun: received value discarded\n");
 940                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 941                        stm32h7_spi_read_rxfifo(spi, false);
 942                /*
 943                 * If overrun is detected while using DMA, it means that
 944                 * something went wrong, so stop the current transfer
 945                 */
 946                if (spi->cur_usedma)
 947                        end = true;
 948        }
 949
 950        if (sr & STM32H7_SPI_SR_EOT) {
 951                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 952                        stm32h7_spi_read_rxfifo(spi, true);
 953                end = true;
 954        }
 955
 956        if (sr & STM32H7_SPI_SR_TXP)
 957                if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 958                        stm32h7_spi_write_txfifo(spi);
 959
 960        if (sr & STM32H7_SPI_SR_RXP)
 961                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 962                        stm32h7_spi_read_rxfifo(spi, false);
 963
 964        writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
 965
 966        spin_unlock_irqrestore(&spi->lock, flags);
 967
 968        if (end) {
 969                spi_finalize_current_transfer(master);
 970                stm32h7_spi_disable(spi);
 971        }
 972
 973        return IRQ_HANDLED;
 974}
 975
 976/**
 977 * stm32_spi_setup - setup device chip select
 978 */
 979static int stm32_spi_setup(struct spi_device *spi_dev)
 980{
 981        int ret = 0;
 982
 983        if (!gpio_is_valid(spi_dev->cs_gpio)) {
 984                dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
 985                        spi_dev->cs_gpio);
 986                return -EINVAL;
 987        }
 988
 989        dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
 990                spi_dev->cs_gpio,
 991                (spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");
 992
 993        ret = gpio_direction_output(spi_dev->cs_gpio,
 994                                    !(spi_dev->mode & SPI_CS_HIGH));
 995
 996        return ret;
 997}
 998
 999/**
1000 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1001 */
1002static int stm32_spi_prepare_msg(struct spi_master *master,
1003                                 struct spi_message *msg)
1004{
1005        struct stm32_spi *spi = spi_master_get_devdata(master);
1006        struct spi_device *spi_dev = msg->spi;
1007        struct device_node *np = spi_dev->dev.of_node;
1008        unsigned long flags;
1009        u32 clrb = 0, setb = 0;
1010
1011        /* SPI slave device may need time between data frames */
1012        spi->cur_midi = 0;
1013        if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014                dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1015
1016        if (spi_dev->mode & SPI_CPOL)
1017                setb |= spi->cfg->regs->cpol.mask;
1018        else
1019                clrb |= spi->cfg->regs->cpol.mask;
1020
1021        if (spi_dev->mode & SPI_CPHA)
1022                setb |= spi->cfg->regs->cpha.mask;
1023        else
1024                clrb |= spi->cfg->regs->cpha.mask;
1025
1026        if (spi_dev->mode & SPI_LSB_FIRST)
1027                setb |= spi->cfg->regs->lsb_first.mask;
1028        else
1029                clrb |= spi->cfg->regs->lsb_first.mask;
1030
1031        dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1032                spi_dev->mode & SPI_CPOL,
1033                spi_dev->mode & SPI_CPHA,
1034                spi_dev->mode & SPI_LSB_FIRST,
1035                spi_dev->mode & SPI_CS_HIGH);
1036
1037        spin_lock_irqsave(&spi->lock, flags);
1038
1039        /* CPOL, CPHA and LSB FIRST bits have common register */
1040        if (clrb || setb)
1041                writel_relaxed(
1042                        (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1043                         ~clrb) | setb,
1044                        spi->base + spi->cfg->regs->cpol.reg);
1045
1046        spin_unlock_irqrestore(&spi->lock, flags);
1047
1048        return 0;
1049}
1050
1051/**
1052 * stm32f4_spi_dma_tx_cb - dma callback
1053 *
1054 * DMA callback is called when the transfer is complete for DMA TX channel.
1055 */
1056static void stm32f4_spi_dma_tx_cb(void *data)
1057{
1058        struct stm32_spi *spi = data;
1059
1060        if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1061                spi_finalize_current_transfer(spi->master);
1062                stm32f4_spi_disable(spi);
1063        }
1064}
1065
1066/**
1067 * stm32f4_spi_dma_rx_cb - dma callback
1068 *
1069 * DMA callback is called when the transfer is complete for DMA RX channel.
1070 */
1071static void stm32f4_spi_dma_rx_cb(void *data)
1072{
1073        struct stm32_spi *spi = data;
1074
1075        spi_finalize_current_transfer(spi->master);
1076        stm32f4_spi_disable(spi);
1077}
1078
1079/**
1080 * stm32h7_spi_dma_cb - dma callback
1081 *
1082 * DMA callback is called when the transfer is complete or when an error
1083 * occurs. If the transfer is complete, EOT flag is raised.
1084 */
1085static void stm32h7_spi_dma_cb(void *data)
1086{
1087        struct stm32_spi *spi = data;
1088        unsigned long flags;
1089        u32 sr;
1090
1091        spin_lock_irqsave(&spi->lock, flags);
1092
1093        sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1094
1095        spin_unlock_irqrestore(&spi->lock, flags);
1096
1097        if (!(sr & STM32H7_SPI_SR_EOT))
1098                dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1099
1100        /* Now wait for EOT, or SUSP or OVR in case of error */
1101}
1102
1103/**
1104 * stm32_spi_dma_config - configure dma slave channel depending on current
1105 *                        transfer bits_per_word.
1106 */
1107static void stm32_spi_dma_config(struct stm32_spi *spi,
1108                                 struct dma_slave_config *dma_conf,
1109                                 enum dma_transfer_direction dir)
1110{
1111        enum dma_slave_buswidth buswidth;
1112        u32 maxburst;
1113
1114        if (spi->cur_bpw <= 8)
1115                buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1116        else if (spi->cur_bpw <= 16)
1117                buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1118        else
1119                buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1120
1121        if (spi->cfg->has_fifo) {
1122                /* Valid for DMA Half or Full Fifo threshold */
1123                if (spi->cur_fthlv == 2)
1124                        maxburst = 1;
1125                else
1126                        maxburst = spi->cur_fthlv;
1127        } else {
1128                maxburst = 1;
1129        }
1130
1131        memset(dma_conf, 0, sizeof(struct dma_slave_config));
1132        dma_conf->direction = dir;
1133        if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1134                dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1135                dma_conf->src_addr_width = buswidth;
1136                dma_conf->src_maxburst = maxburst;
1137
1138                dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1139                        buswidth, maxburst);
1140        } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1141                dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1142                dma_conf->dst_addr_width = buswidth;
1143                dma_conf->dst_maxburst = maxburst;
1144
1145                dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1146                        buswidth, maxburst);
1147        }
1148}
1149
1150/**
1151 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1152 *                                interrupts
1153 *
1154 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1155 * in progress.
1156 */
1157static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1158{
1159        unsigned long flags;
1160        u32 cr2 = 0;
1161
1162        /* Enable the interrupts relative to the current communication mode */
1163        if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1164                cr2 |= STM32F4_SPI_CR2_TXEIE;
1165        } else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1166                /* In transmit-only mode, the OVR flag is set in the SR register
1167                 * since the received data are never read. Therefore set OVR
1168                 * interrupt only when rx buffer is available.
1169                 */
1170                cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1171        } else {
1172                return -EINVAL;
1173        }
1174
1175        spin_lock_irqsave(&spi->lock, flags);
1176
1177        stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1178
1179        stm32_spi_enable(spi);
1180
1181        /* starting data transfer when buffer is loaded */
1182        if (spi->tx_buf)
1183                stm32f4_spi_write_tx(spi);
1184
1185        spin_unlock_irqrestore(&spi->lock, flags);
1186
1187        return 1;
1188}
1189
1190/**
1191 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1192 *                                interrupts
1193 *
1194 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1195 * in progress.
1196 */
1197static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1198{
1199        unsigned long flags;
1200        u32 ier = 0;
1201
1202        /* Enable the interrupts relative to the current communication mode */
1203        if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1204                ier |= STM32H7_SPI_IER_DXPIE;
1205        else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1206                ier |= STM32H7_SPI_IER_TXPIE;
1207        else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1208                ier |= STM32H7_SPI_IER_RXPIE;
1209
1210        /* Enable the interrupts relative to the end of transfer */
1211        ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1212               STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1213
1214        spin_lock_irqsave(&spi->lock, flags);
1215
1216        stm32_spi_enable(spi);
1217
1218        /* Be sure to have data in fifo before starting data transfer */
1219        if (spi->tx_buf)
1220                stm32h7_spi_write_txfifo(spi);
1221
1222        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1223
1224        writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1225
1226        spin_unlock_irqrestore(&spi->lock, flags);
1227
1228        return 1;
1229}
1230
1231/**
1232 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1233 *                                      transfer using DMA
1234 */
1235static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1236{
1237        /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1238        if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1239            spi->cur_comm == SPI_FULL_DUPLEX) {
1240                /*
1241                 * In transmit-only mode, the OVR flag is set in the SR register
1242                 * since the received data are never read. Therefore set OVR
1243                 * interrupt only when rx buffer is available.
1244                 */
1245                stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1246        }
1247
1248        stm32_spi_enable(spi);
1249}
1250
1251/**
1252 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1253 *                                      transfer using DMA
1254 */
1255static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1256{
1257        /* Enable the interrupts relative to the end of transfer */
1258        stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1259                                                 STM32H7_SPI_IER_TXTFIE |
1260                                                 STM32H7_SPI_IER_OVRIE |
1261                                                 STM32H7_SPI_IER_MODFIE);
1262
1263        stm32_spi_enable(spi);
1264
1265        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1266}
1267
1268/**
1269 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1270 *
1271 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1272 * in progress.
1273 */
1274static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1275                                      struct spi_transfer *xfer)
1276{
1277        struct dma_slave_config tx_dma_conf, rx_dma_conf;
1278        struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1279        unsigned long flags;
1280
1281        spin_lock_irqsave(&spi->lock, flags);
1282
1283        rx_dma_desc = NULL;
1284        if (spi->rx_buf && spi->dma_rx) {
1285                stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1286                dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1287
1288                /* Enable Rx DMA request */
1289                stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1290                                   spi->cfg->regs->dma_rx_en.mask);
1291
1292                rx_dma_desc = dmaengine_prep_slave_sg(
1293                                        spi->dma_rx, xfer->rx_sg.sgl,
1294                                        xfer->rx_sg.nents,
1295                                        rx_dma_conf.direction,
1296                                        DMA_PREP_INTERRUPT);
1297        }
1298
1299        tx_dma_desc = NULL;
1300        if (spi->tx_buf && spi->dma_tx) {
1301                stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1302                dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1303
1304                tx_dma_desc = dmaengine_prep_slave_sg(
1305                                        spi->dma_tx, xfer->tx_sg.sgl,
1306                                        xfer->tx_sg.nents,
1307                                        tx_dma_conf.direction,
1308                                        DMA_PREP_INTERRUPT);
1309        }
1310
1311        if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1312            (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1313                goto dma_desc_error;
1314
1315        if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1316                goto dma_desc_error;
1317
1318        if (rx_dma_desc) {
1319                rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1320                rx_dma_desc->callback_param = spi;
1321
1322                if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1323                        dev_err(spi->dev, "Rx DMA submit failed\n");
1324                        goto dma_desc_error;
1325                }
1326                /* Enable Rx DMA channel */
1327                dma_async_issue_pending(spi->dma_rx);
1328        }
1329
1330        if (tx_dma_desc) {
1331                if (spi->cur_comm == SPI_SIMPLEX_TX ||
1332                    spi->cur_comm == SPI_3WIRE_TX) {
1333                        tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1334                        tx_dma_desc->callback_param = spi;
1335                }
1336
1337                if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1338                        dev_err(spi->dev, "Tx DMA submit failed\n");
1339                        goto dma_submit_error;
1340                }
1341                /* Enable Tx DMA channel */
1342                dma_async_issue_pending(spi->dma_tx);
1343
1344                /* Enable Tx DMA request */
1345                stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1346                                   spi->cfg->regs->dma_tx_en.mask);
1347        }
1348
1349        spi->cfg->transfer_one_dma_start(spi);
1350
1351        spin_unlock_irqrestore(&spi->lock, flags);
1352
1353        return 1;
1354
1355dma_submit_error:
1356        if (spi->dma_rx)
1357                dmaengine_terminate_all(spi->dma_rx);
1358
1359dma_desc_error:
1360        stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1361                           spi->cfg->regs->dma_rx_en.mask);
1362
1363        spin_unlock_irqrestore(&spi->lock, flags);
1364
1365        dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1366
1367        spi->cur_usedma = false;
1368        return spi->cfg->transfer_one_irq(spi);
1369}
1370
1371/**
1372 * stm32f4_spi_set_bpw - Configure bits per word
1373 * @spi: pointer to the spi controller data structure
1374 */
1375static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1376{
1377        if (spi->cur_bpw == 16)
1378                stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1379        else
1380                stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1381}
1382
1383/**
1384 * stm32h7_spi_set_bpw - configure bits per word
1385 * @spi: pointer to the spi controller data structure
1386 */
1387static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1388{
1389        u32 bpw, fthlv;
1390        u32 cfg1_clrb = 0, cfg1_setb = 0;
1391
1392        bpw = spi->cur_bpw - 1;
1393
1394        cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1395        cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1396                     STM32H7_SPI_CFG1_DSIZE;
1397
1398        spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1399        fthlv = spi->cur_fthlv - 1;
1400
1401        cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1402        cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1403                     STM32H7_SPI_CFG1_FTHLV;
1404
1405        writel_relaxed(
1406                (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1407                 ~cfg1_clrb) | cfg1_setb,
1408                spi->base + STM32H7_SPI_CFG1);
1409}
1410
1411/**
1412 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1413 * @spi: pointer to the spi controller data structure
1414 * @mbrdiv: baud rate divisor value
1415 */
1416static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1417{
1418        u32 clrb = 0, setb = 0;
1419
1420        clrb |= spi->cfg->regs->br.mask;
1421        setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1422                spi->cfg->regs->br.mask;
1423
1424        writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1425                        ~clrb) | setb,
1426                       spi->base + spi->cfg->regs->br.reg);
1427}
1428
1429/**
1430 * stm32_spi_communication_type - return transfer communication type
1431 * @spi_dev: pointer to the spi device
1432 * transfer: pointer to spi transfer
1433 */
1434static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1435                                                 struct spi_transfer *transfer)
1436{
1437        unsigned int type = SPI_FULL_DUPLEX;
1438
1439        if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1440                /*
1441                 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1442                 * is forbidden and unvalidated by SPI subsystem so depending
1443                 * on the valid buffer, we can determine the direction of the
1444                 * transfer.
1445                 */
1446                if (!transfer->tx_buf)
1447                        type = SPI_3WIRE_RX;
1448                else
1449                        type = SPI_3WIRE_TX;
1450        } else {
1451                if (!transfer->tx_buf)
1452                        type = SPI_SIMPLEX_RX;
1453                else if (!transfer->rx_buf)
1454                        type = SPI_SIMPLEX_TX;
1455        }
1456
1457        return type;
1458}
1459
1460/**
1461 * stm32f4_spi_set_mode - configure communication mode
1462 * @spi: pointer to the spi controller data structure
1463 * @comm_type: type of communication to configure
1464 */
1465static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1466{
1467        if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1468                stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1469                                        STM32F4_SPI_CR1_BIDIMODE |
1470                                        STM32F4_SPI_CR1_BIDIOE);
1471        } else if (comm_type == SPI_FULL_DUPLEX) {
1472                stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1473                                        STM32F4_SPI_CR1_BIDIMODE |
1474                                        STM32F4_SPI_CR1_BIDIOE);
1475        } else {
1476                return -EINVAL;
1477        }
1478
1479        return 0;
1480}
1481
1482/**
1483 * stm32h7_spi_set_mode - configure communication mode
1484 * @spi: pointer to the spi controller data structure
1485 * @comm_type: type of communication to configure
1486 */
1487static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1488{
1489        u32 mode;
1490        u32 cfg2_clrb = 0, cfg2_setb = 0;
1491
1492        if (comm_type == SPI_3WIRE_RX) {
1493                mode = STM32H7_SPI_HALF_DUPLEX;
1494                stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1495        } else if (comm_type == SPI_3WIRE_TX) {
1496                mode = STM32H7_SPI_HALF_DUPLEX;
1497                stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1498        } else if (comm_type == SPI_SIMPLEX_RX) {
1499                mode = STM32H7_SPI_SIMPLEX_RX;
1500        } else if (comm_type == SPI_SIMPLEX_TX) {
1501                mode = STM32H7_SPI_SIMPLEX_TX;
1502        } else {
1503                mode = STM32H7_SPI_FULL_DUPLEX;
1504        }
1505
1506        cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1507        cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1508                     STM32H7_SPI_CFG2_COMM;
1509
1510        writel_relaxed(
1511                (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1512                 ~cfg2_clrb) | cfg2_setb,
1513                spi->base + STM32H7_SPI_CFG2);
1514
1515        return 0;
1516}
1517
1518/**
1519 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1520 *                             consecutive data frames in master mode
1521 * @spi: pointer to the spi controller data structure
1522 * @len: transfer len
1523 */
1524static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1525{
1526        u32 cfg2_clrb = 0, cfg2_setb = 0;
1527
1528        cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1529        if ((len > 1) && (spi->cur_midi > 0)) {
1530                u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1531                u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1532                               (u32)STM32H7_SPI_CFG2_MIDI >>
1533                               STM32H7_SPI_CFG2_MIDI_SHIFT);
1534
1535                dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1536                        sck_period_ns, midi, midi * sck_period_ns);
1537                cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1538                             STM32H7_SPI_CFG2_MIDI;
1539        }
1540
1541        writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1542                        ~cfg2_clrb) | cfg2_setb,
1543                       spi->base + STM32H7_SPI_CFG2);
1544}
1545
1546/**
1547 * stm32h7_spi_number_of_data - configure number of data at current transfer
1548 * @spi: pointer to the spi controller data structure
1549 * @len: transfer length
1550 */
1551static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1552{
1553        u32 cr2_clrb = 0, cr2_setb = 0;
1554
1555        if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1556                         STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1557                cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1558                cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1559                writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1560                                ~cr2_clrb) | cr2_setb,
1561                               spi->base + STM32H7_SPI_CR2);
1562        } else {
1563                return -EMSGSIZE;
1564        }
1565
1566        return 0;
1567}
1568
1569/**
1570 * stm32_spi_transfer_one_setup - common setup to transfer a single
1571 *                                spi_transfer either using DMA or
1572 *                                interrupts.
1573 */
1574static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1575                                        struct spi_device *spi_dev,
1576                                        struct spi_transfer *transfer)
1577{
1578        unsigned long flags;
1579        unsigned int comm_type;
1580        int nb_words, ret = 0;
1581
1582        spin_lock_irqsave(&spi->lock, flags);
1583
1584        if (spi->cur_bpw != transfer->bits_per_word) {
1585                spi->cur_bpw = transfer->bits_per_word;
1586                spi->cfg->set_bpw(spi);
1587        }
1588
1589        if (spi->cur_speed != transfer->speed_hz) {
1590                int mbr;
1591
1592                /* Update spi->cur_speed with real clock speed */
1593                mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1594                                            spi->cfg->baud_rate_div_min,
1595                                            spi->cfg->baud_rate_div_max);
1596                if (mbr < 0) {
1597                        ret = mbr;
1598                        goto out;
1599                }
1600
1601                transfer->speed_hz = spi->cur_speed;
1602                stm32_spi_set_mbr(spi, mbr);
1603        }
1604
1605        comm_type = stm32_spi_communication_type(spi_dev, transfer);
1606        if (spi->cur_comm != comm_type) {
1607                ret = spi->cfg->set_mode(spi, comm_type);
1608
1609                if (ret < 0)
1610                        goto out;
1611
1612                spi->cur_comm = comm_type;
1613        }
1614
1615        if (spi->cfg->set_data_idleness)
1616                spi->cfg->set_data_idleness(spi, transfer->len);
1617
1618        if (spi->cur_bpw <= 8)
1619                nb_words = transfer->len;
1620        else if (spi->cur_bpw <= 16)
1621                nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1622        else
1623                nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1624
1625        if (spi->cfg->set_number_of_data) {
1626                ret = spi->cfg->set_number_of_data(spi, nb_words);
1627                if (ret < 0)
1628                        goto out;
1629        }
1630
1631        spi->cur_xferlen = transfer->len;
1632
1633        dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1634                spi->cur_comm);
1635        dev_dbg(spi->dev,
1636                "data frame of %d-bit, data packet of %d data frames\n",
1637                spi->cur_bpw, spi->cur_fthlv);
1638        dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1639        dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1640                spi->cur_xferlen, nb_words);
1641        dev_dbg(spi->dev, "dma %s\n",
1642                (spi->cur_usedma) ? "enabled" : "disabled");
1643
1644out:
1645        spin_unlock_irqrestore(&spi->lock, flags);
1646
1647        return ret;
1648}
1649
1650/**
1651 * stm32_spi_transfer_one - transfer a single spi_transfer
1652 *
1653 * It must return 0 if the transfer is finished or 1 if the transfer is still
1654 * in progress.
1655 */
1656static int stm32_spi_transfer_one(struct spi_master *master,
1657                                  struct spi_device *spi_dev,
1658                                  struct spi_transfer *transfer)
1659{
1660        struct stm32_spi *spi = spi_master_get_devdata(master);
1661        int ret;
1662
1663        spi->tx_buf = transfer->tx_buf;
1664        spi->rx_buf = transfer->rx_buf;
1665        spi->tx_len = spi->tx_buf ? transfer->len : 0;
1666        spi->rx_len = spi->rx_buf ? transfer->len : 0;
1667
1668        spi->cur_usedma = (master->can_dma &&
1669                           master->can_dma(master, spi_dev, transfer));
1670
1671        ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1672        if (ret) {
1673                dev_err(spi->dev, "SPI transfer setup failed\n");
1674                return ret;
1675        }
1676
1677        if (spi->cur_usedma)
1678                return stm32_spi_transfer_one_dma(spi, transfer);
1679        else
1680                return spi->cfg->transfer_one_irq(spi);
1681}
1682
1683/**
1684 * stm32_spi_unprepare_msg - relax the hardware
1685 */
1686static int stm32_spi_unprepare_msg(struct spi_master *master,
1687                                   struct spi_message *msg)
1688{
1689        struct stm32_spi *spi = spi_master_get_devdata(master);
1690
1691        spi->cfg->disable(spi);
1692
1693        return 0;
1694}
1695
1696/**
1697 * stm32f4_spi_config - Configure SPI controller as SPI master
1698 */
1699static int stm32f4_spi_config(struct stm32_spi *spi)
1700{
1701        unsigned long flags;
1702
1703        spin_lock_irqsave(&spi->lock, flags);
1704
1705        /* Ensure I2SMOD bit is kept cleared */
1706        stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1707                           STM32F4_SPI_I2SCFGR_I2SMOD);
1708
1709        /*
1710         * - SS input value high
1711         * - transmitter half duplex direction
1712         * - Set the master mode (default Motorola mode)
1713         * - Consider 1 master/n slaves configuration and
1714         *   SS input value is determined by the SSI bit
1715         */
1716        stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1717                                                 STM32F4_SPI_CR1_BIDIOE |
1718                                                 STM32F4_SPI_CR1_MSTR |
1719                                                 STM32F4_SPI_CR1_SSM);
1720
1721        spin_unlock_irqrestore(&spi->lock, flags);
1722
1723        return 0;
1724}
1725
1726/**
1727 * stm32h7_spi_config - Configure SPI controller as SPI master
1728 */
1729static int stm32h7_spi_config(struct stm32_spi *spi)
1730{
1731        unsigned long flags;
1732
1733        spin_lock_irqsave(&spi->lock, flags);
1734
1735        /* Ensure I2SMOD bit is kept cleared */
1736        stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1737                           STM32H7_SPI_I2SCFGR_I2SMOD);
1738
1739        /*
1740         * - SS input value high
1741         * - transmitter half duplex direction
1742         * - automatic communication suspend when RX-Fifo is full
1743         */
1744        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1745                                                 STM32H7_SPI_CR1_HDDIR |
1746                                                 STM32H7_SPI_CR1_MASRX);
1747
1748        /*
1749         * - Set the master mode (default Motorola mode)
1750         * - Consider 1 master/n slaves configuration and
1751         *   SS input value is determined by the SSI bit
1752         * - keep control of all associated GPIOs
1753         */
1754        stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1755                                                  STM32H7_SPI_CFG2_SSM |
1756                                                  STM32H7_SPI_CFG2_AFCNTR);
1757
1758        spin_unlock_irqrestore(&spi->lock, flags);
1759
1760        return 0;
1761}
1762
1763static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1764        .regs = &stm32f4_spi_regspec,
1765        .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1766        .disable = stm32f4_spi_disable,
1767        .config = stm32f4_spi_config,
1768        .set_bpw = stm32f4_spi_set_bpw,
1769        .set_mode = stm32f4_spi_set_mode,
1770        .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1771        .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1772        .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1773        .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1774        .irq_handler_event = stm32f4_spi_irq_event,
1775        .irq_handler_thread = stm32f4_spi_irq_thread,
1776        .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1777        .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1778        .has_fifo = false,
1779};
1780
1781static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1782        .regs = &stm32h7_spi_regspec,
1783        .get_fifo_size = stm32h7_spi_get_fifo_size,
1784        .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1785        .disable = stm32h7_spi_disable,
1786        .config = stm32h7_spi_config,
1787        .set_bpw = stm32h7_spi_set_bpw,
1788        .set_mode = stm32h7_spi_set_mode,
1789        .set_data_idleness = stm32h7_spi_data_idleness,
1790        .set_number_of_data = stm32h7_spi_number_of_data,
1791        .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1792        .dma_rx_cb = stm32h7_spi_dma_cb,
1793        .dma_tx_cb = stm32h7_spi_dma_cb,
1794        .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1795        .irq_handler_thread = stm32h7_spi_irq_thread,
1796        .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1797        .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1798        .has_fifo = true,
1799};
1800
1801static const struct of_device_id stm32_spi_of_match[] = {
1802        { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1803        { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1804        {},
1805};
1806MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1807
1808static int stm32_spi_probe(struct platform_device *pdev)
1809{
1810        struct spi_master *master;
1811        struct stm32_spi *spi;
1812        struct resource *res;
1813        int i, ret;
1814
1815        master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1816        if (!master) {
1817                dev_err(&pdev->dev, "spi master allocation failed\n");
1818                return -ENOMEM;
1819        }
1820        platform_set_drvdata(pdev, master);
1821
1822        spi = spi_master_get_devdata(master);
1823        spi->dev = &pdev->dev;
1824        spi->master = master;
1825        spin_lock_init(&spi->lock);
1826
1827        spi->cfg = (const struct stm32_spi_cfg *)
1828                of_match_device(pdev->dev.driver->of_match_table,
1829                                &pdev->dev)->data;
1830
1831        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1832        spi->base = devm_ioremap_resource(&pdev->dev, res);
1833        if (IS_ERR(spi->base)) {
1834                ret = PTR_ERR(spi->base);
1835                goto err_master_put;
1836        }
1837
1838        spi->phys_addr = (dma_addr_t)res->start;
1839
1840        spi->irq = platform_get_irq(pdev, 0);
1841        if (spi->irq <= 0) {
1842                ret = spi->irq;
1843                if (ret != -EPROBE_DEFER)
1844                        dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1845                goto err_master_put;
1846        }
1847        ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1848                                        spi->cfg->irq_handler_event,
1849                                        spi->cfg->irq_handler_thread,
1850                                        IRQF_ONESHOT, pdev->name, master);
1851        if (ret) {
1852                dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1853                        ret);
1854                goto err_master_put;
1855        }
1856
1857        spi->clk = devm_clk_get(&pdev->dev, NULL);
1858        if (IS_ERR(spi->clk)) {
1859                ret = PTR_ERR(spi->clk);
1860                dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1861                goto err_master_put;
1862        }
1863
1864        ret = clk_prepare_enable(spi->clk);
1865        if (ret) {
1866                dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1867                goto err_master_put;
1868        }
1869        spi->clk_rate = clk_get_rate(spi->clk);
1870        if (!spi->clk_rate) {
1871                dev_err(&pdev->dev, "clk rate = 0\n");
1872                ret = -EINVAL;
1873                goto err_clk_disable;
1874        }
1875
1876        spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1877        if (!IS_ERR(spi->rst)) {
1878                reset_control_assert(spi->rst);
1879                udelay(2);
1880                reset_control_deassert(spi->rst);
1881        }
1882
1883        if (spi->cfg->has_fifo)
1884                spi->fifo_size = spi->cfg->get_fifo_size(spi);
1885
1886        ret = spi->cfg->config(spi);
1887        if (ret) {
1888                dev_err(&pdev->dev, "controller configuration failed: %d\n",
1889                        ret);
1890                goto err_clk_disable;
1891        }
1892
1893        master->dev.of_node = pdev->dev.of_node;
1894        master->auto_runtime_pm = true;
1895        master->bus_num = pdev->id;
1896        master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1897                            SPI_3WIRE;
1898        master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1899        master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1900        master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1901        master->setup = stm32_spi_setup;
1902        master->prepare_message = stm32_spi_prepare_msg;
1903        master->transfer_one = stm32_spi_transfer_one;
1904        master->unprepare_message = stm32_spi_unprepare_msg;
1905
1906        spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
1907        if (!spi->dma_tx)
1908                dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1909        else
1910                master->dma_tx = spi->dma_tx;
1911
1912        spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
1913        if (!spi->dma_rx)
1914                dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1915        else
1916                master->dma_rx = spi->dma_rx;
1917
1918        if (spi->dma_tx || spi->dma_rx)
1919                master->can_dma = stm32_spi_can_dma;
1920
1921        pm_runtime_set_active(&pdev->dev);
1922        pm_runtime_enable(&pdev->dev);
1923
1924        ret = devm_spi_register_master(&pdev->dev, master);
1925        if (ret) {
1926                dev_err(&pdev->dev, "spi master registration failed: %d\n",
1927                        ret);
1928                goto err_dma_release;
1929        }
1930
1931        if (!master->cs_gpios) {
1932                dev_err(&pdev->dev, "no CS gpios available\n");
1933                ret = -EINVAL;
1934                goto err_dma_release;
1935        }
1936
1937        for (i = 0; i < master->num_chipselect; i++) {
1938                if (!gpio_is_valid(master->cs_gpios[i])) {
1939                        dev_err(&pdev->dev, "%i is not a valid gpio\n",
1940                                master->cs_gpios[i]);
1941                        ret = -EINVAL;
1942                        goto err_dma_release;
1943                }
1944
1945                ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1946                                        DRIVER_NAME);
1947                if (ret) {
1948                        dev_err(&pdev->dev, "can't get CS gpio %i\n",
1949                                master->cs_gpios[i]);
1950                        goto err_dma_release;
1951                }
1952        }
1953
1954        dev_info(&pdev->dev, "driver initialized\n");
1955
1956        return 0;
1957
1958err_dma_release:
1959        if (spi->dma_tx)
1960                dma_release_channel(spi->dma_tx);
1961        if (spi->dma_rx)
1962                dma_release_channel(spi->dma_rx);
1963
1964        pm_runtime_disable(&pdev->dev);
1965err_clk_disable:
1966        clk_disable_unprepare(spi->clk);
1967err_master_put:
1968        spi_master_put(master);
1969
1970        return ret;
1971}
1972
1973static int stm32_spi_remove(struct platform_device *pdev)
1974{
1975        struct spi_master *master = platform_get_drvdata(pdev);
1976        struct stm32_spi *spi = spi_master_get_devdata(master);
1977
1978        spi->cfg->disable(spi);
1979
1980        if (master->dma_tx)
1981                dma_release_channel(master->dma_tx);
1982        if (master->dma_rx)
1983                dma_release_channel(master->dma_rx);
1984
1985        clk_disable_unprepare(spi->clk);
1986
1987        pm_runtime_disable(&pdev->dev);
1988
1989        return 0;
1990}
1991
1992#ifdef CONFIG_PM
1993static int stm32_spi_runtime_suspend(struct device *dev)
1994{
1995        struct spi_master *master = dev_get_drvdata(dev);
1996        struct stm32_spi *spi = spi_master_get_devdata(master);
1997
1998        clk_disable_unprepare(spi->clk);
1999
2000        return 0;
2001}
2002
2003static int stm32_spi_runtime_resume(struct device *dev)
2004{
2005        struct spi_master *master = dev_get_drvdata(dev);
2006        struct stm32_spi *spi = spi_master_get_devdata(master);
2007
2008        return clk_prepare_enable(spi->clk);
2009}
2010#endif
2011
2012#ifdef CONFIG_PM_SLEEP
2013static int stm32_spi_suspend(struct device *dev)
2014{
2015        struct spi_master *master = dev_get_drvdata(dev);
2016        int ret;
2017
2018        ret = spi_master_suspend(master);
2019        if (ret)
2020                return ret;
2021
2022        return pm_runtime_force_suspend(dev);
2023}
2024
2025static int stm32_spi_resume(struct device *dev)
2026{
2027        struct spi_master *master = dev_get_drvdata(dev);
2028        struct stm32_spi *spi = spi_master_get_devdata(master);
2029        int ret;
2030
2031        ret = pm_runtime_force_resume(dev);
2032        if (ret)
2033                return ret;
2034
2035        ret = spi_master_resume(master);
2036        if (ret)
2037                clk_disable_unprepare(spi->clk);
2038
2039        return ret;
2040}
2041#endif
2042
2043static const struct dev_pm_ops stm32_spi_pm_ops = {
2044        SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2045        SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2046                           stm32_spi_runtime_resume, NULL)
2047};
2048
2049static struct platform_driver stm32_spi_driver = {
2050        .probe = stm32_spi_probe,
2051        .remove = stm32_spi_remove,
2052        .driver = {
2053                .name = DRIVER_NAME,
2054                .pm = &stm32_spi_pm_ops,
2055                .of_match_table = stm32_spi_of_match,
2056        },
2057};
2058
2059module_platform_driver(stm32_spi_driver);
2060
2061MODULE_ALIAS("platform:" DRIVER_NAME);
2062MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2063MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2064MODULE_LICENSE("GPL v2");
2065