1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2/* 3 * hcd.h - DesignWare HS OTG Controller host-mode declarations 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37#ifndef __DWC2_HCD_H__ 38#define __DWC2_HCD_H__ 39 40/* 41 * This file contains the structures, constants, and interfaces for the 42 * Host Contoller Driver (HCD) 43 * 44 * The Host Controller Driver (HCD) is responsible for translating requests 45 * from the USB Driver into the appropriate actions on the DWC_otg controller. 46 * It isolates the USBD from the specifics of the controller by providing an 47 * API to the USBD. 48 */ 49 50struct dwc2_qh; 51 52/** 53 * struct dwc2_host_chan - Software host channel descriptor 54 * 55 * @hc_num: Host channel number, used for register address lookup 56 * @dev_addr: Address of the device 57 * @ep_num: Endpoint of the device 58 * @ep_is_in: Endpoint direction 59 * @speed: Device speed. One of the following values: 60 * - USB_SPEED_LOW 61 * - USB_SPEED_FULL 62 * - USB_SPEED_HIGH 63 * @ep_type: Endpoint type. One of the following values: 64 * - USB_ENDPOINT_XFER_CONTROL: 0 65 * - USB_ENDPOINT_XFER_ISOC: 1 66 * - USB_ENDPOINT_XFER_BULK: 2 67 * - USB_ENDPOINT_XFER_INTR: 3 68 * @max_packet: Max packet size in bytes 69 * @data_pid_start: PID for initial transaction. 70 * 0: DATA0 71 * 1: DATA2 72 * 2: DATA1 73 * 3: MDATA (non-Control EP), 74 * SETUP (Control EP) 75 * @multi_count: Number of additional periodic transactions per 76 * (micro)frame 77 * @xfer_buf: Pointer to current transfer buffer position 78 * @xfer_dma: DMA address of xfer_buf 79 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not 80 * DWORD aligned 81 * @xfer_len: Total number of bytes to transfer 82 * @xfer_count: Number of bytes transferred so far 83 * @start_pkt_count: Packet count at start of transfer 84 * @xfer_started: True if the transfer has been started 85 * @do_ping: True if a PING request should be issued on this channel 86 * @error_state: True if the error count for this transaction is non-zero 87 * @halt_on_queue: True if this channel should be halted the next time a 88 * request is queued for the channel. This is necessary in 89 * slave mode if no request queue space is available when 90 * an attempt is made to halt the channel. 91 * @halt_pending: True if the host channel has been halted, but the core 92 * is not finished flushing queued requests 93 * @do_split: Enable split for the channel 94 * @complete_split: Enable complete split 95 * @hub_addr: Address of high speed hub for the split 96 * @hub_port: Port of the low/full speed device for the split 97 * @xact_pos: Split transaction position. One of the following values: 98 * - DWC2_HCSPLT_XACTPOS_MID 99 * - DWC2_HCSPLT_XACTPOS_BEGIN 100 * - DWC2_HCSPLT_XACTPOS_END 101 * - DWC2_HCSPLT_XACTPOS_ALL 102 * @requests: Number of requests issued for this channel since it was 103 * assigned to the current transfer (not counting PINGs) 104 * @schinfo: Scheduling micro-frame bitmap 105 * @ntd: Number of transfer descriptors for the transfer 106 * @halt_status: Reason for halting the host channel 107 * @hcint: Contents of the HCINT register when the interrupt came 108 * @qh: QH for the transfer being processed by this channel 109 * @hc_list_entry: For linking to list of host channels 110 * @desc_list_addr: Current QH's descriptor list DMA address 111 * @desc_list_sz: Current QH's descriptor list size 112 * @split_order_list_entry: List entry for keeping track of the order of splits 113 * 114 * This structure represents the state of a single host channel when acting in 115 * host mode. It contains the data items needed to transfer packets to an 116 * endpoint via a host channel. 117 */ 118struct dwc2_host_chan { 119 u8 hc_num; 120 121 unsigned dev_addr:7; 122 unsigned ep_num:4; 123 unsigned ep_is_in:1; 124 unsigned speed:4; 125 unsigned ep_type:2; 126 unsigned max_packet:11; 127 unsigned data_pid_start:2; 128#define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0 129#define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2 130#define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1 131#define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA 132#define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP 133 134 unsigned multi_count:2; 135 136 u8 *xfer_buf; 137 dma_addr_t xfer_dma; 138 dma_addr_t align_buf; 139 u32 xfer_len; 140 u32 xfer_count; 141 u16 start_pkt_count; 142 u8 xfer_started; 143 u8 do_ping; 144 u8 error_state; 145 u8 halt_on_queue; 146 u8 halt_pending; 147 u8 do_split; 148 u8 complete_split; 149 u8 hub_addr; 150 u8 hub_port; 151 u8 xact_pos; 152#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID 153#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END 154#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN 155#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL 156 157 u8 requests; 158 u8 schinfo; 159 u16 ntd; 160 enum dwc2_halt_status halt_status; 161 u32 hcint; 162 struct dwc2_qh *qh; 163 struct list_head hc_list_entry; 164 dma_addr_t desc_list_addr; 165 u32 desc_list_sz; 166 struct list_head split_order_list_entry; 167}; 168 169struct dwc2_hcd_pipe_info { 170 u8 dev_addr; 171 u8 ep_num; 172 u8 pipe_type; 173 u8 pipe_dir; 174 u16 maxp; 175 u16 maxp_mult; 176}; 177 178struct dwc2_hcd_iso_packet_desc { 179 u32 offset; 180 u32 length; 181 u32 actual_length; 182 u32 status; 183}; 184 185struct dwc2_qtd; 186 187struct dwc2_hcd_urb { 188 void *priv; 189 struct dwc2_qtd *qtd; 190 void *buf; 191 dma_addr_t dma; 192 void *setup_packet; 193 dma_addr_t setup_dma; 194 u32 length; 195 u32 actual_length; 196 u32 status; 197 u32 error_count; 198 u32 packet_count; 199 u32 flags; 200 u16 interval; 201 struct dwc2_hcd_pipe_info pipe_info; 202 struct dwc2_hcd_iso_packet_desc iso_descs[0]; 203}; 204 205/* Phases for control transfers */ 206enum dwc2_control_phase { 207 DWC2_CONTROL_SETUP, 208 DWC2_CONTROL_DATA, 209 DWC2_CONTROL_STATUS, 210}; 211 212/* Transaction types */ 213enum dwc2_transaction_type { 214 DWC2_TRANSACTION_NONE, 215 DWC2_TRANSACTION_PERIODIC, 216 DWC2_TRANSACTION_NON_PERIODIC, 217 DWC2_TRANSACTION_ALL, 218}; 219 220/* The number of elements per LS bitmap (per port on multi_tt) */ 221#define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \ 222 BITS_PER_LONG) 223 224/** 225 * struct dwc2_tt - dwc2 data associated with a usb_tt 226 * 227 * @refcount: Number of Queue Heads (QHs) holding a reference. 228 * @usb_tt: Pointer back to the official usb_tt. 229 * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted 230 * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP 231 * elements (so sizeof(long) times that in bytes). 232 * 233 * This structure is stored in the hcpriv of the official usb_tt. 234 */ 235struct dwc2_tt { 236 int refcount; 237 struct usb_tt *usb_tt; 238 unsigned long periodic_bitmaps[]; 239}; 240 241/** 242 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus. 243 * 244 * @start_schedule_us: The start time on the main bus schedule. Note that 245 * the main bus schedule is tightly packed and this 246 * time should be interpreted as tightly packed (so 247 * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us 248 * instead of 125 us). 249 * @duration_us: How long this transfer goes. 250 */ 251 252struct dwc2_hs_transfer_time { 253 u32 start_schedule_us; 254 u16 duration_us; 255}; 256 257/** 258 * struct dwc2_qh - Software queue head structure 259 * 260 * @hsotg: The HCD state structure for the DWC OTG controller 261 * @ep_type: Endpoint type. One of the following values: 262 * - USB_ENDPOINT_XFER_CONTROL 263 * - USB_ENDPOINT_XFER_BULK 264 * - USB_ENDPOINT_XFER_INT 265 * - USB_ENDPOINT_XFER_ISOC 266 * @ep_is_in: Endpoint direction 267 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor 268 * @maxp_mult: Multiplier for maxp 269 * @dev_speed: Device speed. One of the following values: 270 * - USB_SPEED_LOW 271 * - USB_SPEED_FULL 272 * - USB_SPEED_HIGH 273 * @data_toggle: Determines the PID of the next data packet for 274 * non-controltransfers. Ignored for control transfers. 275 * One of the following values: 276 * - DWC2_HC_PID_DATA0 277 * - DWC2_HC_PID_DATA1 278 * @ping_state: Ping state 279 * @do_split: Full/low speed endpoint on high-speed hub requires split 280 * @td_first: Index of first activated isochronous transfer descriptor 281 * @td_last: Index of last activated isochronous transfer descriptor 282 * @host_us: Bandwidth in microseconds per transfer as seen by host 283 * @device_us: Bandwidth in microseconds per transfer as seen by device 284 * @host_interval: Interval between transfers as seen by the host. If 285 * the host is high speed and the device is low speed this 286 * will be 8 times device interval. 287 * @device_interval: Interval between transfers as seen by the device. 288 * interval. 289 * @next_active_frame: (Micro)frame _before_ we next need to put something on 290 * the bus. We'll move the qh to active here. If the 291 * host is in high speed mode this will be a uframe. If 292 * the host is in low speed mode this will be a full frame. 293 * @start_active_frame: If we are partway through a split transfer, this will be 294 * what next_active_frame was when we started. Otherwise 295 * it should always be the same as next_active_frame. 296 * @num_hs_transfers: Number of transfers in hs_transfers. 297 * Normally this is 1 but can be more than one for splits. 298 * Always >= 1 unless the host is in low/full speed mode. 299 * @hs_transfers: Transfers that are scheduled as seen by the high speed 300 * bus. Not used if host is in low or full speed mode (but 301 * note that it IS USED if the device is low or full speed 302 * as long as the HOST is in high speed mode). 303 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus 304 * schedule that's being used by this device. This 305 * will be on the periodic_bitmap in a 306 * "struct dwc2_tt". Not used if this device is high 307 * speed. Note that this is in "schedule slice" which 308 * is tightly packed. 309 * @ntd: Actual number of transfer descriptors in a list 310 * @dw_align_buf: Used instead of original buffer if its physical address 311 * is not dword-aligned 312 * @dw_align_buf_dma: DMA address for dw_align_buf 313 * @qtd_list: List of QTDs for this QH 314 * @channel: Host channel currently processing transfers for this QH 315 * @qh_list_entry: Entry for QH in either the periodic or non-periodic 316 * schedule 317 * @desc_list: List of transfer descriptors 318 * @desc_list_dma: Physical address of desc_list 319 * @desc_list_sz: Size of descriptors list 320 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer 321 * descriptor and indicates original XferSize value for the 322 * descriptor 323 * @unreserve_timer: Timer for releasing periodic reservation. 324 * @wait_timer: Timer used to wait before re-queuing. 325 * @dwc_tt: Pointer to our tt info (or NULL if no tt). 326 * @ttport: Port number within our tt. 327 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending 328 * @unreserve_pending: True if we planned to unreserve but haven't yet. 329 * @schedule_low_speed: True if we have a low/full speed component (either the 330 * host is in low/full speed mode or do_split). 331 * @want_wait: We should wait before re-queuing; only matters for non- 332 * periodic transfers and is ignored for periodic ones. 333 * @wait_timer_cancel: Set to true to cancel the wait_timer. 334 * 335 * @tt_buffer_dirty: True if EP's TT buffer is not clean. 336 * A Queue Head (QH) holds the static characteristics of an endpoint and 337 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may 338 * be entered in either the non-periodic or periodic schedule. 339 */ 340struct dwc2_qh { 341 struct dwc2_hsotg *hsotg; 342 u8 ep_type; 343 u8 ep_is_in; 344 u16 maxp; 345 u16 maxp_mult; 346 u8 dev_speed; 347 u8 data_toggle; 348 u8 ping_state; 349 u8 do_split; 350 u8 td_first; 351 u8 td_last; 352 u16 host_us; 353 u16 device_us; 354 u16 host_interval; 355 u16 device_interval; 356 u16 next_active_frame; 357 u16 start_active_frame; 358 s16 num_hs_transfers; 359 struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES]; 360 u32 ls_start_schedule_slice; 361 u16 ntd; 362 u8 *dw_align_buf; 363 dma_addr_t dw_align_buf_dma; 364 struct list_head qtd_list; 365 struct dwc2_host_chan *channel; 366 struct list_head qh_list_entry; 367 struct dwc2_dma_desc *desc_list; 368 dma_addr_t desc_list_dma; 369 u32 desc_list_sz; 370 u32 *n_bytes; 371 struct timer_list unreserve_timer; 372 struct hrtimer wait_timer; 373 struct dwc2_tt *dwc_tt; 374 int ttport; 375 unsigned tt_buffer_dirty:1; 376 unsigned unreserve_pending:1; 377 unsigned schedule_low_speed:1; 378 unsigned want_wait:1; 379 unsigned wait_timer_cancel:1; 380}; 381 382/** 383 * struct dwc2_qtd - Software queue transfer descriptor (QTD) 384 * 385 * @control_phase: Current phase for control transfers (Setup, Data, or 386 * Status) 387 * @in_process: Indicates if this QTD is currently processed by HW 388 * @data_toggle: Determines the PID of the next data packet for the 389 * data phase of control transfers. Ignored for other 390 * transfer types. One of the following values: 391 * - DWC2_HC_PID_DATA0 392 * - DWC2_HC_PID_DATA1 393 * @complete_split: Keeps track of the current split type for FS/LS 394 * endpoints on a HS Hub 395 * @isoc_split_pos: Position of the ISOC split in full/low speed 396 * @isoc_frame_index: Index of the next frame descriptor for an isochronous 397 * transfer. A frame descriptor describes the buffer 398 * position and length of the data to be transferred in the 399 * next scheduled (micro)frame of an isochronous transfer. 400 * It also holds status for that transaction. The frame 401 * index starts at 0. 402 * @isoc_split_offset: Position of the ISOC split in the buffer for the 403 * current frame 404 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT 405 * @error_count: Holds the number of bus errors that have occurred for 406 * a transaction within this transfer 407 * @n_desc: Number of DMA descriptors for this QTD 408 * @isoc_frame_index_last: Last activated frame (packet) index, used in 409 * descriptor DMA mode only 410 * @num_naks: Number of NAKs received on this QTD. 411 * @urb: URB for this transfer 412 * @qh: Queue head for this QTD 413 * @qtd_list_entry: For linking to the QH's list of QTDs 414 * @isoc_td_first: Index of first activated isochronous transfer 415 * descriptor in Descriptor DMA mode 416 * @isoc_td_last: Index of last activated isochronous transfer 417 * descriptor in Descriptor DMA mode 418 * 419 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, 420 * interrupt, or isochronous transfer. A single QTD is created for each URB 421 * (of one of these types) submitted to the HCD. The transfer associated with 422 * a QTD may require one or multiple transactions. 423 * 424 * A QTD is linked to a Queue Head, which is entered in either the 425 * non-periodic or periodic schedule for execution. When a QTD is chosen for 426 * execution, some or all of its transactions may be executed. After 427 * execution, the state of the QTD is updated. The QTD may be retired if all 428 * its transactions are complete or if an error occurred. Otherwise, it 429 * remains in the schedule so more transactions can be executed later. 430 */ 431struct dwc2_qtd { 432 enum dwc2_control_phase control_phase; 433 u8 in_process; 434 u8 data_toggle; 435 u8 complete_split; 436 u8 isoc_split_pos; 437 u16 isoc_frame_index; 438 u16 isoc_split_offset; 439 u16 isoc_td_last; 440 u16 isoc_td_first; 441 u32 ssplit_out_xfer_count; 442 u8 error_count; 443 u8 n_desc; 444 u16 isoc_frame_index_last; 445 u16 num_naks; 446 struct dwc2_hcd_urb *urb; 447 struct dwc2_qh *qh; 448 struct list_head qtd_list_entry; 449}; 450 451#ifdef DEBUG 452struct hc_xfer_info { 453 struct dwc2_hsotg *hsotg; 454 struct dwc2_host_chan *chan; 455}; 456#endif 457 458u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg); 459 460/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */ 461static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg) 462{ 463 return (struct usb_hcd *)hsotg->priv; 464} 465 466/* 467 * Inline used to disable one channel interrupt. Channel interrupts are 468 * disabled when the channel is halted or released by the interrupt handler. 469 * There is no need to handle further interrupts of that type until the 470 * channel is re-assigned. In fact, subsequent handling may cause crashes 471 * because the channel structures are cleaned up when the channel is released. 472 */ 473static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr) 474{ 475 u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum)); 476 477 mask &= ~intr; 478 dwc2_writel(hsotg, mask, HCINTMSK(chnum)); 479} 480 481void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan); 482void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, 483 enum dwc2_halt_status halt_status); 484void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, 485 struct dwc2_host_chan *chan); 486 487/* 488 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they 489 * are read as 1, they won't clear when written back. 490 */ 491static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg) 492{ 493 u32 hprt0 = dwc2_readl(hsotg, HPRT0); 494 495 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG); 496 return hprt0; 497} 498 499static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe) 500{ 501 return pipe->ep_num; 502} 503 504static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe) 505{ 506 return pipe->pipe_type; 507} 508 509static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe) 510{ 511 return pipe->maxp; 512} 513 514static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe) 515{ 516 return pipe->maxp_mult; 517} 518 519static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe) 520{ 521 return pipe->dev_addr; 522} 523 524static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe) 525{ 526 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC; 527} 528 529static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe) 530{ 531 return pipe->pipe_type == USB_ENDPOINT_XFER_INT; 532} 533 534static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe) 535{ 536 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK; 537} 538 539static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe) 540{ 541 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL; 542} 543 544static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe) 545{ 546 return pipe->pipe_dir == USB_DIR_IN; 547} 548 549static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe) 550{ 551 return !dwc2_hcd_is_pipe_in(pipe); 552} 553 554int dwc2_hcd_init(struct dwc2_hsotg *hsotg); 555void dwc2_hcd_remove(struct dwc2_hsotg *hsotg); 556 557/* Transaction Execution Functions */ 558enum dwc2_transaction_type dwc2_hcd_select_transactions( 559 struct dwc2_hsotg *hsotg); 560void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 561 enum dwc2_transaction_type tr_type); 562 563/* Schedule Queue Functions */ 564/* Implemented in hcd_queue.c */ 565struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, 566 struct dwc2_hcd_urb *urb, 567 gfp_t mem_flags); 568void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 569int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 570void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 571void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 572 int sched_csplit); 573 574void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb); 575int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 576 struct dwc2_qh *qh); 577 578/* Unlinks and frees a QTD */ 579static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg, 580 struct dwc2_qtd *qtd, 581 struct dwc2_qh *qh) 582{ 583 list_del(&qtd->qtd_list_entry); 584 kfree(qtd); 585} 586 587/* Descriptor DMA support functions */ 588void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, 589 struct dwc2_qh *qh); 590void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg, 591 struct dwc2_host_chan *chan, int chnum, 592 enum dwc2_halt_status halt_status); 593 594int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 595 gfp_t mem_flags); 596void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); 597 598/* Check if QH is non-periodic */ 599#define dwc2_qh_is_non_per(_qh_ptr_) \ 600 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \ 601 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL) 602 603#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC 604static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; } 605static inline bool dbg_qh(struct dwc2_qh *qh) { return true; } 606static inline bool dbg_urb(struct urb *urb) { return true; } 607static inline bool dbg_perio(void) { return true; } 608#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */ 609static inline bool dbg_hc(struct dwc2_host_chan *hc) 610{ 611 return hc->ep_type == USB_ENDPOINT_XFER_BULK || 612 hc->ep_type == USB_ENDPOINT_XFER_CONTROL; 613} 614 615static inline bool dbg_qh(struct dwc2_qh *qh) 616{ 617 return qh->ep_type == USB_ENDPOINT_XFER_BULK || 618 qh->ep_type == USB_ENDPOINT_XFER_CONTROL; 619} 620 621static inline bool dbg_urb(struct urb *urb) 622{ 623 return usb_pipetype(urb->pipe) == PIPE_BULK || 624 usb_pipetype(urb->pipe) == PIPE_CONTROL; 625} 626 627static inline bool dbg_perio(void) { return false; } 628#endif 629 630/* 631 * Returns true if frame1 index is greater than frame2 index. The comparison 632 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the 633 * frame number when the max index frame number is reached. 634 */ 635static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2) 636{ 637 u16 diff = fr_idx1 - fr_idx2; 638 u16 sign = diff & (FRLISTEN_64_SIZE >> 1); 639 640 return diff && !sign; 641} 642 643/* 644 * Returns true if frame1 is less than or equal to frame2. The comparison is 645 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the 646 * frame number when the max frame number is reached. 647 */ 648static inline int dwc2_frame_num_le(u16 frame1, u16 frame2) 649{ 650 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1); 651} 652 653/* 654 * Returns true if frame1 is greater than frame2. The comparison is done 655 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame 656 * number when the max frame number is reached. 657 */ 658static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2) 659{ 660 return (frame1 != frame2) && 661 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1); 662} 663 664/* 665 * Increments frame by the amount specified by inc. The addition is done 666 * modulo HFNUM_MAX_FRNUM. Returns the incremented value. 667 */ 668static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc) 669{ 670 return (frame + inc) & HFNUM_MAX_FRNUM; 671} 672 673static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec) 674{ 675 return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM; 676} 677 678static inline u16 dwc2_full_frame_num(u16 frame) 679{ 680 return (frame & HFNUM_MAX_FRNUM) >> 3; 681} 682 683static inline u16 dwc2_micro_frame_num(u16 frame) 684{ 685 return frame & 0x7; 686} 687 688/* 689 * Returns the Core Interrupt Status register contents, ANDed with the Core 690 * Interrupt Mask register contents 691 */ 692static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg) 693{ 694 return dwc2_readl(hsotg, GINTSTS) & 695 dwc2_readl(hsotg, GINTMSK); 696} 697 698static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb) 699{ 700 return dwc2_urb->status; 701} 702 703static inline u32 dwc2_hcd_urb_get_actual_length( 704 struct dwc2_hcd_urb *dwc2_urb) 705{ 706 return dwc2_urb->actual_length; 707} 708 709static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb) 710{ 711 return dwc2_urb->error_count; 712} 713 714static inline void dwc2_hcd_urb_set_iso_desc_params( 715 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset, 716 u32 length) 717{ 718 dwc2_urb->iso_descs[desc_num].offset = offset; 719 dwc2_urb->iso_descs[desc_num].length = length; 720} 721 722static inline u32 dwc2_hcd_urb_get_iso_desc_status( 723 struct dwc2_hcd_urb *dwc2_urb, int desc_num) 724{ 725 return dwc2_urb->iso_descs[desc_num].status; 726} 727 728static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length( 729 struct dwc2_hcd_urb *dwc2_urb, int desc_num) 730{ 731 return dwc2_urb->iso_descs[desc_num].actual_length; 732} 733 734static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg, 735 struct usb_host_endpoint *ep) 736{ 737 struct dwc2_qh *qh = ep->hcpriv; 738 739 if (qh && !list_empty(&qh->qh_list_entry)) 740 return 1; 741 742 return 0; 743} 744 745static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg, 746 struct usb_host_endpoint *ep) 747{ 748 struct dwc2_qh *qh = ep->hcpriv; 749 750 if (!qh) { 751 WARN_ON(1); 752 return 0; 753 } 754 755 return qh->host_us; 756} 757 758void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg, 759 struct dwc2_host_chan *chan, int chnum, 760 struct dwc2_qtd *qtd); 761 762/* HCD Core API */ 763 764/** 765 * dwc2_handle_hcd_intr() - Called on every hardware interrupt 766 * 767 * @hsotg: The DWC2 HCD 768 * 769 * Returns IRQ_HANDLED if interrupt is handled 770 * Return IRQ_NONE if interrupt is not handled 771 */ 772irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg); 773 774/** 775 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation 776 * 777 * @hsotg: The DWC2 HCD 778 */ 779void dwc2_hcd_stop(struct dwc2_hsotg *hsotg); 780 781/** 782 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host, 783 * and 0 otherwise 784 * 785 * @hsotg: The DWC2 HCD 786 */ 787int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg); 788 789/** 790 * dwc2_hcd_dump_state() - Dumps hsotg state 791 * 792 * @hsotg: The DWC2 HCD 793 * 794 * NOTE: This function will be removed once the peripheral controller code 795 * is integrated and the driver is stable 796 */ 797void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg); 798 799/* URB interface */ 800 801/* Transfer flags */ 802#define URB_GIVEBACK_ASAP 0x1 803#define URB_SEND_ZERO_PACKET 0x2 804 805/* Host driver callbacks */ 806struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, 807 void *context, gfp_t mem_flags, 808 int *ttport); 809 810void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, 811 struct dwc2_tt *dwc_tt); 812int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context); 813void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 814 int status); 815 816#endif /* __DWC2_HCD_H__ */ 817