linux/fs/xfs/libxfs/xfs_rmap_btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2014 Red Hat, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_sb.h"
  13#include "xfs_mount.h"
  14#include "xfs_trans.h"
  15#include "xfs_alloc.h"
  16#include "xfs_btree.h"
  17#include "xfs_rmap.h"
  18#include "xfs_rmap_btree.h"
  19#include "xfs_trace.h"
  20#include "xfs_error.h"
  21#include "xfs_extent_busy.h"
  22#include "xfs_ag_resv.h"
  23
  24/*
  25 * Reverse map btree.
  26 *
  27 * This is a per-ag tree used to track the owner(s) of a given extent. With
  28 * reflink it is possible for there to be multiple owners, which is a departure
  29 * from classic XFS. Owner records for data extents are inserted when the
  30 * extent is mapped and removed when an extent is unmapped.  Owner records for
  31 * all other block types (i.e. metadata) are inserted when an extent is
  32 * allocated and removed when an extent is freed. There can only be one owner
  33 * of a metadata extent, usually an inode or some other metadata structure like
  34 * an AG btree.
  35 *
  36 * The rmap btree is part of the free space management, so blocks for the tree
  37 * are sourced from the agfl. Hence we need transaction reservation support for
  38 * this tree so that the freelist is always large enough. This also impacts on
  39 * the minimum space we need to leave free in the AG.
  40 *
  41 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
  42 * but it is the only way to enforce unique keys when a block can be owned by
  43 * multiple files at any offset. There's no need to order/search by extent
  44 * size for online updating/management of the tree. It is intended that most
  45 * reverse lookups will be to find the owner(s) of a particular block, or to
  46 * try to recover tree and file data from corrupt primary metadata.
  47 */
  48
  49static struct xfs_btree_cur *
  50xfs_rmapbt_dup_cursor(
  51        struct xfs_btree_cur    *cur)
  52{
  53        return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
  54                        cur->bc_private.a.agbp, cur->bc_private.a.agno);
  55}
  56
  57STATIC void
  58xfs_rmapbt_set_root(
  59        struct xfs_btree_cur    *cur,
  60        union xfs_btree_ptr     *ptr,
  61        int                     inc)
  62{
  63        struct xfs_buf          *agbp = cur->bc_private.a.agbp;
  64        struct xfs_agf          *agf = XFS_BUF_TO_AGF(agbp);
  65        xfs_agnumber_t          seqno = be32_to_cpu(agf->agf_seqno);
  66        int                     btnum = cur->bc_btnum;
  67        struct xfs_perag        *pag = xfs_perag_get(cur->bc_mp, seqno);
  68
  69        ASSERT(ptr->s != 0);
  70
  71        agf->agf_roots[btnum] = ptr->s;
  72        be32_add_cpu(&agf->agf_levels[btnum], inc);
  73        pag->pagf_levels[btnum] += inc;
  74        xfs_perag_put(pag);
  75
  76        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
  77}
  78
  79STATIC int
  80xfs_rmapbt_alloc_block(
  81        struct xfs_btree_cur    *cur,
  82        union xfs_btree_ptr     *start,
  83        union xfs_btree_ptr     *new,
  84        int                     *stat)
  85{
  86        struct xfs_buf          *agbp = cur->bc_private.a.agbp;
  87        struct xfs_agf          *agf = XFS_BUF_TO_AGF(agbp);
  88        int                     error;
  89        xfs_agblock_t           bno;
  90
  91        /* Allocate the new block from the freelist. If we can't, give up.  */
  92        error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
  93                                       &bno, 1);
  94        if (error)
  95                return error;
  96
  97        trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
  98                        bno, 1);
  99        if (bno == NULLAGBLOCK) {
 100                *stat = 0;
 101                return 0;
 102        }
 103
 104        xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
 105                        false);
 106
 107        xfs_trans_agbtree_delta(cur->bc_tp, 1);
 108        new->s = cpu_to_be32(bno);
 109        be32_add_cpu(&agf->agf_rmap_blocks, 1);
 110        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 111
 112        xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_private.a.agno);
 113
 114        *stat = 1;
 115        return 0;
 116}
 117
 118STATIC int
 119xfs_rmapbt_free_block(
 120        struct xfs_btree_cur    *cur,
 121        struct xfs_buf          *bp)
 122{
 123        struct xfs_buf          *agbp = cur->bc_private.a.agbp;
 124        struct xfs_agf          *agf = XFS_BUF_TO_AGF(agbp);
 125        xfs_agblock_t           bno;
 126        int                     error;
 127
 128        bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
 129        trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
 130                        bno, 1);
 131        be32_add_cpu(&agf->agf_rmap_blocks, -1);
 132        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 133        error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 134        if (error)
 135                return error;
 136
 137        xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 138                              XFS_EXTENT_BUSY_SKIP_DISCARD);
 139        xfs_trans_agbtree_delta(cur->bc_tp, -1);
 140
 141        xfs_ag_resv_rmapbt_free(cur->bc_mp, cur->bc_private.a.agno);
 142
 143        return 0;
 144}
 145
 146STATIC int
 147xfs_rmapbt_get_minrecs(
 148        struct xfs_btree_cur    *cur,
 149        int                     level)
 150{
 151        return cur->bc_mp->m_rmap_mnr[level != 0];
 152}
 153
 154STATIC int
 155xfs_rmapbt_get_maxrecs(
 156        struct xfs_btree_cur    *cur,
 157        int                     level)
 158{
 159        return cur->bc_mp->m_rmap_mxr[level != 0];
 160}
 161
 162STATIC void
 163xfs_rmapbt_init_key_from_rec(
 164        union xfs_btree_key     *key,
 165        union xfs_btree_rec     *rec)
 166{
 167        key->rmap.rm_startblock = rec->rmap.rm_startblock;
 168        key->rmap.rm_owner = rec->rmap.rm_owner;
 169        key->rmap.rm_offset = rec->rmap.rm_offset;
 170}
 171
 172/*
 173 * The high key for a reverse mapping record can be computed by shifting
 174 * the startblock and offset to the highest value that would still map
 175 * to that record.  In practice this means that we add blockcount-1 to
 176 * the startblock for all records, and if the record is for a data/attr
 177 * fork mapping, we add blockcount-1 to the offset too.
 178 */
 179STATIC void
 180xfs_rmapbt_init_high_key_from_rec(
 181        union xfs_btree_key     *key,
 182        union xfs_btree_rec     *rec)
 183{
 184        uint64_t                off;
 185        int                     adj;
 186
 187        adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
 188
 189        key->rmap.rm_startblock = rec->rmap.rm_startblock;
 190        be32_add_cpu(&key->rmap.rm_startblock, adj);
 191        key->rmap.rm_owner = rec->rmap.rm_owner;
 192        key->rmap.rm_offset = rec->rmap.rm_offset;
 193        if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
 194            XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
 195                return;
 196        off = be64_to_cpu(key->rmap.rm_offset);
 197        off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
 198        key->rmap.rm_offset = cpu_to_be64(off);
 199}
 200
 201STATIC void
 202xfs_rmapbt_init_rec_from_cur(
 203        struct xfs_btree_cur    *cur,
 204        union xfs_btree_rec     *rec)
 205{
 206        rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
 207        rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
 208        rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
 209        rec->rmap.rm_offset = cpu_to_be64(
 210                        xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
 211}
 212
 213STATIC void
 214xfs_rmapbt_init_ptr_from_cur(
 215        struct xfs_btree_cur    *cur,
 216        union xfs_btree_ptr     *ptr)
 217{
 218        struct xfs_agf          *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
 219
 220        ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
 221
 222        ptr->s = agf->agf_roots[cur->bc_btnum];
 223}
 224
 225STATIC int64_t
 226xfs_rmapbt_key_diff(
 227        struct xfs_btree_cur    *cur,
 228        union xfs_btree_key     *key)
 229{
 230        struct xfs_rmap_irec    *rec = &cur->bc_rec.r;
 231        struct xfs_rmap_key     *kp = &key->rmap;
 232        __u64                   x, y;
 233        int64_t                 d;
 234
 235        d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
 236        if (d)
 237                return d;
 238
 239        x = be64_to_cpu(kp->rm_owner);
 240        y = rec->rm_owner;
 241        if (x > y)
 242                return 1;
 243        else if (y > x)
 244                return -1;
 245
 246        x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
 247        y = rec->rm_offset;
 248        if (x > y)
 249                return 1;
 250        else if (y > x)
 251                return -1;
 252        return 0;
 253}
 254
 255STATIC int64_t
 256xfs_rmapbt_diff_two_keys(
 257        struct xfs_btree_cur    *cur,
 258        union xfs_btree_key     *k1,
 259        union xfs_btree_key     *k2)
 260{
 261        struct xfs_rmap_key     *kp1 = &k1->rmap;
 262        struct xfs_rmap_key     *kp2 = &k2->rmap;
 263        int64_t                 d;
 264        __u64                   x, y;
 265
 266        d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
 267                       be32_to_cpu(kp2->rm_startblock);
 268        if (d)
 269                return d;
 270
 271        x = be64_to_cpu(kp1->rm_owner);
 272        y = be64_to_cpu(kp2->rm_owner);
 273        if (x > y)
 274                return 1;
 275        else if (y > x)
 276                return -1;
 277
 278        x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
 279        y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
 280        if (x > y)
 281                return 1;
 282        else if (y > x)
 283                return -1;
 284        return 0;
 285}
 286
 287static xfs_failaddr_t
 288xfs_rmapbt_verify(
 289        struct xfs_buf          *bp)
 290{
 291        struct xfs_mount        *mp = bp->b_mount;
 292        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 293        struct xfs_perag        *pag = bp->b_pag;
 294        xfs_failaddr_t          fa;
 295        unsigned int            level;
 296
 297        /*
 298         * magic number and level verification
 299         *
 300         * During growfs operations, we can't verify the exact level or owner as
 301         * the perag is not fully initialised and hence not attached to the
 302         * buffer.  In this case, check against the maximum tree depth.
 303         *
 304         * Similarly, during log recovery we will have a perag structure
 305         * attached, but the agf information will not yet have been initialised
 306         * from the on disk AGF. Again, we can only check against maximum limits
 307         * in this case.
 308         */
 309        if (!xfs_verify_magic(bp, block->bb_magic))
 310                return __this_address;
 311
 312        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 313                return __this_address;
 314        fa = xfs_btree_sblock_v5hdr_verify(bp);
 315        if (fa)
 316                return fa;
 317
 318        level = be16_to_cpu(block->bb_level);
 319        if (pag && pag->pagf_init) {
 320                if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
 321                        return __this_address;
 322        } else if (level >= mp->m_rmap_maxlevels)
 323                return __this_address;
 324
 325        return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
 326}
 327
 328static void
 329xfs_rmapbt_read_verify(
 330        struct xfs_buf  *bp)
 331{
 332        xfs_failaddr_t  fa;
 333
 334        if (!xfs_btree_sblock_verify_crc(bp))
 335                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 336        else {
 337                fa = xfs_rmapbt_verify(bp);
 338                if (fa)
 339                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 340        }
 341
 342        if (bp->b_error)
 343                trace_xfs_btree_corrupt(bp, _RET_IP_);
 344}
 345
 346static void
 347xfs_rmapbt_write_verify(
 348        struct xfs_buf  *bp)
 349{
 350        xfs_failaddr_t  fa;
 351
 352        fa = xfs_rmapbt_verify(bp);
 353        if (fa) {
 354                trace_xfs_btree_corrupt(bp, _RET_IP_);
 355                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 356                return;
 357        }
 358        xfs_btree_sblock_calc_crc(bp);
 359
 360}
 361
 362const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
 363        .name                   = "xfs_rmapbt",
 364        .magic                  = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
 365        .verify_read            = xfs_rmapbt_read_verify,
 366        .verify_write           = xfs_rmapbt_write_verify,
 367        .verify_struct          = xfs_rmapbt_verify,
 368};
 369
 370STATIC int
 371xfs_rmapbt_keys_inorder(
 372        struct xfs_btree_cur    *cur,
 373        union xfs_btree_key     *k1,
 374        union xfs_btree_key     *k2)
 375{
 376        uint32_t                x;
 377        uint32_t                y;
 378        uint64_t                a;
 379        uint64_t                b;
 380
 381        x = be32_to_cpu(k1->rmap.rm_startblock);
 382        y = be32_to_cpu(k2->rmap.rm_startblock);
 383        if (x < y)
 384                return 1;
 385        else if (x > y)
 386                return 0;
 387        a = be64_to_cpu(k1->rmap.rm_owner);
 388        b = be64_to_cpu(k2->rmap.rm_owner);
 389        if (a < b)
 390                return 1;
 391        else if (a > b)
 392                return 0;
 393        a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
 394        b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
 395        if (a <= b)
 396                return 1;
 397        return 0;
 398}
 399
 400STATIC int
 401xfs_rmapbt_recs_inorder(
 402        struct xfs_btree_cur    *cur,
 403        union xfs_btree_rec     *r1,
 404        union xfs_btree_rec     *r2)
 405{
 406        uint32_t                x;
 407        uint32_t                y;
 408        uint64_t                a;
 409        uint64_t                b;
 410
 411        x = be32_to_cpu(r1->rmap.rm_startblock);
 412        y = be32_to_cpu(r2->rmap.rm_startblock);
 413        if (x < y)
 414                return 1;
 415        else if (x > y)
 416                return 0;
 417        a = be64_to_cpu(r1->rmap.rm_owner);
 418        b = be64_to_cpu(r2->rmap.rm_owner);
 419        if (a < b)
 420                return 1;
 421        else if (a > b)
 422                return 0;
 423        a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
 424        b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
 425        if (a <= b)
 426                return 1;
 427        return 0;
 428}
 429
 430static const struct xfs_btree_ops xfs_rmapbt_ops = {
 431        .rec_len                = sizeof(struct xfs_rmap_rec),
 432        .key_len                = 2 * sizeof(struct xfs_rmap_key),
 433
 434        .dup_cursor             = xfs_rmapbt_dup_cursor,
 435        .set_root               = xfs_rmapbt_set_root,
 436        .alloc_block            = xfs_rmapbt_alloc_block,
 437        .free_block             = xfs_rmapbt_free_block,
 438        .get_minrecs            = xfs_rmapbt_get_minrecs,
 439        .get_maxrecs            = xfs_rmapbt_get_maxrecs,
 440        .init_key_from_rec      = xfs_rmapbt_init_key_from_rec,
 441        .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
 442        .init_rec_from_cur      = xfs_rmapbt_init_rec_from_cur,
 443        .init_ptr_from_cur      = xfs_rmapbt_init_ptr_from_cur,
 444        .key_diff               = xfs_rmapbt_key_diff,
 445        .buf_ops                = &xfs_rmapbt_buf_ops,
 446        .diff_two_keys          = xfs_rmapbt_diff_two_keys,
 447        .keys_inorder           = xfs_rmapbt_keys_inorder,
 448        .recs_inorder           = xfs_rmapbt_recs_inorder,
 449};
 450
 451/*
 452 * Allocate a new allocation btree cursor.
 453 */
 454struct xfs_btree_cur *
 455xfs_rmapbt_init_cursor(
 456        struct xfs_mount        *mp,
 457        struct xfs_trans        *tp,
 458        struct xfs_buf          *agbp,
 459        xfs_agnumber_t          agno)
 460{
 461        struct xfs_agf          *agf = XFS_BUF_TO_AGF(agbp);
 462        struct xfs_btree_cur    *cur;
 463
 464        cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
 465        cur->bc_tp = tp;
 466        cur->bc_mp = mp;
 467        /* Overlapping btree; 2 keys per pointer. */
 468        cur->bc_btnum = XFS_BTNUM_RMAP;
 469        cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
 470        cur->bc_blocklog = mp->m_sb.sb_blocklog;
 471        cur->bc_ops = &xfs_rmapbt_ops;
 472        cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
 473        cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
 474
 475        cur->bc_private.a.agbp = agbp;
 476        cur->bc_private.a.agno = agno;
 477
 478        return cur;
 479}
 480
 481/*
 482 * Calculate number of records in an rmap btree block.
 483 */
 484int
 485xfs_rmapbt_maxrecs(
 486        int                     blocklen,
 487        int                     leaf)
 488{
 489        blocklen -= XFS_RMAP_BLOCK_LEN;
 490
 491        if (leaf)
 492                return blocklen / sizeof(struct xfs_rmap_rec);
 493        return blocklen /
 494                (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
 495}
 496
 497/* Compute the maximum height of an rmap btree. */
 498void
 499xfs_rmapbt_compute_maxlevels(
 500        struct xfs_mount                *mp)
 501{
 502        /*
 503         * On a non-reflink filesystem, the maximum number of rmap
 504         * records is the number of blocks in the AG, hence the max
 505         * rmapbt height is log_$maxrecs($agblocks).  However, with
 506         * reflink each AG block can have up to 2^32 (per the refcount
 507         * record format) owners, which means that theoretically we
 508         * could face up to 2^64 rmap records.
 509         *
 510         * That effectively means that the max rmapbt height must be
 511         * XFS_BTREE_MAXLEVELS.  "Fortunately" we'll run out of AG
 512         * blocks to feed the rmapbt long before the rmapbt reaches
 513         * maximum height.  The reflink code uses ag_resv_critical to
 514         * disallow reflinking when less than 10% of the per-AG metadata
 515         * block reservation since the fallback is a regular file copy.
 516         */
 517        if (xfs_sb_version_hasreflink(&mp->m_sb))
 518                mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
 519        else
 520                mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
 521                                mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
 522}
 523
 524/* Calculate the refcount btree size for some records. */
 525xfs_extlen_t
 526xfs_rmapbt_calc_size(
 527        struct xfs_mount        *mp,
 528        unsigned long long      len)
 529{
 530        return xfs_btree_calc_size(mp->m_rmap_mnr, len);
 531}
 532
 533/*
 534 * Calculate the maximum refcount btree size.
 535 */
 536xfs_extlen_t
 537xfs_rmapbt_max_size(
 538        struct xfs_mount        *mp,
 539        xfs_agblock_t           agblocks)
 540{
 541        /* Bail out if we're uninitialized, which can happen in mkfs. */
 542        if (mp->m_rmap_mxr[0] == 0)
 543                return 0;
 544
 545        return xfs_rmapbt_calc_size(mp, agblocks);
 546}
 547
 548/*
 549 * Figure out how many blocks to reserve and how many are used by this btree.
 550 */
 551int
 552xfs_rmapbt_calc_reserves(
 553        struct xfs_mount        *mp,
 554        struct xfs_trans        *tp,
 555        xfs_agnumber_t          agno,
 556        xfs_extlen_t            *ask,
 557        xfs_extlen_t            *used)
 558{
 559        struct xfs_buf          *agbp;
 560        struct xfs_agf          *agf;
 561        xfs_agblock_t           agblocks;
 562        xfs_extlen_t            tree_len;
 563        int                     error;
 564
 565        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 566                return 0;
 567
 568        error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
 569        if (error)
 570                return error;
 571
 572        agf = XFS_BUF_TO_AGF(agbp);
 573        agblocks = be32_to_cpu(agf->agf_length);
 574        tree_len = be32_to_cpu(agf->agf_rmap_blocks);
 575        xfs_trans_brelse(tp, agbp);
 576
 577        /*
 578         * The log is permanently allocated, so the space it occupies will
 579         * never be available for the kinds of things that would require btree
 580         * expansion.  We therefore can pretend the space isn't there.
 581         */
 582        if (mp->m_sb.sb_logstart &&
 583            XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno)
 584                agblocks -= mp->m_sb.sb_logblocks;
 585
 586        /* Reserve 1% of the AG or enough for 1 block per record. */
 587        *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
 588        *used += tree_len;
 589
 590        return error;
 591}
 592