linux/fs/xfs/xfs_buf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include <linux/backing-dev.h>
   8
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_trace.h"
  16#include "xfs_log.h"
  17#include "xfs_errortag.h"
  18#include "xfs_error.h"
  19
  20static kmem_zone_t *xfs_buf_zone;
  21
  22#define xb_to_gfp(flags) \
  23        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  24
  25/*
  26 * Locking orders
  27 *
  28 * xfs_buf_ioacct_inc:
  29 * xfs_buf_ioacct_dec:
  30 *      b_sema (caller holds)
  31 *        b_lock
  32 *
  33 * xfs_buf_stale:
  34 *      b_sema (caller holds)
  35 *        b_lock
  36 *          lru_lock
  37 *
  38 * xfs_buf_rele:
  39 *      b_lock
  40 *        pag_buf_lock
  41 *          lru_lock
  42 *
  43 * xfs_buftarg_wait_rele
  44 *      lru_lock
  45 *        b_lock (trylock due to inversion)
  46 *
  47 * xfs_buftarg_isolate
  48 *      lru_lock
  49 *        b_lock (trylock due to inversion)
  50 */
  51
  52static inline int
  53xfs_buf_is_vmapped(
  54        struct xfs_buf  *bp)
  55{
  56        /*
  57         * Return true if the buffer is vmapped.
  58         *
  59         * b_addr is null if the buffer is not mapped, but the code is clever
  60         * enough to know it doesn't have to map a single page, so the check has
  61         * to be both for b_addr and bp->b_page_count > 1.
  62         */
  63        return bp->b_addr && bp->b_page_count > 1;
  64}
  65
  66static inline int
  67xfs_buf_vmap_len(
  68        struct xfs_buf  *bp)
  69{
  70        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  71}
  72
  73/*
  74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
  75 * this buffer. The count is incremented once per buffer (per hold cycle)
  76 * because the corresponding decrement is deferred to buffer release. Buffers
  77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
  78 * tracking adds unnecessary overhead. This is used for sychronization purposes
  79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
  80 * in-flight buffers.
  81 *
  82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
  83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
  84 * never reaches zero and unmount hangs indefinitely.
  85 */
  86static inline void
  87xfs_buf_ioacct_inc(
  88        struct xfs_buf  *bp)
  89{
  90        if (bp->b_flags & XBF_NO_IOACCT)
  91                return;
  92
  93        ASSERT(bp->b_flags & XBF_ASYNC);
  94        spin_lock(&bp->b_lock);
  95        if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
  96                bp->b_state |= XFS_BSTATE_IN_FLIGHT;
  97                percpu_counter_inc(&bp->b_target->bt_io_count);
  98        }
  99        spin_unlock(&bp->b_lock);
 100}
 101
 102/*
 103 * Clear the in-flight state on a buffer about to be released to the LRU or
 104 * freed and unaccount from the buftarg.
 105 */
 106static inline void
 107__xfs_buf_ioacct_dec(
 108        struct xfs_buf  *bp)
 109{
 110        lockdep_assert_held(&bp->b_lock);
 111
 112        if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
 113                bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
 114                percpu_counter_dec(&bp->b_target->bt_io_count);
 115        }
 116}
 117
 118static inline void
 119xfs_buf_ioacct_dec(
 120        struct xfs_buf  *bp)
 121{
 122        spin_lock(&bp->b_lock);
 123        __xfs_buf_ioacct_dec(bp);
 124        spin_unlock(&bp->b_lock);
 125}
 126
 127/*
 128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 129 * b_lru_ref count so that the buffer is freed immediately when the buffer
 130 * reference count falls to zero. If the buffer is already on the LRU, we need
 131 * to remove the reference that LRU holds on the buffer.
 132 *
 133 * This prevents build-up of stale buffers on the LRU.
 134 */
 135void
 136xfs_buf_stale(
 137        struct xfs_buf  *bp)
 138{
 139        ASSERT(xfs_buf_islocked(bp));
 140
 141        bp->b_flags |= XBF_STALE;
 142
 143        /*
 144         * Clear the delwri status so that a delwri queue walker will not
 145         * flush this buffer to disk now that it is stale. The delwri queue has
 146         * a reference to the buffer, so this is safe to do.
 147         */
 148        bp->b_flags &= ~_XBF_DELWRI_Q;
 149
 150        /*
 151         * Once the buffer is marked stale and unlocked, a subsequent lookup
 152         * could reset b_flags. There is no guarantee that the buffer is
 153         * unaccounted (released to LRU) before that occurs. Drop in-flight
 154         * status now to preserve accounting consistency.
 155         */
 156        spin_lock(&bp->b_lock);
 157        __xfs_buf_ioacct_dec(bp);
 158
 159        atomic_set(&bp->b_lru_ref, 0);
 160        if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 161            (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 162                atomic_dec(&bp->b_hold);
 163
 164        ASSERT(atomic_read(&bp->b_hold) >= 1);
 165        spin_unlock(&bp->b_lock);
 166}
 167
 168static int
 169xfs_buf_get_maps(
 170        struct xfs_buf          *bp,
 171        int                     map_count)
 172{
 173        ASSERT(bp->b_maps == NULL);
 174        bp->b_map_count = map_count;
 175
 176        if (map_count == 1) {
 177                bp->b_maps = &bp->__b_map;
 178                return 0;
 179        }
 180
 181        bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 182                                KM_NOFS);
 183        if (!bp->b_maps)
 184                return -ENOMEM;
 185        return 0;
 186}
 187
 188/*
 189 *      Frees b_pages if it was allocated.
 190 */
 191static void
 192xfs_buf_free_maps(
 193        struct xfs_buf  *bp)
 194{
 195        if (bp->b_maps != &bp->__b_map) {
 196                kmem_free(bp->b_maps);
 197                bp->b_maps = NULL;
 198        }
 199}
 200
 201static struct xfs_buf *
 202_xfs_buf_alloc(
 203        struct xfs_buftarg      *target,
 204        struct xfs_buf_map      *map,
 205        int                     nmaps,
 206        xfs_buf_flags_t         flags)
 207{
 208        struct xfs_buf          *bp;
 209        int                     error;
 210        int                     i;
 211
 212        bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 213        if (unlikely(!bp))
 214                return NULL;
 215
 216        /*
 217         * We don't want certain flags to appear in b_flags unless they are
 218         * specifically set by later operations on the buffer.
 219         */
 220        flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 221
 222        atomic_set(&bp->b_hold, 1);
 223        atomic_set(&bp->b_lru_ref, 1);
 224        init_completion(&bp->b_iowait);
 225        INIT_LIST_HEAD(&bp->b_lru);
 226        INIT_LIST_HEAD(&bp->b_list);
 227        INIT_LIST_HEAD(&bp->b_li_list);
 228        sema_init(&bp->b_sema, 0); /* held, no waiters */
 229        spin_lock_init(&bp->b_lock);
 230        bp->b_target = target;
 231        bp->b_mount = target->bt_mount;
 232        bp->b_flags = flags;
 233
 234        /*
 235         * Set length and io_length to the same value initially.
 236         * I/O routines should use io_length, which will be the same in
 237         * most cases but may be reset (e.g. XFS recovery).
 238         */
 239        error = xfs_buf_get_maps(bp, nmaps);
 240        if (error)  {
 241                kmem_zone_free(xfs_buf_zone, bp);
 242                return NULL;
 243        }
 244
 245        bp->b_bn = map[0].bm_bn;
 246        bp->b_length = 0;
 247        for (i = 0; i < nmaps; i++) {
 248                bp->b_maps[i].bm_bn = map[i].bm_bn;
 249                bp->b_maps[i].bm_len = map[i].bm_len;
 250                bp->b_length += map[i].bm_len;
 251        }
 252
 253        atomic_set(&bp->b_pin_count, 0);
 254        init_waitqueue_head(&bp->b_waiters);
 255
 256        XFS_STATS_INC(bp->b_mount, xb_create);
 257        trace_xfs_buf_init(bp, _RET_IP_);
 258
 259        return bp;
 260}
 261
 262/*
 263 *      Allocate a page array capable of holding a specified number
 264 *      of pages, and point the page buf at it.
 265 */
 266STATIC int
 267_xfs_buf_get_pages(
 268        xfs_buf_t               *bp,
 269        int                     page_count)
 270{
 271        /* Make sure that we have a page list */
 272        if (bp->b_pages == NULL) {
 273                bp->b_page_count = page_count;
 274                if (page_count <= XB_PAGES) {
 275                        bp->b_pages = bp->b_page_array;
 276                } else {
 277                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 278                                                 page_count, KM_NOFS);
 279                        if (bp->b_pages == NULL)
 280                                return -ENOMEM;
 281                }
 282                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 283        }
 284        return 0;
 285}
 286
 287/*
 288 *      Frees b_pages if it was allocated.
 289 */
 290STATIC void
 291_xfs_buf_free_pages(
 292        xfs_buf_t       *bp)
 293{
 294        if (bp->b_pages != bp->b_page_array) {
 295                kmem_free(bp->b_pages);
 296                bp->b_pages = NULL;
 297        }
 298}
 299
 300/*
 301 *      Releases the specified buffer.
 302 *
 303 *      The modification state of any associated pages is left unchanged.
 304 *      The buffer must not be on any hash - use xfs_buf_rele instead for
 305 *      hashed and refcounted buffers
 306 */
 307void
 308xfs_buf_free(
 309        xfs_buf_t               *bp)
 310{
 311        trace_xfs_buf_free(bp, _RET_IP_);
 312
 313        ASSERT(list_empty(&bp->b_lru));
 314
 315        if (bp->b_flags & _XBF_PAGES) {
 316                uint            i;
 317
 318                if (xfs_buf_is_vmapped(bp))
 319                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 320                                        bp->b_page_count);
 321
 322                for (i = 0; i < bp->b_page_count; i++) {
 323                        struct page     *page = bp->b_pages[i];
 324
 325                        __free_page(page);
 326                }
 327        } else if (bp->b_flags & _XBF_KMEM)
 328                kmem_free(bp->b_addr);
 329        _xfs_buf_free_pages(bp);
 330        xfs_buf_free_maps(bp);
 331        kmem_zone_free(xfs_buf_zone, bp);
 332}
 333
 334/*
 335 * Allocates all the pages for buffer in question and builds it's page list.
 336 */
 337STATIC int
 338xfs_buf_allocate_memory(
 339        xfs_buf_t               *bp,
 340        uint                    flags)
 341{
 342        size_t                  size;
 343        size_t                  nbytes, offset;
 344        gfp_t                   gfp_mask = xb_to_gfp(flags);
 345        unsigned short          page_count, i;
 346        xfs_off_t               start, end;
 347        int                     error;
 348        xfs_km_flags_t          kmflag_mask = 0;
 349
 350        /*
 351         * assure zeroed buffer for non-read cases.
 352         */
 353        if (!(flags & XBF_READ)) {
 354                kmflag_mask |= KM_ZERO;
 355                gfp_mask |= __GFP_ZERO;
 356        }
 357
 358        /*
 359         * for buffers that are contained within a single page, just allocate
 360         * the memory from the heap - there's no need for the complexity of
 361         * page arrays to keep allocation down to order 0.
 362         */
 363        size = BBTOB(bp->b_length);
 364        if (size < PAGE_SIZE) {
 365                int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
 366                bp->b_addr = kmem_alloc_io(size, align_mask,
 367                                           KM_NOFS | kmflag_mask);
 368                if (!bp->b_addr) {
 369                        /* low memory - use alloc_page loop instead */
 370                        goto use_alloc_page;
 371                }
 372
 373                if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 374                    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 375                        /* b_addr spans two pages - use alloc_page instead */
 376                        kmem_free(bp->b_addr);
 377                        bp->b_addr = NULL;
 378                        goto use_alloc_page;
 379                }
 380                bp->b_offset = offset_in_page(bp->b_addr);
 381                bp->b_pages = bp->b_page_array;
 382                bp->b_pages[0] = kmem_to_page(bp->b_addr);
 383                bp->b_page_count = 1;
 384                bp->b_flags |= _XBF_KMEM;
 385                return 0;
 386        }
 387
 388use_alloc_page:
 389        start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 390        end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 391                                                                >> PAGE_SHIFT;
 392        page_count = end - start;
 393        error = _xfs_buf_get_pages(bp, page_count);
 394        if (unlikely(error))
 395                return error;
 396
 397        offset = bp->b_offset;
 398        bp->b_flags |= _XBF_PAGES;
 399
 400        for (i = 0; i < bp->b_page_count; i++) {
 401                struct page     *page;
 402                uint            retries = 0;
 403retry:
 404                page = alloc_page(gfp_mask);
 405                if (unlikely(page == NULL)) {
 406                        if (flags & XBF_READ_AHEAD) {
 407                                bp->b_page_count = i;
 408                                error = -ENOMEM;
 409                                goto out_free_pages;
 410                        }
 411
 412                        /*
 413                         * This could deadlock.
 414                         *
 415                         * But until all the XFS lowlevel code is revamped to
 416                         * handle buffer allocation failures we can't do much.
 417                         */
 418                        if (!(++retries % 100))
 419                                xfs_err(NULL,
 420                "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
 421                                        current->comm, current->pid,
 422                                        __func__, gfp_mask);
 423
 424                        XFS_STATS_INC(bp->b_mount, xb_page_retries);
 425                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 426                        goto retry;
 427                }
 428
 429                XFS_STATS_INC(bp->b_mount, xb_page_found);
 430
 431                nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 432                size -= nbytes;
 433                bp->b_pages[i] = page;
 434                offset = 0;
 435        }
 436        return 0;
 437
 438out_free_pages:
 439        for (i = 0; i < bp->b_page_count; i++)
 440                __free_page(bp->b_pages[i]);
 441        bp->b_flags &= ~_XBF_PAGES;
 442        return error;
 443}
 444
 445/*
 446 *      Map buffer into kernel address-space if necessary.
 447 */
 448STATIC int
 449_xfs_buf_map_pages(
 450        xfs_buf_t               *bp,
 451        uint                    flags)
 452{
 453        ASSERT(bp->b_flags & _XBF_PAGES);
 454        if (bp->b_page_count == 1) {
 455                /* A single page buffer is always mappable */
 456                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 457        } else if (flags & XBF_UNMAPPED) {
 458                bp->b_addr = NULL;
 459        } else {
 460                int retried = 0;
 461                unsigned nofs_flag;
 462
 463                /*
 464                 * vm_map_ram() will allocate auxillary structures (e.g.
 465                 * pagetables) with GFP_KERNEL, yet we are likely to be under
 466                 * GFP_NOFS context here. Hence we need to tell memory reclaim
 467                 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
 468                 * memory reclaim re-entering the filesystem here and
 469                 * potentially deadlocking.
 470                 */
 471                nofs_flag = memalloc_nofs_save();
 472                do {
 473                        bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 474                                                -1, PAGE_KERNEL);
 475                        if (bp->b_addr)
 476                                break;
 477                        vm_unmap_aliases();
 478                } while (retried++ <= 1);
 479                memalloc_nofs_restore(nofs_flag);
 480
 481                if (!bp->b_addr)
 482                        return -ENOMEM;
 483                bp->b_addr += bp->b_offset;
 484        }
 485
 486        return 0;
 487}
 488
 489/*
 490 *      Finding and Reading Buffers
 491 */
 492static int
 493_xfs_buf_obj_cmp(
 494        struct rhashtable_compare_arg   *arg,
 495        const void                      *obj)
 496{
 497        const struct xfs_buf_map        *map = arg->key;
 498        const struct xfs_buf            *bp = obj;
 499
 500        /*
 501         * The key hashing in the lookup path depends on the key being the
 502         * first element of the compare_arg, make sure to assert this.
 503         */
 504        BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
 505
 506        if (bp->b_bn != map->bm_bn)
 507                return 1;
 508
 509        if (unlikely(bp->b_length != map->bm_len)) {
 510                /*
 511                 * found a block number match. If the range doesn't
 512                 * match, the only way this is allowed is if the buffer
 513                 * in the cache is stale and the transaction that made
 514                 * it stale has not yet committed. i.e. we are
 515                 * reallocating a busy extent. Skip this buffer and
 516                 * continue searching for an exact match.
 517                 */
 518                ASSERT(bp->b_flags & XBF_STALE);
 519                return 1;
 520        }
 521        return 0;
 522}
 523
 524static const struct rhashtable_params xfs_buf_hash_params = {
 525        .min_size               = 32,   /* empty AGs have minimal footprint */
 526        .nelem_hint             = 16,
 527        .key_len                = sizeof(xfs_daddr_t),
 528        .key_offset             = offsetof(struct xfs_buf, b_bn),
 529        .head_offset            = offsetof(struct xfs_buf, b_rhash_head),
 530        .automatic_shrinking    = true,
 531        .obj_cmpfn              = _xfs_buf_obj_cmp,
 532};
 533
 534int
 535xfs_buf_hash_init(
 536        struct xfs_perag        *pag)
 537{
 538        spin_lock_init(&pag->pag_buf_lock);
 539        return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
 540}
 541
 542void
 543xfs_buf_hash_destroy(
 544        struct xfs_perag        *pag)
 545{
 546        rhashtable_destroy(&pag->pag_buf_hash);
 547}
 548
 549/*
 550 * Look up a buffer in the buffer cache and return it referenced and locked
 551 * in @found_bp.
 552 *
 553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
 554 * cache.
 555 *
 556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
 557 * -EAGAIN if we fail to lock it.
 558 *
 559 * Return values are:
 560 *      -EFSCORRUPTED if have been supplied with an invalid address
 561 *      -EAGAIN on trylock failure
 562 *      -ENOENT if we fail to find a match and @new_bp was NULL
 563 *      0, with @found_bp:
 564 *              - @new_bp if we inserted it into the cache
 565 *              - the buffer we found and locked.
 566 */
 567static int
 568xfs_buf_find(
 569        struct xfs_buftarg      *btp,
 570        struct xfs_buf_map      *map,
 571        int                     nmaps,
 572        xfs_buf_flags_t         flags,
 573        struct xfs_buf          *new_bp,
 574        struct xfs_buf          **found_bp)
 575{
 576        struct xfs_perag        *pag;
 577        xfs_buf_t               *bp;
 578        struct xfs_buf_map      cmap = { .bm_bn = map[0].bm_bn };
 579        xfs_daddr_t             eofs;
 580        int                     i;
 581
 582        *found_bp = NULL;
 583
 584        for (i = 0; i < nmaps; i++)
 585                cmap.bm_len += map[i].bm_len;
 586
 587        /* Check for IOs smaller than the sector size / not sector aligned */
 588        ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
 589        ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
 590
 591        /*
 592         * Corrupted block numbers can get through to here, unfortunately, so we
 593         * have to check that the buffer falls within the filesystem bounds.
 594         */
 595        eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 596        if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
 597                xfs_alert(btp->bt_mount,
 598                          "%s: daddr 0x%llx out of range, EOFS 0x%llx",
 599                          __func__, cmap.bm_bn, eofs);
 600                WARN_ON(1);
 601                return -EFSCORRUPTED;
 602        }
 603
 604        pag = xfs_perag_get(btp->bt_mount,
 605                            xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
 606
 607        spin_lock(&pag->pag_buf_lock);
 608        bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
 609                                    xfs_buf_hash_params);
 610        if (bp) {
 611                atomic_inc(&bp->b_hold);
 612                goto found;
 613        }
 614
 615        /* No match found */
 616        if (!new_bp) {
 617                XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
 618                spin_unlock(&pag->pag_buf_lock);
 619                xfs_perag_put(pag);
 620                return -ENOENT;
 621        }
 622
 623        /* the buffer keeps the perag reference until it is freed */
 624        new_bp->b_pag = pag;
 625        rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
 626                               xfs_buf_hash_params);
 627        spin_unlock(&pag->pag_buf_lock);
 628        *found_bp = new_bp;
 629        return 0;
 630
 631found:
 632        spin_unlock(&pag->pag_buf_lock);
 633        xfs_perag_put(pag);
 634
 635        if (!xfs_buf_trylock(bp)) {
 636                if (flags & XBF_TRYLOCK) {
 637                        xfs_buf_rele(bp);
 638                        XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
 639                        return -EAGAIN;
 640                }
 641                xfs_buf_lock(bp);
 642                XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
 643        }
 644
 645        /*
 646         * if the buffer is stale, clear all the external state associated with
 647         * it. We need to keep flags such as how we allocated the buffer memory
 648         * intact here.
 649         */
 650        if (bp->b_flags & XBF_STALE) {
 651                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 652                ASSERT(bp->b_iodone == NULL);
 653                bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 654                bp->b_ops = NULL;
 655        }
 656
 657        trace_xfs_buf_find(bp, flags, _RET_IP_);
 658        XFS_STATS_INC(btp->bt_mount, xb_get_locked);
 659        *found_bp = bp;
 660        return 0;
 661}
 662
 663struct xfs_buf *
 664xfs_buf_incore(
 665        struct xfs_buftarg      *target,
 666        xfs_daddr_t             blkno,
 667        size_t                  numblks,
 668        xfs_buf_flags_t         flags)
 669{
 670        struct xfs_buf          *bp;
 671        int                     error;
 672        DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
 673
 674        error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
 675        if (error)
 676                return NULL;
 677        return bp;
 678}
 679
 680/*
 681 * Assembles a buffer covering the specified range. The code is optimised for
 682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 683 * more hits than misses.
 684 */
 685struct xfs_buf *
 686xfs_buf_get_map(
 687        struct xfs_buftarg      *target,
 688        struct xfs_buf_map      *map,
 689        int                     nmaps,
 690        xfs_buf_flags_t         flags)
 691{
 692        struct xfs_buf          *bp;
 693        struct xfs_buf          *new_bp;
 694        int                     error = 0;
 695
 696        error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
 697
 698        switch (error) {
 699        case 0:
 700                /* cache hit */
 701                goto found;
 702        case -EAGAIN:
 703                /* cache hit, trylock failure, caller handles failure */
 704                ASSERT(flags & XBF_TRYLOCK);
 705                return NULL;
 706        case -ENOENT:
 707                /* cache miss, go for insert */
 708                break;
 709        case -EFSCORRUPTED:
 710        default:
 711                /*
 712                 * None of the higher layers understand failure types
 713                 * yet, so return NULL to signal a fatal lookup error.
 714                 */
 715                return NULL;
 716        }
 717
 718        new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 719        if (unlikely(!new_bp))
 720                return NULL;
 721
 722        error = xfs_buf_allocate_memory(new_bp, flags);
 723        if (error) {
 724                xfs_buf_free(new_bp);
 725                return NULL;
 726        }
 727
 728        error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
 729        if (error) {
 730                xfs_buf_free(new_bp);
 731                return NULL;
 732        }
 733
 734        if (bp != new_bp)
 735                xfs_buf_free(new_bp);
 736
 737found:
 738        if (!bp->b_addr) {
 739                error = _xfs_buf_map_pages(bp, flags);
 740                if (unlikely(error)) {
 741                        xfs_warn(target->bt_mount,
 742                                "%s: failed to map pagesn", __func__);
 743                        xfs_buf_relse(bp);
 744                        return NULL;
 745                }
 746        }
 747
 748        /*
 749         * Clear b_error if this is a lookup from a caller that doesn't expect
 750         * valid data to be found in the buffer.
 751         */
 752        if (!(flags & XBF_READ))
 753                xfs_buf_ioerror(bp, 0);
 754
 755        XFS_STATS_INC(target->bt_mount, xb_get);
 756        trace_xfs_buf_get(bp, flags, _RET_IP_);
 757        return bp;
 758}
 759
 760STATIC int
 761_xfs_buf_read(
 762        xfs_buf_t               *bp,
 763        xfs_buf_flags_t         flags)
 764{
 765        ASSERT(!(flags & XBF_WRITE));
 766        ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 767
 768        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 769        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 770
 771        return xfs_buf_submit(bp);
 772}
 773
 774/*
 775 * Reverify a buffer found in cache without an attached ->b_ops.
 776 *
 777 * If the caller passed an ops structure and the buffer doesn't have ops
 778 * assigned, set the ops and use it to verify the contents. If verification
 779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
 780 * already in XBF_DONE state on entry.
 781 *
 782 * Under normal operations, every in-core buffer is verified on read I/O
 783 * completion. There are two scenarios that can lead to in-core buffers without
 784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
 785 * filesystem, though these buffers are purged at the end of recovery. The
 786 * other is online repair, which intentionally reads with a NULL buffer ops to
 787 * run several verifiers across an in-core buffer in order to establish buffer
 788 * type.  If repair can't establish that, the buffer will be left in memory
 789 * with NULL buffer ops.
 790 */
 791int
 792xfs_buf_reverify(
 793        struct xfs_buf          *bp,
 794        const struct xfs_buf_ops *ops)
 795{
 796        ASSERT(bp->b_flags & XBF_DONE);
 797        ASSERT(bp->b_error == 0);
 798
 799        if (!ops || bp->b_ops)
 800                return 0;
 801
 802        bp->b_ops = ops;
 803        bp->b_ops->verify_read(bp);
 804        if (bp->b_error)
 805                bp->b_flags &= ~XBF_DONE;
 806        return bp->b_error;
 807}
 808
 809xfs_buf_t *
 810xfs_buf_read_map(
 811        struct xfs_buftarg      *target,
 812        struct xfs_buf_map      *map,
 813        int                     nmaps,
 814        xfs_buf_flags_t         flags,
 815        const struct xfs_buf_ops *ops)
 816{
 817        struct xfs_buf          *bp;
 818
 819        flags |= XBF_READ;
 820
 821        bp = xfs_buf_get_map(target, map, nmaps, flags);
 822        if (!bp)
 823                return NULL;
 824
 825        trace_xfs_buf_read(bp, flags, _RET_IP_);
 826
 827        if (!(bp->b_flags & XBF_DONE)) {
 828                XFS_STATS_INC(target->bt_mount, xb_get_read);
 829                bp->b_ops = ops;
 830                _xfs_buf_read(bp, flags);
 831                return bp;
 832        }
 833
 834        xfs_buf_reverify(bp, ops);
 835
 836        if (flags & XBF_ASYNC) {
 837                /*
 838                 * Read ahead call which is already satisfied,
 839                 * drop the buffer
 840                 */
 841                xfs_buf_relse(bp);
 842                return NULL;
 843        }
 844
 845        /* We do not want read in the flags */
 846        bp->b_flags &= ~XBF_READ;
 847        ASSERT(bp->b_ops != NULL || ops == NULL);
 848        return bp;
 849}
 850
 851/*
 852 *      If we are not low on memory then do the readahead in a deadlock
 853 *      safe manner.
 854 */
 855void
 856xfs_buf_readahead_map(
 857        struct xfs_buftarg      *target,
 858        struct xfs_buf_map      *map,
 859        int                     nmaps,
 860        const struct xfs_buf_ops *ops)
 861{
 862        if (bdi_read_congested(target->bt_bdev->bd_bdi))
 863                return;
 864
 865        xfs_buf_read_map(target, map, nmaps,
 866                     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 867}
 868
 869/*
 870 * Read an uncached buffer from disk. Allocates and returns a locked
 871 * buffer containing the disk contents or nothing.
 872 */
 873int
 874xfs_buf_read_uncached(
 875        struct xfs_buftarg      *target,
 876        xfs_daddr_t             daddr,
 877        size_t                  numblks,
 878        int                     flags,
 879        struct xfs_buf          **bpp,
 880        const struct xfs_buf_ops *ops)
 881{
 882        struct xfs_buf          *bp;
 883
 884        *bpp = NULL;
 885
 886        bp = xfs_buf_get_uncached(target, numblks, flags);
 887        if (!bp)
 888                return -ENOMEM;
 889
 890        /* set up the buffer for a read IO */
 891        ASSERT(bp->b_map_count == 1);
 892        bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 893        bp->b_maps[0].bm_bn = daddr;
 894        bp->b_flags |= XBF_READ;
 895        bp->b_ops = ops;
 896
 897        xfs_buf_submit(bp);
 898        if (bp->b_error) {
 899                int     error = bp->b_error;
 900                xfs_buf_relse(bp);
 901                return error;
 902        }
 903
 904        *bpp = bp;
 905        return 0;
 906}
 907
 908xfs_buf_t *
 909xfs_buf_get_uncached(
 910        struct xfs_buftarg      *target,
 911        size_t                  numblks,
 912        int                     flags)
 913{
 914        unsigned long           page_count;
 915        int                     error, i;
 916        struct xfs_buf          *bp;
 917        DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 918
 919        /* flags might contain irrelevant bits, pass only what we care about */
 920        bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
 921        if (unlikely(bp == NULL))
 922                goto fail;
 923
 924        page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 925        error = _xfs_buf_get_pages(bp, page_count);
 926        if (error)
 927                goto fail_free_buf;
 928
 929        for (i = 0; i < page_count; i++) {
 930                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 931                if (!bp->b_pages[i])
 932                        goto fail_free_mem;
 933        }
 934        bp->b_flags |= _XBF_PAGES;
 935
 936        error = _xfs_buf_map_pages(bp, 0);
 937        if (unlikely(error)) {
 938                xfs_warn(target->bt_mount,
 939                        "%s: failed to map pages", __func__);
 940                goto fail_free_mem;
 941        }
 942
 943        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 944        return bp;
 945
 946 fail_free_mem:
 947        while (--i >= 0)
 948                __free_page(bp->b_pages[i]);
 949        _xfs_buf_free_pages(bp);
 950 fail_free_buf:
 951        xfs_buf_free_maps(bp);
 952        kmem_zone_free(xfs_buf_zone, bp);
 953 fail:
 954        return NULL;
 955}
 956
 957/*
 958 *      Increment reference count on buffer, to hold the buffer concurrently
 959 *      with another thread which may release (free) the buffer asynchronously.
 960 *      Must hold the buffer already to call this function.
 961 */
 962void
 963xfs_buf_hold(
 964        xfs_buf_t               *bp)
 965{
 966        trace_xfs_buf_hold(bp, _RET_IP_);
 967        atomic_inc(&bp->b_hold);
 968}
 969
 970/*
 971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
 972 * placed on LRU or freed (depending on b_lru_ref).
 973 */
 974void
 975xfs_buf_rele(
 976        xfs_buf_t               *bp)
 977{
 978        struct xfs_perag        *pag = bp->b_pag;
 979        bool                    release;
 980        bool                    freebuf = false;
 981
 982        trace_xfs_buf_rele(bp, _RET_IP_);
 983
 984        if (!pag) {
 985                ASSERT(list_empty(&bp->b_lru));
 986                if (atomic_dec_and_test(&bp->b_hold)) {
 987                        xfs_buf_ioacct_dec(bp);
 988                        xfs_buf_free(bp);
 989                }
 990                return;
 991        }
 992
 993        ASSERT(atomic_read(&bp->b_hold) > 0);
 994
 995        /*
 996         * We grab the b_lock here first to serialise racing xfs_buf_rele()
 997         * calls. The pag_buf_lock being taken on the last reference only
 998         * serialises against racing lookups in xfs_buf_find(). IOWs, the second
 999         * to last reference we drop here is not serialised against the last
1000         * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001         * first, the last "release" reference can win the race to the lock and
1002         * free the buffer before the second-to-last reference is processed,
1003         * leading to a use-after-free scenario.
1004         */
1005        spin_lock(&bp->b_lock);
1006        release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007        if (!release) {
1008                /*
1009                 * Drop the in-flight state if the buffer is already on the LRU
1010                 * and it holds the only reference. This is racy because we
1011                 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012                 * ensures the decrement occurs only once per-buf.
1013                 */
1014                if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015                        __xfs_buf_ioacct_dec(bp);
1016                goto out_unlock;
1017        }
1018
1019        /* the last reference has been dropped ... */
1020        __xfs_buf_ioacct_dec(bp);
1021        if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022                /*
1023                 * If the buffer is added to the LRU take a new reference to the
1024                 * buffer for the LRU and clear the (now stale) dispose list
1025                 * state flag
1026                 */
1027                if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028                        bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029                        atomic_inc(&bp->b_hold);
1030                }
1031                spin_unlock(&pag->pag_buf_lock);
1032        } else {
1033                /*
1034                 * most of the time buffers will already be removed from the
1035                 * LRU, so optimise that case by checking for the
1036                 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037                 * was on was the disposal list
1038                 */
1039                if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040                        list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041                } else {
1042                        ASSERT(list_empty(&bp->b_lru));
1043                }
1044
1045                ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046                rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047                                       xfs_buf_hash_params);
1048                spin_unlock(&pag->pag_buf_lock);
1049                xfs_perag_put(pag);
1050                freebuf = true;
1051        }
1052
1053out_unlock:
1054        spin_unlock(&bp->b_lock);
1055
1056        if (freebuf)
1057                xfs_buf_free(bp);
1058}
1059
1060
1061/*
1062 *      Lock a buffer object, if it is not already locked.
1063 *
1064 *      If we come across a stale, pinned, locked buffer, we know that we are
1065 *      being asked to lock a buffer that has been reallocated. Because it is
1066 *      pinned, we know that the log has not been pushed to disk and hence it
1067 *      will still be locked.  Rather than continuing to have trylock attempts
1068 *      fail until someone else pushes the log, push it ourselves before
1069 *      returning.  This means that the xfsaild will not get stuck trying
1070 *      to push on stale inode buffers.
1071 */
1072int
1073xfs_buf_trylock(
1074        struct xfs_buf          *bp)
1075{
1076        int                     locked;
1077
1078        locked = down_trylock(&bp->b_sema) == 0;
1079        if (locked)
1080                trace_xfs_buf_trylock(bp, _RET_IP_);
1081        else
1082                trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1083        return locked;
1084}
1085
1086/*
1087 *      Lock a buffer object.
1088 *
1089 *      If we come across a stale, pinned, locked buffer, we know that we
1090 *      are being asked to lock a buffer that has been reallocated. Because
1091 *      it is pinned, we know that the log has not been pushed to disk and
1092 *      hence it will still be locked. Rather than sleeping until someone
1093 *      else pushes the log, push it ourselves before trying to get the lock.
1094 */
1095void
1096xfs_buf_lock(
1097        struct xfs_buf          *bp)
1098{
1099        trace_xfs_buf_lock(bp, _RET_IP_);
1100
1101        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102                xfs_log_force(bp->b_mount, 0);
1103        down(&bp->b_sema);
1104
1105        trace_xfs_buf_lock_done(bp, _RET_IP_);
1106}
1107
1108void
1109xfs_buf_unlock(
1110        struct xfs_buf          *bp)
1111{
1112        ASSERT(xfs_buf_islocked(bp));
1113
1114        up(&bp->b_sema);
1115        trace_xfs_buf_unlock(bp, _RET_IP_);
1116}
1117
1118STATIC void
1119xfs_buf_wait_unpin(
1120        xfs_buf_t               *bp)
1121{
1122        DECLARE_WAITQUEUE       (wait, current);
1123
1124        if (atomic_read(&bp->b_pin_count) == 0)
1125                return;
1126
1127        add_wait_queue(&bp->b_waiters, &wait);
1128        for (;;) {
1129                set_current_state(TASK_UNINTERRUPTIBLE);
1130                if (atomic_read(&bp->b_pin_count) == 0)
1131                        break;
1132                io_schedule();
1133        }
1134        remove_wait_queue(&bp->b_waiters, &wait);
1135        set_current_state(TASK_RUNNING);
1136}
1137
1138/*
1139 *      Buffer Utility Routines
1140 */
1141
1142void
1143xfs_buf_ioend(
1144        struct xfs_buf  *bp)
1145{
1146        bool            read = bp->b_flags & XBF_READ;
1147
1148        trace_xfs_buf_iodone(bp, _RET_IP_);
1149
1150        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151
1152        /*
1153         * Pull in IO completion errors now. We are guaranteed to be running
1154         * single threaded, so we don't need the lock to read b_io_error.
1155         */
1156        if (!bp->b_error && bp->b_io_error)
1157                xfs_buf_ioerror(bp, bp->b_io_error);
1158
1159        /* Only validate buffers that were read without errors */
1160        if (read && !bp->b_error && bp->b_ops) {
1161                ASSERT(!bp->b_iodone);
1162                bp->b_ops->verify_read(bp);
1163        }
1164
1165        if (!bp->b_error)
1166                bp->b_flags |= XBF_DONE;
1167
1168        if (bp->b_iodone)
1169                (*(bp->b_iodone))(bp);
1170        else if (bp->b_flags & XBF_ASYNC)
1171                xfs_buf_relse(bp);
1172        else
1173                complete(&bp->b_iowait);
1174}
1175
1176static void
1177xfs_buf_ioend_work(
1178        struct work_struct      *work)
1179{
1180        struct xfs_buf          *bp =
1181                container_of(work, xfs_buf_t, b_ioend_work);
1182
1183        xfs_buf_ioend(bp);
1184}
1185
1186static void
1187xfs_buf_ioend_async(
1188        struct xfs_buf  *bp)
1189{
1190        INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191        queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1192}
1193
1194void
1195__xfs_buf_ioerror(
1196        xfs_buf_t               *bp,
1197        int                     error,
1198        xfs_failaddr_t          failaddr)
1199{
1200        ASSERT(error <= 0 && error >= -1000);
1201        bp->b_error = error;
1202        trace_xfs_buf_ioerror(bp, error, failaddr);
1203}
1204
1205void
1206xfs_buf_ioerror_alert(
1207        struct xfs_buf          *bp,
1208        const char              *func)
1209{
1210        xfs_alert(bp->b_mount,
1211"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212                        func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213                        -bp->b_error);
1214}
1215
1216int
1217xfs_bwrite(
1218        struct xfs_buf          *bp)
1219{
1220        int                     error;
1221
1222        ASSERT(xfs_buf_islocked(bp));
1223
1224        bp->b_flags |= XBF_WRITE;
1225        bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226                         XBF_WRITE_FAIL | XBF_DONE);
1227
1228        error = xfs_buf_submit(bp);
1229        if (error)
1230                xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1231        return error;
1232}
1233
1234static void
1235xfs_buf_bio_end_io(
1236        struct bio              *bio)
1237{
1238        struct xfs_buf          *bp = (struct xfs_buf *)bio->bi_private;
1239
1240        /*
1241         * don't overwrite existing errors - otherwise we can lose errors on
1242         * buffers that require multiple bios to complete.
1243         */
1244        if (bio->bi_status) {
1245                int error = blk_status_to_errno(bio->bi_status);
1246
1247                cmpxchg(&bp->b_io_error, 0, error);
1248        }
1249
1250        if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1251                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252
1253        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254                xfs_buf_ioend_async(bp);
1255        bio_put(bio);
1256}
1257
1258static void
1259xfs_buf_ioapply_map(
1260        struct xfs_buf  *bp,
1261        int             map,
1262        int             *buf_offset,
1263        int             *count,
1264        int             op,
1265        int             op_flags)
1266{
1267        int             page_index;
1268        int             total_nr_pages = bp->b_page_count;
1269        int             nr_pages;
1270        struct bio      *bio;
1271        sector_t        sector =  bp->b_maps[map].bm_bn;
1272        int             size;
1273        int             offset;
1274
1275        /* skip the pages in the buffer before the start offset */
1276        page_index = 0;
1277        offset = *buf_offset;
1278        while (offset >= PAGE_SIZE) {
1279                page_index++;
1280                offset -= PAGE_SIZE;
1281        }
1282
1283        /*
1284         * Limit the IO size to the length of the current vector, and update the
1285         * remaining IO count for the next time around.
1286         */
1287        size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1288        *count -= size;
1289        *buf_offset += size;
1290
1291next_chunk:
1292        atomic_inc(&bp->b_io_remaining);
1293        nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1294
1295        bio = bio_alloc(GFP_NOIO, nr_pages);
1296        bio_set_dev(bio, bp->b_target->bt_bdev);
1297        bio->bi_iter.bi_sector = sector;
1298        bio->bi_end_io = xfs_buf_bio_end_io;
1299        bio->bi_private = bp;
1300        bio_set_op_attrs(bio, op, op_flags);
1301
1302        for (; size && nr_pages; nr_pages--, page_index++) {
1303                int     rbytes, nbytes = PAGE_SIZE - offset;
1304
1305                if (nbytes > size)
1306                        nbytes = size;
1307
1308                rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1309                                      offset);
1310                if (rbytes < nbytes)
1311                        break;
1312
1313                offset = 0;
1314                sector += BTOBB(nbytes);
1315                size -= nbytes;
1316                total_nr_pages--;
1317        }
1318
1319        if (likely(bio->bi_iter.bi_size)) {
1320                if (xfs_buf_is_vmapped(bp)) {
1321                        flush_kernel_vmap_range(bp->b_addr,
1322                                                xfs_buf_vmap_len(bp));
1323                }
1324                submit_bio(bio);
1325                if (size)
1326                        goto next_chunk;
1327        } else {
1328                /*
1329                 * This is guaranteed not to be the last io reference count
1330                 * because the caller (xfs_buf_submit) holds a count itself.
1331                 */
1332                atomic_dec(&bp->b_io_remaining);
1333                xfs_buf_ioerror(bp, -EIO);
1334                bio_put(bio);
1335        }
1336
1337}
1338
1339STATIC void
1340_xfs_buf_ioapply(
1341        struct xfs_buf  *bp)
1342{
1343        struct blk_plug plug;
1344        int             op;
1345        int             op_flags = 0;
1346        int             offset;
1347        int             size;
1348        int             i;
1349
1350        /*
1351         * Make sure we capture only current IO errors rather than stale errors
1352         * left over from previous use of the buffer (e.g. failed readahead).
1353         */
1354        bp->b_error = 0;
1355
1356        if (bp->b_flags & XBF_WRITE) {
1357                op = REQ_OP_WRITE;
1358
1359                /*
1360                 * Run the write verifier callback function if it exists. If
1361                 * this function fails it will mark the buffer with an error and
1362                 * the IO should not be dispatched.
1363                 */
1364                if (bp->b_ops) {
1365                        bp->b_ops->verify_write(bp);
1366                        if (bp->b_error) {
1367                                xfs_force_shutdown(bp->b_mount,
1368                                                   SHUTDOWN_CORRUPT_INCORE);
1369                                return;
1370                        }
1371                } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1372                        struct xfs_mount *mp = bp->b_mount;
1373
1374                        /*
1375                         * non-crc filesystems don't attach verifiers during
1376                         * log recovery, so don't warn for such filesystems.
1377                         */
1378                        if (xfs_sb_version_hascrc(&mp->m_sb)) {
1379                                xfs_warn(mp,
1380                                        "%s: no buf ops on daddr 0x%llx len %d",
1381                                        __func__, bp->b_bn, bp->b_length);
1382                                xfs_hex_dump(bp->b_addr,
1383                                                XFS_CORRUPTION_DUMP_LEN);
1384                                dump_stack();
1385                        }
1386                }
1387        } else if (bp->b_flags & XBF_READ_AHEAD) {
1388                op = REQ_OP_READ;
1389                op_flags = REQ_RAHEAD;
1390        } else {
1391                op = REQ_OP_READ;
1392        }
1393
1394        /* we only use the buffer cache for meta-data */
1395        op_flags |= REQ_META;
1396
1397        /*
1398         * Walk all the vectors issuing IO on them. Set up the initial offset
1399         * into the buffer and the desired IO size before we start -
1400         * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401         * subsequent call.
1402         */
1403        offset = bp->b_offset;
1404        size = BBTOB(bp->b_length);
1405        blk_start_plug(&plug);
1406        for (i = 0; i < bp->b_map_count; i++) {
1407                xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408                if (bp->b_error)
1409                        break;
1410                if (size <= 0)
1411                        break;  /* all done */
1412        }
1413        blk_finish_plug(&plug);
1414}
1415
1416/*
1417 * Wait for I/O completion of a sync buffer and return the I/O error code.
1418 */
1419static int
1420xfs_buf_iowait(
1421        struct xfs_buf  *bp)
1422{
1423        ASSERT(!(bp->b_flags & XBF_ASYNC));
1424
1425        trace_xfs_buf_iowait(bp, _RET_IP_);
1426        wait_for_completion(&bp->b_iowait);
1427        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1428
1429        return bp->b_error;
1430}
1431
1432/*
1433 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1434 * the buffer lock ownership and the current reference to the IO. It is not
1435 * safe to reference the buffer after a call to this function unless the caller
1436 * holds an additional reference itself.
1437 */
1438int
1439__xfs_buf_submit(
1440        struct xfs_buf  *bp,
1441        bool            wait)
1442{
1443        int             error = 0;
1444
1445        trace_xfs_buf_submit(bp, _RET_IP_);
1446
1447        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1448
1449        /* on shutdown we stale and complete the buffer immediately */
1450        if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1451                xfs_buf_ioerror(bp, -EIO);
1452                bp->b_flags &= ~XBF_DONE;
1453                xfs_buf_stale(bp);
1454                xfs_buf_ioend(bp);
1455                return -EIO;
1456        }
1457
1458        /*
1459         * Grab a reference so the buffer does not go away underneath us. For
1460         * async buffers, I/O completion drops the callers reference, which
1461         * could occur before submission returns.
1462         */
1463        xfs_buf_hold(bp);
1464
1465        if (bp->b_flags & XBF_WRITE)
1466                xfs_buf_wait_unpin(bp);
1467
1468        /* clear the internal error state to avoid spurious errors */
1469        bp->b_io_error = 0;
1470
1471        /*
1472         * Set the count to 1 initially, this will stop an I/O completion
1473         * callout which happens before we have started all the I/O from calling
1474         * xfs_buf_ioend too early.
1475         */
1476        atomic_set(&bp->b_io_remaining, 1);
1477        if (bp->b_flags & XBF_ASYNC)
1478                xfs_buf_ioacct_inc(bp);
1479        _xfs_buf_ioapply(bp);
1480
1481        /*
1482         * If _xfs_buf_ioapply failed, we can get back here with only the IO
1483         * reference we took above. If we drop it to zero, run completion so
1484         * that we don't return to the caller with completion still pending.
1485         */
1486        if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1487                if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1488                        xfs_buf_ioend(bp);
1489                else
1490                        xfs_buf_ioend_async(bp);
1491        }
1492
1493        if (wait)
1494                error = xfs_buf_iowait(bp);
1495
1496        /*
1497         * Release the hold that keeps the buffer referenced for the entire
1498         * I/O. Note that if the buffer is async, it is not safe to reference
1499         * after this release.
1500         */
1501        xfs_buf_rele(bp);
1502        return error;
1503}
1504
1505void *
1506xfs_buf_offset(
1507        struct xfs_buf          *bp,
1508        size_t                  offset)
1509{
1510        struct page             *page;
1511
1512        if (bp->b_addr)
1513                return bp->b_addr + offset;
1514
1515        offset += bp->b_offset;
1516        page = bp->b_pages[offset >> PAGE_SHIFT];
1517        return page_address(page) + (offset & (PAGE_SIZE-1));
1518}
1519
1520void
1521xfs_buf_zero(
1522        struct xfs_buf          *bp,
1523        size_t                  boff,
1524        size_t                  bsize)
1525{
1526        size_t                  bend;
1527
1528        bend = boff + bsize;
1529        while (boff < bend) {
1530                struct page     *page;
1531                int             page_index, page_offset, csize;
1532
1533                page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1534                page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1535                page = bp->b_pages[page_index];
1536                csize = min_t(size_t, PAGE_SIZE - page_offset,
1537                                      BBTOB(bp->b_length) - boff);
1538
1539                ASSERT((csize + page_offset) <= PAGE_SIZE);
1540
1541                memset(page_address(page) + page_offset, 0, csize);
1542
1543                boff += csize;
1544        }
1545}
1546
1547/*
1548 *      Handling of buffer targets (buftargs).
1549 */
1550
1551/*
1552 * Wait for any bufs with callbacks that have been submitted but have not yet
1553 * returned. These buffers will have an elevated hold count, so wait on those
1554 * while freeing all the buffers only held by the LRU.
1555 */
1556static enum lru_status
1557xfs_buftarg_wait_rele(
1558        struct list_head        *item,
1559        struct list_lru_one     *lru,
1560        spinlock_t              *lru_lock,
1561        void                    *arg)
1562
1563{
1564        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1565        struct list_head        *dispose = arg;
1566
1567        if (atomic_read(&bp->b_hold) > 1) {
1568                /* need to wait, so skip it this pass */
1569                trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1570                return LRU_SKIP;
1571        }
1572        if (!spin_trylock(&bp->b_lock))
1573                return LRU_SKIP;
1574
1575        /*
1576         * clear the LRU reference count so the buffer doesn't get
1577         * ignored in xfs_buf_rele().
1578         */
1579        atomic_set(&bp->b_lru_ref, 0);
1580        bp->b_state |= XFS_BSTATE_DISPOSE;
1581        list_lru_isolate_move(lru, item, dispose);
1582        spin_unlock(&bp->b_lock);
1583        return LRU_REMOVED;
1584}
1585
1586void
1587xfs_wait_buftarg(
1588        struct xfs_buftarg      *btp)
1589{
1590        LIST_HEAD(dispose);
1591        int loop = 0;
1592
1593        /*
1594         * First wait on the buftarg I/O count for all in-flight buffers to be
1595         * released. This is critical as new buffers do not make the LRU until
1596         * they are released.
1597         *
1598         * Next, flush the buffer workqueue to ensure all completion processing
1599         * has finished. Just waiting on buffer locks is not sufficient for
1600         * async IO as the reference count held over IO is not released until
1601         * after the buffer lock is dropped. Hence we need to ensure here that
1602         * all reference counts have been dropped before we start walking the
1603         * LRU list.
1604         */
1605        while (percpu_counter_sum(&btp->bt_io_count))
1606                delay(100);
1607        flush_workqueue(btp->bt_mount->m_buf_workqueue);
1608
1609        /* loop until there is nothing left on the lru list. */
1610        while (list_lru_count(&btp->bt_lru)) {
1611                list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1612                              &dispose, LONG_MAX);
1613
1614                while (!list_empty(&dispose)) {
1615                        struct xfs_buf *bp;
1616                        bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1617                        list_del_init(&bp->b_lru);
1618                        if (bp->b_flags & XBF_WRITE_FAIL) {
1619                                xfs_alert(btp->bt_mount,
1620"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1621                                        (long long)bp->b_bn);
1622                                xfs_alert(btp->bt_mount,
1623"Please run xfs_repair to determine the extent of the problem.");
1624                        }
1625                        xfs_buf_rele(bp);
1626                }
1627                if (loop++ != 0)
1628                        delay(100);
1629        }
1630}
1631
1632static enum lru_status
1633xfs_buftarg_isolate(
1634        struct list_head        *item,
1635        struct list_lru_one     *lru,
1636        spinlock_t              *lru_lock,
1637        void                    *arg)
1638{
1639        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1640        struct list_head        *dispose = arg;
1641
1642        /*
1643         * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1644         * If we fail to get the lock, just skip it.
1645         */
1646        if (!spin_trylock(&bp->b_lock))
1647                return LRU_SKIP;
1648        /*
1649         * Decrement the b_lru_ref count unless the value is already
1650         * zero. If the value is already zero, we need to reclaim the
1651         * buffer, otherwise it gets another trip through the LRU.
1652         */
1653        if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1654                spin_unlock(&bp->b_lock);
1655                return LRU_ROTATE;
1656        }
1657
1658        bp->b_state |= XFS_BSTATE_DISPOSE;
1659        list_lru_isolate_move(lru, item, dispose);
1660        spin_unlock(&bp->b_lock);
1661        return LRU_REMOVED;
1662}
1663
1664static unsigned long
1665xfs_buftarg_shrink_scan(
1666        struct shrinker         *shrink,
1667        struct shrink_control   *sc)
1668{
1669        struct xfs_buftarg      *btp = container_of(shrink,
1670                                        struct xfs_buftarg, bt_shrinker);
1671        LIST_HEAD(dispose);
1672        unsigned long           freed;
1673
1674        freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1675                                     xfs_buftarg_isolate, &dispose);
1676
1677        while (!list_empty(&dispose)) {
1678                struct xfs_buf *bp;
1679                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1680                list_del_init(&bp->b_lru);
1681                xfs_buf_rele(bp);
1682        }
1683
1684        return freed;
1685}
1686
1687static unsigned long
1688xfs_buftarg_shrink_count(
1689        struct shrinker         *shrink,
1690        struct shrink_control   *sc)
1691{
1692        struct xfs_buftarg      *btp = container_of(shrink,
1693                                        struct xfs_buftarg, bt_shrinker);
1694        return list_lru_shrink_count(&btp->bt_lru, sc);
1695}
1696
1697void
1698xfs_free_buftarg(
1699        struct xfs_buftarg      *btp)
1700{
1701        unregister_shrinker(&btp->bt_shrinker);
1702        ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1703        percpu_counter_destroy(&btp->bt_io_count);
1704        list_lru_destroy(&btp->bt_lru);
1705
1706        xfs_blkdev_issue_flush(btp);
1707
1708        kmem_free(btp);
1709}
1710
1711int
1712xfs_setsize_buftarg(
1713        xfs_buftarg_t           *btp,
1714        unsigned int            sectorsize)
1715{
1716        /* Set up metadata sector size info */
1717        btp->bt_meta_sectorsize = sectorsize;
1718        btp->bt_meta_sectormask = sectorsize - 1;
1719
1720        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1721                xfs_warn(btp->bt_mount,
1722                        "Cannot set_blocksize to %u on device %pg",
1723                        sectorsize, btp->bt_bdev);
1724                return -EINVAL;
1725        }
1726
1727        /* Set up device logical sector size mask */
1728        btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1729        btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1730
1731        return 0;
1732}
1733
1734/*
1735 * When allocating the initial buffer target we have not yet
1736 * read in the superblock, so don't know what sized sectors
1737 * are being used at this early stage.  Play safe.
1738 */
1739STATIC int
1740xfs_setsize_buftarg_early(
1741        xfs_buftarg_t           *btp,
1742        struct block_device     *bdev)
1743{
1744        return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1745}
1746
1747xfs_buftarg_t *
1748xfs_alloc_buftarg(
1749        struct xfs_mount        *mp,
1750        struct block_device     *bdev,
1751        struct dax_device       *dax_dev)
1752{
1753        xfs_buftarg_t           *btp;
1754
1755        btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1756
1757        btp->bt_mount = mp;
1758        btp->bt_dev =  bdev->bd_dev;
1759        btp->bt_bdev = bdev;
1760        btp->bt_daxdev = dax_dev;
1761
1762        if (xfs_setsize_buftarg_early(btp, bdev))
1763                goto error_free;
1764
1765        if (list_lru_init(&btp->bt_lru))
1766                goto error_free;
1767
1768        if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1769                goto error_lru;
1770
1771        btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1772        btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1773        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1774        btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1775        if (register_shrinker(&btp->bt_shrinker))
1776                goto error_pcpu;
1777        return btp;
1778
1779error_pcpu:
1780        percpu_counter_destroy(&btp->bt_io_count);
1781error_lru:
1782        list_lru_destroy(&btp->bt_lru);
1783error_free:
1784        kmem_free(btp);
1785        return NULL;
1786}
1787
1788/*
1789 * Cancel a delayed write list.
1790 *
1791 * Remove each buffer from the list, clear the delwri queue flag and drop the
1792 * associated buffer reference.
1793 */
1794void
1795xfs_buf_delwri_cancel(
1796        struct list_head        *list)
1797{
1798        struct xfs_buf          *bp;
1799
1800        while (!list_empty(list)) {
1801                bp = list_first_entry(list, struct xfs_buf, b_list);
1802
1803                xfs_buf_lock(bp);
1804                bp->b_flags &= ~_XBF_DELWRI_Q;
1805                list_del_init(&bp->b_list);
1806                xfs_buf_relse(bp);
1807        }
1808}
1809
1810/*
1811 * Add a buffer to the delayed write list.
1812 *
1813 * This queues a buffer for writeout if it hasn't already been.  Note that
1814 * neither this routine nor the buffer list submission functions perform
1815 * any internal synchronization.  It is expected that the lists are thread-local
1816 * to the callers.
1817 *
1818 * Returns true if we queued up the buffer, or false if it already had
1819 * been on the buffer list.
1820 */
1821bool
1822xfs_buf_delwri_queue(
1823        struct xfs_buf          *bp,
1824        struct list_head        *list)
1825{
1826        ASSERT(xfs_buf_islocked(bp));
1827        ASSERT(!(bp->b_flags & XBF_READ));
1828
1829        /*
1830         * If the buffer is already marked delwri it already is queued up
1831         * by someone else for imediate writeout.  Just ignore it in that
1832         * case.
1833         */
1834        if (bp->b_flags & _XBF_DELWRI_Q) {
1835                trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1836                return false;
1837        }
1838
1839        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1840
1841        /*
1842         * If a buffer gets written out synchronously or marked stale while it
1843         * is on a delwri list we lazily remove it. To do this, the other party
1844         * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1845         * It remains referenced and on the list.  In a rare corner case it
1846         * might get readded to a delwri list after the synchronous writeout, in
1847         * which case we need just need to re-add the flag here.
1848         */
1849        bp->b_flags |= _XBF_DELWRI_Q;
1850        if (list_empty(&bp->b_list)) {
1851                atomic_inc(&bp->b_hold);
1852                list_add_tail(&bp->b_list, list);
1853        }
1854
1855        return true;
1856}
1857
1858/*
1859 * Compare function is more complex than it needs to be because
1860 * the return value is only 32 bits and we are doing comparisons
1861 * on 64 bit values
1862 */
1863static int
1864xfs_buf_cmp(
1865        void            *priv,
1866        struct list_head *a,
1867        struct list_head *b)
1868{
1869        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1870        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1871        xfs_daddr_t             diff;
1872
1873        diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1874        if (diff < 0)
1875                return -1;
1876        if (diff > 0)
1877                return 1;
1878        return 0;
1879}
1880
1881/*
1882 * Submit buffers for write. If wait_list is specified, the buffers are
1883 * submitted using sync I/O and placed on the wait list such that the caller can
1884 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1885 * at I/O completion time. In either case, buffers remain locked until I/O
1886 * completes and the buffer is released from the queue.
1887 */
1888static int
1889xfs_buf_delwri_submit_buffers(
1890        struct list_head        *buffer_list,
1891        struct list_head        *wait_list)
1892{
1893        struct xfs_buf          *bp, *n;
1894        int                     pinned = 0;
1895        struct blk_plug         plug;
1896
1897        list_sort(NULL, buffer_list, xfs_buf_cmp);
1898
1899        blk_start_plug(&plug);
1900        list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1901                if (!wait_list) {
1902                        if (xfs_buf_ispinned(bp)) {
1903                                pinned++;
1904                                continue;
1905                        }
1906                        if (!xfs_buf_trylock(bp))
1907                                continue;
1908                } else {
1909                        xfs_buf_lock(bp);
1910                }
1911
1912                /*
1913                 * Someone else might have written the buffer synchronously or
1914                 * marked it stale in the meantime.  In that case only the
1915                 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1916                 * reference and remove it from the list here.
1917                 */
1918                if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1919                        list_del_init(&bp->b_list);
1920                        xfs_buf_relse(bp);
1921                        continue;
1922                }
1923
1924                trace_xfs_buf_delwri_split(bp, _RET_IP_);
1925
1926                /*
1927                 * If we have a wait list, each buffer (and associated delwri
1928                 * queue reference) transfers to it and is submitted
1929                 * synchronously. Otherwise, drop the buffer from the delwri
1930                 * queue and submit async.
1931                 */
1932                bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1933                bp->b_flags |= XBF_WRITE;
1934                if (wait_list) {
1935                        bp->b_flags &= ~XBF_ASYNC;
1936                        list_move_tail(&bp->b_list, wait_list);
1937                } else {
1938                        bp->b_flags |= XBF_ASYNC;
1939                        list_del_init(&bp->b_list);
1940                }
1941                __xfs_buf_submit(bp, false);
1942        }
1943        blk_finish_plug(&plug);
1944
1945        return pinned;
1946}
1947
1948/*
1949 * Write out a buffer list asynchronously.
1950 *
1951 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1952 * out and not wait for I/O completion on any of the buffers.  This interface
1953 * is only safely useable for callers that can track I/O completion by higher
1954 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1955 * function.
1956 *
1957 * Note: this function will skip buffers it would block on, and in doing so
1958 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1959 * it is up to the caller to ensure that the buffer list is fully submitted or
1960 * cancelled appropriately when they are finished with the list. Failure to
1961 * cancel or resubmit the list until it is empty will result in leaked buffers
1962 * at unmount time.
1963 */
1964int
1965xfs_buf_delwri_submit_nowait(
1966        struct list_head        *buffer_list)
1967{
1968        return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1969}
1970
1971/*
1972 * Write out a buffer list synchronously.
1973 *
1974 * This will take the @buffer_list, write all buffers out and wait for I/O
1975 * completion on all of the buffers. @buffer_list is consumed by the function,
1976 * so callers must have some other way of tracking buffers if they require such
1977 * functionality.
1978 */
1979int
1980xfs_buf_delwri_submit(
1981        struct list_head        *buffer_list)
1982{
1983        LIST_HEAD               (wait_list);
1984        int                     error = 0, error2;
1985        struct xfs_buf          *bp;
1986
1987        xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1988
1989        /* Wait for IO to complete. */
1990        while (!list_empty(&wait_list)) {
1991                bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1992
1993                list_del_init(&bp->b_list);
1994
1995                /*
1996                 * Wait on the locked buffer, check for errors and unlock and
1997                 * release the delwri queue reference.
1998                 */
1999                error2 = xfs_buf_iowait(bp);
2000                xfs_buf_relse(bp);
2001                if (!error)
2002                        error = error2;
2003        }
2004
2005        return error;
2006}
2007
2008/*
2009 * Push a single buffer on a delwri queue.
2010 *
2011 * The purpose of this function is to submit a single buffer of a delwri queue
2012 * and return with the buffer still on the original queue. The waiting delwri
2013 * buffer submission infrastructure guarantees transfer of the delwri queue
2014 * buffer reference to a temporary wait list. We reuse this infrastructure to
2015 * transfer the buffer back to the original queue.
2016 *
2017 * Note the buffer transitions from the queued state, to the submitted and wait
2018 * listed state and back to the queued state during this call. The buffer
2019 * locking and queue management logic between _delwri_pushbuf() and
2020 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2021 * before returning.
2022 */
2023int
2024xfs_buf_delwri_pushbuf(
2025        struct xfs_buf          *bp,
2026        struct list_head        *buffer_list)
2027{
2028        LIST_HEAD               (submit_list);
2029        int                     error;
2030
2031        ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2032
2033        trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2034
2035        /*
2036         * Isolate the buffer to a new local list so we can submit it for I/O
2037         * independently from the rest of the original list.
2038         */
2039        xfs_buf_lock(bp);
2040        list_move(&bp->b_list, &submit_list);
2041        xfs_buf_unlock(bp);
2042
2043        /*
2044         * Delwri submission clears the DELWRI_Q buffer flag and returns with
2045         * the buffer on the wait list with the original reference. Rather than
2046         * bounce the buffer from a local wait list back to the original list
2047         * after I/O completion, reuse the original list as the wait list.
2048         */
2049        xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2050
2051        /*
2052         * The buffer is now locked, under I/O and wait listed on the original
2053         * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2054         * return with the buffer unlocked and on the original queue.
2055         */
2056        error = xfs_buf_iowait(bp);
2057        bp->b_flags |= _XBF_DELWRI_Q;
2058        xfs_buf_unlock(bp);
2059
2060        return error;
2061}
2062
2063int __init
2064xfs_buf_init(void)
2065{
2066        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2067                                                KM_ZONE_HWALIGN, NULL);
2068        if (!xfs_buf_zone)
2069                goto out;
2070
2071        return 0;
2072
2073 out:
2074        return -ENOMEM;
2075}
2076
2077void
2078xfs_buf_terminate(void)
2079{
2080        kmem_zone_destroy(xfs_buf_zone);
2081}
2082
2083void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2084{
2085        /*
2086         * Set the lru reference count to 0 based on the error injection tag.
2087         * This allows userspace to disrupt buffer caching for debug/testing
2088         * purposes.
2089         */
2090        if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2091                lru_ref = 0;
2092
2093        atomic_set(&bp->b_lru_ref, lru_ref);
2094}
2095
2096/*
2097 * Verify an on-disk magic value against the magic value specified in the
2098 * verifier structure. The verifier magic is in disk byte order so the caller is
2099 * expected to pass the value directly from disk.
2100 */
2101bool
2102xfs_verify_magic(
2103        struct xfs_buf          *bp,
2104        __be32                  dmagic)
2105{
2106        struct xfs_mount        *mp = bp->b_mount;
2107        int                     idx;
2108
2109        idx = xfs_sb_version_hascrc(&mp->m_sb);
2110        if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2111                return false;
2112        return dmagic == bp->b_ops->magic[idx];
2113}
2114/*
2115 * Verify an on-disk magic value against the magic value specified in the
2116 * verifier structure. The verifier magic is in disk byte order so the caller is
2117 * expected to pass the value directly from disk.
2118 */
2119bool
2120xfs_verify_magic16(
2121        struct xfs_buf          *bp,
2122        __be16                  dmagic)
2123{
2124        struct xfs_mount        *mp = bp->b_mount;
2125        int                     idx;
2126
2127        idx = xfs_sb_version_hascrc(&mp->m_sb);
2128        if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2129                return false;
2130        return dmagic == bp->b_ops->magic16[idx];
2131}
2132