linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t     *xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC int
  28xlog_commit_record(
  29        struct xlog             *log,
  30        struct xlog_ticket      *ticket,
  31        struct xlog_in_core     **iclog,
  32        xfs_lsn_t               *commitlsnp);
  33
  34STATIC struct xlog *
  35xlog_alloc_log(
  36        struct xfs_mount        *mp,
  37        struct xfs_buftarg      *log_target,
  38        xfs_daddr_t             blk_offset,
  39        int                     num_bblks);
  40STATIC int
  41xlog_space_left(
  42        struct xlog             *log,
  43        atomic64_t              *head);
  44STATIC void
  45xlog_dealloc_log(
  46        struct xlog             *log);
  47
  48/* local state machine functions */
  49STATIC void xlog_state_done_syncing(
  50        struct xlog_in_core     *iclog,
  51        bool                    aborted);
  52STATIC int
  53xlog_state_get_iclog_space(
  54        struct xlog             *log,
  55        int                     len,
  56        struct xlog_in_core     **iclog,
  57        struct xlog_ticket      *ticket,
  58        int                     *continued_write,
  59        int                     *logoffsetp);
  60STATIC int
  61xlog_state_release_iclog(
  62        struct xlog             *log,
  63        struct xlog_in_core     *iclog);
  64STATIC void
  65xlog_state_switch_iclogs(
  66        struct xlog             *log,
  67        struct xlog_in_core     *iclog,
  68        int                     eventual_size);
  69STATIC void
  70xlog_state_want_sync(
  71        struct xlog             *log,
  72        struct xlog_in_core     *iclog);
  73
  74STATIC void
  75xlog_grant_push_ail(
  76        struct xlog             *log,
  77        int                     need_bytes);
  78STATIC void
  79xlog_regrant_reserve_log_space(
  80        struct xlog             *log,
  81        struct xlog_ticket      *ticket);
  82STATIC void
  83xlog_ungrant_log_space(
  84        struct xlog             *log,
  85        struct xlog_ticket      *ticket);
  86
  87#if defined(DEBUG)
  88STATIC void
  89xlog_verify_dest_ptr(
  90        struct xlog             *log,
  91        void                    *ptr);
  92STATIC void
  93xlog_verify_grant_tail(
  94        struct xlog *log);
  95STATIC void
  96xlog_verify_iclog(
  97        struct xlog             *log,
  98        struct xlog_in_core     *iclog,
  99        int                     count);
 100STATIC void
 101xlog_verify_tail_lsn(
 102        struct xlog             *log,
 103        struct xlog_in_core     *iclog,
 104        xfs_lsn_t               tail_lsn);
 105#else
 106#define xlog_verify_dest_ptr(a,b)
 107#define xlog_verify_grant_tail(a)
 108#define xlog_verify_iclog(a,b,c)
 109#define xlog_verify_tail_lsn(a,b,c)
 110#endif
 111
 112STATIC int
 113xlog_iclogs_empty(
 114        struct xlog             *log);
 115
 116static void
 117xlog_grant_sub_space(
 118        struct xlog             *log,
 119        atomic64_t              *head,
 120        int                     bytes)
 121{
 122        int64_t head_val = atomic64_read(head);
 123        int64_t new, old;
 124
 125        do {
 126                int     cycle, space;
 127
 128                xlog_crack_grant_head_val(head_val, &cycle, &space);
 129
 130                space -= bytes;
 131                if (space < 0) {
 132                        space += log->l_logsize;
 133                        cycle--;
 134                }
 135
 136                old = head_val;
 137                new = xlog_assign_grant_head_val(cycle, space);
 138                head_val = atomic64_cmpxchg(head, old, new);
 139        } while (head_val != old);
 140}
 141
 142static void
 143xlog_grant_add_space(
 144        struct xlog             *log,
 145        atomic64_t              *head,
 146        int                     bytes)
 147{
 148        int64_t head_val = atomic64_read(head);
 149        int64_t new, old;
 150
 151        do {
 152                int             tmp;
 153                int             cycle, space;
 154
 155                xlog_crack_grant_head_val(head_val, &cycle, &space);
 156
 157                tmp = log->l_logsize - space;
 158                if (tmp > bytes)
 159                        space += bytes;
 160                else {
 161                        space = bytes - tmp;
 162                        cycle++;
 163                }
 164
 165                old = head_val;
 166                new = xlog_assign_grant_head_val(cycle, space);
 167                head_val = atomic64_cmpxchg(head, old, new);
 168        } while (head_val != old);
 169}
 170
 171STATIC void
 172xlog_grant_head_init(
 173        struct xlog_grant_head  *head)
 174{
 175        xlog_assign_grant_head(&head->grant, 1, 0);
 176        INIT_LIST_HEAD(&head->waiters);
 177        spin_lock_init(&head->lock);
 178}
 179
 180STATIC void
 181xlog_grant_head_wake_all(
 182        struct xlog_grant_head  *head)
 183{
 184        struct xlog_ticket      *tic;
 185
 186        spin_lock(&head->lock);
 187        list_for_each_entry(tic, &head->waiters, t_queue)
 188                wake_up_process(tic->t_task);
 189        spin_unlock(&head->lock);
 190}
 191
 192static inline int
 193xlog_ticket_reservation(
 194        struct xlog             *log,
 195        struct xlog_grant_head  *head,
 196        struct xlog_ticket      *tic)
 197{
 198        if (head == &log->l_write_head) {
 199                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 200                return tic->t_unit_res;
 201        } else {
 202                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 203                        return tic->t_unit_res * tic->t_cnt;
 204                else
 205                        return tic->t_unit_res;
 206        }
 207}
 208
 209STATIC bool
 210xlog_grant_head_wake(
 211        struct xlog             *log,
 212        struct xlog_grant_head  *head,
 213        int                     *free_bytes)
 214{
 215        struct xlog_ticket      *tic;
 216        int                     need_bytes;
 217        bool                    woken_task = false;
 218
 219        list_for_each_entry(tic, &head->waiters, t_queue) {
 220
 221                /*
 222                 * There is a chance that the size of the CIL checkpoints in
 223                 * progress at the last AIL push target calculation resulted in
 224                 * limiting the target to the log head (l_last_sync_lsn) at the
 225                 * time. This may not reflect where the log head is now as the
 226                 * CIL checkpoints may have completed.
 227                 *
 228                 * Hence when we are woken here, it may be that the head of the
 229                 * log that has moved rather than the tail. As the tail didn't
 230                 * move, there still won't be space available for the
 231                 * reservation we require.  However, if the AIL has already
 232                 * pushed to the target defined by the old log head location, we
 233                 * will hang here waiting for something else to update the AIL
 234                 * push target.
 235                 *
 236                 * Therefore, if there isn't space to wake the first waiter on
 237                 * the grant head, we need to push the AIL again to ensure the
 238                 * target reflects both the current log tail and log head
 239                 * position before we wait for the tail to move again.
 240                 */
 241
 242                need_bytes = xlog_ticket_reservation(log, head, tic);
 243                if (*free_bytes < need_bytes) {
 244                        if (!woken_task)
 245                                xlog_grant_push_ail(log, need_bytes);
 246                        return false;
 247                }
 248
 249                *free_bytes -= need_bytes;
 250                trace_xfs_log_grant_wake_up(log, tic);
 251                wake_up_process(tic->t_task);
 252                woken_task = true;
 253        }
 254
 255        return true;
 256}
 257
 258STATIC int
 259xlog_grant_head_wait(
 260        struct xlog             *log,
 261        struct xlog_grant_head  *head,
 262        struct xlog_ticket      *tic,
 263        int                     need_bytes) __releases(&head->lock)
 264                                            __acquires(&head->lock)
 265{
 266        list_add_tail(&tic->t_queue, &head->waiters);
 267
 268        do {
 269                if (XLOG_FORCED_SHUTDOWN(log))
 270                        goto shutdown;
 271                xlog_grant_push_ail(log, need_bytes);
 272
 273                __set_current_state(TASK_UNINTERRUPTIBLE);
 274                spin_unlock(&head->lock);
 275
 276                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 277
 278                trace_xfs_log_grant_sleep(log, tic);
 279                schedule();
 280                trace_xfs_log_grant_wake(log, tic);
 281
 282                spin_lock(&head->lock);
 283                if (XLOG_FORCED_SHUTDOWN(log))
 284                        goto shutdown;
 285        } while (xlog_space_left(log, &head->grant) < need_bytes);
 286
 287        list_del_init(&tic->t_queue);
 288        return 0;
 289shutdown:
 290        list_del_init(&tic->t_queue);
 291        return -EIO;
 292}
 293
 294/*
 295 * Atomically get the log space required for a log ticket.
 296 *
 297 * Once a ticket gets put onto head->waiters, it will only return after the
 298 * needed reservation is satisfied.
 299 *
 300 * This function is structured so that it has a lock free fast path. This is
 301 * necessary because every new transaction reservation will come through this
 302 * path. Hence any lock will be globally hot if we take it unconditionally on
 303 * every pass.
 304 *
 305 * As tickets are only ever moved on and off head->waiters under head->lock, we
 306 * only need to take that lock if we are going to add the ticket to the queue
 307 * and sleep. We can avoid taking the lock if the ticket was never added to
 308 * head->waiters because the t_queue list head will be empty and we hold the
 309 * only reference to it so it can safely be checked unlocked.
 310 */
 311STATIC int
 312xlog_grant_head_check(
 313        struct xlog             *log,
 314        struct xlog_grant_head  *head,
 315        struct xlog_ticket      *tic,
 316        int                     *need_bytes)
 317{
 318        int                     free_bytes;
 319        int                     error = 0;
 320
 321        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 322
 323        /*
 324         * If there are other waiters on the queue then give them a chance at
 325         * logspace before us.  Wake up the first waiters, if we do not wake
 326         * up all the waiters then go to sleep waiting for more free space,
 327         * otherwise try to get some space for this transaction.
 328         */
 329        *need_bytes = xlog_ticket_reservation(log, head, tic);
 330        free_bytes = xlog_space_left(log, &head->grant);
 331        if (!list_empty_careful(&head->waiters)) {
 332                spin_lock(&head->lock);
 333                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 334                    free_bytes < *need_bytes) {
 335                        error = xlog_grant_head_wait(log, head, tic,
 336                                                     *need_bytes);
 337                }
 338                spin_unlock(&head->lock);
 339        } else if (free_bytes < *need_bytes) {
 340                spin_lock(&head->lock);
 341                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 342                spin_unlock(&head->lock);
 343        }
 344
 345        return error;
 346}
 347
 348static void
 349xlog_tic_reset_res(xlog_ticket_t *tic)
 350{
 351        tic->t_res_num = 0;
 352        tic->t_res_arr_sum = 0;
 353        tic->t_res_num_ophdrs = 0;
 354}
 355
 356static void
 357xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 358{
 359        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 360                /* add to overflow and start again */
 361                tic->t_res_o_flow += tic->t_res_arr_sum;
 362                tic->t_res_num = 0;
 363                tic->t_res_arr_sum = 0;
 364        }
 365
 366        tic->t_res_arr[tic->t_res_num].r_len = len;
 367        tic->t_res_arr[tic->t_res_num].r_type = type;
 368        tic->t_res_arr_sum += len;
 369        tic->t_res_num++;
 370}
 371
 372/*
 373 * Replenish the byte reservation required by moving the grant write head.
 374 */
 375int
 376xfs_log_regrant(
 377        struct xfs_mount        *mp,
 378        struct xlog_ticket      *tic)
 379{
 380        struct xlog             *log = mp->m_log;
 381        int                     need_bytes;
 382        int                     error = 0;
 383
 384        if (XLOG_FORCED_SHUTDOWN(log))
 385                return -EIO;
 386
 387        XFS_STATS_INC(mp, xs_try_logspace);
 388
 389        /*
 390         * This is a new transaction on the ticket, so we need to change the
 391         * transaction ID so that the next transaction has a different TID in
 392         * the log. Just add one to the existing tid so that we can see chains
 393         * of rolling transactions in the log easily.
 394         */
 395        tic->t_tid++;
 396
 397        xlog_grant_push_ail(log, tic->t_unit_res);
 398
 399        tic->t_curr_res = tic->t_unit_res;
 400        xlog_tic_reset_res(tic);
 401
 402        if (tic->t_cnt > 0)
 403                return 0;
 404
 405        trace_xfs_log_regrant(log, tic);
 406
 407        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 408                                      &need_bytes);
 409        if (error)
 410                goto out_error;
 411
 412        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 413        trace_xfs_log_regrant_exit(log, tic);
 414        xlog_verify_grant_tail(log);
 415        return 0;
 416
 417out_error:
 418        /*
 419         * If we are failing, make sure the ticket doesn't have any current
 420         * reservations.  We don't want to add this back when the ticket/
 421         * transaction gets cancelled.
 422         */
 423        tic->t_curr_res = 0;
 424        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 425        return error;
 426}
 427
 428/*
 429 * Reserve log space and return a ticket corresponding to the reservation.
 430 *
 431 * Each reservation is going to reserve extra space for a log record header.
 432 * When writes happen to the on-disk log, we don't subtract the length of the
 433 * log record header from any reservation.  By wasting space in each
 434 * reservation, we prevent over allocation problems.
 435 */
 436int
 437xfs_log_reserve(
 438        struct xfs_mount        *mp,
 439        int                     unit_bytes,
 440        int                     cnt,
 441        struct xlog_ticket      **ticp,
 442        uint8_t                 client,
 443        bool                    permanent)
 444{
 445        struct xlog             *log = mp->m_log;
 446        struct xlog_ticket      *tic;
 447        int                     need_bytes;
 448        int                     error = 0;
 449
 450        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 451
 452        if (XLOG_FORCED_SHUTDOWN(log))
 453                return -EIO;
 454
 455        XFS_STATS_INC(mp, xs_try_logspace);
 456
 457        ASSERT(*ticp == NULL);
 458        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
 459        *ticp = tic;
 460
 461        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 462                                            : tic->t_unit_res);
 463
 464        trace_xfs_log_reserve(log, tic);
 465
 466        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 467                                      &need_bytes);
 468        if (error)
 469                goto out_error;
 470
 471        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 472        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 473        trace_xfs_log_reserve_exit(log, tic);
 474        xlog_verify_grant_tail(log);
 475        return 0;
 476
 477out_error:
 478        /*
 479         * If we are failing, make sure the ticket doesn't have any current
 480         * reservations.  We don't want to add this back when the ticket/
 481         * transaction gets cancelled.
 482         */
 483        tic->t_curr_res = 0;
 484        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 485        return error;
 486}
 487
 488
 489/*
 490 * NOTES:
 491 *
 492 *      1. currblock field gets updated at startup and after in-core logs
 493 *              marked as with WANT_SYNC.
 494 */
 495
 496/*
 497 * This routine is called when a user of a log manager ticket is done with
 498 * the reservation.  If the ticket was ever used, then a commit record for
 499 * the associated transaction is written out as a log operation header with
 500 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 501 * a given ticket.  If the ticket was one with a permanent reservation, then
 502 * a few operations are done differently.  Permanent reservation tickets by
 503 * default don't release the reservation.  They just commit the current
 504 * transaction with the belief that the reservation is still needed.  A flag
 505 * must be passed in before permanent reservations are actually released.
 506 * When these type of tickets are not released, they need to be set into
 507 * the inited state again.  By doing this, a start record will be written
 508 * out when the next write occurs.
 509 */
 510xfs_lsn_t
 511xfs_log_done(
 512        struct xfs_mount        *mp,
 513        struct xlog_ticket      *ticket,
 514        struct xlog_in_core     **iclog,
 515        bool                    regrant)
 516{
 517        struct xlog             *log = mp->m_log;
 518        xfs_lsn_t               lsn = 0;
 519
 520        if (XLOG_FORCED_SHUTDOWN(log) ||
 521            /*
 522             * If nothing was ever written, don't write out commit record.
 523             * If we get an error, just continue and give back the log ticket.
 524             */
 525            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 526             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 527                lsn = (xfs_lsn_t) -1;
 528                regrant = false;
 529        }
 530
 531
 532        if (!regrant) {
 533                trace_xfs_log_done_nonperm(log, ticket);
 534
 535                /*
 536                 * Release ticket if not permanent reservation or a specific
 537                 * request has been made to release a permanent reservation.
 538                 */
 539                xlog_ungrant_log_space(log, ticket);
 540        } else {
 541                trace_xfs_log_done_perm(log, ticket);
 542
 543                xlog_regrant_reserve_log_space(log, ticket);
 544                /* If this ticket was a permanent reservation and we aren't
 545                 * trying to release it, reset the inited flags; so next time
 546                 * we write, a start record will be written out.
 547                 */
 548                ticket->t_flags |= XLOG_TIC_INITED;
 549        }
 550
 551        xfs_log_ticket_put(ticket);
 552        return lsn;
 553}
 554
 555int
 556xfs_log_release_iclog(
 557        struct xfs_mount        *mp,
 558        struct xlog_in_core     *iclog)
 559{
 560        if (xlog_state_release_iclog(mp->m_log, iclog)) {
 561                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 562                return -EIO;
 563        }
 564
 565        return 0;
 566}
 567
 568/*
 569 * Mount a log filesystem
 570 *
 571 * mp           - ubiquitous xfs mount point structure
 572 * log_target   - buftarg of on-disk log device
 573 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 574 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 575 *
 576 * Return error or zero.
 577 */
 578int
 579xfs_log_mount(
 580        xfs_mount_t     *mp,
 581        xfs_buftarg_t   *log_target,
 582        xfs_daddr_t     blk_offset,
 583        int             num_bblks)
 584{
 585        bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
 586        int             error = 0;
 587        int             min_logfsbs;
 588
 589        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 590                xfs_notice(mp, "Mounting V%d Filesystem",
 591                           XFS_SB_VERSION_NUM(&mp->m_sb));
 592        } else {
 593                xfs_notice(mp,
 594"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 595                           XFS_SB_VERSION_NUM(&mp->m_sb));
 596                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 597        }
 598
 599        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 600        if (IS_ERR(mp->m_log)) {
 601                error = PTR_ERR(mp->m_log);
 602                goto out;
 603        }
 604
 605        /*
 606         * Validate the given log space and drop a critical message via syslog
 607         * if the log size is too small that would lead to some unexpected
 608         * situations in transaction log space reservation stage.
 609         *
 610         * Note: we can't just reject the mount if the validation fails.  This
 611         * would mean that people would have to downgrade their kernel just to
 612         * remedy the situation as there is no way to grow the log (short of
 613         * black magic surgery with xfs_db).
 614         *
 615         * We can, however, reject mounts for CRC format filesystems, as the
 616         * mkfs binary being used to make the filesystem should never create a
 617         * filesystem with a log that is too small.
 618         */
 619        min_logfsbs = xfs_log_calc_minimum_size(mp);
 620
 621        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 622                xfs_warn(mp,
 623                "Log size %d blocks too small, minimum size is %d blocks",
 624                         mp->m_sb.sb_logblocks, min_logfsbs);
 625                error = -EINVAL;
 626        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 627                xfs_warn(mp,
 628                "Log size %d blocks too large, maximum size is %lld blocks",
 629                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 630                error = -EINVAL;
 631        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 632                xfs_warn(mp,
 633                "log size %lld bytes too large, maximum size is %lld bytes",
 634                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 635                         XFS_MAX_LOG_BYTES);
 636                error = -EINVAL;
 637        } else if (mp->m_sb.sb_logsunit > 1 &&
 638                   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 639                xfs_warn(mp,
 640                "log stripe unit %u bytes must be a multiple of block size",
 641                         mp->m_sb.sb_logsunit);
 642                error = -EINVAL;
 643                fatal = true;
 644        }
 645        if (error) {
 646                /*
 647                 * Log check errors are always fatal on v5; or whenever bad
 648                 * metadata leads to a crash.
 649                 */
 650                if (fatal) {
 651                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 652                        ASSERT(0);
 653                        goto out_free_log;
 654                }
 655                xfs_crit(mp, "Log size out of supported range.");
 656                xfs_crit(mp,
 657"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 658        }
 659
 660        /*
 661         * Initialize the AIL now we have a log.
 662         */
 663        error = xfs_trans_ail_init(mp);
 664        if (error) {
 665                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 666                goto out_free_log;
 667        }
 668        mp->m_log->l_ailp = mp->m_ail;
 669
 670        /*
 671         * skip log recovery on a norecovery mount.  pretend it all
 672         * just worked.
 673         */
 674        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 675                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 676
 677                if (readonly)
 678                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 679
 680                error = xlog_recover(mp->m_log);
 681
 682                if (readonly)
 683                        mp->m_flags |= XFS_MOUNT_RDONLY;
 684                if (error) {
 685                        xfs_warn(mp, "log mount/recovery failed: error %d",
 686                                error);
 687                        xlog_recover_cancel(mp->m_log);
 688                        goto out_destroy_ail;
 689                }
 690        }
 691
 692        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 693                               "log");
 694        if (error)
 695                goto out_destroy_ail;
 696
 697        /* Normal transactions can now occur */
 698        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 699
 700        /*
 701         * Now the log has been fully initialised and we know were our
 702         * space grant counters are, we can initialise the permanent ticket
 703         * needed for delayed logging to work.
 704         */
 705        xlog_cil_init_post_recovery(mp->m_log);
 706
 707        return 0;
 708
 709out_destroy_ail:
 710        xfs_trans_ail_destroy(mp);
 711out_free_log:
 712        xlog_dealloc_log(mp->m_log);
 713out:
 714        return error;
 715}
 716
 717/*
 718 * Finish the recovery of the file system.  This is separate from the
 719 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 720 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 721 * here.
 722 *
 723 * If we finish recovery successfully, start the background log work. If we are
 724 * not doing recovery, then we have a RO filesystem and we don't need to start
 725 * it.
 726 */
 727int
 728xfs_log_mount_finish(
 729        struct xfs_mount        *mp)
 730{
 731        int     error = 0;
 732        bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 733        bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 734
 735        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 736                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 737                return 0;
 738        } else if (readonly) {
 739                /* Allow unlinked processing to proceed */
 740                mp->m_flags &= ~XFS_MOUNT_RDONLY;
 741        }
 742
 743        /*
 744         * During the second phase of log recovery, we need iget and
 745         * iput to behave like they do for an active filesystem.
 746         * xfs_fs_drop_inode needs to be able to prevent the deletion
 747         * of inodes before we're done replaying log items on those
 748         * inodes.  Turn it off immediately after recovery finishes
 749         * so that we don't leak the quota inodes if subsequent mount
 750         * activities fail.
 751         *
 752         * We let all inodes involved in redo item processing end up on
 753         * the LRU instead of being evicted immediately so that if we do
 754         * something to an unlinked inode, the irele won't cause
 755         * premature truncation and freeing of the inode, which results
 756         * in log recovery failure.  We have to evict the unreferenced
 757         * lru inodes after clearing SB_ACTIVE because we don't
 758         * otherwise clean up the lru if there's a subsequent failure in
 759         * xfs_mountfs, which leads to us leaking the inodes if nothing
 760         * else (e.g. quotacheck) references the inodes before the
 761         * mount failure occurs.
 762         */
 763        mp->m_super->s_flags |= SB_ACTIVE;
 764        error = xlog_recover_finish(mp->m_log);
 765        if (!error)
 766                xfs_log_work_queue(mp);
 767        mp->m_super->s_flags &= ~SB_ACTIVE;
 768        evict_inodes(mp->m_super);
 769
 770        /*
 771         * Drain the buffer LRU after log recovery. This is required for v4
 772         * filesystems to avoid leaving around buffers with NULL verifier ops,
 773         * but we do it unconditionally to make sure we're always in a clean
 774         * cache state after mount.
 775         *
 776         * Don't push in the error case because the AIL may have pending intents
 777         * that aren't removed until recovery is cancelled.
 778         */
 779        if (!error && recovered) {
 780                xfs_log_force(mp, XFS_LOG_SYNC);
 781                xfs_ail_push_all_sync(mp->m_ail);
 782        }
 783        xfs_wait_buftarg(mp->m_ddev_targp);
 784
 785        if (readonly)
 786                mp->m_flags |= XFS_MOUNT_RDONLY;
 787
 788        return error;
 789}
 790
 791/*
 792 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 793 * the log.
 794 */
 795void
 796xfs_log_mount_cancel(
 797        struct xfs_mount        *mp)
 798{
 799        xlog_recover_cancel(mp->m_log);
 800        xfs_log_unmount(mp);
 801}
 802
 803/*
 804 * Final log writes as part of unmount.
 805 *
 806 * Mark the filesystem clean as unmount happens.  Note that during relocation
 807 * this routine needs to be executed as part of source-bag while the
 808 * deallocation must not be done until source-end.
 809 */
 810
 811/* Actually write the unmount record to disk. */
 812static void
 813xfs_log_write_unmount_record(
 814        struct xfs_mount        *mp)
 815{
 816        /* the data section must be 32 bit size aligned */
 817        struct xfs_unmount_log_format magic = {
 818                .magic = XLOG_UNMOUNT_TYPE,
 819        };
 820        struct xfs_log_iovec reg = {
 821                .i_addr = &magic,
 822                .i_len = sizeof(magic),
 823                .i_type = XLOG_REG_TYPE_UNMOUNT,
 824        };
 825        struct xfs_log_vec vec = {
 826                .lv_niovecs = 1,
 827                .lv_iovecp = &reg,
 828        };
 829        struct xlog             *log = mp->m_log;
 830        struct xlog_in_core     *iclog;
 831        struct xlog_ticket      *tic = NULL;
 832        xfs_lsn_t               lsn;
 833        uint                    flags = XLOG_UNMOUNT_TRANS;
 834        int                     error;
 835
 836        error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 837        if (error)
 838                goto out_err;
 839
 840        /*
 841         * If we think the summary counters are bad, clear the unmount header
 842         * flag in the unmount record so that the summary counters will be
 843         * recalculated during log recovery at next mount.  Refer to
 844         * xlog_check_unmount_rec for more details.
 845         */
 846        if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 847                        XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 848                xfs_alert(mp, "%s: will fix summary counters at next mount",
 849                                __func__);
 850                flags &= ~XLOG_UNMOUNT_TRANS;
 851        }
 852
 853        /* remove inited flag, and account for space used */
 854        tic->t_flags = 0;
 855        tic->t_curr_res -= sizeof(magic);
 856        error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
 857        /*
 858         * At this point, we're umounting anyway, so there's no point in
 859         * transitioning log state to IOERROR. Just continue...
 860         */
 861out_err:
 862        if (error)
 863                xfs_alert(mp, "%s: unmount record failed", __func__);
 864
 865        spin_lock(&log->l_icloglock);
 866        iclog = log->l_iclog;
 867        atomic_inc(&iclog->ic_refcnt);
 868        xlog_state_want_sync(log, iclog);
 869        spin_unlock(&log->l_icloglock);
 870        error = xlog_state_release_iclog(log, iclog);
 871
 872        spin_lock(&log->l_icloglock);
 873        switch (iclog->ic_state) {
 874        default:
 875                if (!XLOG_FORCED_SHUTDOWN(log)) {
 876                        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 877                        break;
 878                }
 879                /* fall through */
 880        case XLOG_STATE_ACTIVE:
 881        case XLOG_STATE_DIRTY:
 882                spin_unlock(&log->l_icloglock);
 883                break;
 884        }
 885
 886        if (tic) {
 887                trace_xfs_log_umount_write(log, tic);
 888                xlog_ungrant_log_space(log, tic);
 889                xfs_log_ticket_put(tic);
 890        }
 891}
 892
 893/*
 894 * Unmount record used to have a string "Unmount filesystem--" in the
 895 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 896 * We just write the magic number now since that particular field isn't
 897 * currently architecture converted and "Unmount" is a bit foo.
 898 * As far as I know, there weren't any dependencies on the old behaviour.
 899 */
 900
 901static int
 902xfs_log_unmount_write(xfs_mount_t *mp)
 903{
 904        struct xlog      *log = mp->m_log;
 905        xlog_in_core_t   *iclog;
 906#ifdef DEBUG
 907        xlog_in_core_t   *first_iclog;
 908#endif
 909        int              error;
 910
 911        /*
 912         * Don't write out unmount record on norecovery mounts or ro devices.
 913         * Or, if we are doing a forced umount (typically because of IO errors).
 914         */
 915        if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 916            xfs_readonly_buftarg(log->l_targ)) {
 917                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 918                return 0;
 919        }
 920
 921        error = xfs_log_force(mp, XFS_LOG_SYNC);
 922        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 923
 924#ifdef DEBUG
 925        first_iclog = iclog = log->l_iclog;
 926        do {
 927                if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 928                        ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 929                        ASSERT(iclog->ic_offset == 0);
 930                }
 931                iclog = iclog->ic_next;
 932        } while (iclog != first_iclog);
 933#endif
 934        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 935                xfs_log_write_unmount_record(mp);
 936        } else {
 937                /*
 938                 * We're already in forced_shutdown mode, couldn't
 939                 * even attempt to write out the unmount transaction.
 940                 *
 941                 * Go through the motions of sync'ing and releasing
 942                 * the iclog, even though no I/O will actually happen,
 943                 * we need to wait for other log I/Os that may already
 944                 * be in progress.  Do this as a separate section of
 945                 * code so we'll know if we ever get stuck here that
 946                 * we're in this odd situation of trying to unmount
 947                 * a file system that went into forced_shutdown as
 948                 * the result of an unmount..
 949                 */
 950                spin_lock(&log->l_icloglock);
 951                iclog = log->l_iclog;
 952                atomic_inc(&iclog->ic_refcnt);
 953
 954                xlog_state_want_sync(log, iclog);
 955                spin_unlock(&log->l_icloglock);
 956                error =  xlog_state_release_iclog(log, iclog);
 957
 958                spin_lock(&log->l_icloglock);
 959
 960                if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 961                        || iclog->ic_state == XLOG_STATE_DIRTY
 962                        || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 963
 964                                xlog_wait(&iclog->ic_force_wait,
 965                                                        &log->l_icloglock);
 966                } else {
 967                        spin_unlock(&log->l_icloglock);
 968                }
 969        }
 970
 971        return error;
 972}       /* xfs_log_unmount_write */
 973
 974/*
 975 * Empty the log for unmount/freeze.
 976 *
 977 * To do this, we first need to shut down the background log work so it is not
 978 * trying to cover the log as we clean up. We then need to unpin all objects in
 979 * the log so we can then flush them out. Once they have completed their IO and
 980 * run the callbacks removing themselves from the AIL, we can write the unmount
 981 * record.
 982 */
 983void
 984xfs_log_quiesce(
 985        struct xfs_mount        *mp)
 986{
 987        cancel_delayed_work_sync(&mp->m_log->l_work);
 988        xfs_log_force(mp, XFS_LOG_SYNC);
 989
 990        /*
 991         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 992         * will push it, xfs_wait_buftarg() will not wait for it. Further,
 993         * xfs_buf_iowait() cannot be used because it was pushed with the
 994         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 995         * the IO to complete.
 996         */
 997        xfs_ail_push_all_sync(mp->m_ail);
 998        xfs_wait_buftarg(mp->m_ddev_targp);
 999        xfs_buf_lock(mp->m_sb_bp);
1000        xfs_buf_unlock(mp->m_sb_bp);
1001
1002        xfs_log_unmount_write(mp);
1003}
1004
1005/*
1006 * Shut down and release the AIL and Log.
1007 *
1008 * During unmount, we need to ensure we flush all the dirty metadata objects
1009 * from the AIL so that the log is empty before we write the unmount record to
1010 * the log. Once this is done, we can tear down the AIL and the log.
1011 */
1012void
1013xfs_log_unmount(
1014        struct xfs_mount        *mp)
1015{
1016        xfs_log_quiesce(mp);
1017
1018        xfs_trans_ail_destroy(mp);
1019
1020        xfs_sysfs_del(&mp->m_log->l_kobj);
1021
1022        xlog_dealloc_log(mp->m_log);
1023}
1024
1025void
1026xfs_log_item_init(
1027        struct xfs_mount        *mp,
1028        struct xfs_log_item     *item,
1029        int                     type,
1030        const struct xfs_item_ops *ops)
1031{
1032        item->li_mountp = mp;
1033        item->li_ailp = mp->m_ail;
1034        item->li_type = type;
1035        item->li_ops = ops;
1036        item->li_lv = NULL;
1037
1038        INIT_LIST_HEAD(&item->li_ail);
1039        INIT_LIST_HEAD(&item->li_cil);
1040        INIT_LIST_HEAD(&item->li_bio_list);
1041        INIT_LIST_HEAD(&item->li_trans);
1042}
1043
1044/*
1045 * Wake up processes waiting for log space after we have moved the log tail.
1046 */
1047void
1048xfs_log_space_wake(
1049        struct xfs_mount        *mp)
1050{
1051        struct xlog             *log = mp->m_log;
1052        int                     free_bytes;
1053
1054        if (XLOG_FORCED_SHUTDOWN(log))
1055                return;
1056
1057        if (!list_empty_careful(&log->l_write_head.waiters)) {
1058                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1059
1060                spin_lock(&log->l_write_head.lock);
1061                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1062                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1063                spin_unlock(&log->l_write_head.lock);
1064        }
1065
1066        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1067                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068
1069                spin_lock(&log->l_reserve_head.lock);
1070                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1071                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1072                spin_unlock(&log->l_reserve_head.lock);
1073        }
1074}
1075
1076/*
1077 * Determine if we have a transaction that has gone to disk that needs to be
1078 * covered. To begin the transition to the idle state firstly the log needs to
1079 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1080 * we start attempting to cover the log.
1081 *
1082 * Only if we are then in a state where covering is needed, the caller is
1083 * informed that dummy transactions are required to move the log into the idle
1084 * state.
1085 *
1086 * If there are any items in the AIl or CIL, then we do not want to attempt to
1087 * cover the log as we may be in a situation where there isn't log space
1088 * available to run a dummy transaction and this can lead to deadlocks when the
1089 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1090 * there's no point in running a dummy transaction at this point because we
1091 * can't start trying to idle the log until both the CIL and AIL are empty.
1092 */
1093static int
1094xfs_log_need_covered(xfs_mount_t *mp)
1095{
1096        struct xlog     *log = mp->m_log;
1097        int             needed = 0;
1098
1099        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1100                return 0;
1101
1102        if (!xlog_cil_empty(log))
1103                return 0;
1104
1105        spin_lock(&log->l_icloglock);
1106        switch (log->l_covered_state) {
1107        case XLOG_STATE_COVER_DONE:
1108        case XLOG_STATE_COVER_DONE2:
1109        case XLOG_STATE_COVER_IDLE:
1110                break;
1111        case XLOG_STATE_COVER_NEED:
1112        case XLOG_STATE_COVER_NEED2:
1113                if (xfs_ail_min_lsn(log->l_ailp))
1114                        break;
1115                if (!xlog_iclogs_empty(log))
1116                        break;
1117
1118                needed = 1;
1119                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1120                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1121                else
1122                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1123                break;
1124        default:
1125                needed = 1;
1126                break;
1127        }
1128        spin_unlock(&log->l_icloglock);
1129        return needed;
1130}
1131
1132/*
1133 * We may be holding the log iclog lock upon entering this routine.
1134 */
1135xfs_lsn_t
1136xlog_assign_tail_lsn_locked(
1137        struct xfs_mount        *mp)
1138{
1139        struct xlog             *log = mp->m_log;
1140        struct xfs_log_item     *lip;
1141        xfs_lsn_t               tail_lsn;
1142
1143        assert_spin_locked(&mp->m_ail->ail_lock);
1144
1145        /*
1146         * To make sure we always have a valid LSN for the log tail we keep
1147         * track of the last LSN which was committed in log->l_last_sync_lsn,
1148         * and use that when the AIL was empty.
1149         */
1150        lip = xfs_ail_min(mp->m_ail);
1151        if (lip)
1152                tail_lsn = lip->li_lsn;
1153        else
1154                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1155        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1156        atomic64_set(&log->l_tail_lsn, tail_lsn);
1157        return tail_lsn;
1158}
1159
1160xfs_lsn_t
1161xlog_assign_tail_lsn(
1162        struct xfs_mount        *mp)
1163{
1164        xfs_lsn_t               tail_lsn;
1165
1166        spin_lock(&mp->m_ail->ail_lock);
1167        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1168        spin_unlock(&mp->m_ail->ail_lock);
1169
1170        return tail_lsn;
1171}
1172
1173/*
1174 * Return the space in the log between the tail and the head.  The head
1175 * is passed in the cycle/bytes formal parms.  In the special case where
1176 * the reserve head has wrapped passed the tail, this calculation is no
1177 * longer valid.  In this case, just return 0 which means there is no space
1178 * in the log.  This works for all places where this function is called
1179 * with the reserve head.  Of course, if the write head were to ever
1180 * wrap the tail, we should blow up.  Rather than catch this case here,
1181 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1182 *
1183 * This code also handles the case where the reservation head is behind
1184 * the tail.  The details of this case are described below, but the end
1185 * result is that we return the size of the log as the amount of space left.
1186 */
1187STATIC int
1188xlog_space_left(
1189        struct xlog     *log,
1190        atomic64_t      *head)
1191{
1192        int             free_bytes;
1193        int             tail_bytes;
1194        int             tail_cycle;
1195        int             head_cycle;
1196        int             head_bytes;
1197
1198        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1199        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1200        tail_bytes = BBTOB(tail_bytes);
1201        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1202                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1203        else if (tail_cycle + 1 < head_cycle)
1204                return 0;
1205        else if (tail_cycle < head_cycle) {
1206                ASSERT(tail_cycle == (head_cycle - 1));
1207                free_bytes = tail_bytes - head_bytes;
1208        } else {
1209                /*
1210                 * The reservation head is behind the tail.
1211                 * In this case we just want to return the size of the
1212                 * log as the amount of space left.
1213                 */
1214                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1215                xfs_alert(log->l_mp,
1216                          "  tail_cycle = %d, tail_bytes = %d",
1217                          tail_cycle, tail_bytes);
1218                xfs_alert(log->l_mp,
1219                          "  GH   cycle = %d, GH   bytes = %d",
1220                          head_cycle, head_bytes);
1221                ASSERT(0);
1222                free_bytes = log->l_logsize;
1223        }
1224        return free_bytes;
1225}
1226
1227
1228static void
1229xlog_ioend_work(
1230        struct work_struct      *work)
1231{
1232        struct xlog_in_core     *iclog =
1233                container_of(work, struct xlog_in_core, ic_end_io_work);
1234        struct xlog             *log = iclog->ic_log;
1235        bool                    aborted = false;
1236        int                     error;
1237
1238        error = blk_status_to_errno(iclog->ic_bio.bi_status);
1239#ifdef DEBUG
1240        /* treat writes with injected CRC errors as failed */
1241        if (iclog->ic_fail_crc)
1242                error = -EIO;
1243#endif
1244
1245        /*
1246         * Race to shutdown the filesystem if we see an error.
1247         */
1248        if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1249                xfs_alert(log->l_mp, "log I/O error %d", error);
1250                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1251                /*
1252                 * This flag will be propagated to the trans-committed
1253                 * callback routines to let them know that the log-commit
1254                 * didn't succeed.
1255                 */
1256                aborted = true;
1257        } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1258                aborted = true;
1259        }
1260
1261        xlog_state_done_syncing(iclog, aborted);
1262        bio_uninit(&iclog->ic_bio);
1263
1264        /*
1265         * Drop the lock to signal that we are done. Nothing references the
1266         * iclog after this, so an unmount waiting on this lock can now tear it
1267         * down safely. As such, it is unsafe to reference the iclog after the
1268         * unlock as we could race with it being freed.
1269         */
1270        up(&iclog->ic_sema);
1271}
1272
1273/*
1274 * Return size of each in-core log record buffer.
1275 *
1276 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1277 *
1278 * If the filesystem blocksize is too large, we may need to choose a
1279 * larger size since the directory code currently logs entire blocks.
1280 */
1281STATIC void
1282xlog_get_iclog_buffer_size(
1283        struct xfs_mount        *mp,
1284        struct xlog             *log)
1285{
1286        if (mp->m_logbufs <= 0)
1287                mp->m_logbufs = XLOG_MAX_ICLOGS;
1288        if (mp->m_logbsize <= 0)
1289                mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1290
1291        log->l_iclog_bufs = mp->m_logbufs;
1292        log->l_iclog_size = mp->m_logbsize;
1293
1294        /*
1295         * # headers = size / 32k - one header holds cycles from 32k of data.
1296         */
1297        log->l_iclog_heads =
1298                DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1299        log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1300}
1301
1302void
1303xfs_log_work_queue(
1304        struct xfs_mount        *mp)
1305{
1306        queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1307                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308}
1309
1310/*
1311 * Every sync period we need to unpin all items in the AIL and push them to
1312 * disk. If there is nothing dirty, then we might need to cover the log to
1313 * indicate that the filesystem is idle.
1314 */
1315static void
1316xfs_log_worker(
1317        struct work_struct      *work)
1318{
1319        struct xlog             *log = container_of(to_delayed_work(work),
1320                                                struct xlog, l_work);
1321        struct xfs_mount        *mp = log->l_mp;
1322
1323        /* dgc: errors ignored - not fatal and nowhere to report them */
1324        if (xfs_log_need_covered(mp)) {
1325                /*
1326                 * Dump a transaction into the log that contains no real change.
1327                 * This is needed to stamp the current tail LSN into the log
1328                 * during the covering operation.
1329                 *
1330                 * We cannot use an inode here for this - that will push dirty
1331                 * state back up into the VFS and then periodic inode flushing
1332                 * will prevent log covering from making progress. Hence we
1333                 * synchronously log the superblock instead to ensure the
1334                 * superblock is immediately unpinned and can be written back.
1335                 */
1336                xfs_sync_sb(mp, true);
1337        } else
1338                xfs_log_force(mp, 0);
1339
1340        /* start pushing all the metadata that is currently dirty */
1341        xfs_ail_push_all(mp->m_ail);
1342
1343        /* queue us up again */
1344        xfs_log_work_queue(mp);
1345}
1346
1347/*
1348 * This routine initializes some of the log structure for a given mount point.
1349 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1350 * some other stuff may be filled in too.
1351 */
1352STATIC struct xlog *
1353xlog_alloc_log(
1354        struct xfs_mount        *mp,
1355        struct xfs_buftarg      *log_target,
1356        xfs_daddr_t             blk_offset,
1357        int                     num_bblks)
1358{
1359        struct xlog             *log;
1360        xlog_rec_header_t       *head;
1361        xlog_in_core_t          **iclogp;
1362        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1363        int                     i;
1364        int                     error = -ENOMEM;
1365        uint                    log2_size = 0;
1366
1367        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1368        if (!log) {
1369                xfs_warn(mp, "Log allocation failed: No memory!");
1370                goto out;
1371        }
1372
1373        log->l_mp          = mp;
1374        log->l_targ        = log_target;
1375        log->l_logsize     = BBTOB(num_bblks);
1376        log->l_logBBstart  = blk_offset;
1377        log->l_logBBsize   = num_bblks;
1378        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1379        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1380        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1381
1382        log->l_prev_block  = -1;
1383        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1384        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1385        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1386        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1387
1388        xlog_grant_head_init(&log->l_reserve_head);
1389        xlog_grant_head_init(&log->l_write_head);
1390
1391        error = -EFSCORRUPTED;
1392        if (xfs_sb_version_hassector(&mp->m_sb)) {
1393                log2_size = mp->m_sb.sb_logsectlog;
1394                if (log2_size < BBSHIFT) {
1395                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1396                                log2_size, BBSHIFT);
1397                        goto out_free_log;
1398                }
1399
1400                log2_size -= BBSHIFT;
1401                if (log2_size > mp->m_sectbb_log) {
1402                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1403                                log2_size, mp->m_sectbb_log);
1404                        goto out_free_log;
1405                }
1406
1407                /* for larger sector sizes, must have v2 or external log */
1408                if (log2_size && log->l_logBBstart > 0 &&
1409                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1410                        xfs_warn(mp,
1411                "log sector size (0x%x) invalid for configuration.",
1412                                log2_size);
1413                        goto out_free_log;
1414                }
1415        }
1416        log->l_sectBBsize = 1 << log2_size;
1417
1418        xlog_get_iclog_buffer_size(mp, log);
1419
1420        spin_lock_init(&log->l_icloglock);
1421        init_waitqueue_head(&log->l_flush_wait);
1422
1423        iclogp = &log->l_iclog;
1424        /*
1425         * The amount of memory to allocate for the iclog structure is
1426         * rather funky due to the way the structure is defined.  It is
1427         * done this way so that we can use different sizes for machines
1428         * with different amounts of memory.  See the definition of
1429         * xlog_in_core_t in xfs_log_priv.h for details.
1430         */
1431        ASSERT(log->l_iclog_size >= 4096);
1432        for (i = 0; i < log->l_iclog_bufs; i++) {
1433                int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1434                size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1435                                sizeof(struct bio_vec);
1436
1437                iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1438                if (!iclog)
1439                        goto out_free_iclog;
1440
1441                *iclogp = iclog;
1442                iclog->ic_prev = prev_iclog;
1443                prev_iclog = iclog;
1444
1445                iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1446                                                KM_MAYFAIL | KM_ZERO);
1447                if (!iclog->ic_data)
1448                        goto out_free_iclog;
1449#ifdef DEBUG
1450                log->l_iclog_bak[i] = &iclog->ic_header;
1451#endif
1452                head = &iclog->ic_header;
1453                memset(head, 0, sizeof(xlog_rec_header_t));
1454                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455                head->h_version = cpu_to_be32(
1456                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457                head->h_size = cpu_to_be32(log->l_iclog_size);
1458                /* new fields */
1459                head->h_fmt = cpu_to_be32(XLOG_FMT);
1460                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461
1462                iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1463                iclog->ic_state = XLOG_STATE_ACTIVE;
1464                iclog->ic_log = log;
1465                atomic_set(&iclog->ic_refcnt, 0);
1466                spin_lock_init(&iclog->ic_callback_lock);
1467                INIT_LIST_HEAD(&iclog->ic_callbacks);
1468                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469
1470                init_waitqueue_head(&iclog->ic_force_wait);
1471                init_waitqueue_head(&iclog->ic_write_wait);
1472                INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1473                sema_init(&iclog->ic_sema, 1);
1474
1475                iclogp = &iclog->ic_next;
1476        }
1477        *iclogp = log->l_iclog;                 /* complete ring */
1478        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1479
1480        log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1481                        WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1482                        mp->m_fsname);
1483        if (!log->l_ioend_workqueue)
1484                goto out_free_iclog;
1485
1486        error = xlog_cil_init(log);
1487        if (error)
1488                goto out_destroy_workqueue;
1489        return log;
1490
1491out_destroy_workqueue:
1492        destroy_workqueue(log->l_ioend_workqueue);
1493out_free_iclog:
1494        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1495                prev_iclog = iclog->ic_next;
1496                kmem_free(iclog->ic_data);
1497                kmem_free(iclog);
1498        }
1499out_free_log:
1500        kmem_free(log);
1501out:
1502        return ERR_PTR(error);
1503}       /* xlog_alloc_log */
1504
1505
1506/*
1507 * Write out the commit record of a transaction associated with the given
1508 * ticket.  Return the lsn of the commit record.
1509 */
1510STATIC int
1511xlog_commit_record(
1512        struct xlog             *log,
1513        struct xlog_ticket      *ticket,
1514        struct xlog_in_core     **iclog,
1515        xfs_lsn_t               *commitlsnp)
1516{
1517        struct xfs_mount *mp = log->l_mp;
1518        int     error;
1519        struct xfs_log_iovec reg = {
1520                .i_addr = NULL,
1521                .i_len = 0,
1522                .i_type = XLOG_REG_TYPE_COMMIT,
1523        };
1524        struct xfs_log_vec vec = {
1525                .lv_niovecs = 1,
1526                .lv_iovecp = &reg,
1527        };
1528
1529        ASSERT_ALWAYS(iclog);
1530        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1531                                        XLOG_COMMIT_TRANS);
1532        if (error)
1533                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1534        return error;
1535}
1536
1537/*
1538 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1539 * log space.  This code pushes on the lsn which would supposedly free up
1540 * the 25% which we want to leave free.  We may need to adopt a policy which
1541 * pushes on an lsn which is further along in the log once we reach the high
1542 * water mark.  In this manner, we would be creating a low water mark.
1543 */
1544STATIC void
1545xlog_grant_push_ail(
1546        struct xlog     *log,
1547        int             need_bytes)
1548{
1549        xfs_lsn_t       threshold_lsn = 0;
1550        xfs_lsn_t       last_sync_lsn;
1551        int             free_blocks;
1552        int             free_bytes;
1553        int             threshold_block;
1554        int             threshold_cycle;
1555        int             free_threshold;
1556
1557        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1558
1559        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1560        free_blocks = BTOBBT(free_bytes);
1561
1562        /*
1563         * Set the threshold for the minimum number of free blocks in the
1564         * log to the maximum of what the caller needs, one quarter of the
1565         * log, and 256 blocks.
1566         */
1567        free_threshold = BTOBB(need_bytes);
1568        free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1569        free_threshold = max(free_threshold, 256);
1570        if (free_blocks >= free_threshold)
1571                return;
1572
1573        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1574                                                &threshold_block);
1575        threshold_block += free_threshold;
1576        if (threshold_block >= log->l_logBBsize) {
1577                threshold_block -= log->l_logBBsize;
1578                threshold_cycle += 1;
1579        }
1580        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1581                                        threshold_block);
1582        /*
1583         * Don't pass in an lsn greater than the lsn of the last
1584         * log record known to be on disk. Use a snapshot of the last sync lsn
1585         * so that it doesn't change between the compare and the set.
1586         */
1587        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1588        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1589                threshold_lsn = last_sync_lsn;
1590
1591        /*
1592         * Get the transaction layer to kick the dirty buffers out to
1593         * disk asynchronously. No point in trying to do this if
1594         * the filesystem is shutting down.
1595         */
1596        if (!XLOG_FORCED_SHUTDOWN(log))
1597                xfs_ail_push(log->l_ailp, threshold_lsn);
1598}
1599
1600/*
1601 * Stamp cycle number in every block
1602 */
1603STATIC void
1604xlog_pack_data(
1605        struct xlog             *log,
1606        struct xlog_in_core     *iclog,
1607        int                     roundoff)
1608{
1609        int                     i, j, k;
1610        int                     size = iclog->ic_offset + roundoff;
1611        __be32                  cycle_lsn;
1612        char                    *dp;
1613
1614        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1615
1616        dp = iclog->ic_datap;
1617        for (i = 0; i < BTOBB(size); i++) {
1618                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1619                        break;
1620                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1621                *(__be32 *)dp = cycle_lsn;
1622                dp += BBSIZE;
1623        }
1624
1625        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1626                xlog_in_core_2_t *xhdr = iclog->ic_data;
1627
1628                for ( ; i < BTOBB(size); i++) {
1629                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1630                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1631                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1632                        *(__be32 *)dp = cycle_lsn;
1633                        dp += BBSIZE;
1634                }
1635
1636                for (i = 1; i < log->l_iclog_heads; i++)
1637                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1638        }
1639}
1640
1641/*
1642 * Calculate the checksum for a log buffer.
1643 *
1644 * This is a little more complicated than it should be because the various
1645 * headers and the actual data are non-contiguous.
1646 */
1647__le32
1648xlog_cksum(
1649        struct xlog             *log,
1650        struct xlog_rec_header  *rhead,
1651        char                    *dp,
1652        int                     size)
1653{
1654        uint32_t                crc;
1655
1656        /* first generate the crc for the record header ... */
1657        crc = xfs_start_cksum_update((char *)rhead,
1658                              sizeof(struct xlog_rec_header),
1659                              offsetof(struct xlog_rec_header, h_crc));
1660
1661        /* ... then for additional cycle data for v2 logs ... */
1662        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1663                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1664                int             i;
1665                int             xheads;
1666
1667                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1668                if (size % XLOG_HEADER_CYCLE_SIZE)
1669                        xheads++;
1670
1671                for (i = 1; i < xheads; i++) {
1672                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1673                                     sizeof(struct xlog_rec_ext_header));
1674                }
1675        }
1676
1677        /* ... and finally for the payload */
1678        crc = crc32c(crc, dp, size);
1679
1680        return xfs_end_cksum(crc);
1681}
1682
1683static void
1684xlog_bio_end_io(
1685        struct bio              *bio)
1686{
1687        struct xlog_in_core     *iclog = bio->bi_private;
1688
1689        queue_work(iclog->ic_log->l_ioend_workqueue,
1690                   &iclog->ic_end_io_work);
1691}
1692
1693static void
1694xlog_map_iclog_data(
1695        struct bio              *bio,
1696        void                    *data,
1697        size_t                  count)
1698{
1699        do {
1700                struct page     *page = kmem_to_page(data);
1701                unsigned int    off = offset_in_page(data);
1702                size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1703
1704                WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1705
1706                data += len;
1707                count -= len;
1708        } while (count);
1709}
1710
1711STATIC void
1712xlog_write_iclog(
1713        struct xlog             *log,
1714        struct xlog_in_core     *iclog,
1715        uint64_t                bno,
1716        unsigned int            count,
1717        bool                    need_flush)
1718{
1719        ASSERT(bno < log->l_logBBsize);
1720
1721        /*
1722         * We lock the iclogbufs here so that we can serialise against I/O
1723         * completion during unmount.  We might be processing a shutdown
1724         * triggered during unmount, and that can occur asynchronously to the
1725         * unmount thread, and hence we need to ensure that completes before
1726         * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1727         * across the log IO to archieve that.
1728         */
1729        down(&iclog->ic_sema);
1730        if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1731                /*
1732                 * It would seem logical to return EIO here, but we rely on
1733                 * the log state machine to propagate I/O errors instead of
1734                 * doing it here.  We kick of the state machine and unlock
1735                 * the buffer manually, the code needs to be kept in sync
1736                 * with the I/O completion path.
1737                 */
1738                xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1739                up(&iclog->ic_sema);
1740                return;
1741        }
1742
1743        iclog->ic_io_size = count;
1744
1745        bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1746        bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1747        iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1748        iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1749        iclog->ic_bio.bi_private = iclog;
1750        iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1751        if (need_flush)
1752                iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1753
1754        xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1755        if (is_vmalloc_addr(iclog->ic_data))
1756                flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1757
1758        /*
1759         * If this log buffer would straddle the end of the log we will have
1760         * to split it up into two bios, so that we can continue at the start.
1761         */
1762        if (bno + BTOBB(count) > log->l_logBBsize) {
1763                struct bio *split;
1764
1765                split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1766                                  GFP_NOIO, &fs_bio_set);
1767                bio_chain(split, &iclog->ic_bio);
1768                submit_bio(split);
1769
1770                /* restart at logical offset zero for the remainder */
1771                iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1772        }
1773
1774        submit_bio(&iclog->ic_bio);
1775}
1776
1777/*
1778 * We need to bump cycle number for the part of the iclog that is
1779 * written to the start of the log. Watch out for the header magic
1780 * number case, though.
1781 */
1782static void
1783xlog_split_iclog(
1784        struct xlog             *log,
1785        void                    *data,
1786        uint64_t                bno,
1787        unsigned int            count)
1788{
1789        unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1790        unsigned int            i;
1791
1792        for (i = split_offset; i < count; i += BBSIZE) {
1793                uint32_t cycle = get_unaligned_be32(data + i);
1794
1795                if (++cycle == XLOG_HEADER_MAGIC_NUM)
1796                        cycle++;
1797                put_unaligned_be32(cycle, data + i);
1798        }
1799}
1800
1801static int
1802xlog_calc_iclog_size(
1803        struct xlog             *log,
1804        struct xlog_in_core     *iclog,
1805        uint32_t                *roundoff)
1806{
1807        uint32_t                count_init, count;
1808        bool                    use_lsunit;
1809
1810        use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1811                        log->l_mp->m_sb.sb_logsunit > 1;
1812
1813        /* Add for LR header */
1814        count_init = log->l_iclog_hsize + iclog->ic_offset;
1815
1816        /* Round out the log write size */
1817        if (use_lsunit) {
1818                /* we have a v2 stripe unit to use */
1819                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1820        } else {
1821                count = BBTOB(BTOBB(count_init));
1822        }
1823
1824        ASSERT(count >= count_init);
1825        *roundoff = count - count_init;
1826
1827        if (use_lsunit)
1828                ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1829        else
1830                ASSERT(*roundoff < BBTOB(1));
1831        return count;
1832}
1833
1834/*
1835 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1836 * fashion.  Previously, we should have moved the current iclog
1837 * ptr in the log to point to the next available iclog.  This allows further
1838 * write to continue while this code syncs out an iclog ready to go.
1839 * Before an in-core log can be written out, the data section must be scanned
1840 * to save away the 1st word of each BBSIZE block into the header.  We replace
1841 * it with the current cycle count.  Each BBSIZE block is tagged with the
1842 * cycle count because there in an implicit assumption that drives will
1843 * guarantee that entire 512 byte blocks get written at once.  In other words,
1844 * we can't have part of a 512 byte block written and part not written.  By
1845 * tagging each block, we will know which blocks are valid when recovering
1846 * after an unclean shutdown.
1847 *
1848 * This routine is single threaded on the iclog.  No other thread can be in
1849 * this routine with the same iclog.  Changing contents of iclog can there-
1850 * fore be done without grabbing the state machine lock.  Updating the global
1851 * log will require grabbing the lock though.
1852 *
1853 * The entire log manager uses a logical block numbering scheme.  Only
1854 * xlog_write_iclog knows about the fact that the log may not start with
1855 * block zero on a given device.
1856 */
1857STATIC void
1858xlog_sync(
1859        struct xlog             *log,
1860        struct xlog_in_core     *iclog)
1861{
1862        unsigned int            count;          /* byte count of bwrite */
1863        unsigned int            roundoff;       /* roundoff to BB or stripe */
1864        uint64_t                bno;
1865        unsigned int            size;
1866        bool                    need_flush = true, split = false;
1867
1868        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1869
1870        count = xlog_calc_iclog_size(log, iclog, &roundoff);
1871
1872        /* move grant heads by roundoff in sync */
1873        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1874        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1875
1876        /* put cycle number in every block */
1877        xlog_pack_data(log, iclog, roundoff); 
1878
1879        /* real byte length */
1880        size = iclog->ic_offset;
1881        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1882                size += roundoff;
1883        iclog->ic_header.h_len = cpu_to_be32(size);
1884
1885        XFS_STATS_INC(log->l_mp, xs_log_writes);
1886        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1887
1888        bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1889
1890        /* Do we need to split this write into 2 parts? */
1891        if (bno + BTOBB(count) > log->l_logBBsize) {
1892                xlog_split_iclog(log, &iclog->ic_header, bno, count);
1893                split = true;
1894        }
1895
1896        /* calculcate the checksum */
1897        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1898                                            iclog->ic_datap, size);
1899        /*
1900         * Intentionally corrupt the log record CRC based on the error injection
1901         * frequency, if defined. This facilitates testing log recovery in the
1902         * event of torn writes. Hence, set the IOABORT state to abort the log
1903         * write on I/O completion and shutdown the fs. The subsequent mount
1904         * detects the bad CRC and attempts to recover.
1905         */
1906#ifdef DEBUG
1907        if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1908                iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1909                iclog->ic_fail_crc = true;
1910                xfs_warn(log->l_mp,
1911        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1912                         be64_to_cpu(iclog->ic_header.h_lsn));
1913        }
1914#endif
1915
1916        /*
1917         * Flush the data device before flushing the log to make sure all meta
1918         * data written back from the AIL actually made it to disk before
1919         * stamping the new log tail LSN into the log buffer.  For an external
1920         * log we need to issue the flush explicitly, and unfortunately
1921         * synchronously here; for an internal log we can simply use the block
1922         * layer state machine for preflushes.
1923         */
1924        if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1925                xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1926                need_flush = false;
1927        }
1928
1929        xlog_verify_iclog(log, iclog, count);
1930        xlog_write_iclog(log, iclog, bno, count, need_flush);
1931}
1932
1933/*
1934 * Deallocate a log structure
1935 */
1936STATIC void
1937xlog_dealloc_log(
1938        struct xlog     *log)
1939{
1940        xlog_in_core_t  *iclog, *next_iclog;
1941        int             i;
1942
1943        xlog_cil_destroy(log);
1944
1945        /*
1946         * Cycle all the iclogbuf locks to make sure all log IO completion
1947         * is done before we tear down these buffers.
1948         */
1949        iclog = log->l_iclog;
1950        for (i = 0; i < log->l_iclog_bufs; i++) {
1951                down(&iclog->ic_sema);
1952                up(&iclog->ic_sema);
1953                iclog = iclog->ic_next;
1954        }
1955
1956        iclog = log->l_iclog;
1957        for (i = 0; i < log->l_iclog_bufs; i++) {
1958                next_iclog = iclog->ic_next;
1959                kmem_free(iclog->ic_data);
1960                kmem_free(iclog);
1961                iclog = next_iclog;
1962        }
1963
1964        log->l_mp->m_log = NULL;
1965        destroy_workqueue(log->l_ioend_workqueue);
1966        kmem_free(log);
1967}       /* xlog_dealloc_log */
1968
1969/*
1970 * Update counters atomically now that memcpy is done.
1971 */
1972/* ARGSUSED */
1973static inline void
1974xlog_state_finish_copy(
1975        struct xlog             *log,
1976        struct xlog_in_core     *iclog,
1977        int                     record_cnt,
1978        int                     copy_bytes)
1979{
1980        spin_lock(&log->l_icloglock);
1981
1982        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1983        iclog->ic_offset += copy_bytes;
1984
1985        spin_unlock(&log->l_icloglock);
1986}       /* xlog_state_finish_copy */
1987
1988
1989
1990
1991/*
1992 * print out info relating to regions written which consume
1993 * the reservation
1994 */
1995void
1996xlog_print_tic_res(
1997        struct xfs_mount        *mp,
1998        struct xlog_ticket      *ticket)
1999{
2000        uint i;
2001        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2002
2003        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2004#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2005        static char *res_type_str[] = {
2006            REG_TYPE_STR(BFORMAT, "bformat"),
2007            REG_TYPE_STR(BCHUNK, "bchunk"),
2008            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2009            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2010            REG_TYPE_STR(IFORMAT, "iformat"),
2011            REG_TYPE_STR(ICORE, "icore"),
2012            REG_TYPE_STR(IEXT, "iext"),
2013            REG_TYPE_STR(IBROOT, "ibroot"),
2014            REG_TYPE_STR(ILOCAL, "ilocal"),
2015            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2016            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2017            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2018            REG_TYPE_STR(QFORMAT, "qformat"),
2019            REG_TYPE_STR(DQUOT, "dquot"),
2020            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2021            REG_TYPE_STR(LRHEADER, "LR header"),
2022            REG_TYPE_STR(UNMOUNT, "unmount"),
2023            REG_TYPE_STR(COMMIT, "commit"),
2024            REG_TYPE_STR(TRANSHDR, "trans header"),
2025            REG_TYPE_STR(ICREATE, "inode create"),
2026            REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2027            REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2028            REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2029            REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2030            REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2031            REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2032        };
2033        BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2034#undef REG_TYPE_STR
2035
2036        xfs_warn(mp, "ticket reservation summary:");
2037        xfs_warn(mp, "  unit res    = %d bytes",
2038                 ticket->t_unit_res);
2039        xfs_warn(mp, "  current res = %d bytes",
2040                 ticket->t_curr_res);
2041        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2042                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2043        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2044                 ticket->t_res_num_ophdrs, ophdr_spc);
2045        xfs_warn(mp, "  ophdr + reg = %u bytes",
2046                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2047        xfs_warn(mp, "  num regions = %u",
2048                 ticket->t_res_num);
2049
2050        for (i = 0; i < ticket->t_res_num; i++) {
2051                uint r_type = ticket->t_res_arr[i].r_type;
2052                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2053                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2054                            "bad-rtype" : res_type_str[r_type]),
2055                            ticket->t_res_arr[i].r_len);
2056        }
2057}
2058
2059/*
2060 * Print a summary of the transaction.
2061 */
2062void
2063xlog_print_trans(
2064        struct xfs_trans        *tp)
2065{
2066        struct xfs_mount        *mp = tp->t_mountp;
2067        struct xfs_log_item     *lip;
2068
2069        /* dump core transaction and ticket info */
2070        xfs_warn(mp, "transaction summary:");
2071        xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2072        xfs_warn(mp, "  log count = %d", tp->t_log_count);
2073        xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2074
2075        xlog_print_tic_res(mp, tp->t_ticket);
2076
2077        /* dump each log item */
2078        list_for_each_entry(lip, &tp->t_items, li_trans) {
2079                struct xfs_log_vec      *lv = lip->li_lv;
2080                struct xfs_log_iovec    *vec;
2081                int                     i;
2082
2083                xfs_warn(mp, "log item: ");
2084                xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2085                xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2086                if (!lv)
2087                        continue;
2088                xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2089                xfs_warn(mp, "  size    = %d", lv->lv_size);
2090                xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2091                xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2092
2093                /* dump each iovec for the log item */
2094                vec = lv->lv_iovecp;
2095                for (i = 0; i < lv->lv_niovecs; i++) {
2096                        int dumplen = min(vec->i_len, 32);
2097
2098                        xfs_warn(mp, "  iovec[%d]", i);
2099                        xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2100                        xfs_warn(mp, "    len   = %d", vec->i_len);
2101                        xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2102                        xfs_hex_dump(vec->i_addr, dumplen);
2103
2104                        vec++;
2105                }
2106        }
2107}
2108
2109/*
2110 * Calculate the potential space needed by the log vector.  Each region gets
2111 * its own xlog_op_header_t and may need to be double word aligned.
2112 */
2113static int
2114xlog_write_calc_vec_length(
2115        struct xlog_ticket      *ticket,
2116        struct xfs_log_vec      *log_vector)
2117{
2118        struct xfs_log_vec      *lv;
2119        int                     headers = 0;
2120        int                     len = 0;
2121        int                     i;
2122
2123        /* acct for start rec of xact */
2124        if (ticket->t_flags & XLOG_TIC_INITED)
2125                headers++;
2126
2127        for (lv = log_vector; lv; lv = lv->lv_next) {
2128                /* we don't write ordered log vectors */
2129                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2130                        continue;
2131
2132                headers += lv->lv_niovecs;
2133
2134                for (i = 0; i < lv->lv_niovecs; i++) {
2135                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2136
2137                        len += vecp->i_len;
2138                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2139                }
2140        }
2141
2142        ticket->t_res_num_ophdrs += headers;
2143        len += headers * sizeof(struct xlog_op_header);
2144
2145        return len;
2146}
2147
2148/*
2149 * If first write for transaction, insert start record  We can't be trying to
2150 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2151 */
2152static int
2153xlog_write_start_rec(
2154        struct xlog_op_header   *ophdr,
2155        struct xlog_ticket      *ticket)
2156{
2157        if (!(ticket->t_flags & XLOG_TIC_INITED))
2158                return 0;
2159
2160        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2161        ophdr->oh_clientid = ticket->t_clientid;
2162        ophdr->oh_len = 0;
2163        ophdr->oh_flags = XLOG_START_TRANS;
2164        ophdr->oh_res2 = 0;
2165
2166        ticket->t_flags &= ~XLOG_TIC_INITED;
2167
2168        return sizeof(struct xlog_op_header);
2169}
2170
2171static xlog_op_header_t *
2172xlog_write_setup_ophdr(
2173        struct xlog             *log,
2174        struct xlog_op_header   *ophdr,
2175        struct xlog_ticket      *ticket,
2176        uint                    flags)
2177{
2178        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2179        ophdr->oh_clientid = ticket->t_clientid;
2180        ophdr->oh_res2 = 0;
2181
2182        /* are we copying a commit or unmount record? */
2183        ophdr->oh_flags = flags;
2184
2185        /*
2186         * We've seen logs corrupted with bad transaction client ids.  This
2187         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2188         * and shut down the filesystem.
2189         */
2190        switch (ophdr->oh_clientid)  {
2191        case XFS_TRANSACTION:
2192        case XFS_VOLUME:
2193        case XFS_LOG:
2194                break;
2195        default:
2196                xfs_warn(log->l_mp,
2197                        "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2198                        ophdr->oh_clientid, ticket);
2199                return NULL;
2200        }
2201
2202        return ophdr;
2203}
2204
2205/*
2206 * Set up the parameters of the region copy into the log. This has
2207 * to handle region write split across multiple log buffers - this
2208 * state is kept external to this function so that this code can
2209 * be written in an obvious, self documenting manner.
2210 */
2211static int
2212xlog_write_setup_copy(
2213        struct xlog_ticket      *ticket,
2214        struct xlog_op_header   *ophdr,
2215        int                     space_available,
2216        int                     space_required,
2217        int                     *copy_off,
2218        int                     *copy_len,
2219        int                     *last_was_partial_copy,
2220        int                     *bytes_consumed)
2221{
2222        int                     still_to_copy;
2223
2224        still_to_copy = space_required - *bytes_consumed;
2225        *copy_off = *bytes_consumed;
2226
2227        if (still_to_copy <= space_available) {
2228                /* write of region completes here */
2229                *copy_len = still_to_copy;
2230                ophdr->oh_len = cpu_to_be32(*copy_len);
2231                if (*last_was_partial_copy)
2232                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2233                *last_was_partial_copy = 0;
2234                *bytes_consumed = 0;
2235                return 0;
2236        }
2237
2238        /* partial write of region, needs extra log op header reservation */
2239        *copy_len = space_available;
2240        ophdr->oh_len = cpu_to_be32(*copy_len);
2241        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2242        if (*last_was_partial_copy)
2243                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2244        *bytes_consumed += *copy_len;
2245        (*last_was_partial_copy)++;
2246
2247        /* account for new log op header */
2248        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2249        ticket->t_res_num_ophdrs++;
2250
2251        return sizeof(struct xlog_op_header);
2252}
2253
2254static int
2255xlog_write_copy_finish(
2256        struct xlog             *log,
2257        struct xlog_in_core     *iclog,
2258        uint                    flags,
2259        int                     *record_cnt,
2260        int                     *data_cnt,
2261        int                     *partial_copy,
2262        int                     *partial_copy_len,
2263        int                     log_offset,
2264        struct xlog_in_core     **commit_iclog)
2265{
2266        if (*partial_copy) {
2267                /*
2268                 * This iclog has already been marked WANT_SYNC by
2269                 * xlog_state_get_iclog_space.
2270                 */
2271                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2272                *record_cnt = 0;
2273                *data_cnt = 0;
2274                return xlog_state_release_iclog(log, iclog);
2275        }
2276
2277        *partial_copy = 0;
2278        *partial_copy_len = 0;
2279
2280        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2281                /* no more space in this iclog - push it. */
2282                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2283                *record_cnt = 0;
2284                *data_cnt = 0;
2285
2286                spin_lock(&log->l_icloglock);
2287                xlog_state_want_sync(log, iclog);
2288                spin_unlock(&log->l_icloglock);
2289
2290                if (!commit_iclog)
2291                        return xlog_state_release_iclog(log, iclog);
2292                ASSERT(flags & XLOG_COMMIT_TRANS);
2293                *commit_iclog = iclog;
2294        }
2295
2296        return 0;
2297}
2298
2299/*
2300 * Write some region out to in-core log
2301 *
2302 * This will be called when writing externally provided regions or when
2303 * writing out a commit record for a given transaction.
2304 *
2305 * General algorithm:
2306 *      1. Find total length of this write.  This may include adding to the
2307 *              lengths passed in.
2308 *      2. Check whether we violate the tickets reservation.
2309 *      3. While writing to this iclog
2310 *          A. Reserve as much space in this iclog as can get
2311 *          B. If this is first write, save away start lsn
2312 *          C. While writing this region:
2313 *              1. If first write of transaction, write start record
2314 *              2. Write log operation header (header per region)
2315 *              3. Find out if we can fit entire region into this iclog
2316 *              4. Potentially, verify destination memcpy ptr
2317 *              5. Memcpy (partial) region
2318 *              6. If partial copy, release iclog; otherwise, continue
2319 *                      copying more regions into current iclog
2320 *      4. Mark want sync bit (in simulation mode)
2321 *      5. Release iclog for potential flush to on-disk log.
2322 *
2323 * ERRORS:
2324 * 1.   Panic if reservation is overrun.  This should never happen since
2325 *      reservation amounts are generated internal to the filesystem.
2326 * NOTES:
2327 * 1. Tickets are single threaded data structures.
2328 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2329 *      syncing routine.  When a single log_write region needs to span
2330 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2331 *      on all log operation writes which don't contain the end of the
2332 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2333 *      operation which contains the end of the continued log_write region.
2334 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2335 *      we don't really know exactly how much space will be used.  As a result,
2336 *      we don't update ic_offset until the end when we know exactly how many
2337 *      bytes have been written out.
2338 */
2339int
2340xlog_write(
2341        struct xlog             *log,
2342        struct xfs_log_vec      *log_vector,
2343        struct xlog_ticket      *ticket,
2344        xfs_lsn_t               *start_lsn,
2345        struct xlog_in_core     **commit_iclog,
2346        uint                    flags)
2347{
2348        struct xlog_in_core     *iclog = NULL;
2349        struct xfs_log_iovec    *vecp;
2350        struct xfs_log_vec      *lv;
2351        int                     len;
2352        int                     index;
2353        int                     partial_copy = 0;
2354        int                     partial_copy_len = 0;
2355        int                     contwr = 0;
2356        int                     record_cnt = 0;
2357        int                     data_cnt = 0;
2358        int                     error;
2359
2360        *start_lsn = 0;
2361
2362        len = xlog_write_calc_vec_length(ticket, log_vector);
2363
2364        /*
2365         * Region headers and bytes are already accounted for.
2366         * We only need to take into account start records and
2367         * split regions in this function.
2368         */
2369        if (ticket->t_flags & XLOG_TIC_INITED)
2370                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2371
2372        /*
2373         * Commit record headers need to be accounted for. These
2374         * come in as separate writes so are easy to detect.
2375         */
2376        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2377                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2378
2379        if (ticket->t_curr_res < 0) {
2380                xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2381                     "ctx ticket reservation ran out. Need to up reservation");
2382                xlog_print_tic_res(log->l_mp, ticket);
2383                xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2384        }
2385
2386        index = 0;
2387        lv = log_vector;
2388        vecp = lv->lv_iovecp;
2389        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390                void            *ptr;
2391                int             log_offset;
2392
2393                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394                                                   &contwr, &log_offset);
2395                if (error)
2396                        return error;
2397
2398                ASSERT(log_offset <= iclog->ic_size - 1);
2399                ptr = iclog->ic_datap + log_offset;
2400
2401                /* start_lsn is the first lsn written to. That's all we need. */
2402                if (!*start_lsn)
2403                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404
2405                /*
2406                 * This loop writes out as many regions as can fit in the amount
2407                 * of space which was allocated by xlog_state_get_iclog_space().
2408                 */
2409                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410                        struct xfs_log_iovec    *reg;
2411                        struct xlog_op_header   *ophdr;
2412                        int                     start_rec_copy;
2413                        int                     copy_len;
2414                        int                     copy_off;
2415                        bool                    ordered = false;
2416
2417                        /* ordered log vectors have no regions to write */
2418                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419                                ASSERT(lv->lv_niovecs == 0);
2420                                ordered = true;
2421                                goto next_lv;
2422                        }
2423
2424                        reg = &vecp[index];
2425                        ASSERT(reg->i_len % sizeof(int32_t) == 0);
2426                        ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2427
2428                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429                        if (start_rec_copy) {
2430                                record_cnt++;
2431                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432                                                   start_rec_copy);
2433                        }
2434
2435                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436                        if (!ophdr)
2437                                return -EIO;
2438
2439                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440                                           sizeof(struct xlog_op_header));
2441
2442                        len += xlog_write_setup_copy(ticket, ophdr,
2443                                                     iclog->ic_size-log_offset,
2444                                                     reg->i_len,
2445                                                     &copy_off, &copy_len,
2446                                                     &partial_copy,
2447                                                     &partial_copy_len);
2448                        xlog_verify_dest_ptr(log, ptr);
2449
2450                        /*
2451                         * Copy region.
2452                         *
2453                         * Unmount records just log an opheader, so can have
2454                         * empty payloads with no data region to copy. Hence we
2455                         * only copy the payload if the vector says it has data
2456                         * to copy.
2457                         */
2458                        ASSERT(copy_len >= 0);
2459                        if (copy_len > 0) {
2460                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462                                                   copy_len);
2463                        }
2464                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465                        record_cnt++;
2466                        data_cnt += contwr ? copy_len : 0;
2467
2468                        error = xlog_write_copy_finish(log, iclog, flags,
2469                                                       &record_cnt, &data_cnt,
2470                                                       &partial_copy,
2471                                                       &partial_copy_len,
2472                                                       log_offset,
2473                                                       commit_iclog);
2474                        if (error)
2475                                return error;
2476
2477                        /*
2478                         * if we had a partial copy, we need to get more iclog
2479                         * space but we don't want to increment the region
2480                         * index because there is still more is this region to
2481                         * write.
2482                         *
2483                         * If we completed writing this region, and we flushed
2484                         * the iclog (indicated by resetting of the record
2485                         * count), then we also need to get more log space. If
2486                         * this was the last record, though, we are done and
2487                         * can just return.
2488                         */
2489                        if (partial_copy)
2490                                break;
2491
2492                        if (++index == lv->lv_niovecs) {
2493next_lv:
2494                                lv = lv->lv_next;
2495                                index = 0;
2496                                if (lv)
2497                                        vecp = lv->lv_iovecp;
2498                        }
2499                        if (record_cnt == 0 && !ordered) {
2500                                if (!lv)
2501                                        return 0;
2502                                break;
2503                        }
2504                }
2505        }
2506
2507        ASSERT(len == 0);
2508
2509        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510        if (!commit_iclog)
2511                return xlog_state_release_iclog(log, iclog);
2512
2513        ASSERT(flags & XLOG_COMMIT_TRANS);
2514        *commit_iclog = iclog;
2515        return 0;
2516}
2517
2518
2519/*****************************************************************************
2520 *
2521 *              State Machine functions
2522 *
2523 *****************************************************************************
2524 */
2525
2526/*
2527 * An iclog has just finished IO completion processing, so we need to update
2528 * the iclog state and propagate that up into the overall log state. Hence we
2529 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2530 * starting from the head, and then wake up any threads that are waiting for the
2531 * iclog to be marked clean.
2532 *
2533 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2534 * doesn't become ACTIVE beyond one that is SYNCING.  This is also required to
2535 * maintain the notion that we use a ordered wait queue to hold off would be
2536 * writers to the log when every iclog is trying to sync to disk.
2537 *
2538 * Caller must hold the icloglock before calling us.
2539 *
2540 * State Change: !IOERROR -> DIRTY -> ACTIVE
2541 */
2542STATIC void
2543xlog_state_clean_iclog(
2544        struct xlog             *log,
2545        struct xlog_in_core     *dirty_iclog)
2546{
2547        struct xlog_in_core     *iclog;
2548        int                     changed = 0;
2549
2550        /* Prepare the completed iclog. */
2551        if (!(dirty_iclog->ic_state & XLOG_STATE_IOERROR))
2552                dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2553
2554        /* Walk all the iclogs to update the ordered active state. */
2555        iclog = log->l_iclog;
2556        do {
2557                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2558                        iclog->ic_state = XLOG_STATE_ACTIVE;
2559                        iclog->ic_offset       = 0;
2560                        ASSERT(list_empty_careful(&iclog->ic_callbacks));
2561                        /*
2562                         * If the number of ops in this iclog indicate it just
2563                         * contains the dummy transaction, we can
2564                         * change state into IDLE (the second time around).
2565                         * Otherwise we should change the state into
2566                         * NEED a dummy.
2567                         * We don't need to cover the dummy.
2568                         */
2569                        if (!changed &&
2570                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2571                                        XLOG_COVER_OPS)) {
2572                                changed = 1;
2573                        } else {
2574                                /*
2575                                 * We have two dirty iclogs so start over
2576                                 * This could also be num of ops indicates
2577                                 * this is not the dummy going out.
2578                                 */
2579                                changed = 2;
2580                        }
2581                        iclog->ic_header.h_num_logops = 0;
2582                        memset(iclog->ic_header.h_cycle_data, 0,
2583                              sizeof(iclog->ic_header.h_cycle_data));
2584                        iclog->ic_header.h_lsn = 0;
2585                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2586                        /* do nothing */;
2587                else
2588                        break;  /* stop cleaning */
2589                iclog = iclog->ic_next;
2590        } while (iclog != log->l_iclog);
2591
2592
2593        /*
2594         * Wake up threads waiting in xfs_log_force() for the dirty iclog
2595         * to be cleaned.
2596         */
2597        wake_up_all(&dirty_iclog->ic_force_wait);
2598
2599        /*
2600         * Change state for the dummy log recording.
2601         * We usually go to NEED. But we go to NEED2 if the changed indicates
2602         * we are done writing the dummy record.
2603         * If we are done with the second dummy recored (DONE2), then
2604         * we go to IDLE.
2605         */
2606        if (changed) {
2607                switch (log->l_covered_state) {
2608                case XLOG_STATE_COVER_IDLE:
2609                case XLOG_STATE_COVER_NEED:
2610                case XLOG_STATE_COVER_NEED2:
2611                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2612                        break;
2613
2614                case XLOG_STATE_COVER_DONE:
2615                        if (changed == 1)
2616                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2617                        else
2618                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2619                        break;
2620
2621                case XLOG_STATE_COVER_DONE2:
2622                        if (changed == 1)
2623                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2624                        else
2625                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2626                        break;
2627
2628                default:
2629                        ASSERT(0);
2630                }
2631        }
2632}
2633
2634STATIC xfs_lsn_t
2635xlog_get_lowest_lsn(
2636        struct xlog             *log)
2637{
2638        struct xlog_in_core     *iclog = log->l_iclog;
2639        xfs_lsn_t               lowest_lsn = 0, lsn;
2640
2641        do {
2642                if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2643                        continue;
2644
2645                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2646                if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2647                        lowest_lsn = lsn;
2648        } while ((iclog = iclog->ic_next) != log->l_iclog);
2649
2650        return lowest_lsn;
2651}
2652
2653/*
2654 * Completion of a iclog IO does not imply that a transaction has completed, as
2655 * transactions can be large enough to span many iclogs. We cannot change the
2656 * tail of the log half way through a transaction as this may be the only
2657 * transaction in the log and moving the tail to point to the middle of it
2658 * will prevent recovery from finding the start of the transaction. Hence we
2659 * should only update the last_sync_lsn if this iclog contains transaction
2660 * completion callbacks on it.
2661 *
2662 * We have to do this before we drop the icloglock to ensure we are the only one
2663 * that can update it.
2664 *
2665 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2666 * the reservation grant head pushing. This is due to the fact that the push
2667 * target is bound by the current last_sync_lsn value. Hence if we have a large
2668 * amount of log space bound up in this committing transaction then the
2669 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2670 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2671 * should push the AIL to ensure the push target (and hence the grant head) is
2672 * no longer bound by the old log head location and can move forwards and make
2673 * progress again.
2674 */
2675static void
2676xlog_state_set_callback(
2677        struct xlog             *log,
2678        struct xlog_in_core     *iclog,
2679        xfs_lsn_t               header_lsn)
2680{
2681        iclog->ic_state = XLOG_STATE_CALLBACK;
2682
2683        ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2684                           header_lsn) <= 0);
2685
2686        if (list_empty_careful(&iclog->ic_callbacks))
2687                return;
2688
2689        atomic64_set(&log->l_last_sync_lsn, header_lsn);
2690        xlog_grant_push_ail(log, 0);
2691}
2692
2693/*
2694 * Return true if we need to stop processing, false to continue to the next
2695 * iclog. The caller will need to run callbacks if the iclog is returned in the
2696 * XLOG_STATE_CALLBACK state.
2697 */
2698static bool
2699xlog_state_iodone_process_iclog(
2700        struct xlog             *log,
2701        struct xlog_in_core     *iclog,
2702        struct xlog_in_core     *completed_iclog,
2703        bool                    *ioerror)
2704{
2705        xfs_lsn_t               lowest_lsn;
2706        xfs_lsn_t               header_lsn;
2707
2708        /* Skip all iclogs in the ACTIVE & DIRTY states */
2709        if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2710                return false;
2711
2712        /*
2713         * Between marking a filesystem SHUTDOWN and stopping the log, we do
2714         * flush all iclogs to disk (if there wasn't a log I/O error). So, we do
2715         * want things to go smoothly in case of just a SHUTDOWN  w/o a
2716         * LOG_IO_ERROR.
2717         */
2718        if (iclog->ic_state & XLOG_STATE_IOERROR) {
2719                *ioerror = true;
2720                return false;
2721        }
2722
2723        /*
2724         * Can only perform callbacks in order.  Since this iclog is not in the
2725         * DONE_SYNC/ DO_CALLBACK state, we skip the rest and just try to clean
2726         * up.  If we set our iclog to DO_CALLBACK, we will not process it when
2727         * we retry since a previous iclog is in the CALLBACK and the state
2728         * cannot change since we are holding the l_icloglock.
2729         */
2730        if (!(iclog->ic_state &
2731                        (XLOG_STATE_DONE_SYNC | XLOG_STATE_DO_CALLBACK))) {
2732                if (completed_iclog &&
2733                    (completed_iclog->ic_state == XLOG_STATE_DONE_SYNC)) {
2734                        completed_iclog->ic_state = XLOG_STATE_DO_CALLBACK;
2735                }
2736                return true;
2737        }
2738
2739        /*
2740         * We now have an iclog that is in either the DO_CALLBACK or DONE_SYNC
2741         * states. The other states (WANT_SYNC, SYNCING, or CALLBACK were caught
2742         * by the above if and are going to clean (i.e. we aren't doing their
2743         * callbacks) see the above if.
2744         *
2745         * We will do one more check here to see if we have chased our tail
2746         * around. If this is not the lowest lsn iclog, then we will leave it
2747         * for another completion to process.
2748         */
2749        header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2750        lowest_lsn = xlog_get_lowest_lsn(log);
2751        if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2752                return false;
2753
2754        xlog_state_set_callback(log, iclog, header_lsn);
2755        return false;
2756
2757}
2758
2759/*
2760 * Keep processing entries in the iclog callback list until we come around and
2761 * it is empty.  We need to atomically see that the list is empty and change the
2762 * state to DIRTY so that we don't miss any more callbacks being added.
2763 *
2764 * This function is called with the icloglock held and returns with it held. We
2765 * drop it while running callbacks, however, as holding it over thousands of
2766 * callbacks is unnecessary and causes excessive contention if we do.
2767 */
2768static void
2769xlog_state_do_iclog_callbacks(
2770        struct xlog             *log,
2771        struct xlog_in_core     *iclog,
2772        bool                    aborted)
2773{
2774        spin_unlock(&log->l_icloglock);
2775        spin_lock(&iclog->ic_callback_lock);
2776        while (!list_empty(&iclog->ic_callbacks)) {
2777                LIST_HEAD(tmp);
2778
2779                list_splice_init(&iclog->ic_callbacks, &tmp);
2780
2781                spin_unlock(&iclog->ic_callback_lock);
2782                xlog_cil_process_committed(&tmp, aborted);
2783                spin_lock(&iclog->ic_callback_lock);
2784        }
2785
2786        /*
2787         * Pick up the icloglock while still holding the callback lock so we
2788         * serialise against anyone trying to add more callbacks to this iclog
2789         * now we've finished processing.
2790         */
2791        spin_lock(&log->l_icloglock);
2792        spin_unlock(&iclog->ic_callback_lock);
2793}
2794
2795#ifdef DEBUG
2796/*
2797 * Make one last gasp attempt to see if iclogs are being left in limbo.  If the
2798 * above loop finds an iclog earlier than the current iclog and in one of the
2799 * syncing states, the current iclog is put into DO_CALLBACK and the callbacks
2800 * are deferred to the completion of the earlier iclog. Walk the iclogs in order
2801 * and make sure that no iclog is in DO_CALLBACK unless an earlier iclog is in
2802 * one of the syncing states.
2803 *
2804 * Note that SYNCING|IOERROR is a valid state so we cannot just check for
2805 * ic_state == SYNCING.
2806 */
2807static void
2808xlog_state_callback_check_state(
2809        struct xlog             *log)
2810{
2811        struct xlog_in_core     *first_iclog = log->l_iclog;
2812        struct xlog_in_core     *iclog = first_iclog;
2813
2814        do {
2815                ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2816                /*
2817                 * Terminate the loop if iclogs are found in states
2818                 * which will cause other threads to clean up iclogs.
2819                 *
2820                 * SYNCING - i/o completion will go through logs
2821                 * DONE_SYNC - interrupt thread should be waiting for
2822                 *              l_icloglock
2823                 * IOERROR - give up hope all ye who enter here
2824                 */
2825                if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2826                    iclog->ic_state & XLOG_STATE_SYNCING ||
2827                    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2828                    iclog->ic_state == XLOG_STATE_IOERROR )
2829                        break;
2830                iclog = iclog->ic_next;
2831        } while (first_iclog != iclog);
2832}
2833#else
2834#define xlog_state_callback_check_state(l)      ((void)0)
2835#endif
2836
2837STATIC void
2838xlog_state_do_callback(
2839        struct xlog             *log,
2840        bool                    aborted,
2841        struct xlog_in_core     *ciclog)
2842{
2843        struct xlog_in_core     *iclog;
2844        struct xlog_in_core     *first_iclog;
2845        bool                    did_callbacks = false;
2846        bool                    cycled_icloglock;
2847        bool                    ioerror;
2848        int                     flushcnt = 0;
2849        int                     repeats = 0;
2850
2851        spin_lock(&log->l_icloglock);
2852        do {
2853                /*
2854                 * Scan all iclogs starting with the one pointed to by the
2855                 * log.  Reset this starting point each time the log is
2856                 * unlocked (during callbacks).
2857                 *
2858                 * Keep looping through iclogs until one full pass is made
2859                 * without running any callbacks.
2860                 */
2861                first_iclog = log->l_iclog;
2862                iclog = log->l_iclog;
2863                cycled_icloglock = false;
2864                ioerror = false;
2865                repeats++;
2866
2867                do {
2868                        if (xlog_state_iodone_process_iclog(log, iclog,
2869                                                        ciclog, &ioerror))
2870                                break;
2871
2872                        if (!(iclog->ic_state &
2873                              (XLOG_STATE_CALLBACK | XLOG_STATE_IOERROR))) {
2874                                iclog = iclog->ic_next;
2875                                continue;
2876                        }
2877
2878                        /*
2879                         * Running callbacks will drop the icloglock which means
2880                         * we'll have to run at least one more complete loop.
2881                         */
2882                        cycled_icloglock = true;
2883                        xlog_state_do_iclog_callbacks(log, iclog, aborted);
2884
2885                        xlog_state_clean_iclog(log, iclog);
2886                        iclog = iclog->ic_next;
2887                } while (first_iclog != iclog);
2888
2889                did_callbacks |= cycled_icloglock;
2890
2891                if (repeats > 5000) {
2892                        flushcnt += repeats;
2893                        repeats = 0;
2894                        xfs_warn(log->l_mp,
2895                                "%s: possible infinite loop (%d iterations)",
2896                                __func__, flushcnt);
2897                }
2898        } while (!ioerror && cycled_icloglock);
2899
2900        if (did_callbacks)
2901                xlog_state_callback_check_state(log);
2902
2903        if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2904                wake_up_all(&log->l_flush_wait);
2905
2906        spin_unlock(&log->l_icloglock);
2907}
2908
2909
2910/*
2911 * Finish transitioning this iclog to the dirty state.
2912 *
2913 * Make sure that we completely execute this routine only when this is
2914 * the last call to the iclog.  There is a good chance that iclog flushes,
2915 * when we reach the end of the physical log, get turned into 2 separate
2916 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2917 * routine.  By using the reference count bwritecnt, we guarantee that only
2918 * the second completion goes through.
2919 *
2920 * Callbacks could take time, so they are done outside the scope of the
2921 * global state machine log lock.
2922 */
2923STATIC void
2924xlog_state_done_syncing(
2925        struct xlog_in_core     *iclog,
2926        bool                    aborted)
2927{
2928        struct xlog             *log = iclog->ic_log;
2929
2930        spin_lock(&log->l_icloglock);
2931
2932        ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2933               iclog->ic_state == XLOG_STATE_IOERROR);
2934        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2935
2936        /*
2937         * If we got an error, either on the first buffer, or in the case of
2938         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2939         * and none should ever be attempted to be written to disk
2940         * again.
2941         */
2942        if (iclog->ic_state != XLOG_STATE_IOERROR)
2943                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2944
2945        /*
2946         * Someone could be sleeping prior to writing out the next
2947         * iclog buffer, we wake them all, one will get to do the
2948         * I/O, the others get to wait for the result.
2949         */
2950        wake_up_all(&iclog->ic_write_wait);
2951        spin_unlock(&log->l_icloglock);
2952        xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2953}       /* xlog_state_done_syncing */
2954
2955
2956/*
2957 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2958 * sleep.  We wait on the flush queue on the head iclog as that should be
2959 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2960 * we will wait here and all new writes will sleep until a sync completes.
2961 *
2962 * The in-core logs are used in a circular fashion. They are not used
2963 * out-of-order even when an iclog past the head is free.
2964 *
2965 * return:
2966 *      * log_offset where xlog_write() can start writing into the in-core
2967 *              log's data space.
2968 *      * in-core log pointer to which xlog_write() should write.
2969 *      * boolean indicating this is a continued write to an in-core log.
2970 *              If this is the last write, then the in-core log's offset field
2971 *              needs to be incremented, depending on the amount of data which
2972 *              is copied.
2973 */
2974STATIC int
2975xlog_state_get_iclog_space(
2976        struct xlog             *log,
2977        int                     len,
2978        struct xlog_in_core     **iclogp,
2979        struct xlog_ticket      *ticket,
2980        int                     *continued_write,
2981        int                     *logoffsetp)
2982{
2983        int               log_offset;
2984        xlog_rec_header_t *head;
2985        xlog_in_core_t    *iclog;
2986        int               error;
2987
2988restart:
2989        spin_lock(&log->l_icloglock);
2990        if (XLOG_FORCED_SHUTDOWN(log)) {
2991                spin_unlock(&log->l_icloglock);
2992                return -EIO;
2993        }
2994
2995        iclog = log->l_iclog;
2996        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2997                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2998
2999                /* Wait for log writes to have flushed */
3000                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3001                goto restart;
3002        }
3003
3004        head = &iclog->ic_header;
3005
3006        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3007        log_offset = iclog->ic_offset;
3008
3009        /* On the 1st write to an iclog, figure out lsn.  This works
3010         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3011         * committing to.  If the offset is set, that's how many blocks
3012         * must be written.
3013         */
3014        if (log_offset == 0) {
3015                ticket->t_curr_res -= log->l_iclog_hsize;
3016                xlog_tic_add_region(ticket,
3017                                    log->l_iclog_hsize,
3018                                    XLOG_REG_TYPE_LRHEADER);
3019                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3020                head->h_lsn = cpu_to_be64(
3021                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3022                ASSERT(log->l_curr_block >= 0);
3023        }
3024
3025        /* If there is enough room to write everything, then do it.  Otherwise,
3026         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3027         * bit is on, so this will get flushed out.  Don't update ic_offset
3028         * until you know exactly how many bytes get copied.  Therefore, wait
3029         * until later to update ic_offset.
3030         *
3031         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3032         * can fit into remaining data section.
3033         */
3034        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3035                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3036
3037                /*
3038                 * If I'm the only one writing to this iclog, sync it to disk.
3039                 * We need to do an atomic compare and decrement here to avoid
3040                 * racing with concurrent atomic_dec_and_lock() calls in
3041                 * xlog_state_release_iclog() when there is more than one
3042                 * reference to the iclog.
3043                 */
3044                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3045                        /* we are the only one */
3046                        spin_unlock(&log->l_icloglock);
3047                        error = xlog_state_release_iclog(log, iclog);
3048                        if (error)
3049                                return error;
3050                } else {
3051                        spin_unlock(&log->l_icloglock);
3052                }
3053                goto restart;
3054        }
3055
3056        /* Do we have enough room to write the full amount in the remainder
3057         * of this iclog?  Or must we continue a write on the next iclog and
3058         * mark this iclog as completely taken?  In the case where we switch
3059         * iclogs (to mark it taken), this particular iclog will release/sync
3060         * to disk in xlog_write().
3061         */
3062        if (len <= iclog->ic_size - iclog->ic_offset) {
3063                *continued_write = 0;
3064                iclog->ic_offset += len;
3065        } else {
3066                *continued_write = 1;
3067                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3068        }
3069        *iclogp = iclog;
3070
3071        ASSERT(iclog->ic_offset <= iclog->ic_size);
3072        spin_unlock(&log->l_icloglock);
3073
3074        *logoffsetp = log_offset;
3075        return 0;
3076}       /* xlog_state_get_iclog_space */
3077
3078/* The first cnt-1 times through here we don't need to
3079 * move the grant write head because the permanent
3080 * reservation has reserved cnt times the unit amount.
3081 * Release part of current permanent unit reservation and
3082 * reset current reservation to be one units worth.  Also
3083 * move grant reservation head forward.
3084 */
3085STATIC void
3086xlog_regrant_reserve_log_space(
3087        struct xlog             *log,
3088        struct xlog_ticket      *ticket)
3089{
3090        trace_xfs_log_regrant_reserve_enter(log, ticket);
3091
3092        if (ticket->t_cnt > 0)
3093                ticket->t_cnt--;
3094
3095        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3096                                        ticket->t_curr_res);
3097        xlog_grant_sub_space(log, &log->l_write_head.grant,
3098                                        ticket->t_curr_res);
3099        ticket->t_curr_res = ticket->t_unit_res;
3100        xlog_tic_reset_res(ticket);
3101
3102        trace_xfs_log_regrant_reserve_sub(log, ticket);
3103
3104        /* just return if we still have some of the pre-reserved space */
3105        if (ticket->t_cnt > 0)
3106                return;
3107
3108        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3109                                        ticket->t_unit_res);
3110
3111        trace_xfs_log_regrant_reserve_exit(log, ticket);
3112
3113        ticket->t_curr_res = ticket->t_unit_res;
3114        xlog_tic_reset_res(ticket);
3115}       /* xlog_regrant_reserve_log_space */
3116
3117
3118/*
3119 * Give back the space left from a reservation.
3120 *
3121 * All the information we need to make a correct determination of space left
3122 * is present.  For non-permanent reservations, things are quite easy.  The
3123 * count should have been decremented to zero.  We only need to deal with the
3124 * space remaining in the current reservation part of the ticket.  If the
3125 * ticket contains a permanent reservation, there may be left over space which
3126 * needs to be released.  A count of N means that N-1 refills of the current
3127 * reservation can be done before we need to ask for more space.  The first
3128 * one goes to fill up the first current reservation.  Once we run out of
3129 * space, the count will stay at zero and the only space remaining will be
3130 * in the current reservation field.
3131 */
3132STATIC void
3133xlog_ungrant_log_space(
3134        struct xlog             *log,
3135        struct xlog_ticket      *ticket)
3136{
3137        int     bytes;
3138
3139        if (ticket->t_cnt > 0)
3140                ticket->t_cnt--;
3141
3142        trace_xfs_log_ungrant_enter(log, ticket);
3143        trace_xfs_log_ungrant_sub(log, ticket);
3144
3145        /*
3146         * If this is a permanent reservation ticket, we may be able to free
3147         * up more space based on the remaining count.
3148         */
3149        bytes = ticket->t_curr_res;
3150        if (ticket->t_cnt > 0) {
3151                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3152                bytes += ticket->t_unit_res*ticket->t_cnt;
3153        }
3154
3155        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3156        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3157
3158        trace_xfs_log_ungrant_exit(log, ticket);
3159
3160        xfs_log_space_wake(log->l_mp);
3161}
3162
3163/*
3164 * Flush iclog to disk if this is the last reference to the given iclog and
3165 * the WANT_SYNC bit is set.
3166 *
3167 * When this function is entered, the iclog is not necessarily in the
3168 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3169 *
3170 *
3171 */
3172STATIC int
3173xlog_state_release_iclog(
3174        struct xlog             *log,
3175        struct xlog_in_core     *iclog)
3176{
3177        int             sync = 0;       /* do we sync? */
3178
3179        if (iclog->ic_state & XLOG_STATE_IOERROR)
3180                return -EIO;
3181
3182        ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3183        if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3184                return 0;
3185
3186        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3187                spin_unlock(&log->l_icloglock);
3188                return -EIO;
3189        }
3190        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3191               iclog->ic_state == XLOG_STATE_WANT_SYNC);
3192
3193        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3194                /* update tail before writing to iclog */
3195                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3196                sync++;
3197                iclog->ic_state = XLOG_STATE_SYNCING;
3198                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3199                xlog_verify_tail_lsn(log, iclog, tail_lsn);
3200                /* cycle incremented when incrementing curr_block */
3201        }
3202        spin_unlock(&log->l_icloglock);
3203
3204        /*
3205         * We let the log lock go, so it's possible that we hit a log I/O
3206         * error or some other SHUTDOWN condition that marks the iclog
3207         * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3208         * this iclog has consistent data, so we ignore IOERROR
3209         * flags after this point.
3210         */
3211        if (sync)
3212                xlog_sync(log, iclog);
3213        return 0;
3214}       /* xlog_state_release_iclog */
3215
3216
3217/*
3218 * This routine will mark the current iclog in the ring as WANT_SYNC
3219 * and move the current iclog pointer to the next iclog in the ring.
3220 * When this routine is called from xlog_state_get_iclog_space(), the
3221 * exact size of the iclog has not yet been determined.  All we know is
3222 * that every data block.  We have run out of space in this log record.
3223 */
3224STATIC void
3225xlog_state_switch_iclogs(
3226        struct xlog             *log,
3227        struct xlog_in_core     *iclog,
3228        int                     eventual_size)
3229{
3230        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3231        if (!eventual_size)
3232                eventual_size = iclog->ic_offset;
3233        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3234        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3235        log->l_prev_block = log->l_curr_block;
3236        log->l_prev_cycle = log->l_curr_cycle;
3237
3238        /* roll log?: ic_offset changed later */
3239        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3240
3241        /* Round up to next log-sunit */
3242        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3243            log->l_mp->m_sb.sb_logsunit > 1) {
3244                uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3245                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3246        }
3247
3248        if (log->l_curr_block >= log->l_logBBsize) {
3249                /*
3250                 * Rewind the current block before the cycle is bumped to make
3251                 * sure that the combined LSN never transiently moves forward
3252                 * when the log wraps to the next cycle. This is to support the
3253                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3254                 * other cases should acquire l_icloglock.
3255                 */
3256                log->l_curr_block -= log->l_logBBsize;
3257                ASSERT(log->l_curr_block >= 0);
3258                smp_wmb();
3259                log->l_curr_cycle++;
3260                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3261                        log->l_curr_cycle++;
3262        }
3263        ASSERT(iclog == log->l_iclog);
3264        log->l_iclog = iclog->ic_next;
3265}       /* xlog_state_switch_iclogs */
3266
3267/*
3268 * Write out all data in the in-core log as of this exact moment in time.
3269 *
3270 * Data may be written to the in-core log during this call.  However,
3271 * we don't guarantee this data will be written out.  A change from past
3272 * implementation means this routine will *not* write out zero length LRs.
3273 *
3274 * Basically, we try and perform an intelligent scan of the in-core logs.
3275 * If we determine there is no flushable data, we just return.  There is no
3276 * flushable data if:
3277 *
3278 *      1. the current iclog is active and has no data; the previous iclog
3279 *              is in the active or dirty state.
3280 *      2. the current iclog is drity, and the previous iclog is in the
3281 *              active or dirty state.
3282 *
3283 * We may sleep if:
3284 *
3285 *      1. the current iclog is not in the active nor dirty state.
3286 *      2. the current iclog dirty, and the previous iclog is not in the
3287 *              active nor dirty state.
3288 *      3. the current iclog is active, and there is another thread writing
3289 *              to this particular iclog.
3290 *      4. a) the current iclog is active and has no other writers
3291 *         b) when we return from flushing out this iclog, it is still
3292 *              not in the active nor dirty state.
3293 */
3294int
3295xfs_log_force(
3296        struct xfs_mount        *mp,
3297        uint                    flags)
3298{
3299        struct xlog             *log = mp->m_log;
3300        struct xlog_in_core     *iclog;
3301        xfs_lsn_t               lsn;
3302
3303        XFS_STATS_INC(mp, xs_log_force);
3304        trace_xfs_log_force(mp, 0, _RET_IP_);
3305
3306        xlog_cil_force(log);
3307
3308        spin_lock(&log->l_icloglock);
3309        iclog = log->l_iclog;
3310        if (iclog->ic_state & XLOG_STATE_IOERROR)
3311                goto out_error;
3312
3313        if (iclog->ic_state == XLOG_STATE_DIRTY ||
3314            (iclog->ic_state == XLOG_STATE_ACTIVE &&
3315             atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3316                /*
3317                 * If the head is dirty or (active and empty), then we need to
3318                 * look at the previous iclog.
3319                 *
3320                 * If the previous iclog is active or dirty we are done.  There
3321                 * is nothing to sync out. Otherwise, we attach ourselves to the
3322                 * previous iclog and go to sleep.
3323                 */
3324                iclog = iclog->ic_prev;
3325                if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3326                    iclog->ic_state == XLOG_STATE_DIRTY)
3327                        goto out_unlock;
3328        } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3329                if (atomic_read(&iclog->ic_refcnt) == 0) {
3330                        /*
3331                         * We are the only one with access to this iclog.
3332                         *
3333                         * Flush it out now.  There should be a roundoff of zero
3334                         * to show that someone has already taken care of the
3335                         * roundoff from the previous sync.
3336                         */
3337                        atomic_inc(&iclog->ic_refcnt);
3338                        lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3339                        xlog_state_switch_iclogs(log, iclog, 0);
3340                        spin_unlock(&log->l_icloglock);
3341
3342                        if (xlog_state_release_iclog(log, iclog))
3343                                return -EIO;
3344
3345                        spin_lock(&log->l_icloglock);
3346                        if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3347                            iclog->ic_state == XLOG_STATE_DIRTY)
3348                                goto out_unlock;
3349                } else {
3350                        /*
3351                         * Someone else is writing to this iclog.
3352                         *
3353                         * Use its call to flush out the data.  However, the
3354                         * other thread may not force out this LR, so we mark
3355                         * it WANT_SYNC.
3356                         */
3357                        xlog_state_switch_iclogs(log, iclog, 0);
3358                }
3359        } else {
3360                /*
3361                 * If the head iclog is not active nor dirty, we just attach
3362                 * ourselves to the head and go to sleep if necessary.
3363                 */
3364                ;
3365        }
3366
3367        if (!(flags & XFS_LOG_SYNC))
3368                goto out_unlock;
3369
3370        if (iclog->ic_state & XLOG_STATE_IOERROR)
3371                goto out_error;
3372        XFS_STATS_INC(mp, xs_log_force_sleep);
3373        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3374        if (iclog->ic_state & XLOG_STATE_IOERROR)
3375                return -EIO;
3376        return 0;
3377
3378out_unlock:
3379        spin_unlock(&log->l_icloglock);
3380        return 0;
3381out_error:
3382        spin_unlock(&log->l_icloglock);
3383        return -EIO;
3384}
3385
3386static int
3387__xfs_log_force_lsn(
3388        struct xfs_mount        *mp,
3389        xfs_lsn_t               lsn,
3390        uint                    flags,
3391        int                     *log_flushed,
3392        bool                    already_slept)
3393{
3394        struct xlog             *log = mp->m_log;
3395        struct xlog_in_core     *iclog;
3396
3397        spin_lock(&log->l_icloglock);
3398        iclog = log->l_iclog;
3399        if (iclog->ic_state & XLOG_STATE_IOERROR)
3400                goto out_error;
3401
3402        while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3403                iclog = iclog->ic_next;
3404                if (iclog == log->l_iclog)
3405                        goto out_unlock;
3406        }
3407
3408        if (iclog->ic_state == XLOG_STATE_DIRTY)
3409                goto out_unlock;
3410
3411        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3412                /*
3413                 * We sleep here if we haven't already slept (e.g. this is the
3414                 * first time we've looked at the correct iclog buf) and the
3415                 * buffer before us is going to be sync'ed.  The reason for this
3416                 * is that if we are doing sync transactions here, by waiting
3417                 * for the previous I/O to complete, we can allow a few more
3418                 * transactions into this iclog before we close it down.
3419                 *
3420                 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3421                 * refcnt so we can release the log (which drops the ref count).
3422                 * The state switch keeps new transaction commits from using
3423                 * this buffer.  When the current commits finish writing into
3424                 * the buffer, the refcount will drop to zero and the buffer
3425                 * will go out then.
3426                 */
3427                if (!already_slept &&
3428                    (iclog->ic_prev->ic_state &
3429                     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3430                        ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3431
3432                        XFS_STATS_INC(mp, xs_log_force_sleep);
3433
3434                        xlog_wait(&iclog->ic_prev->ic_write_wait,
3435                                        &log->l_icloglock);
3436                        return -EAGAIN;
3437                }
3438                atomic_inc(&iclog->ic_refcnt);
3439                xlog_state_switch_iclogs(log, iclog, 0);
3440                spin_unlock(&log->l_icloglock);
3441                if (xlog_state_release_iclog(log, iclog))
3442                        return -EIO;
3443                if (log_flushed)
3444                        *log_flushed = 1;
3445                spin_lock(&log->l_icloglock);
3446        }
3447
3448        if (!(flags & XFS_LOG_SYNC) ||
3449            (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3450                goto out_unlock;
3451
3452        if (iclog->ic_state & XLOG_STATE_IOERROR)
3453                goto out_error;
3454
3455        XFS_STATS_INC(mp, xs_log_force_sleep);
3456        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3457        if (iclog->ic_state & XLOG_STATE_IOERROR)
3458                return -EIO;
3459        return 0;
3460
3461out_unlock:
3462        spin_unlock(&log->l_icloglock);
3463        return 0;
3464out_error:
3465        spin_unlock(&log->l_icloglock);
3466        return -EIO;
3467}
3468
3469/*
3470 * Force the in-core log to disk for a specific LSN.
3471 *
3472 * Find in-core log with lsn.
3473 *      If it is in the DIRTY state, just return.
3474 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3475 *              state and go to sleep or return.
3476 *      If it is in any other state, go to sleep or return.
3477 *
3478 * Synchronous forces are implemented with a wait queue.  All callers trying
3479 * to force a given lsn to disk must wait on the queue attached to the
3480 * specific in-core log.  When given in-core log finally completes its write
3481 * to disk, that thread will wake up all threads waiting on the queue.
3482 */
3483int
3484xfs_log_force_lsn(
3485        struct xfs_mount        *mp,
3486        xfs_lsn_t               lsn,
3487        uint                    flags,
3488        int                     *log_flushed)
3489{
3490        int                     ret;
3491        ASSERT(lsn != 0);
3492
3493        XFS_STATS_INC(mp, xs_log_force);
3494        trace_xfs_log_force(mp, lsn, _RET_IP_);
3495
3496        lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3497        if (lsn == NULLCOMMITLSN)
3498                return 0;
3499
3500        ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3501        if (ret == -EAGAIN)
3502                ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3503        return ret;
3504}
3505
3506/*
3507 * Called when we want to mark the current iclog as being ready to sync to
3508 * disk.
3509 */
3510STATIC void
3511xlog_state_want_sync(
3512        struct xlog             *log,
3513        struct xlog_in_core     *iclog)
3514{
3515        assert_spin_locked(&log->l_icloglock);
3516
3517        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3518                xlog_state_switch_iclogs(log, iclog, 0);
3519        } else {
3520                ASSERT(iclog->ic_state &
3521                        (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3522        }
3523}
3524
3525
3526/*****************************************************************************
3527 *
3528 *              TICKET functions
3529 *
3530 *****************************************************************************
3531 */
3532
3533/*
3534 * Free a used ticket when its refcount falls to zero.
3535 */
3536void
3537xfs_log_ticket_put(
3538        xlog_ticket_t   *ticket)
3539{
3540        ASSERT(atomic_read(&ticket->t_ref) > 0);
3541        if (atomic_dec_and_test(&ticket->t_ref))
3542                kmem_zone_free(xfs_log_ticket_zone, ticket);
3543}
3544
3545xlog_ticket_t *
3546xfs_log_ticket_get(
3547        xlog_ticket_t   *ticket)
3548{
3549        ASSERT(atomic_read(&ticket->t_ref) > 0);
3550        atomic_inc(&ticket->t_ref);
3551        return ticket;
3552}
3553
3554/*
3555 * Figure out the total log space unit (in bytes) that would be
3556 * required for a log ticket.
3557 */
3558int
3559xfs_log_calc_unit_res(
3560        struct xfs_mount        *mp,
3561        int                     unit_bytes)
3562{
3563        struct xlog             *log = mp->m_log;
3564        int                     iclog_space;
3565        uint                    num_headers;
3566
3567        /*
3568         * Permanent reservations have up to 'cnt'-1 active log operations
3569         * in the log.  A unit in this case is the amount of space for one
3570         * of these log operations.  Normal reservations have a cnt of 1
3571         * and their unit amount is the total amount of space required.
3572         *
3573         * The following lines of code account for non-transaction data
3574         * which occupy space in the on-disk log.
3575         *
3576         * Normal form of a transaction is:
3577         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3578         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3579         *
3580         * We need to account for all the leadup data and trailer data
3581         * around the transaction data.
3582         * And then we need to account for the worst case in terms of using
3583         * more space.
3584         * The worst case will happen if:
3585         * - the placement of the transaction happens to be such that the
3586         *   roundoff is at its maximum
3587         * - the transaction data is synced before the commit record is synced
3588         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3589         *   Therefore the commit record is in its own Log Record.
3590         *   This can happen as the commit record is called with its
3591         *   own region to xlog_write().
3592         *   This then means that in the worst case, roundoff can happen for
3593         *   the commit-rec as well.
3594         *   The commit-rec is smaller than padding in this scenario and so it is
3595         *   not added separately.
3596         */
3597
3598        /* for trans header */
3599        unit_bytes += sizeof(xlog_op_header_t);
3600        unit_bytes += sizeof(xfs_trans_header_t);
3601
3602        /* for start-rec */
3603        unit_bytes += sizeof(xlog_op_header_t);
3604
3605        /*
3606         * for LR headers - the space for data in an iclog is the size minus
3607         * the space used for the headers. If we use the iclog size, then we
3608         * undercalculate the number of headers required.
3609         *
3610         * Furthermore - the addition of op headers for split-recs might
3611         * increase the space required enough to require more log and op
3612         * headers, so take that into account too.
3613         *
3614         * IMPORTANT: This reservation makes the assumption that if this
3615         * transaction is the first in an iclog and hence has the LR headers
3616         * accounted to it, then the remaining space in the iclog is
3617         * exclusively for this transaction.  i.e. if the transaction is larger
3618         * than the iclog, it will be the only thing in that iclog.
3619         * Fundamentally, this means we must pass the entire log vector to
3620         * xlog_write to guarantee this.
3621         */
3622        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3623        num_headers = howmany(unit_bytes, iclog_space);
3624
3625        /* for split-recs - ophdrs added when data split over LRs */
3626        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3627
3628        /* add extra header reservations if we overrun */
3629        while (!num_headers ||
3630               howmany(unit_bytes, iclog_space) > num_headers) {
3631                unit_bytes += sizeof(xlog_op_header_t);
3632                num_headers++;
3633        }
3634        unit_bytes += log->l_iclog_hsize * num_headers;
3635
3636        /* for commit-rec LR header - note: padding will subsume the ophdr */
3637        unit_bytes += log->l_iclog_hsize;
3638
3639        /* for roundoff padding for transaction data and one for commit record */
3640        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3641                /* log su roundoff */
3642                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3643        } else {
3644                /* BB roundoff */
3645                unit_bytes += 2 * BBSIZE;
3646        }
3647
3648        return unit_bytes;
3649}
3650
3651/*
3652 * Allocate and initialise a new log ticket.
3653 */
3654struct xlog_ticket *
3655xlog_ticket_alloc(
3656        struct xlog             *log,
3657        int                     unit_bytes,
3658        int                     cnt,
3659        char                    client,
3660        bool                    permanent,
3661        xfs_km_flags_t          alloc_flags)
3662{
3663        struct xlog_ticket      *tic;
3664        int                     unit_res;
3665
3666        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3667        if (!tic)
3668                return NULL;
3669
3670        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3671
3672        atomic_set(&tic->t_ref, 1);
3673        tic->t_task             = current;
3674        INIT_LIST_HEAD(&tic->t_queue);
3675        tic->t_unit_res         = unit_res;
3676        tic->t_curr_res         = unit_res;
3677        tic->t_cnt              = cnt;
3678        tic->t_ocnt             = cnt;
3679        tic->t_tid              = prandom_u32();
3680        tic->t_clientid         = client;
3681        tic->t_flags            = XLOG_TIC_INITED;
3682        if (permanent)
3683                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3684
3685        xlog_tic_reset_res(tic);
3686
3687        return tic;
3688}
3689
3690
3691/******************************************************************************
3692 *
3693 *              Log debug routines
3694 *
3695 ******************************************************************************
3696 */
3697#if defined(DEBUG)
3698/*
3699 * Make sure that the destination ptr is within the valid data region of
3700 * one of the iclogs.  This uses backup pointers stored in a different
3701 * part of the log in case we trash the log structure.
3702 */
3703STATIC void
3704xlog_verify_dest_ptr(
3705        struct xlog     *log,
3706        void            *ptr)
3707{
3708        int i;
3709        int good_ptr = 0;
3710
3711        for (i = 0; i < log->l_iclog_bufs; i++) {
3712                if (ptr >= log->l_iclog_bak[i] &&
3713                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3714                        good_ptr++;
3715        }
3716
3717        if (!good_ptr)
3718                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3719}
3720
3721/*
3722 * Check to make sure the grant write head didn't just over lap the tail.  If
3723 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3724 * the cycles differ by exactly one and check the byte count.
3725 *
3726 * This check is run unlocked, so can give false positives. Rather than assert
3727 * on failures, use a warn-once flag and a panic tag to allow the admin to
3728 * determine if they want to panic the machine when such an error occurs. For
3729 * debug kernels this will have the same effect as using an assert but, unlinke
3730 * an assert, it can be turned off at runtime.
3731 */
3732STATIC void
3733xlog_verify_grant_tail(
3734        struct xlog     *log)
3735{
3736        int             tail_cycle, tail_blocks;
3737        int             cycle, space;
3738
3739        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3740        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3741        if (tail_cycle != cycle) {
3742                if (cycle - 1 != tail_cycle &&
3743                    !(log->l_flags & XLOG_TAIL_WARN)) {
3744                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3745                                "%s: cycle - 1 != tail_cycle", __func__);
3746                        log->l_flags |= XLOG_TAIL_WARN;
3747                }
3748
3749                if (space > BBTOB(tail_blocks) &&
3750                    !(log->l_flags & XLOG_TAIL_WARN)) {
3751                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3752                                "%s: space > BBTOB(tail_blocks)", __func__);
3753                        log->l_flags |= XLOG_TAIL_WARN;
3754                }
3755        }
3756}
3757
3758/* check if it will fit */
3759STATIC void
3760xlog_verify_tail_lsn(
3761        struct xlog             *log,
3762        struct xlog_in_core     *iclog,
3763        xfs_lsn_t               tail_lsn)
3764{
3765    int blocks;
3766
3767    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3768        blocks =
3769            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3770        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3771                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3772    } else {
3773        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3774
3775        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3776                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3777
3778        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3779        if (blocks < BTOBB(iclog->ic_offset) + 1)
3780                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3781    }
3782}       /* xlog_verify_tail_lsn */
3783
3784/*
3785 * Perform a number of checks on the iclog before writing to disk.
3786 *
3787 * 1. Make sure the iclogs are still circular
3788 * 2. Make sure we have a good magic number
3789 * 3. Make sure we don't have magic numbers in the data
3790 * 4. Check fields of each log operation header for:
3791 *      A. Valid client identifier
3792 *      B. tid ptr value falls in valid ptr space (user space code)
3793 *      C. Length in log record header is correct according to the
3794 *              individual operation headers within record.
3795 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3796 *      log, check the preceding blocks of the physical log to make sure all
3797 *      the cycle numbers agree with the current cycle number.
3798 */
3799STATIC void
3800xlog_verify_iclog(
3801        struct xlog             *log,
3802        struct xlog_in_core     *iclog,
3803        int                     count)
3804{
3805        xlog_op_header_t        *ophead;
3806        xlog_in_core_t          *icptr;
3807        xlog_in_core_2_t        *xhdr;
3808        void                    *base_ptr, *ptr, *p;
3809        ptrdiff_t               field_offset;
3810        uint8_t                 clientid;
3811        int                     len, i, j, k, op_len;
3812        int                     idx;
3813
3814        /* check validity of iclog pointers */
3815        spin_lock(&log->l_icloglock);
3816        icptr = log->l_iclog;
3817        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3818                ASSERT(icptr);
3819
3820        if (icptr != log->l_iclog)
3821                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3822        spin_unlock(&log->l_icloglock);
3823
3824        /* check log magic numbers */
3825        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3826                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3827
3828        base_ptr = ptr = &iclog->ic_header;
3829        p = &iclog->ic_header;
3830        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3831                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3832                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3833                                __func__);
3834        }
3835
3836        /* check fields */
3837        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3838        base_ptr = ptr = iclog->ic_datap;
3839        ophead = ptr;
3840        xhdr = iclog->ic_data;
3841        for (i = 0; i < len; i++) {
3842                ophead = ptr;
3843
3844                /* clientid is only 1 byte */
3845                p = &ophead->oh_clientid;
3846                field_offset = p - base_ptr;
3847                if (field_offset & 0x1ff) {
3848                        clientid = ophead->oh_clientid;
3849                } else {
3850                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3851                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3852                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3853                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3854                                clientid = xlog_get_client_id(
3855                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3856                        } else {
3857                                clientid = xlog_get_client_id(
3858                                        iclog->ic_header.h_cycle_data[idx]);
3859                        }
3860                }
3861                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3862                        xfs_warn(log->l_mp,
3863                                "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3864                                __func__, clientid, ophead,
3865                                (unsigned long)field_offset);
3866
3867                /* check length */
3868                p = &ophead->oh_len;
3869                field_offset = p - base_ptr;
3870                if (field_offset & 0x1ff) {
3871                        op_len = be32_to_cpu(ophead->oh_len);
3872                } else {
3873                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3874                                    (uintptr_t)iclog->ic_datap);
3875                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3876                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3877                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3878                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3879                        } else {
3880                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3881                        }
3882                }
3883                ptr += sizeof(xlog_op_header_t) + op_len;
3884        }
3885}       /* xlog_verify_iclog */
3886#endif
3887
3888/*
3889 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3890 */
3891STATIC int
3892xlog_state_ioerror(
3893        struct xlog     *log)
3894{
3895        xlog_in_core_t  *iclog, *ic;
3896
3897        iclog = log->l_iclog;
3898        if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3899                /*
3900                 * Mark all the incore logs IOERROR.
3901                 * From now on, no log flushes will result.
3902                 */
3903                ic = iclog;
3904                do {
3905                        ic->ic_state = XLOG_STATE_IOERROR;
3906                        ic = ic->ic_next;
3907                } while (ic != iclog);
3908                return 0;
3909        }
3910        /*
3911         * Return non-zero, if state transition has already happened.
3912         */
3913        return 1;
3914}
3915
3916/*
3917 * This is called from xfs_force_shutdown, when we're forcibly
3918 * shutting down the filesystem, typically because of an IO error.
3919 * Our main objectives here are to make sure that:
3920 *      a. if !logerror, flush the logs to disk. Anything modified
3921 *         after this is ignored.
3922 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3923 *         parties to find out, 'atomically'.
3924 *      c. those who're sleeping on log reservations, pinned objects and
3925 *          other resources get woken up, and be told the bad news.
3926 *      d. nothing new gets queued up after (b) and (c) are done.
3927 *
3928 * Note: for the !logerror case we need to flush the regions held in memory out
3929 * to disk first. This needs to be done before the log is marked as shutdown,
3930 * otherwise the iclog writes will fail.
3931 */
3932int
3933xfs_log_force_umount(
3934        struct xfs_mount        *mp,
3935        int                     logerror)
3936{
3937        struct xlog     *log;
3938        int             retval;
3939
3940        log = mp->m_log;
3941
3942        /*
3943         * If this happens during log recovery, don't worry about
3944         * locking; the log isn't open for business yet.
3945         */
3946        if (!log ||
3947            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3948                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3949                if (mp->m_sb_bp)
3950                        mp->m_sb_bp->b_flags |= XBF_DONE;
3951                return 0;
3952        }
3953
3954        /*
3955         * Somebody could've already done the hard work for us.
3956         * No need to get locks for this.
3957         */
3958        if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3959                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3960                return 1;
3961        }
3962
3963        /*
3964         * Flush all the completed transactions to disk before marking the log
3965         * being shut down. We need to do it in this order to ensure that
3966         * completed operations are safely on disk before we shut down, and that
3967         * we don't have to issue any buffer IO after the shutdown flags are set
3968         * to guarantee this.
3969         */
3970        if (!logerror)
3971                xfs_log_force(mp, XFS_LOG_SYNC);
3972
3973        /*
3974         * mark the filesystem and the as in a shutdown state and wake
3975         * everybody up to tell them the bad news.
3976         */
3977        spin_lock(&log->l_icloglock);
3978        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3979        if (mp->m_sb_bp)
3980                mp->m_sb_bp->b_flags |= XBF_DONE;
3981
3982        /*
3983         * Mark the log and the iclogs with IO error flags to prevent any
3984         * further log IO from being issued or completed.
3985         */
3986        log->l_flags |= XLOG_IO_ERROR;
3987        retval = xlog_state_ioerror(log);
3988        spin_unlock(&log->l_icloglock);
3989
3990        /*
3991         * We don't want anybody waiting for log reservations after this. That
3992         * means we have to wake up everybody queued up on reserveq as well as
3993         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3994         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3995         * action is protected by the grant locks.
3996         */
3997        xlog_grant_head_wake_all(&log->l_reserve_head);
3998        xlog_grant_head_wake_all(&log->l_write_head);
3999
4000        /*
4001         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4002         * as if the log writes were completed. The abort handling in the log
4003         * item committed callback functions will do this again under lock to
4004         * avoid races.
4005         */
4006        spin_lock(&log->l_cilp->xc_push_lock);
4007        wake_up_all(&log->l_cilp->xc_commit_wait);
4008        spin_unlock(&log->l_cilp->xc_push_lock);
4009        xlog_state_do_callback(log, true, NULL);
4010
4011#ifdef XFSERRORDEBUG
4012        {
4013                xlog_in_core_t  *iclog;
4014
4015                spin_lock(&log->l_icloglock);
4016                iclog = log->l_iclog;
4017                do {
4018                        ASSERT(iclog->ic_callback == 0);
4019                        iclog = iclog->ic_next;
4020                } while (iclog != log->l_iclog);
4021                spin_unlock(&log->l_icloglock);
4022        }
4023#endif
4024        /* return non-zero if log IOERROR transition had already happened */
4025        return retval;
4026}
4027
4028STATIC int
4029xlog_iclogs_empty(
4030        struct xlog     *log)
4031{
4032        xlog_in_core_t  *iclog;
4033
4034        iclog = log->l_iclog;
4035        do {
4036                /* endianness does not matter here, zero is zero in
4037                 * any language.
4038                 */
4039                if (iclog->ic_header.h_num_logops)
4040                        return 0;
4041                iclog = iclog->ic_next;
4042        } while (iclog != log->l_iclog);
4043        return 1;
4044}
4045
4046/*
4047 * Verify that an LSN stamped into a piece of metadata is valid. This is
4048 * intended for use in read verifiers on v5 superblocks.
4049 */
4050bool
4051xfs_log_check_lsn(
4052        struct xfs_mount        *mp,
4053        xfs_lsn_t               lsn)
4054{
4055        struct xlog             *log = mp->m_log;
4056        bool                    valid;
4057
4058        /*
4059         * norecovery mode skips mount-time log processing and unconditionally
4060         * resets the in-core LSN. We can't validate in this mode, but
4061         * modifications are not allowed anyways so just return true.
4062         */
4063        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4064                return true;
4065
4066        /*
4067         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4068         * handled by recovery and thus safe to ignore here.
4069         */
4070        if (lsn == NULLCOMMITLSN)
4071                return true;
4072
4073        valid = xlog_valid_lsn(mp->m_log, lsn);
4074
4075        /* warn the user about what's gone wrong before verifier failure */
4076        if (!valid) {
4077                spin_lock(&log->l_icloglock);
4078                xfs_warn(mp,
4079"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4080"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4081                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4082                         log->l_curr_cycle, log->l_curr_block);
4083                spin_unlock(&log->l_icloglock);
4084        }
4085
4086        return valid;
4087}
4088
4089bool
4090xfs_log_in_recovery(
4091        struct xfs_mount        *mp)
4092{
4093        struct xlog             *log = mp->m_log;
4094
4095        return log->l_flags & XLOG_ACTIVE_RECOVERY;
4096}
4097