linux/include/linux/mm_types.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_TYPES_H
   3#define _LINUX_MM_TYPES_H
   4
   5#include <linux/mm_types_task.h>
   6
   7#include <linux/auxvec.h>
   8#include <linux/list.h>
   9#include <linux/spinlock.h>
  10#include <linux/rbtree.h>
  11#include <linux/rwsem.h>
  12#include <linux/completion.h>
  13#include <linux/cpumask.h>
  14#include <linux/uprobes.h>
  15#include <linux/page-flags-layout.h>
  16#include <linux/workqueue.h>
  17
  18#include <asm/mmu.h>
  19
  20#ifndef AT_VECTOR_SIZE_ARCH
  21#define AT_VECTOR_SIZE_ARCH 0
  22#endif
  23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  24
  25
  26struct address_space;
  27struct mem_cgroup;
  28
  29/*
  30 * Each physical page in the system has a struct page associated with
  31 * it to keep track of whatever it is we are using the page for at the
  32 * moment. Note that we have no way to track which tasks are using
  33 * a page, though if it is a pagecache page, rmap structures can tell us
  34 * who is mapping it.
  35 *
  36 * If you allocate the page using alloc_pages(), you can use some of the
  37 * space in struct page for your own purposes.  The five words in the main
  38 * union are available, except for bit 0 of the first word which must be
  39 * kept clear.  Many users use this word to store a pointer to an object
  40 * which is guaranteed to be aligned.  If you use the same storage as
  41 * page->mapping, you must restore it to NULL before freeing the page.
  42 *
  43 * If your page will not be mapped to userspace, you can also use the four
  44 * bytes in the mapcount union, but you must call page_mapcount_reset()
  45 * before freeing it.
  46 *
  47 * If you want to use the refcount field, it must be used in such a way
  48 * that other CPUs temporarily incrementing and then decrementing the
  49 * refcount does not cause problems.  On receiving the page from
  50 * alloc_pages(), the refcount will be positive.
  51 *
  52 * If you allocate pages of order > 0, you can use some of the fields
  53 * in each subpage, but you may need to restore some of their values
  54 * afterwards.
  55 *
  56 * SLUB uses cmpxchg_double() to atomically update its freelist and
  57 * counters.  That requires that freelist & counters be adjacent and
  58 * double-word aligned.  We align all struct pages to double-word
  59 * boundaries, and ensure that 'freelist' is aligned within the
  60 * struct.
  61 */
  62#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
  63#define _struct_page_alignment  __aligned(2 * sizeof(unsigned long))
  64#else
  65#define _struct_page_alignment
  66#endif
  67
  68struct page {
  69        unsigned long flags;            /* Atomic flags, some possibly
  70                                         * updated asynchronously */
  71        /*
  72         * Five words (20/40 bytes) are available in this union.
  73         * WARNING: bit 0 of the first word is used for PageTail(). That
  74         * means the other users of this union MUST NOT use the bit to
  75         * avoid collision and false-positive PageTail().
  76         */
  77        union {
  78                struct {        /* Page cache and anonymous pages */
  79                        /**
  80                         * @lru: Pageout list, eg. active_list protected by
  81                         * pgdat->lru_lock.  Sometimes used as a generic list
  82                         * by the page owner.
  83                         */
  84                        struct list_head lru;
  85                        /* See page-flags.h for PAGE_MAPPING_FLAGS */
  86                        struct address_space *mapping;
  87                        pgoff_t index;          /* Our offset within mapping. */
  88                        /**
  89                         * @private: Mapping-private opaque data.
  90                         * Usually used for buffer_heads if PagePrivate.
  91                         * Used for swp_entry_t if PageSwapCache.
  92                         * Indicates order in the buddy system if PageBuddy.
  93                         */
  94                        unsigned long private;
  95                };
  96                struct {        /* page_pool used by netstack */
  97                        /**
  98                         * @dma_addr: might require a 64-bit value even on
  99                         * 32-bit architectures.
 100                         */
 101                        dma_addr_t dma_addr;
 102                };
 103                struct {        /* slab, slob and slub */
 104                        union {
 105                                struct list_head slab_list;
 106                                struct {        /* Partial pages */
 107                                        struct page *next;
 108#ifdef CONFIG_64BIT
 109                                        int pages;      /* Nr of pages left */
 110                                        int pobjects;   /* Approximate count */
 111#else
 112                                        short int pages;
 113                                        short int pobjects;
 114#endif
 115                                };
 116                        };
 117                        struct kmem_cache *slab_cache; /* not slob */
 118                        /* Double-word boundary */
 119                        void *freelist;         /* first free object */
 120                        union {
 121                                void *s_mem;    /* slab: first object */
 122                                unsigned long counters;         /* SLUB */
 123                                struct {                        /* SLUB */
 124                                        unsigned inuse:16;
 125                                        unsigned objects:15;
 126                                        unsigned frozen:1;
 127                                };
 128                        };
 129                };
 130                struct {        /* Tail pages of compound page */
 131                        unsigned long compound_head;    /* Bit zero is set */
 132
 133                        /* First tail page only */
 134                        unsigned char compound_dtor;
 135                        unsigned char compound_order;
 136                        atomic_t compound_mapcount;
 137                };
 138                struct {        /* Second tail page of compound page */
 139                        unsigned long _compound_pad_1;  /* compound_head */
 140                        unsigned long _compound_pad_2;
 141                        /* For both global and memcg */
 142                        struct list_head deferred_list;
 143                };
 144                struct {        /* Page table pages */
 145                        unsigned long _pt_pad_1;        /* compound_head */
 146                        pgtable_t pmd_huge_pte; /* protected by page->ptl */
 147                        unsigned long _pt_pad_2;        /* mapping */
 148                        union {
 149                                struct mm_struct *pt_mm; /* x86 pgds only */
 150                                atomic_t pt_frag_refcount; /* powerpc */
 151                        };
 152#if ALLOC_SPLIT_PTLOCKS
 153                        spinlock_t *ptl;
 154#else
 155                        spinlock_t ptl;
 156#endif
 157                };
 158                struct {        /* ZONE_DEVICE pages */
 159                        /** @pgmap: Points to the hosting device page map. */
 160                        struct dev_pagemap *pgmap;
 161                        void *zone_device_data;
 162                        /*
 163                         * ZONE_DEVICE private pages are counted as being
 164                         * mapped so the next 3 words hold the mapping, index,
 165                         * and private fields from the source anonymous or
 166                         * page cache page while the page is migrated to device
 167                         * private memory.
 168                         * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
 169                         * use the mapping, index, and private fields when
 170                         * pmem backed DAX files are mapped.
 171                         */
 172                };
 173
 174                /** @rcu_head: You can use this to free a page by RCU. */
 175                struct rcu_head rcu_head;
 176        };
 177
 178        union {         /* This union is 4 bytes in size. */
 179                /*
 180                 * If the page can be mapped to userspace, encodes the number
 181                 * of times this page is referenced by a page table.
 182                 */
 183                atomic_t _mapcount;
 184
 185                /*
 186                 * If the page is neither PageSlab nor mappable to userspace,
 187                 * the value stored here may help determine what this page
 188                 * is used for.  See page-flags.h for a list of page types
 189                 * which are currently stored here.
 190                 */
 191                unsigned int page_type;
 192
 193                unsigned int active;            /* SLAB */
 194                int units;                      /* SLOB */
 195        };
 196
 197        /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
 198        atomic_t _refcount;
 199
 200#ifdef CONFIG_MEMCG
 201        struct mem_cgroup *mem_cgroup;
 202#endif
 203
 204        /*
 205         * On machines where all RAM is mapped into kernel address space,
 206         * we can simply calculate the virtual address. On machines with
 207         * highmem some memory is mapped into kernel virtual memory
 208         * dynamically, so we need a place to store that address.
 209         * Note that this field could be 16 bits on x86 ... ;)
 210         *
 211         * Architectures with slow multiplication can define
 212         * WANT_PAGE_VIRTUAL in asm/page.h
 213         */
 214#if defined(WANT_PAGE_VIRTUAL)
 215        void *virtual;                  /* Kernel virtual address (NULL if
 216                                           not kmapped, ie. highmem) */
 217#endif /* WANT_PAGE_VIRTUAL */
 218
 219#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 220        int _last_cpupid;
 221#endif
 222} _struct_page_alignment;
 223
 224static inline atomic_t *compound_mapcount_ptr(struct page *page)
 225{
 226        return &page[1].compound_mapcount;
 227}
 228
 229/*
 230 * Used for sizing the vmemmap region on some architectures
 231 */
 232#define STRUCT_PAGE_MAX_SHIFT   (order_base_2(sizeof(struct page)))
 233
 234#define PAGE_FRAG_CACHE_MAX_SIZE        __ALIGN_MASK(32768, ~PAGE_MASK)
 235#define PAGE_FRAG_CACHE_MAX_ORDER       get_order(PAGE_FRAG_CACHE_MAX_SIZE)
 236
 237#define page_private(page)              ((page)->private)
 238#define set_page_private(page, v)       ((page)->private = (v))
 239
 240struct page_frag_cache {
 241        void * va;
 242#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 243        __u16 offset;
 244        __u16 size;
 245#else
 246        __u32 offset;
 247#endif
 248        /* we maintain a pagecount bias, so that we dont dirty cache line
 249         * containing page->_refcount every time we allocate a fragment.
 250         */
 251        unsigned int            pagecnt_bias;
 252        bool pfmemalloc;
 253};
 254
 255typedef unsigned long vm_flags_t;
 256
 257/*
 258 * A region containing a mapping of a non-memory backed file under NOMMU
 259 * conditions.  These are held in a global tree and are pinned by the VMAs that
 260 * map parts of them.
 261 */
 262struct vm_region {
 263        struct rb_node  vm_rb;          /* link in global region tree */
 264        vm_flags_t      vm_flags;       /* VMA vm_flags */
 265        unsigned long   vm_start;       /* start address of region */
 266        unsigned long   vm_end;         /* region initialised to here */
 267        unsigned long   vm_top;         /* region allocated to here */
 268        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 269        struct file     *vm_file;       /* the backing file or NULL */
 270
 271        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 272        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 273                                                * this region */
 274};
 275
 276#ifdef CONFIG_USERFAULTFD
 277#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
 278struct vm_userfaultfd_ctx {
 279        struct userfaultfd_ctx *ctx;
 280};
 281#else /* CONFIG_USERFAULTFD */
 282#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
 283struct vm_userfaultfd_ctx {};
 284#endif /* CONFIG_USERFAULTFD */
 285
 286/*
 287 * This struct defines a memory VMM memory area. There is one of these
 288 * per VM-area/task.  A VM area is any part of the process virtual memory
 289 * space that has a special rule for the page-fault handlers (ie a shared
 290 * library, the executable area etc).
 291 */
 292struct vm_area_struct {
 293        /* The first cache line has the info for VMA tree walking. */
 294
 295        unsigned long vm_start;         /* Our start address within vm_mm. */
 296        unsigned long vm_end;           /* The first byte after our end address
 297                                           within vm_mm. */
 298
 299        /* linked list of VM areas per task, sorted by address */
 300        struct vm_area_struct *vm_next, *vm_prev;
 301
 302        struct rb_node vm_rb;
 303
 304        /*
 305         * Largest free memory gap in bytes to the left of this VMA.
 306         * Either between this VMA and vma->vm_prev, or between one of the
 307         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 308         * get_unmapped_area find a free area of the right size.
 309         */
 310        unsigned long rb_subtree_gap;
 311
 312        /* Second cache line starts here. */
 313
 314        struct mm_struct *vm_mm;        /* The address space we belong to. */
 315        pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
 316        unsigned long vm_flags;         /* Flags, see mm.h. */
 317
 318        /*
 319         * For areas with an address space and backing store,
 320         * linkage into the address_space->i_mmap interval tree.
 321         */
 322        struct {
 323                struct rb_node rb;
 324                unsigned long rb_subtree_last;
 325        } shared;
 326
 327        /*
 328         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 329         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 330         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 331         * or brk vma (with NULL file) can only be in an anon_vma list.
 332         */
 333        struct list_head anon_vma_chain; /* Serialized by mmap_sem &
 334                                          * page_table_lock */
 335        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 336
 337        /* Function pointers to deal with this struct. */
 338        const struct vm_operations_struct *vm_ops;
 339
 340        /* Information about our backing store: */
 341        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 342                                           units */
 343        struct file * vm_file;          /* File we map to (can be NULL). */
 344        void * vm_private_data;         /* was vm_pte (shared mem) */
 345
 346#ifdef CONFIG_SWAP
 347        atomic_long_t swap_readahead_info;
 348#endif
 349#ifndef CONFIG_MMU
 350        struct vm_region *vm_region;    /* NOMMU mapping region */
 351#endif
 352#ifdef CONFIG_NUMA
 353        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 354#endif
 355        struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
 356} __randomize_layout;
 357
 358struct core_thread {
 359        struct task_struct *task;
 360        struct core_thread *next;
 361};
 362
 363struct core_state {
 364        atomic_t nr_threads;
 365        struct core_thread dumper;
 366        struct completion startup;
 367};
 368
 369struct kioctx_table;
 370struct mm_struct {
 371        struct {
 372                struct vm_area_struct *mmap;            /* list of VMAs */
 373                struct rb_root mm_rb;
 374                u64 vmacache_seqnum;                   /* per-thread vmacache */
 375#ifdef CONFIG_MMU
 376                unsigned long (*get_unmapped_area) (struct file *filp,
 377                                unsigned long addr, unsigned long len,
 378                                unsigned long pgoff, unsigned long flags);
 379#endif
 380                unsigned long mmap_base;        /* base of mmap area */
 381                unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
 382#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
 383                /* Base adresses for compatible mmap() */
 384                unsigned long mmap_compat_base;
 385                unsigned long mmap_compat_legacy_base;
 386#endif
 387                unsigned long task_size;        /* size of task vm space */
 388                unsigned long highest_vm_end;   /* highest vma end address */
 389                pgd_t * pgd;
 390
 391#ifdef CONFIG_MEMBARRIER
 392                /**
 393                 * @membarrier_state: Flags controlling membarrier behavior.
 394                 *
 395                 * This field is close to @pgd to hopefully fit in the same
 396                 * cache-line, which needs to be touched by switch_mm().
 397                 */
 398                atomic_t membarrier_state;
 399#endif
 400
 401                /**
 402                 * @mm_users: The number of users including userspace.
 403                 *
 404                 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
 405                 * drops to 0 (i.e. when the task exits and there are no other
 406                 * temporary reference holders), we also release a reference on
 407                 * @mm_count (which may then free the &struct mm_struct if
 408                 * @mm_count also drops to 0).
 409                 */
 410                atomic_t mm_users;
 411
 412                /**
 413                 * @mm_count: The number of references to &struct mm_struct
 414                 * (@mm_users count as 1).
 415                 *
 416                 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
 417                 * &struct mm_struct is freed.
 418                 */
 419                atomic_t mm_count;
 420
 421#ifdef CONFIG_MMU
 422                atomic_long_t pgtables_bytes;   /* PTE page table pages */
 423#endif
 424                int map_count;                  /* number of VMAs */
 425
 426                spinlock_t page_table_lock; /* Protects page tables and some
 427                                             * counters
 428                                             */
 429                struct rw_semaphore mmap_sem;
 430
 431                struct list_head mmlist; /* List of maybe swapped mm's. These
 432                                          * are globally strung together off
 433                                          * init_mm.mmlist, and are protected
 434                                          * by mmlist_lock
 435                                          */
 436
 437
 438                unsigned long hiwater_rss; /* High-watermark of RSS usage */
 439                unsigned long hiwater_vm;  /* High-water virtual memory usage */
 440
 441                unsigned long total_vm;    /* Total pages mapped */
 442                unsigned long locked_vm;   /* Pages that have PG_mlocked set */
 443                atomic64_t    pinned_vm;   /* Refcount permanently increased */
 444                unsigned long data_vm;     /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
 445                unsigned long exec_vm;     /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
 446                unsigned long stack_vm;    /* VM_STACK */
 447                unsigned long def_flags;
 448
 449                spinlock_t arg_lock; /* protect the below fields */
 450                unsigned long start_code, end_code, start_data, end_data;
 451                unsigned long start_brk, brk, start_stack;
 452                unsigned long arg_start, arg_end, env_start, env_end;
 453
 454                unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 455
 456                /*
 457                 * Special counters, in some configurations protected by the
 458                 * page_table_lock, in other configurations by being atomic.
 459                 */
 460                struct mm_rss_stat rss_stat;
 461
 462                struct linux_binfmt *binfmt;
 463
 464                /* Architecture-specific MM context */
 465                mm_context_t context;
 466
 467                unsigned long flags; /* Must use atomic bitops to access */
 468
 469                struct core_state *core_state; /* coredumping support */
 470
 471#ifdef CONFIG_AIO
 472                spinlock_t                      ioctx_lock;
 473                struct kioctx_table __rcu       *ioctx_table;
 474#endif
 475#ifdef CONFIG_MEMCG
 476                /*
 477                 * "owner" points to a task that is regarded as the canonical
 478                 * user/owner of this mm. All of the following must be true in
 479                 * order for it to be changed:
 480                 *
 481                 * current == mm->owner
 482                 * current->mm != mm
 483                 * new_owner->mm == mm
 484                 * new_owner->alloc_lock is held
 485                 */
 486                struct task_struct __rcu *owner;
 487#endif
 488                struct user_namespace *user_ns;
 489
 490                /* store ref to file /proc/<pid>/exe symlink points to */
 491                struct file __rcu *exe_file;
 492#ifdef CONFIG_MMU_NOTIFIER
 493                struct mmu_notifier_mm *mmu_notifier_mm;
 494#endif
 495#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 496                pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 497#endif
 498#ifdef CONFIG_NUMA_BALANCING
 499                /*
 500                 * numa_next_scan is the next time that the PTEs will be marked
 501                 * pte_numa. NUMA hinting faults will gather statistics and
 502                 * migrate pages to new nodes if necessary.
 503                 */
 504                unsigned long numa_next_scan;
 505
 506                /* Restart point for scanning and setting pte_numa */
 507                unsigned long numa_scan_offset;
 508
 509                /* numa_scan_seq prevents two threads setting pte_numa */
 510                int numa_scan_seq;
 511#endif
 512                /*
 513                 * An operation with batched TLB flushing is going on. Anything
 514                 * that can move process memory needs to flush the TLB when
 515                 * moving a PROT_NONE or PROT_NUMA mapped page.
 516                 */
 517                atomic_t tlb_flush_pending;
 518#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 519                /* See flush_tlb_batched_pending() */
 520                bool tlb_flush_batched;
 521#endif
 522                struct uprobes_state uprobes_state;
 523#ifdef CONFIG_HUGETLB_PAGE
 524                atomic_long_t hugetlb_usage;
 525#endif
 526                struct work_struct async_put_work;
 527        } __randomize_layout;
 528
 529        /*
 530         * The mm_cpumask needs to be at the end of mm_struct, because it
 531         * is dynamically sized based on nr_cpu_ids.
 532         */
 533        unsigned long cpu_bitmap[];
 534};
 535
 536extern struct mm_struct init_mm;
 537
 538/* Pointer magic because the dynamic array size confuses some compilers. */
 539static inline void mm_init_cpumask(struct mm_struct *mm)
 540{
 541        unsigned long cpu_bitmap = (unsigned long)mm;
 542
 543        cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
 544        cpumask_clear((struct cpumask *)cpu_bitmap);
 545}
 546
 547/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 548static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 549{
 550        return (struct cpumask *)&mm->cpu_bitmap;
 551}
 552
 553struct mmu_gather;
 554extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 555                                unsigned long start, unsigned long end);
 556extern void tlb_finish_mmu(struct mmu_gather *tlb,
 557                                unsigned long start, unsigned long end);
 558
 559static inline void init_tlb_flush_pending(struct mm_struct *mm)
 560{
 561        atomic_set(&mm->tlb_flush_pending, 0);
 562}
 563
 564static inline void inc_tlb_flush_pending(struct mm_struct *mm)
 565{
 566        atomic_inc(&mm->tlb_flush_pending);
 567        /*
 568         * The only time this value is relevant is when there are indeed pages
 569         * to flush. And we'll only flush pages after changing them, which
 570         * requires the PTL.
 571         *
 572         * So the ordering here is:
 573         *
 574         *      atomic_inc(&mm->tlb_flush_pending);
 575         *      spin_lock(&ptl);
 576         *      ...
 577         *      set_pte_at();
 578         *      spin_unlock(&ptl);
 579         *
 580         *                              spin_lock(&ptl)
 581         *                              mm_tlb_flush_pending();
 582         *                              ....
 583         *                              spin_unlock(&ptl);
 584         *
 585         *      flush_tlb_range();
 586         *      atomic_dec(&mm->tlb_flush_pending);
 587         *
 588         * Where the increment if constrained by the PTL unlock, it thus
 589         * ensures that the increment is visible if the PTE modification is
 590         * visible. After all, if there is no PTE modification, nobody cares
 591         * about TLB flushes either.
 592         *
 593         * This very much relies on users (mm_tlb_flush_pending() and
 594         * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
 595         * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
 596         * locks (PPC) the unlock of one doesn't order against the lock of
 597         * another PTL.
 598         *
 599         * The decrement is ordered by the flush_tlb_range(), such that
 600         * mm_tlb_flush_pending() will not return false unless all flushes have
 601         * completed.
 602         */
 603}
 604
 605static inline void dec_tlb_flush_pending(struct mm_struct *mm)
 606{
 607        /*
 608         * See inc_tlb_flush_pending().
 609         *
 610         * This cannot be smp_mb__before_atomic() because smp_mb() simply does
 611         * not order against TLB invalidate completion, which is what we need.
 612         *
 613         * Therefore we must rely on tlb_flush_*() to guarantee order.
 614         */
 615        atomic_dec(&mm->tlb_flush_pending);
 616}
 617
 618static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 619{
 620        /*
 621         * Must be called after having acquired the PTL; orders against that
 622         * PTLs release and therefore ensures that if we observe the modified
 623         * PTE we must also observe the increment from inc_tlb_flush_pending().
 624         *
 625         * That is, it only guarantees to return true if there is a flush
 626         * pending for _this_ PTL.
 627         */
 628        return atomic_read(&mm->tlb_flush_pending);
 629}
 630
 631static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
 632{
 633        /*
 634         * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
 635         * for which there is a TLB flush pending in order to guarantee
 636         * we've seen both that PTE modification and the increment.
 637         *
 638         * (no requirement on actually still holding the PTL, that is irrelevant)
 639         */
 640        return atomic_read(&mm->tlb_flush_pending) > 1;
 641}
 642
 643struct vm_fault;
 644
 645/**
 646 * typedef vm_fault_t - Return type for page fault handlers.
 647 *
 648 * Page fault handlers return a bitmask of %VM_FAULT values.
 649 */
 650typedef __bitwise unsigned int vm_fault_t;
 651
 652/**
 653 * enum vm_fault_reason - Page fault handlers return a bitmask of
 654 * these values to tell the core VM what happened when handling the
 655 * fault. Used to decide whether a process gets delivered SIGBUS or
 656 * just gets major/minor fault counters bumped up.
 657 *
 658 * @VM_FAULT_OOM:               Out Of Memory
 659 * @VM_FAULT_SIGBUS:            Bad access
 660 * @VM_FAULT_MAJOR:             Page read from storage
 661 * @VM_FAULT_WRITE:             Special case for get_user_pages
 662 * @VM_FAULT_HWPOISON:          Hit poisoned small page
 663 * @VM_FAULT_HWPOISON_LARGE:    Hit poisoned large page. Index encoded
 664 *                              in upper bits
 665 * @VM_FAULT_SIGSEGV:           segmentation fault
 666 * @VM_FAULT_NOPAGE:            ->fault installed the pte, not return page
 667 * @VM_FAULT_LOCKED:            ->fault locked the returned page
 668 * @VM_FAULT_RETRY:             ->fault blocked, must retry
 669 * @VM_FAULT_FALLBACK:          huge page fault failed, fall back to small
 670 * @VM_FAULT_DONE_COW:          ->fault has fully handled COW
 671 * @VM_FAULT_NEEDDSYNC:         ->fault did not modify page tables and needs
 672 *                              fsync() to complete (for synchronous page faults
 673 *                              in DAX)
 674 * @VM_FAULT_HINDEX_MASK:       mask HINDEX value
 675 *
 676 */
 677enum vm_fault_reason {
 678        VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
 679        VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
 680        VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
 681        VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
 682        VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
 683        VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
 684        VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
 685        VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
 686        VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
 687        VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
 688        VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
 689        VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
 690        VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
 691        VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
 692};
 693
 694/* Encode hstate index for a hwpoisoned large page */
 695#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
 696#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
 697
 698#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |        \
 699                        VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |  \
 700                        VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
 701
 702#define VM_FAULT_RESULT_TRACE \
 703        { VM_FAULT_OOM,                 "OOM" },        \
 704        { VM_FAULT_SIGBUS,              "SIGBUS" },     \
 705        { VM_FAULT_MAJOR,               "MAJOR" },      \
 706        { VM_FAULT_WRITE,               "WRITE" },      \
 707        { VM_FAULT_HWPOISON,            "HWPOISON" },   \
 708        { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },     \
 709        { VM_FAULT_SIGSEGV,             "SIGSEGV" },    \
 710        { VM_FAULT_NOPAGE,              "NOPAGE" },     \
 711        { VM_FAULT_LOCKED,              "LOCKED" },     \
 712        { VM_FAULT_RETRY,               "RETRY" },      \
 713        { VM_FAULT_FALLBACK,            "FALLBACK" },   \
 714        { VM_FAULT_DONE_COW,            "DONE_COW" },   \
 715        { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
 716
 717struct vm_special_mapping {
 718        const char *name;       /* The name, e.g. "[vdso]". */
 719
 720        /*
 721         * If .fault is not provided, this points to a
 722         * NULL-terminated array of pages that back the special mapping.
 723         *
 724         * This must not be NULL unless .fault is provided.
 725         */
 726        struct page **pages;
 727
 728        /*
 729         * If non-NULL, then this is called to resolve page faults
 730         * on the special mapping.  If used, .pages is not checked.
 731         */
 732        vm_fault_t (*fault)(const struct vm_special_mapping *sm,
 733                                struct vm_area_struct *vma,
 734                                struct vm_fault *vmf);
 735
 736        int (*mremap)(const struct vm_special_mapping *sm,
 737                     struct vm_area_struct *new_vma);
 738};
 739
 740enum tlb_flush_reason {
 741        TLB_FLUSH_ON_TASK_SWITCH,
 742        TLB_REMOTE_SHOOTDOWN,
 743        TLB_LOCAL_SHOOTDOWN,
 744        TLB_LOCAL_MM_SHOOTDOWN,
 745        TLB_REMOTE_SEND_IPI,
 746        NR_TLB_FLUSH_REASONS,
 747};
 748
 749 /*
 750  * A swap entry has to fit into a "unsigned long", as the entry is hidden
 751  * in the "index" field of the swapper address space.
 752  */
 753typedef struct {
 754        unsigned long val;
 755} swp_entry_t;
 756
 757#endif /* _LINUX_MM_TYPES_H */
 758