linux/include/linux/netdevice.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the Interfaces handler.
   8 *
   9 * Version:     @(#)dev.h       1.0.10  08/12/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  15 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  16 *              Bjorn Ekwall. <bj0rn@blox.se>
  17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  18 *
  19 *              Moved to /usr/include/linux for NET3
  20 */
  21#ifndef _LINUX_NETDEVICE_H
  22#define _LINUX_NETDEVICE_H
  23
  24#include <linux/timer.h>
  25#include <linux/bug.h>
  26#include <linux/delay.h>
  27#include <linux/atomic.h>
  28#include <linux/prefetch.h>
  29#include <asm/cache.h>
  30#include <asm/byteorder.h>
  31
  32#include <linux/percpu.h>
  33#include <linux/rculist.h>
  34#include <linux/workqueue.h>
  35#include <linux/dynamic_queue_limits.h>
  36
  37#include <linux/ethtool.h>
  38#include <net/net_namespace.h>
  39#ifdef CONFIG_DCB
  40#include <net/dcbnl.h>
  41#endif
  42#include <net/netprio_cgroup.h>
  43#include <net/xdp.h>
  44
  45#include <linux/netdev_features.h>
  46#include <linux/neighbour.h>
  47#include <uapi/linux/netdevice.h>
  48#include <uapi/linux/if_bonding.h>
  49#include <uapi/linux/pkt_cls.h>
  50#include <linux/hashtable.h>
  51
  52struct netpoll_info;
  53struct device;
  54struct phy_device;
  55struct dsa_port;
  56
  57struct sfp_bus;
  58/* 802.11 specific */
  59struct wireless_dev;
  60/* 802.15.4 specific */
  61struct wpan_dev;
  62struct mpls_dev;
  63/* UDP Tunnel offloads */
  64struct udp_tunnel_info;
  65struct bpf_prog;
  66struct xdp_buff;
  67
  68void netdev_set_default_ethtool_ops(struct net_device *dev,
  69                                    const struct ethtool_ops *ops);
  70
  71/* Backlog congestion levels */
  72#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  73#define NET_RX_DROP             1       /* packet dropped */
  74
  75/*
  76 * Transmit return codes: transmit return codes originate from three different
  77 * namespaces:
  78 *
  79 * - qdisc return codes
  80 * - driver transmit return codes
  81 * - errno values
  82 *
  83 * Drivers are allowed to return any one of those in their hard_start_xmit()
  84 * function. Real network devices commonly used with qdiscs should only return
  85 * the driver transmit return codes though - when qdiscs are used, the actual
  86 * transmission happens asynchronously, so the value is not propagated to
  87 * higher layers. Virtual network devices transmit synchronously; in this case
  88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  89 * others are propagated to higher layers.
  90 */
  91
  92/* qdisc ->enqueue() return codes. */
  93#define NET_XMIT_SUCCESS        0x00
  94#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  95#define NET_XMIT_CN             0x02    /* congestion notification      */
  96#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  97
  98/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  99 * indicates that the device will soon be dropping packets, or already drops
 100 * some packets of the same priority; prompting us to send less aggressively. */
 101#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 102#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 103
 104/* Driver transmit return codes */
 105#define NETDEV_TX_MASK          0xf0
 106
 107enum netdev_tx {
 108        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 109        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 110        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 111};
 112typedef enum netdev_tx netdev_tx_t;
 113
 114/*
 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 117 */
 118static inline bool dev_xmit_complete(int rc)
 119{
 120        /*
 121         * Positive cases with an skb consumed by a driver:
 122         * - successful transmission (rc == NETDEV_TX_OK)
 123         * - error while transmitting (rc < 0)
 124         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 125         */
 126        if (likely(rc < NET_XMIT_MASK))
 127                return true;
 128
 129        return false;
 130}
 131
 132/*
 133 *      Compute the worst-case header length according to the protocols
 134 *      used.
 135 */
 136
 137#if defined(CONFIG_HYPERV_NET)
 138# define LL_MAX_HEADER 128
 139#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 140# if defined(CONFIG_MAC80211_MESH)
 141#  define LL_MAX_HEADER 128
 142# else
 143#  define LL_MAX_HEADER 96
 144# endif
 145#else
 146# define LL_MAX_HEADER 32
 147#endif
 148
 149#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 150    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 151#define MAX_HEADER LL_MAX_HEADER
 152#else
 153#define MAX_HEADER (LL_MAX_HEADER + 48)
 154#endif
 155
 156/*
 157 *      Old network device statistics. Fields are native words
 158 *      (unsigned long) so they can be read and written atomically.
 159 */
 160
 161struct net_device_stats {
 162        unsigned long   rx_packets;
 163        unsigned long   tx_packets;
 164        unsigned long   rx_bytes;
 165        unsigned long   tx_bytes;
 166        unsigned long   rx_errors;
 167        unsigned long   tx_errors;
 168        unsigned long   rx_dropped;
 169        unsigned long   tx_dropped;
 170        unsigned long   multicast;
 171        unsigned long   collisions;
 172        unsigned long   rx_length_errors;
 173        unsigned long   rx_over_errors;
 174        unsigned long   rx_crc_errors;
 175        unsigned long   rx_frame_errors;
 176        unsigned long   rx_fifo_errors;
 177        unsigned long   rx_missed_errors;
 178        unsigned long   tx_aborted_errors;
 179        unsigned long   tx_carrier_errors;
 180        unsigned long   tx_fifo_errors;
 181        unsigned long   tx_heartbeat_errors;
 182        unsigned long   tx_window_errors;
 183        unsigned long   rx_compressed;
 184        unsigned long   tx_compressed;
 185};
 186
 187
 188#include <linux/cache.h>
 189#include <linux/skbuff.h>
 190
 191#ifdef CONFIG_RPS
 192#include <linux/static_key.h>
 193extern struct static_key_false rps_needed;
 194extern struct static_key_false rfs_needed;
 195#endif
 196
 197struct neighbour;
 198struct neigh_parms;
 199struct sk_buff;
 200
 201struct netdev_hw_addr {
 202        struct list_head        list;
 203        unsigned char           addr[MAX_ADDR_LEN];
 204        unsigned char           type;
 205#define NETDEV_HW_ADDR_T_LAN            1
 206#define NETDEV_HW_ADDR_T_SAN            2
 207#define NETDEV_HW_ADDR_T_SLAVE          3
 208#define NETDEV_HW_ADDR_T_UNICAST        4
 209#define NETDEV_HW_ADDR_T_MULTICAST      5
 210        bool                    global_use;
 211        int                     sync_cnt;
 212        int                     refcount;
 213        int                     synced;
 214        struct rcu_head         rcu_head;
 215};
 216
 217struct netdev_hw_addr_list {
 218        struct list_head        list;
 219        int                     count;
 220};
 221
 222#define netdev_hw_addr_list_count(l) ((l)->count)
 223#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 224#define netdev_hw_addr_list_for_each(ha, l) \
 225        list_for_each_entry(ha, &(l)->list, list)
 226
 227#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 228#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 229#define netdev_for_each_uc_addr(ha, dev) \
 230        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 231
 232#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 233#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 234#define netdev_for_each_mc_addr(ha, dev) \
 235        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 236
 237struct hh_cache {
 238        unsigned int    hh_len;
 239        seqlock_t       hh_lock;
 240
 241        /* cached hardware header; allow for machine alignment needs.        */
 242#define HH_DATA_MOD     16
 243#define HH_DATA_OFF(__len) \
 244        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 245#define HH_DATA_ALIGN(__len) \
 246        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 247        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 248};
 249
 250/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 251 * Alternative is:
 252 *   dev->hard_header_len ? (dev->hard_header_len +
 253 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 254 *
 255 * We could use other alignment values, but we must maintain the
 256 * relationship HH alignment <= LL alignment.
 257 */
 258#define LL_RESERVED_SPACE(dev) \
 259        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 260#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 261        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 262
 263struct header_ops {
 264        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 265                           unsigned short type, const void *daddr,
 266                           const void *saddr, unsigned int len);
 267        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 268        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 269        void    (*cache_update)(struct hh_cache *hh,
 270                                const struct net_device *dev,
 271                                const unsigned char *haddr);
 272        bool    (*validate)(const char *ll_header, unsigned int len);
 273        __be16  (*parse_protocol)(const struct sk_buff *skb);
 274};
 275
 276/* These flag bits are private to the generic network queueing
 277 * layer; they may not be explicitly referenced by any other
 278 * code.
 279 */
 280
 281enum netdev_state_t {
 282        __LINK_STATE_START,
 283        __LINK_STATE_PRESENT,
 284        __LINK_STATE_NOCARRIER,
 285        __LINK_STATE_LINKWATCH_PENDING,
 286        __LINK_STATE_DORMANT,
 287};
 288
 289
 290/*
 291 * This structure holds boot-time configured netdevice settings. They
 292 * are then used in the device probing.
 293 */
 294struct netdev_boot_setup {
 295        char name[IFNAMSIZ];
 296        struct ifmap map;
 297};
 298#define NETDEV_BOOT_SETUP_MAX 8
 299
 300int __init netdev_boot_setup(char *str);
 301
 302struct gro_list {
 303        struct list_head        list;
 304        int                     count;
 305};
 306
 307/*
 308 * size of gro hash buckets, must less than bit number of
 309 * napi_struct::gro_bitmask
 310 */
 311#define GRO_HASH_BUCKETS        8
 312
 313/*
 314 * Structure for NAPI scheduling similar to tasklet but with weighting
 315 */
 316struct napi_struct {
 317        /* The poll_list must only be managed by the entity which
 318         * changes the state of the NAPI_STATE_SCHED bit.  This means
 319         * whoever atomically sets that bit can add this napi_struct
 320         * to the per-CPU poll_list, and whoever clears that bit
 321         * can remove from the list right before clearing the bit.
 322         */
 323        struct list_head        poll_list;
 324
 325        unsigned long           state;
 326        int                     weight;
 327        unsigned long           gro_bitmask;
 328        int                     (*poll)(struct napi_struct *, int);
 329#ifdef CONFIG_NETPOLL
 330        int                     poll_owner;
 331#endif
 332        struct net_device       *dev;
 333        struct gro_list         gro_hash[GRO_HASH_BUCKETS];
 334        struct sk_buff          *skb;
 335        struct list_head        rx_list; /* Pending GRO_NORMAL skbs */
 336        int                     rx_count; /* length of rx_list */
 337        struct hrtimer          timer;
 338        struct list_head        dev_list;
 339        struct hlist_node       napi_hash_node;
 340        unsigned int            napi_id;
 341};
 342
 343enum {
 344        NAPI_STATE_SCHED,       /* Poll is scheduled */
 345        NAPI_STATE_MISSED,      /* reschedule a napi */
 346        NAPI_STATE_DISABLE,     /* Disable pending */
 347        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 348        NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
 349        NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 350        NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 351};
 352
 353enum {
 354        NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
 355        NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
 356        NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
 357        NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
 358        NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
 359        NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 360        NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 361};
 362
 363enum gro_result {
 364        GRO_MERGED,
 365        GRO_MERGED_FREE,
 366        GRO_HELD,
 367        GRO_NORMAL,
 368        GRO_DROP,
 369        GRO_CONSUMED,
 370};
 371typedef enum gro_result gro_result_t;
 372
 373/*
 374 * enum rx_handler_result - Possible return values for rx_handlers.
 375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 376 * further.
 377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 378 * case skb->dev was changed by rx_handler.
 379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 381 *
 382 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 383 * special processing of the skb, prior to delivery to protocol handlers.
 384 *
 385 * Currently, a net_device can only have a single rx_handler registered. Trying
 386 * to register a second rx_handler will return -EBUSY.
 387 *
 388 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 389 * To unregister a rx_handler on a net_device, use
 390 * netdev_rx_handler_unregister().
 391 *
 392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 393 * do with the skb.
 394 *
 395 * If the rx_handler consumed the skb in some way, it should return
 396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 397 * the skb to be delivered in some other way.
 398 *
 399 * If the rx_handler changed skb->dev, to divert the skb to another
 400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 401 * new device will be called if it exists.
 402 *
 403 * If the rx_handler decides the skb should be ignored, it should return
 404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 405 * are registered on exact device (ptype->dev == skb->dev).
 406 *
 407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 408 * delivered, it should return RX_HANDLER_PASS.
 409 *
 410 * A device without a registered rx_handler will behave as if rx_handler
 411 * returned RX_HANDLER_PASS.
 412 */
 413
 414enum rx_handler_result {
 415        RX_HANDLER_CONSUMED,
 416        RX_HANDLER_ANOTHER,
 417        RX_HANDLER_EXACT,
 418        RX_HANDLER_PASS,
 419};
 420typedef enum rx_handler_result rx_handler_result_t;
 421typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 422
 423void __napi_schedule(struct napi_struct *n);
 424void __napi_schedule_irqoff(struct napi_struct *n);
 425
 426static inline bool napi_disable_pending(struct napi_struct *n)
 427{
 428        return test_bit(NAPI_STATE_DISABLE, &n->state);
 429}
 430
 431bool napi_schedule_prep(struct napi_struct *n);
 432
 433/**
 434 *      napi_schedule - schedule NAPI poll
 435 *      @n: NAPI context
 436 *
 437 * Schedule NAPI poll routine to be called if it is not already
 438 * running.
 439 */
 440static inline void napi_schedule(struct napi_struct *n)
 441{
 442        if (napi_schedule_prep(n))
 443                __napi_schedule(n);
 444}
 445
 446/**
 447 *      napi_schedule_irqoff - schedule NAPI poll
 448 *      @n: NAPI context
 449 *
 450 * Variant of napi_schedule(), assuming hard irqs are masked.
 451 */
 452static inline void napi_schedule_irqoff(struct napi_struct *n)
 453{
 454        if (napi_schedule_prep(n))
 455                __napi_schedule_irqoff(n);
 456}
 457
 458/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 459static inline bool napi_reschedule(struct napi_struct *napi)
 460{
 461        if (napi_schedule_prep(napi)) {
 462                __napi_schedule(napi);
 463                return true;
 464        }
 465        return false;
 466}
 467
 468bool napi_complete_done(struct napi_struct *n, int work_done);
 469/**
 470 *      napi_complete - NAPI processing complete
 471 *      @n: NAPI context
 472 *
 473 * Mark NAPI processing as complete.
 474 * Consider using napi_complete_done() instead.
 475 * Return false if device should avoid rearming interrupts.
 476 */
 477static inline bool napi_complete(struct napi_struct *n)
 478{
 479        return napi_complete_done(n, 0);
 480}
 481
 482/**
 483 *      napi_hash_del - remove a NAPI from global table
 484 *      @napi: NAPI context
 485 *
 486 * Warning: caller must observe RCU grace period
 487 * before freeing memory containing @napi, if
 488 * this function returns true.
 489 * Note: core networking stack automatically calls it
 490 * from netif_napi_del().
 491 * Drivers might want to call this helper to combine all
 492 * the needed RCU grace periods into a single one.
 493 */
 494bool napi_hash_del(struct napi_struct *napi);
 495
 496/**
 497 *      napi_disable - prevent NAPI from scheduling
 498 *      @n: NAPI context
 499 *
 500 * Stop NAPI from being scheduled on this context.
 501 * Waits till any outstanding processing completes.
 502 */
 503void napi_disable(struct napi_struct *n);
 504
 505/**
 506 *      napi_enable - enable NAPI scheduling
 507 *      @n: NAPI context
 508 *
 509 * Resume NAPI from being scheduled on this context.
 510 * Must be paired with napi_disable.
 511 */
 512static inline void napi_enable(struct napi_struct *n)
 513{
 514        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 515        smp_mb__before_atomic();
 516        clear_bit(NAPI_STATE_SCHED, &n->state);
 517        clear_bit(NAPI_STATE_NPSVC, &n->state);
 518}
 519
 520/**
 521 *      napi_synchronize - wait until NAPI is not running
 522 *      @n: NAPI context
 523 *
 524 * Wait until NAPI is done being scheduled on this context.
 525 * Waits till any outstanding processing completes but
 526 * does not disable future activations.
 527 */
 528static inline void napi_synchronize(const struct napi_struct *n)
 529{
 530        if (IS_ENABLED(CONFIG_SMP))
 531                while (test_bit(NAPI_STATE_SCHED, &n->state))
 532                        msleep(1);
 533        else
 534                barrier();
 535}
 536
 537/**
 538 *      napi_if_scheduled_mark_missed - if napi is running, set the
 539 *      NAPIF_STATE_MISSED
 540 *      @n: NAPI context
 541 *
 542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 543 * NAPI is scheduled.
 544 **/
 545static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 546{
 547        unsigned long val, new;
 548
 549        do {
 550                val = READ_ONCE(n->state);
 551                if (val & NAPIF_STATE_DISABLE)
 552                        return true;
 553
 554                if (!(val & NAPIF_STATE_SCHED))
 555                        return false;
 556
 557                new = val | NAPIF_STATE_MISSED;
 558        } while (cmpxchg(&n->state, val, new) != val);
 559
 560        return true;
 561}
 562
 563enum netdev_queue_state_t {
 564        __QUEUE_STATE_DRV_XOFF,
 565        __QUEUE_STATE_STACK_XOFF,
 566        __QUEUE_STATE_FROZEN,
 567};
 568
 569#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 570#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 571#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 572
 573#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 574#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 575                                        QUEUE_STATE_FROZEN)
 576#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 577                                        QUEUE_STATE_FROZEN)
 578
 579/*
 580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 581 * netif_tx_* functions below are used to manipulate this flag.  The
 582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 583 * queue independently.  The netif_xmit_*stopped functions below are called
 584 * to check if the queue has been stopped by the driver or stack (either
 585 * of the XOFF bits are set in the state).  Drivers should not need to call
 586 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 587 */
 588
 589struct netdev_queue {
 590/*
 591 * read-mostly part
 592 */
 593        struct net_device       *dev;
 594        struct Qdisc __rcu      *qdisc;
 595        struct Qdisc            *qdisc_sleeping;
 596#ifdef CONFIG_SYSFS
 597        struct kobject          kobj;
 598#endif
 599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 600        int                     numa_node;
 601#endif
 602        unsigned long           tx_maxrate;
 603        /*
 604         * Number of TX timeouts for this queue
 605         * (/sys/class/net/DEV/Q/trans_timeout)
 606         */
 607        unsigned long           trans_timeout;
 608
 609        /* Subordinate device that the queue has been assigned to */
 610        struct net_device       *sb_dev;
 611#ifdef CONFIG_XDP_SOCKETS
 612        struct xdp_umem         *umem;
 613#endif
 614/*
 615 * write-mostly part
 616 */
 617        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 618        int                     xmit_lock_owner;
 619        /*
 620         * Time (in jiffies) of last Tx
 621         */
 622        unsigned long           trans_start;
 623
 624        unsigned long           state;
 625
 626#ifdef CONFIG_BQL
 627        struct dql              dql;
 628#endif
 629} ____cacheline_aligned_in_smp;
 630
 631extern int sysctl_fb_tunnels_only_for_init_net;
 632extern int sysctl_devconf_inherit_init_net;
 633
 634static inline bool net_has_fallback_tunnels(const struct net *net)
 635{
 636        return net == &init_net ||
 637               !IS_ENABLED(CONFIG_SYSCTL) ||
 638               !sysctl_fb_tunnels_only_for_init_net;
 639}
 640
 641static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 642{
 643#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 644        return q->numa_node;
 645#else
 646        return NUMA_NO_NODE;
 647#endif
 648}
 649
 650static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 651{
 652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 653        q->numa_node = node;
 654#endif
 655}
 656
 657#ifdef CONFIG_RPS
 658/*
 659 * This structure holds an RPS map which can be of variable length.  The
 660 * map is an array of CPUs.
 661 */
 662struct rps_map {
 663        unsigned int len;
 664        struct rcu_head rcu;
 665        u16 cpus[0];
 666};
 667#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 668
 669/*
 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 671 * tail pointer for that CPU's input queue at the time of last enqueue, and
 672 * a hardware filter index.
 673 */
 674struct rps_dev_flow {
 675        u16 cpu;
 676        u16 filter;
 677        unsigned int last_qtail;
 678};
 679#define RPS_NO_FILTER 0xffff
 680
 681/*
 682 * The rps_dev_flow_table structure contains a table of flow mappings.
 683 */
 684struct rps_dev_flow_table {
 685        unsigned int mask;
 686        struct rcu_head rcu;
 687        struct rps_dev_flow flows[0];
 688};
 689#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 690    ((_num) * sizeof(struct rps_dev_flow)))
 691
 692/*
 693 * The rps_sock_flow_table contains mappings of flows to the last CPU
 694 * on which they were processed by the application (set in recvmsg).
 695 * Each entry is a 32bit value. Upper part is the high-order bits
 696 * of flow hash, lower part is CPU number.
 697 * rps_cpu_mask is used to partition the space, depending on number of
 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 700 * meaning we use 32-6=26 bits for the hash.
 701 */
 702struct rps_sock_flow_table {
 703        u32     mask;
 704
 705        u32     ents[0] ____cacheline_aligned_in_smp;
 706};
 707#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 708
 709#define RPS_NO_CPU 0xffff
 710
 711extern u32 rps_cpu_mask;
 712extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 713
 714static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 715                                        u32 hash)
 716{
 717        if (table && hash) {
 718                unsigned int index = hash & table->mask;
 719                u32 val = hash & ~rps_cpu_mask;
 720
 721                /* We only give a hint, preemption can change CPU under us */
 722                val |= raw_smp_processor_id();
 723
 724                if (table->ents[index] != val)
 725                        table->ents[index] = val;
 726        }
 727}
 728
 729#ifdef CONFIG_RFS_ACCEL
 730bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 731                         u16 filter_id);
 732#endif
 733#endif /* CONFIG_RPS */
 734
 735/* This structure contains an instance of an RX queue. */
 736struct netdev_rx_queue {
 737#ifdef CONFIG_RPS
 738        struct rps_map __rcu            *rps_map;
 739        struct rps_dev_flow_table __rcu *rps_flow_table;
 740#endif
 741        struct kobject                  kobj;
 742        struct net_device               *dev;
 743        struct xdp_rxq_info             xdp_rxq;
 744#ifdef CONFIG_XDP_SOCKETS
 745        struct xdp_umem                 *umem;
 746#endif
 747} ____cacheline_aligned_in_smp;
 748
 749/*
 750 * RX queue sysfs structures and functions.
 751 */
 752struct rx_queue_attribute {
 753        struct attribute attr;
 754        ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 755        ssize_t (*store)(struct netdev_rx_queue *queue,
 756                         const char *buf, size_t len);
 757};
 758
 759#ifdef CONFIG_XPS
 760/*
 761 * This structure holds an XPS map which can be of variable length.  The
 762 * map is an array of queues.
 763 */
 764struct xps_map {
 765        unsigned int len;
 766        unsigned int alloc_len;
 767        struct rcu_head rcu;
 768        u16 queues[0];
 769};
 770#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 771#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 772       - sizeof(struct xps_map)) / sizeof(u16))
 773
 774/*
 775 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 776 */
 777struct xps_dev_maps {
 778        struct rcu_head rcu;
 779        struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
 780};
 781
 782#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +      \
 783        (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 784
 785#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 786        (_rxqs * (_tcs) * sizeof(struct xps_map *)))
 787
 788#endif /* CONFIG_XPS */
 789
 790#define TC_MAX_QUEUE    16
 791#define TC_BITMASK      15
 792/* HW offloaded queuing disciplines txq count and offset maps */
 793struct netdev_tc_txq {
 794        u16 count;
 795        u16 offset;
 796};
 797
 798#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 799/*
 800 * This structure is to hold information about the device
 801 * configured to run FCoE protocol stack.
 802 */
 803struct netdev_fcoe_hbainfo {
 804        char    manufacturer[64];
 805        char    serial_number[64];
 806        char    hardware_version[64];
 807        char    driver_version[64];
 808        char    optionrom_version[64];
 809        char    firmware_version[64];
 810        char    model[256];
 811        char    model_description[256];
 812};
 813#endif
 814
 815#define MAX_PHYS_ITEM_ID_LEN 32
 816
 817/* This structure holds a unique identifier to identify some
 818 * physical item (port for example) used by a netdevice.
 819 */
 820struct netdev_phys_item_id {
 821        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 822        unsigned char id_len;
 823};
 824
 825static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 826                                            struct netdev_phys_item_id *b)
 827{
 828        return a->id_len == b->id_len &&
 829               memcmp(a->id, b->id, a->id_len) == 0;
 830}
 831
 832typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 833                                       struct sk_buff *skb,
 834                                       struct net_device *sb_dev);
 835
 836enum tc_setup_type {
 837        TC_SETUP_QDISC_MQPRIO,
 838        TC_SETUP_CLSU32,
 839        TC_SETUP_CLSFLOWER,
 840        TC_SETUP_CLSMATCHALL,
 841        TC_SETUP_CLSBPF,
 842        TC_SETUP_BLOCK,
 843        TC_SETUP_QDISC_CBS,
 844        TC_SETUP_QDISC_RED,
 845        TC_SETUP_QDISC_PRIO,
 846        TC_SETUP_QDISC_MQ,
 847        TC_SETUP_QDISC_ETF,
 848        TC_SETUP_ROOT_QDISC,
 849        TC_SETUP_QDISC_GRED,
 850        TC_SETUP_QDISC_TAPRIO,
 851};
 852
 853/* These structures hold the attributes of bpf state that are being passed
 854 * to the netdevice through the bpf op.
 855 */
 856enum bpf_netdev_command {
 857        /* Set or clear a bpf program used in the earliest stages of packet
 858         * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 859         * is responsible for calling bpf_prog_put on any old progs that are
 860         * stored. In case of error, the callee need not release the new prog
 861         * reference, but on success it takes ownership and must bpf_prog_put
 862         * when it is no longer used.
 863         */
 864        XDP_SETUP_PROG,
 865        XDP_SETUP_PROG_HW,
 866        XDP_QUERY_PROG,
 867        XDP_QUERY_PROG_HW,
 868        /* BPF program for offload callbacks, invoked at program load time. */
 869        BPF_OFFLOAD_MAP_ALLOC,
 870        BPF_OFFLOAD_MAP_FREE,
 871        XDP_SETUP_XSK_UMEM,
 872};
 873
 874struct bpf_prog_offload_ops;
 875struct netlink_ext_ack;
 876struct xdp_umem;
 877
 878struct netdev_bpf {
 879        enum bpf_netdev_command command;
 880        union {
 881                /* XDP_SETUP_PROG */
 882                struct {
 883                        u32 flags;
 884                        struct bpf_prog *prog;
 885                        struct netlink_ext_ack *extack;
 886                };
 887                /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
 888                struct {
 889                        u32 prog_id;
 890                        /* flags with which program was installed */
 891                        u32 prog_flags;
 892                };
 893                /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 894                struct {
 895                        struct bpf_offloaded_map *offmap;
 896                };
 897                /* XDP_SETUP_XSK_UMEM */
 898                struct {
 899                        struct xdp_umem *umem;
 900                        u16 queue_id;
 901                } xsk;
 902        };
 903};
 904
 905/* Flags for ndo_xsk_wakeup. */
 906#define XDP_WAKEUP_RX (1 << 0)
 907#define XDP_WAKEUP_TX (1 << 1)
 908
 909#ifdef CONFIG_XFRM_OFFLOAD
 910struct xfrmdev_ops {
 911        int     (*xdo_dev_state_add) (struct xfrm_state *x);
 912        void    (*xdo_dev_state_delete) (struct xfrm_state *x);
 913        void    (*xdo_dev_state_free) (struct xfrm_state *x);
 914        bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
 915                                       struct xfrm_state *x);
 916        void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 917};
 918#endif
 919
 920struct dev_ifalias {
 921        struct rcu_head rcuhead;
 922        char ifalias[];
 923};
 924
 925struct devlink;
 926struct tlsdev_ops;
 927
 928
 929/*
 930 * This structure defines the management hooks for network devices.
 931 * The following hooks can be defined; unless noted otherwise, they are
 932 * optional and can be filled with a null pointer.
 933 *
 934 * int (*ndo_init)(struct net_device *dev);
 935 *     This function is called once when a network device is registered.
 936 *     The network device can use this for any late stage initialization
 937 *     or semantic validation. It can fail with an error code which will
 938 *     be propagated back to register_netdev.
 939 *
 940 * void (*ndo_uninit)(struct net_device *dev);
 941 *     This function is called when device is unregistered or when registration
 942 *     fails. It is not called if init fails.
 943 *
 944 * int (*ndo_open)(struct net_device *dev);
 945 *     This function is called when a network device transitions to the up
 946 *     state.
 947 *
 948 * int (*ndo_stop)(struct net_device *dev);
 949 *     This function is called when a network device transitions to the down
 950 *     state.
 951 *
 952 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 953 *                               struct net_device *dev);
 954 *      Called when a packet needs to be transmitted.
 955 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 956 *      the queue before that can happen; it's for obsolete devices and weird
 957 *      corner cases, but the stack really does a non-trivial amount
 958 *      of useless work if you return NETDEV_TX_BUSY.
 959 *      Required; cannot be NULL.
 960 *
 961 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 962 *                                         struct net_device *dev
 963 *                                         netdev_features_t features);
 964 *      Called by core transmit path to determine if device is capable of
 965 *      performing offload operations on a given packet. This is to give
 966 *      the device an opportunity to implement any restrictions that cannot
 967 *      be otherwise expressed by feature flags. The check is called with
 968 *      the set of features that the stack has calculated and it returns
 969 *      those the driver believes to be appropriate.
 970 *
 971 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 972 *                         struct net_device *sb_dev);
 973 *      Called to decide which queue to use when device supports multiple
 974 *      transmit queues.
 975 *
 976 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 977 *      This function is called to allow device receiver to make
 978 *      changes to configuration when multicast or promiscuous is enabled.
 979 *
 980 * void (*ndo_set_rx_mode)(struct net_device *dev);
 981 *      This function is called device changes address list filtering.
 982 *      If driver handles unicast address filtering, it should set
 983 *      IFF_UNICAST_FLT in its priv_flags.
 984 *
 985 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 986 *      This function  is called when the Media Access Control address
 987 *      needs to be changed. If this interface is not defined, the
 988 *      MAC address can not be changed.
 989 *
 990 * int (*ndo_validate_addr)(struct net_device *dev);
 991 *      Test if Media Access Control address is valid for the device.
 992 *
 993 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 994 *      Called when a user requests an ioctl which can't be handled by
 995 *      the generic interface code. If not defined ioctls return
 996 *      not supported error code.
 997 *
 998 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 999 *      Used to set network devices bus interface parameters. This interface
1000 *      is retained for legacy reasons; new devices should use the bus
1001 *      interface (PCI) for low level management.
1002 *
1003 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1004 *      Called when a user wants to change the Maximum Transfer Unit
1005 *      of a device.
1006 *
1007 * void (*ndo_tx_timeout)(struct net_device *dev);
1008 *      Callback used when the transmitter has not made any progress
1009 *      for dev->watchdog ticks.
1010 *
1011 * void (*ndo_get_stats64)(struct net_device *dev,
1012 *                         struct rtnl_link_stats64 *storage);
1013 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1014 *      Called when a user wants to get the network device usage
1015 *      statistics. Drivers must do one of the following:
1016 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
1017 *         rtnl_link_stats64 structure passed by the caller.
1018 *      2. Define @ndo_get_stats to update a net_device_stats structure
1019 *         (which should normally be dev->stats) and return a pointer to
1020 *         it. The structure may be changed asynchronously only if each
1021 *         field is written atomically.
1022 *      3. Update dev->stats asynchronously and atomically, and define
1023 *         neither operation.
1024 *
1025 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1026 *      Return true if this device supports offload stats of this attr_id.
1027 *
1028 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1029 *      void *attr_data)
1030 *      Get statistics for offload operations by attr_id. Write it into the
1031 *      attr_data pointer.
1032 *
1033 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1034 *      If device supports VLAN filtering this function is called when a
1035 *      VLAN id is registered.
1036 *
1037 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1038 *      If device supports VLAN filtering this function is called when a
1039 *      VLAN id is unregistered.
1040 *
1041 * void (*ndo_poll_controller)(struct net_device *dev);
1042 *
1043 *      SR-IOV management functions.
1044 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1045 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1046 *                        u8 qos, __be16 proto);
1047 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1048 *                        int max_tx_rate);
1049 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1050 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1051 * int (*ndo_get_vf_config)(struct net_device *dev,
1052 *                          int vf, struct ifla_vf_info *ivf);
1053 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1054 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1055 *                        struct nlattr *port[]);
1056 *
1057 *      Enable or disable the VF ability to query its RSS Redirection Table and
1058 *      Hash Key. This is needed since on some devices VF share this information
1059 *      with PF and querying it may introduce a theoretical security risk.
1060 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1061 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1062 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1063 *                     void *type_data);
1064 *      Called to setup any 'tc' scheduler, classifier or action on @dev.
1065 *      This is always called from the stack with the rtnl lock held and netif
1066 *      tx queues stopped. This allows the netdevice to perform queue
1067 *      management safely.
1068 *
1069 *      Fiber Channel over Ethernet (FCoE) offload functions.
1070 * int (*ndo_fcoe_enable)(struct net_device *dev);
1071 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1072 *      so the underlying device can perform whatever needed configuration or
1073 *      initialization to support acceleration of FCoE traffic.
1074 *
1075 * int (*ndo_fcoe_disable)(struct net_device *dev);
1076 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1077 *      so the underlying device can perform whatever needed clean-ups to
1078 *      stop supporting acceleration of FCoE traffic.
1079 *
1080 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1081 *                           struct scatterlist *sgl, unsigned int sgc);
1082 *      Called when the FCoE Initiator wants to initialize an I/O that
1083 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1084 *      perform necessary setup and returns 1 to indicate the device is set up
1085 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1086 *
1087 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1088 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1089 *      indicated by the FC exchange id 'xid', so the underlying device can
1090 *      clean up and reuse resources for later DDP requests.
1091 *
1092 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1093 *                            struct scatterlist *sgl, unsigned int sgc);
1094 *      Called when the FCoE Target wants to initialize an I/O that
1095 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1096 *      perform necessary setup and returns 1 to indicate the device is set up
1097 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1098 *
1099 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1100 *                             struct netdev_fcoe_hbainfo *hbainfo);
1101 *      Called when the FCoE Protocol stack wants information on the underlying
1102 *      device. This information is utilized by the FCoE protocol stack to
1103 *      register attributes with Fiber Channel management service as per the
1104 *      FC-GS Fabric Device Management Information(FDMI) specification.
1105 *
1106 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1107 *      Called when the underlying device wants to override default World Wide
1108 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1109 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1110 *      protocol stack to use.
1111 *
1112 *      RFS acceleration.
1113 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1114 *                          u16 rxq_index, u32 flow_id);
1115 *      Set hardware filter for RFS.  rxq_index is the target queue index;
1116 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1117 *      Return the filter ID on success, or a negative error code.
1118 *
1119 *      Slave management functions (for bridge, bonding, etc).
1120 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1121 *      Called to make another netdev an underling.
1122 *
1123 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1124 *      Called to release previously enslaved netdev.
1125 *
1126 *      Feature/offload setting functions.
1127 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1128 *              netdev_features_t features);
1129 *      Adjusts the requested feature flags according to device-specific
1130 *      constraints, and returns the resulting flags. Must not modify
1131 *      the device state.
1132 *
1133 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1134 *      Called to update device configuration to new features. Passed
1135 *      feature set might be less than what was returned by ndo_fix_features()).
1136 *      Must return >0 or -errno if it changed dev->features itself.
1137 *
1138 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1139 *                    struct net_device *dev,
1140 *                    const unsigned char *addr, u16 vid, u16 flags,
1141 *                    struct netlink_ext_ack *extack);
1142 *      Adds an FDB entry to dev for addr.
1143 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1144 *                    struct net_device *dev,
1145 *                    const unsigned char *addr, u16 vid)
1146 *      Deletes the FDB entry from dev coresponding to addr.
1147 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1148 *                     struct net_device *dev, struct net_device *filter_dev,
1149 *                     int *idx)
1150 *      Used to add FDB entries to dump requests. Implementers should add
1151 *      entries to skb and update idx with the number of entries.
1152 *
1153 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1154 *                           u16 flags, struct netlink_ext_ack *extack)
1155 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1156 *                           struct net_device *dev, u32 filter_mask,
1157 *                           int nlflags)
1158 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1159 *                           u16 flags);
1160 *
1161 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1162 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1163 *      which do not represent real hardware may define this to allow their
1164 *      userspace components to manage their virtual carrier state. Devices
1165 *      that determine carrier state from physical hardware properties (eg
1166 *      network cables) or protocol-dependent mechanisms (eg
1167 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1168 *
1169 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1170 *                             struct netdev_phys_item_id *ppid);
1171 *      Called to get ID of physical port of this device. If driver does
1172 *      not implement this, it is assumed that the hw is not able to have
1173 *      multiple net devices on single physical port.
1174 *
1175 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1176 *                               struct netdev_phys_item_id *ppid)
1177 *      Called to get the parent ID of the physical port of this device.
1178 *
1179 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1180 *                            struct udp_tunnel_info *ti);
1181 *      Called by UDP tunnel to notify a driver about the UDP port and socket
1182 *      address family that a UDP tunnel is listnening to. It is called only
1183 *      when a new port starts listening. The operation is protected by the
1184 *      RTNL.
1185 *
1186 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1187 *                            struct udp_tunnel_info *ti);
1188 *      Called by UDP tunnel to notify the driver about a UDP port and socket
1189 *      address family that the UDP tunnel is not listening to anymore. The
1190 *      operation is protected by the RTNL.
1191 *
1192 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1193 *                               struct net_device *dev)
1194 *      Called by upper layer devices to accelerate switching or other
1195 *      station functionality into hardware. 'pdev is the lowerdev
1196 *      to use for the offload and 'dev' is the net device that will
1197 *      back the offload. Returns a pointer to the private structure
1198 *      the upper layer will maintain.
1199 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1200 *      Called by upper layer device to delete the station created
1201 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1202 *      the station and priv is the structure returned by the add
1203 *      operation.
1204 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1205 *                           int queue_index, u32 maxrate);
1206 *      Called when a user wants to set a max-rate limitation of specific
1207 *      TX queue.
1208 * int (*ndo_get_iflink)(const struct net_device *dev);
1209 *      Called to get the iflink value of this device.
1210 * void (*ndo_change_proto_down)(struct net_device *dev,
1211 *                               bool proto_down);
1212 *      This function is used to pass protocol port error state information
1213 *      to the switch driver. The switch driver can react to the proto_down
1214 *      by doing a phys down on the associated switch port.
1215 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1216 *      This function is used to get egress tunnel information for given skb.
1217 *      This is useful for retrieving outer tunnel header parameters while
1218 *      sampling packet.
1219 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1220 *      This function is used to specify the headroom that the skb must
1221 *      consider when allocation skb during packet reception. Setting
1222 *      appropriate rx headroom value allows avoiding skb head copy on
1223 *      forward. Setting a negative value resets the rx headroom to the
1224 *      default value.
1225 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1226 *      This function is used to set or query state related to XDP on the
1227 *      netdevice and manage BPF offload. See definition of
1228 *      enum bpf_netdev_command for details.
1229 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1230 *                      u32 flags);
1231 *      This function is used to submit @n XDP packets for transmit on a
1232 *      netdevice. Returns number of frames successfully transmitted, frames
1233 *      that got dropped are freed/returned via xdp_return_frame().
1234 *      Returns negative number, means general error invoking ndo, meaning
1235 *      no frames were xmit'ed and core-caller will free all frames.
1236 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1237 *      This function is used to wake up the softirq, ksoftirqd or kthread
1238 *      responsible for sending and/or receiving packets on a specific
1239 *      queue id bound to an AF_XDP socket. The flags field specifies if
1240 *      only RX, only Tx, or both should be woken up using the flags
1241 *      XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1242 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1243 *      Get devlink port instance associated with a given netdev.
1244 *      Called with a reference on the netdevice and devlink locks only,
1245 *      rtnl_lock is not held.
1246 */
1247struct net_device_ops {
1248        int                     (*ndo_init)(struct net_device *dev);
1249        void                    (*ndo_uninit)(struct net_device *dev);
1250        int                     (*ndo_open)(struct net_device *dev);
1251        int                     (*ndo_stop)(struct net_device *dev);
1252        netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1253                                                  struct net_device *dev);
1254        netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1255                                                      struct net_device *dev,
1256                                                      netdev_features_t features);
1257        u16                     (*ndo_select_queue)(struct net_device *dev,
1258                                                    struct sk_buff *skb,
1259                                                    struct net_device *sb_dev);
1260        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1261                                                       int flags);
1262        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1263        int                     (*ndo_set_mac_address)(struct net_device *dev,
1264                                                       void *addr);
1265        int                     (*ndo_validate_addr)(struct net_device *dev);
1266        int                     (*ndo_do_ioctl)(struct net_device *dev,
1267                                                struct ifreq *ifr, int cmd);
1268        int                     (*ndo_set_config)(struct net_device *dev,
1269                                                  struct ifmap *map);
1270        int                     (*ndo_change_mtu)(struct net_device *dev,
1271                                                  int new_mtu);
1272        int                     (*ndo_neigh_setup)(struct net_device *dev,
1273                                                   struct neigh_parms *);
1274        void                    (*ndo_tx_timeout) (struct net_device *dev);
1275
1276        void                    (*ndo_get_stats64)(struct net_device *dev,
1277                                                   struct rtnl_link_stats64 *storage);
1278        bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1279        int                     (*ndo_get_offload_stats)(int attr_id,
1280                                                         const struct net_device *dev,
1281                                                         void *attr_data);
1282        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1283
1284        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1285                                                       __be16 proto, u16 vid);
1286        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1287                                                        __be16 proto, u16 vid);
1288#ifdef CONFIG_NET_POLL_CONTROLLER
1289        void                    (*ndo_poll_controller)(struct net_device *dev);
1290        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1291                                                     struct netpoll_info *info);
1292        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1293#endif
1294        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1295                                                  int queue, u8 *mac);
1296        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1297                                                   int queue, u16 vlan,
1298                                                   u8 qos, __be16 proto);
1299        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1300                                                   int vf, int min_tx_rate,
1301                                                   int max_tx_rate);
1302        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1303                                                       int vf, bool setting);
1304        int                     (*ndo_set_vf_trust)(struct net_device *dev,
1305                                                    int vf, bool setting);
1306        int                     (*ndo_get_vf_config)(struct net_device *dev,
1307                                                     int vf,
1308                                                     struct ifla_vf_info *ivf);
1309        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1310                                                         int vf, int link_state);
1311        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1312                                                    int vf,
1313                                                    struct ifla_vf_stats
1314                                                    *vf_stats);
1315        int                     (*ndo_set_vf_port)(struct net_device *dev,
1316                                                   int vf,
1317                                                   struct nlattr *port[]);
1318        int                     (*ndo_get_vf_port)(struct net_device *dev,
1319                                                   int vf, struct sk_buff *skb);
1320        int                     (*ndo_set_vf_guid)(struct net_device *dev,
1321                                                   int vf, u64 guid,
1322                                                   int guid_type);
1323        int                     (*ndo_set_vf_rss_query_en)(
1324                                                   struct net_device *dev,
1325                                                   int vf, bool setting);
1326        int                     (*ndo_setup_tc)(struct net_device *dev,
1327                                                enum tc_setup_type type,
1328                                                void *type_data);
1329#if IS_ENABLED(CONFIG_FCOE)
1330        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1331        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1332        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1333                                                      u16 xid,
1334                                                      struct scatterlist *sgl,
1335                                                      unsigned int sgc);
1336        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1337                                                     u16 xid);
1338        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1339                                                       u16 xid,
1340                                                       struct scatterlist *sgl,
1341                                                       unsigned int sgc);
1342        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1343                                                        struct netdev_fcoe_hbainfo *hbainfo);
1344#endif
1345
1346#if IS_ENABLED(CONFIG_LIBFCOE)
1347#define NETDEV_FCOE_WWNN 0
1348#define NETDEV_FCOE_WWPN 1
1349        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1350                                                    u64 *wwn, int type);
1351#endif
1352
1353#ifdef CONFIG_RFS_ACCEL
1354        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1355                                                     const struct sk_buff *skb,
1356                                                     u16 rxq_index,
1357                                                     u32 flow_id);
1358#endif
1359        int                     (*ndo_add_slave)(struct net_device *dev,
1360                                                 struct net_device *slave_dev,
1361                                                 struct netlink_ext_ack *extack);
1362        int                     (*ndo_del_slave)(struct net_device *dev,
1363                                                 struct net_device *slave_dev);
1364        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1365                                                    netdev_features_t features);
1366        int                     (*ndo_set_features)(struct net_device *dev,
1367                                                    netdev_features_t features);
1368        int                     (*ndo_neigh_construct)(struct net_device *dev,
1369                                                       struct neighbour *n);
1370        void                    (*ndo_neigh_destroy)(struct net_device *dev,
1371                                                     struct neighbour *n);
1372
1373        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1374                                               struct nlattr *tb[],
1375                                               struct net_device *dev,
1376                                               const unsigned char *addr,
1377                                               u16 vid,
1378                                               u16 flags,
1379                                               struct netlink_ext_ack *extack);
1380        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1381                                               struct nlattr *tb[],
1382                                               struct net_device *dev,
1383                                               const unsigned char *addr,
1384                                               u16 vid);
1385        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1386                                                struct netlink_callback *cb,
1387                                                struct net_device *dev,
1388                                                struct net_device *filter_dev,
1389                                                int *idx);
1390        int                     (*ndo_fdb_get)(struct sk_buff *skb,
1391                                               struct nlattr *tb[],
1392                                               struct net_device *dev,
1393                                               const unsigned char *addr,
1394                                               u16 vid, u32 portid, u32 seq,
1395                                               struct netlink_ext_ack *extack);
1396        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1397                                                      struct nlmsghdr *nlh,
1398                                                      u16 flags,
1399                                                      struct netlink_ext_ack *extack);
1400        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1401                                                      u32 pid, u32 seq,
1402                                                      struct net_device *dev,
1403                                                      u32 filter_mask,
1404                                                      int nlflags);
1405        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1406                                                      struct nlmsghdr *nlh,
1407                                                      u16 flags);
1408        int                     (*ndo_change_carrier)(struct net_device *dev,
1409                                                      bool new_carrier);
1410        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1411                                                        struct netdev_phys_item_id *ppid);
1412        int                     (*ndo_get_port_parent_id)(struct net_device *dev,
1413                                                          struct netdev_phys_item_id *ppid);
1414        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1415                                                          char *name, size_t len);
1416        void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1417                                                      struct udp_tunnel_info *ti);
1418        void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1419                                                      struct udp_tunnel_info *ti);
1420        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1421                                                        struct net_device *dev);
1422        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1423                                                        void *priv);
1424
1425        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1426                                                      int queue_index,
1427                                                      u32 maxrate);
1428        int                     (*ndo_get_iflink)(const struct net_device *dev);
1429        int                     (*ndo_change_proto_down)(struct net_device *dev,
1430                                                         bool proto_down);
1431        int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1432                                                       struct sk_buff *skb);
1433        void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1434                                                       int needed_headroom);
1435        int                     (*ndo_bpf)(struct net_device *dev,
1436                                           struct netdev_bpf *bpf);
1437        int                     (*ndo_xdp_xmit)(struct net_device *dev, int n,
1438                                                struct xdp_frame **xdp,
1439                                                u32 flags);
1440        int                     (*ndo_xsk_wakeup)(struct net_device *dev,
1441                                                  u32 queue_id, u32 flags);
1442        struct devlink_port *   (*ndo_get_devlink_port)(struct net_device *dev);
1443};
1444
1445/**
1446 * enum net_device_priv_flags - &struct net_device priv_flags
1447 *
1448 * These are the &struct net_device, they are only set internally
1449 * by drivers and used in the kernel. These flags are invisible to
1450 * userspace; this means that the order of these flags can change
1451 * during any kernel release.
1452 *
1453 * You should have a pretty good reason to be extending these flags.
1454 *
1455 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1456 * @IFF_EBRIDGE: Ethernet bridging device
1457 * @IFF_BONDING: bonding master or slave
1458 * @IFF_ISATAP: ISATAP interface (RFC4214)
1459 * @IFF_WAN_HDLC: WAN HDLC device
1460 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1461 *      release skb->dst
1462 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1463 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1464 * @IFF_MACVLAN_PORT: device used as macvlan port
1465 * @IFF_BRIDGE_PORT: device used as bridge port
1466 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1467 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1468 * @IFF_UNICAST_FLT: Supports unicast filtering
1469 * @IFF_TEAM_PORT: device used as team port
1470 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1471 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1472 *      change when it's running
1473 * @IFF_MACVLAN: Macvlan device
1474 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1475 *      underlying stacked devices
1476 * @IFF_L3MDEV_MASTER: device is an L3 master device
1477 * @IFF_NO_QUEUE: device can run without qdisc attached
1478 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1479 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1480 * @IFF_TEAM: device is a team device
1481 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1482 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1483 *      entity (i.e. the master device for bridged veth)
1484 * @IFF_MACSEC: device is a MACsec device
1485 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1486 * @IFF_FAILOVER: device is a failover master device
1487 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1488 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1489 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1490 */
1491enum netdev_priv_flags {
1492        IFF_802_1Q_VLAN                 = 1<<0,
1493        IFF_EBRIDGE                     = 1<<1,
1494        IFF_BONDING                     = 1<<2,
1495        IFF_ISATAP                      = 1<<3,
1496        IFF_WAN_HDLC                    = 1<<4,
1497        IFF_XMIT_DST_RELEASE            = 1<<5,
1498        IFF_DONT_BRIDGE                 = 1<<6,
1499        IFF_DISABLE_NETPOLL             = 1<<7,
1500        IFF_MACVLAN_PORT                = 1<<8,
1501        IFF_BRIDGE_PORT                 = 1<<9,
1502        IFF_OVS_DATAPATH                = 1<<10,
1503        IFF_TX_SKB_SHARING              = 1<<11,
1504        IFF_UNICAST_FLT                 = 1<<12,
1505        IFF_TEAM_PORT                   = 1<<13,
1506        IFF_SUPP_NOFCS                  = 1<<14,
1507        IFF_LIVE_ADDR_CHANGE            = 1<<15,
1508        IFF_MACVLAN                     = 1<<16,
1509        IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1510        IFF_L3MDEV_MASTER               = 1<<18,
1511        IFF_NO_QUEUE                    = 1<<19,
1512        IFF_OPENVSWITCH                 = 1<<20,
1513        IFF_L3MDEV_SLAVE                = 1<<21,
1514        IFF_TEAM                        = 1<<22,
1515        IFF_RXFH_CONFIGURED             = 1<<23,
1516        IFF_PHONY_HEADROOM              = 1<<24,
1517        IFF_MACSEC                      = 1<<25,
1518        IFF_NO_RX_HANDLER               = 1<<26,
1519        IFF_FAILOVER                    = 1<<27,
1520        IFF_FAILOVER_SLAVE              = 1<<28,
1521        IFF_L3MDEV_RX_HANDLER           = 1<<29,
1522        IFF_LIVE_RENAME_OK              = 1<<30,
1523};
1524
1525#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1526#define IFF_EBRIDGE                     IFF_EBRIDGE
1527#define IFF_BONDING                     IFF_BONDING
1528#define IFF_ISATAP                      IFF_ISATAP
1529#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1530#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1531#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1532#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1533#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1534#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1535#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1536#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1537#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1538#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1539#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1540#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1541#define IFF_MACVLAN                     IFF_MACVLAN
1542#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1543#define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1544#define IFF_NO_QUEUE                    IFF_NO_QUEUE
1545#define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1546#define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1547#define IFF_TEAM                        IFF_TEAM
1548#define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1549#define IFF_MACSEC                      IFF_MACSEC
1550#define IFF_NO_RX_HANDLER               IFF_NO_RX_HANDLER
1551#define IFF_FAILOVER                    IFF_FAILOVER
1552#define IFF_FAILOVER_SLAVE              IFF_FAILOVER_SLAVE
1553#define IFF_L3MDEV_RX_HANDLER           IFF_L3MDEV_RX_HANDLER
1554#define IFF_LIVE_RENAME_OK              IFF_LIVE_RENAME_OK
1555
1556/**
1557 *      struct net_device - The DEVICE structure.
1558 *
1559 *      Actually, this whole structure is a big mistake.  It mixes I/O
1560 *      data with strictly "high-level" data, and it has to know about
1561 *      almost every data structure used in the INET module.
1562 *
1563 *      @name:  This is the first field of the "visible" part of this structure
1564 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1565 *              of the interface.
1566 *
1567 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1568 *      @ifalias:       SNMP alias
1569 *      @mem_end:       Shared memory end
1570 *      @mem_start:     Shared memory start
1571 *      @base_addr:     Device I/O address
1572 *      @irq:           Device IRQ number
1573 *
1574 *      @state:         Generic network queuing layer state, see netdev_state_t
1575 *      @dev_list:      The global list of network devices
1576 *      @napi_list:     List entry used for polling NAPI devices
1577 *      @unreg_list:    List entry  when we are unregistering the
1578 *                      device; see the function unregister_netdev
1579 *      @close_list:    List entry used when we are closing the device
1580 *      @ptype_all:     Device-specific packet handlers for all protocols
1581 *      @ptype_specific: Device-specific, protocol-specific packet handlers
1582 *
1583 *      @adj_list:      Directly linked devices, like slaves for bonding
1584 *      @features:      Currently active device features
1585 *      @hw_features:   User-changeable features
1586 *
1587 *      @wanted_features:       User-requested features
1588 *      @vlan_features:         Mask of features inheritable by VLAN devices
1589 *
1590 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1591 *                              This field indicates what encapsulation
1592 *                              offloads the hardware is capable of doing,
1593 *                              and drivers will need to set them appropriately.
1594 *
1595 *      @mpls_features: Mask of features inheritable by MPLS
1596 *
1597 *      @ifindex:       interface index
1598 *      @group:         The group the device belongs to
1599 *
1600 *      @stats:         Statistics struct, which was left as a legacy, use
1601 *                      rtnl_link_stats64 instead
1602 *
1603 *      @rx_dropped:    Dropped packets by core network,
1604 *                      do not use this in drivers
1605 *      @tx_dropped:    Dropped packets by core network,
1606 *                      do not use this in drivers
1607 *      @rx_nohandler:  nohandler dropped packets by core network on
1608 *                      inactive devices, do not use this in drivers
1609 *      @carrier_up_count:      Number of times the carrier has been up
1610 *      @carrier_down_count:    Number of times the carrier has been down
1611 *
1612 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1613 *                              instead of ioctl,
1614 *                              see <net/iw_handler.h> for details.
1615 *      @wireless_data: Instance data managed by the core of wireless extensions
1616 *
1617 *      @netdev_ops:    Includes several pointers to callbacks,
1618 *                      if one wants to override the ndo_*() functions
1619 *      @ethtool_ops:   Management operations
1620 *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1621 *                      discovery handling. Necessary for e.g. 6LoWPAN.
1622 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1623 *                      of Layer 2 headers.
1624 *
1625 *      @flags:         Interface flags (a la BSD)
1626 *      @priv_flags:    Like 'flags' but invisible to userspace,
1627 *                      see if.h for the definitions
1628 *      @gflags:        Global flags ( kept as legacy )
1629 *      @padded:        How much padding added by alloc_netdev()
1630 *      @operstate:     RFC2863 operstate
1631 *      @link_mode:     Mapping policy to operstate
1632 *      @if_port:       Selectable AUI, TP, ...
1633 *      @dma:           DMA channel
1634 *      @mtu:           Interface MTU value
1635 *      @min_mtu:       Interface Minimum MTU value
1636 *      @max_mtu:       Interface Maximum MTU value
1637 *      @type:          Interface hardware type
1638 *      @hard_header_len: Maximum hardware header length.
1639 *      @min_header_len:  Minimum hardware header length
1640 *
1641 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1642 *                        cases can this be guaranteed
1643 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1644 *                        cases can this be guaranteed. Some cases also use
1645 *                        LL_MAX_HEADER instead to allocate the skb
1646 *
1647 *      interface address info:
1648 *
1649 *      @perm_addr:             Permanent hw address
1650 *      @addr_assign_type:      Hw address assignment type
1651 *      @addr_len:              Hardware address length
1652 *      @upper_level:           Maximum depth level of upper devices.
1653 *      @lower_level:           Maximum depth level of lower devices.
1654 *      @neigh_priv_len:        Used in neigh_alloc()
1655 *      @dev_id:                Used to differentiate devices that share
1656 *                              the same link layer address
1657 *      @dev_port:              Used to differentiate devices that share
1658 *                              the same function
1659 *      @addr_list_lock:        XXX: need comments on this one
1660 *      @uc_promisc:            Counter that indicates promiscuous mode
1661 *                              has been enabled due to the need to listen to
1662 *                              additional unicast addresses in a device that
1663 *                              does not implement ndo_set_rx_mode()
1664 *      @uc:                    unicast mac addresses
1665 *      @mc:                    multicast mac addresses
1666 *      @dev_addrs:             list of device hw addresses
1667 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1668 *      @promiscuity:           Number of times the NIC is told to work in
1669 *                              promiscuous mode; if it becomes 0 the NIC will
1670 *                              exit promiscuous mode
1671 *      @allmulti:              Counter, enables or disables allmulticast mode
1672 *
1673 *      @vlan_info:     VLAN info
1674 *      @dsa_ptr:       dsa specific data
1675 *      @tipc_ptr:      TIPC specific data
1676 *      @atalk_ptr:     AppleTalk link
1677 *      @ip_ptr:        IPv4 specific data
1678 *      @dn_ptr:        DECnet specific data
1679 *      @ip6_ptr:       IPv6 specific data
1680 *      @ax25_ptr:      AX.25 specific data
1681 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1682 *
1683 *      @dev_addr:      Hw address (before bcast,
1684 *                      because most packets are unicast)
1685 *
1686 *      @_rx:                   Array of RX queues
1687 *      @num_rx_queues:         Number of RX queues
1688 *                              allocated at register_netdev() time
1689 *      @real_num_rx_queues:    Number of RX queues currently active in device
1690 *
1691 *      @rx_handler:            handler for received packets
1692 *      @rx_handler_data:       XXX: need comments on this one
1693 *      @miniq_ingress:         ingress/clsact qdisc specific data for
1694 *                              ingress processing
1695 *      @ingress_queue:         XXX: need comments on this one
1696 *      @broadcast:             hw bcast address
1697 *
1698 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1699 *                      indexed by RX queue number. Assigned by driver.
1700 *                      This must only be set if the ndo_rx_flow_steer
1701 *                      operation is defined
1702 *      @index_hlist:           Device index hash chain
1703 *
1704 *      @_tx:                   Array of TX queues
1705 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1706 *      @real_num_tx_queues:    Number of TX queues currently active in device
1707 *      @qdisc:                 Root qdisc from userspace point of view
1708 *      @tx_queue_len:          Max frames per queue allowed
1709 *      @tx_global_lock:        XXX: need comments on this one
1710 *
1711 *      @xps_maps:      XXX: need comments on this one
1712 *      @miniq_egress:          clsact qdisc specific data for
1713 *                              egress processing
1714 *      @watchdog_timeo:        Represents the timeout that is used by
1715 *                              the watchdog (see dev_watchdog())
1716 *      @watchdog_timer:        List of timers
1717 *
1718 *      @pcpu_refcnt:           Number of references to this device
1719 *      @todo_list:             Delayed register/unregister
1720 *      @link_watch_list:       XXX: need comments on this one
1721 *
1722 *      @reg_state:             Register/unregister state machine
1723 *      @dismantle:             Device is going to be freed
1724 *      @rtnl_link_state:       This enum represents the phases of creating
1725 *                              a new link
1726 *
1727 *      @needs_free_netdev:     Should unregister perform free_netdev?
1728 *      @priv_destructor:       Called from unregister
1729 *      @npinfo:                XXX: need comments on this one
1730 *      @nd_net:                Network namespace this network device is inside
1731 *
1732 *      @ml_priv:       Mid-layer private
1733 *      @lstats:        Loopback statistics
1734 *      @tstats:        Tunnel statistics
1735 *      @dstats:        Dummy statistics
1736 *      @vstats:        Virtual ethernet statistics
1737 *
1738 *      @garp_port:     GARP
1739 *      @mrp_port:      MRP
1740 *
1741 *      @dev:           Class/net/name entry
1742 *      @sysfs_groups:  Space for optional device, statistics and wireless
1743 *                      sysfs groups
1744 *
1745 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1746 *      @rtnl_link_ops: Rtnl_link_ops
1747 *
1748 *      @gso_max_size:  Maximum size of generic segmentation offload
1749 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1750 *                      NIC for GSO
1751 *
1752 *      @dcbnl_ops:     Data Center Bridging netlink ops
1753 *      @num_tc:        Number of traffic classes in the net device
1754 *      @tc_to_txq:     XXX: need comments on this one
1755 *      @prio_tc_map:   XXX: need comments on this one
1756 *
1757 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1758 *
1759 *      @priomap:       XXX: need comments on this one
1760 *      @phydev:        Physical device may attach itself
1761 *                      for hardware timestamping
1762 *      @sfp_bus:       attached &struct sfp_bus structure.
1763 *      @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1764                                spinlock
1765 *      @qdisc_running_key:     lockdep class annotating Qdisc->running seqcount
1766 *      @qdisc_xmit_lock_key:   lockdep class annotating
1767 *                              netdev_queue->_xmit_lock spinlock
1768 *      @addr_list_lock_key:    lockdep class annotating
1769 *                              net_device->addr_list_lock spinlock
1770 *
1771 *      @proto_down:    protocol port state information can be sent to the
1772 *                      switch driver and used to set the phys state of the
1773 *                      switch port.
1774 *
1775 *      @wol_enabled:   Wake-on-LAN is enabled
1776 *
1777 *      FIXME: cleanup struct net_device such that network protocol info
1778 *      moves out.
1779 */
1780
1781struct net_device {
1782        char                    name[IFNAMSIZ];
1783        struct hlist_node       name_hlist;
1784        struct dev_ifalias      __rcu *ifalias;
1785        /*
1786         *      I/O specific fields
1787         *      FIXME: Merge these and struct ifmap into one
1788         */
1789        unsigned long           mem_end;
1790        unsigned long           mem_start;
1791        unsigned long           base_addr;
1792        int                     irq;
1793
1794        /*
1795         *      Some hardware also needs these fields (state,dev_list,
1796         *      napi_list,unreg_list,close_list) but they are not
1797         *      part of the usual set specified in Space.c.
1798         */
1799
1800        unsigned long           state;
1801
1802        struct list_head        dev_list;
1803        struct list_head        napi_list;
1804        struct list_head        unreg_list;
1805        struct list_head        close_list;
1806        struct list_head        ptype_all;
1807        struct list_head        ptype_specific;
1808
1809        struct {
1810                struct list_head upper;
1811                struct list_head lower;
1812        } adj_list;
1813
1814        netdev_features_t       features;
1815        netdev_features_t       hw_features;
1816        netdev_features_t       wanted_features;
1817        netdev_features_t       vlan_features;
1818        netdev_features_t       hw_enc_features;
1819        netdev_features_t       mpls_features;
1820        netdev_features_t       gso_partial_features;
1821
1822        int                     ifindex;
1823        int                     group;
1824
1825        struct net_device_stats stats;
1826
1827        atomic_long_t           rx_dropped;
1828        atomic_long_t           tx_dropped;
1829        atomic_long_t           rx_nohandler;
1830
1831        /* Stats to monitor link on/off, flapping */
1832        atomic_t                carrier_up_count;
1833        atomic_t                carrier_down_count;
1834
1835#ifdef CONFIG_WIRELESS_EXT
1836        const struct iw_handler_def *wireless_handlers;
1837        struct iw_public_data   *wireless_data;
1838#endif
1839        const struct net_device_ops *netdev_ops;
1840        const struct ethtool_ops *ethtool_ops;
1841#ifdef CONFIG_NET_L3_MASTER_DEV
1842        const struct l3mdev_ops *l3mdev_ops;
1843#endif
1844#if IS_ENABLED(CONFIG_IPV6)
1845        const struct ndisc_ops *ndisc_ops;
1846#endif
1847
1848#ifdef CONFIG_XFRM_OFFLOAD
1849        const struct xfrmdev_ops *xfrmdev_ops;
1850#endif
1851
1852#if IS_ENABLED(CONFIG_TLS_DEVICE)
1853        const struct tlsdev_ops *tlsdev_ops;
1854#endif
1855
1856        const struct header_ops *header_ops;
1857
1858        unsigned int            flags;
1859        unsigned int            priv_flags;
1860
1861        unsigned short          gflags;
1862        unsigned short          padded;
1863
1864        unsigned char           operstate;
1865        unsigned char           link_mode;
1866
1867        unsigned char           if_port;
1868        unsigned char           dma;
1869
1870        unsigned int            mtu;
1871        unsigned int            min_mtu;
1872        unsigned int            max_mtu;
1873        unsigned short          type;
1874        unsigned short          hard_header_len;
1875        unsigned char           min_header_len;
1876
1877        unsigned short          needed_headroom;
1878        unsigned short          needed_tailroom;
1879
1880        /* Interface address info. */
1881        unsigned char           perm_addr[MAX_ADDR_LEN];
1882        unsigned char           addr_assign_type;
1883        unsigned char           addr_len;
1884        unsigned char           upper_level;
1885        unsigned char           lower_level;
1886        unsigned short          neigh_priv_len;
1887        unsigned short          dev_id;
1888        unsigned short          dev_port;
1889        spinlock_t              addr_list_lock;
1890        unsigned char           name_assign_type;
1891        bool                    uc_promisc;
1892        struct netdev_hw_addr_list      uc;
1893        struct netdev_hw_addr_list      mc;
1894        struct netdev_hw_addr_list      dev_addrs;
1895
1896#ifdef CONFIG_SYSFS
1897        struct kset             *queues_kset;
1898#endif
1899        unsigned int            promiscuity;
1900        unsigned int            allmulti;
1901
1902
1903        /* Protocol-specific pointers */
1904
1905#if IS_ENABLED(CONFIG_VLAN_8021Q)
1906        struct vlan_info __rcu  *vlan_info;
1907#endif
1908#if IS_ENABLED(CONFIG_NET_DSA)
1909        struct dsa_port         *dsa_ptr;
1910#endif
1911#if IS_ENABLED(CONFIG_TIPC)
1912        struct tipc_bearer __rcu *tipc_ptr;
1913#endif
1914#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1915        void                    *atalk_ptr;
1916#endif
1917        struct in_device __rcu  *ip_ptr;
1918#if IS_ENABLED(CONFIG_DECNET)
1919        struct dn_dev __rcu     *dn_ptr;
1920#endif
1921        struct inet6_dev __rcu  *ip6_ptr;
1922#if IS_ENABLED(CONFIG_AX25)
1923        void                    *ax25_ptr;
1924#endif
1925        struct wireless_dev     *ieee80211_ptr;
1926        struct wpan_dev         *ieee802154_ptr;
1927#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1928        struct mpls_dev __rcu   *mpls_ptr;
1929#endif
1930
1931/*
1932 * Cache lines mostly used on receive path (including eth_type_trans())
1933 */
1934        /* Interface address info used in eth_type_trans() */
1935        unsigned char           *dev_addr;
1936
1937        struct netdev_rx_queue  *_rx;
1938        unsigned int            num_rx_queues;
1939        unsigned int            real_num_rx_queues;
1940
1941        struct bpf_prog __rcu   *xdp_prog;
1942        unsigned long           gro_flush_timeout;
1943        rx_handler_func_t __rcu *rx_handler;
1944        void __rcu              *rx_handler_data;
1945
1946#ifdef CONFIG_NET_CLS_ACT
1947        struct mini_Qdisc __rcu *miniq_ingress;
1948#endif
1949        struct netdev_queue __rcu *ingress_queue;
1950#ifdef CONFIG_NETFILTER_INGRESS
1951        struct nf_hook_entries __rcu *nf_hooks_ingress;
1952#endif
1953
1954        unsigned char           broadcast[MAX_ADDR_LEN];
1955#ifdef CONFIG_RFS_ACCEL
1956        struct cpu_rmap         *rx_cpu_rmap;
1957#endif
1958        struct hlist_node       index_hlist;
1959
1960/*
1961 * Cache lines mostly used on transmit path
1962 */
1963        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1964        unsigned int            num_tx_queues;
1965        unsigned int            real_num_tx_queues;
1966        struct Qdisc            *qdisc;
1967#ifdef CONFIG_NET_SCHED
1968        DECLARE_HASHTABLE       (qdisc_hash, 4);
1969#endif
1970        unsigned int            tx_queue_len;
1971        spinlock_t              tx_global_lock;
1972        int                     watchdog_timeo;
1973
1974#ifdef CONFIG_XPS
1975        struct xps_dev_maps __rcu *xps_cpus_map;
1976        struct xps_dev_maps __rcu *xps_rxqs_map;
1977#endif
1978#ifdef CONFIG_NET_CLS_ACT
1979        struct mini_Qdisc __rcu *miniq_egress;
1980#endif
1981
1982        /* These may be needed for future network-power-down code. */
1983        struct timer_list       watchdog_timer;
1984
1985        int __percpu            *pcpu_refcnt;
1986        struct list_head        todo_list;
1987
1988        struct list_head        link_watch_list;
1989
1990        enum { NETREG_UNINITIALIZED=0,
1991               NETREG_REGISTERED,       /* completed register_netdevice */
1992               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1993               NETREG_UNREGISTERED,     /* completed unregister todo */
1994               NETREG_RELEASED,         /* called free_netdev */
1995               NETREG_DUMMY,            /* dummy device for NAPI poll */
1996        } reg_state:8;
1997
1998        bool dismantle;
1999
2000        enum {
2001                RTNL_LINK_INITIALIZED,
2002                RTNL_LINK_INITIALIZING,
2003        } rtnl_link_state:16;
2004
2005        bool needs_free_netdev;
2006        void (*priv_destructor)(struct net_device *dev);
2007
2008#ifdef CONFIG_NETPOLL
2009        struct netpoll_info __rcu       *npinfo;
2010#endif
2011
2012        possible_net_t                  nd_net;
2013
2014        /* mid-layer private */
2015        union {
2016                void                                    *ml_priv;
2017                struct pcpu_lstats __percpu             *lstats;
2018                struct pcpu_sw_netstats __percpu        *tstats;
2019                struct pcpu_dstats __percpu             *dstats;
2020        };
2021
2022#if IS_ENABLED(CONFIG_GARP)
2023        struct garp_port __rcu  *garp_port;
2024#endif
2025#if IS_ENABLED(CONFIG_MRP)
2026        struct mrp_port __rcu   *mrp_port;
2027#endif
2028
2029        struct device           dev;
2030        const struct attribute_group *sysfs_groups[4];
2031        const struct attribute_group *sysfs_rx_queue_group;
2032
2033        const struct rtnl_link_ops *rtnl_link_ops;
2034
2035        /* for setting kernel sock attribute on TCP connection setup */
2036#define GSO_MAX_SIZE            65536
2037        unsigned int            gso_max_size;
2038#define GSO_MAX_SEGS            65535
2039        u16                     gso_max_segs;
2040
2041#ifdef CONFIG_DCB
2042        const struct dcbnl_rtnl_ops *dcbnl_ops;
2043#endif
2044        s16                     num_tc;
2045        struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
2046        u8                      prio_tc_map[TC_BITMASK + 1];
2047
2048#if IS_ENABLED(CONFIG_FCOE)
2049        unsigned int            fcoe_ddp_xid;
2050#endif
2051#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2052        struct netprio_map __rcu *priomap;
2053#endif
2054        struct phy_device       *phydev;
2055        struct sfp_bus          *sfp_bus;
2056        struct lock_class_key   qdisc_tx_busylock_key;
2057        struct lock_class_key   qdisc_running_key;
2058        struct lock_class_key   qdisc_xmit_lock_key;
2059        struct lock_class_key   addr_list_lock_key;
2060        bool                    proto_down;
2061        unsigned                wol_enabled:1;
2062};
2063#define to_net_dev(d) container_of(d, struct net_device, dev)
2064
2065static inline bool netif_elide_gro(const struct net_device *dev)
2066{
2067        if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2068                return true;
2069        return false;
2070}
2071
2072#define NETDEV_ALIGN            32
2073
2074static inline
2075int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2076{
2077        return dev->prio_tc_map[prio & TC_BITMASK];
2078}
2079
2080static inline
2081int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2082{
2083        if (tc >= dev->num_tc)
2084                return -EINVAL;
2085
2086        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2087        return 0;
2088}
2089
2090int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2091void netdev_reset_tc(struct net_device *dev);
2092int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2093int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2094
2095static inline
2096int netdev_get_num_tc(struct net_device *dev)
2097{
2098        return dev->num_tc;
2099}
2100
2101void netdev_unbind_sb_channel(struct net_device *dev,
2102                              struct net_device *sb_dev);
2103int netdev_bind_sb_channel_queue(struct net_device *dev,
2104                                 struct net_device *sb_dev,
2105                                 u8 tc, u16 count, u16 offset);
2106int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2107static inline int netdev_get_sb_channel(struct net_device *dev)
2108{
2109        return max_t(int, -dev->num_tc, 0);
2110}
2111
2112static inline
2113struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2114                                         unsigned int index)
2115{
2116        return &dev->_tx[index];
2117}
2118
2119static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2120                                                    const struct sk_buff *skb)
2121{
2122        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2123}
2124
2125static inline void netdev_for_each_tx_queue(struct net_device *dev,
2126                                            void (*f)(struct net_device *,
2127                                                      struct netdev_queue *,
2128                                                      void *),
2129                                            void *arg)
2130{
2131        unsigned int i;
2132
2133        for (i = 0; i < dev->num_tx_queues; i++)
2134                f(dev, &dev->_tx[i], arg);
2135}
2136
2137u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2138                     struct net_device *sb_dev);
2139struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2140                                         struct sk_buff *skb,
2141                                         struct net_device *sb_dev);
2142
2143/* returns the headroom that the master device needs to take in account
2144 * when forwarding to this dev
2145 */
2146static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2147{
2148        return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2149}
2150
2151static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2152{
2153        if (dev->netdev_ops->ndo_set_rx_headroom)
2154                dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2155}
2156
2157/* set the device rx headroom to the dev's default */
2158static inline void netdev_reset_rx_headroom(struct net_device *dev)
2159{
2160        netdev_set_rx_headroom(dev, -1);
2161}
2162
2163/*
2164 * Net namespace inlines
2165 */
2166static inline
2167struct net *dev_net(const struct net_device *dev)
2168{
2169        return read_pnet(&dev->nd_net);
2170}
2171
2172static inline
2173void dev_net_set(struct net_device *dev, struct net *net)
2174{
2175        write_pnet(&dev->nd_net, net);
2176}
2177
2178/**
2179 *      netdev_priv - access network device private data
2180 *      @dev: network device
2181 *
2182 * Get network device private data
2183 */
2184static inline void *netdev_priv(const struct net_device *dev)
2185{
2186        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2187}
2188
2189/* Set the sysfs physical device reference for the network logical device
2190 * if set prior to registration will cause a symlink during initialization.
2191 */
2192#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2193
2194/* Set the sysfs device type for the network logical device to allow
2195 * fine-grained identification of different network device types. For
2196 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2197 */
2198#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2199
2200/* Default NAPI poll() weight
2201 * Device drivers are strongly advised to not use bigger value
2202 */
2203#define NAPI_POLL_WEIGHT 64
2204
2205/**
2206 *      netif_napi_add - initialize a NAPI context
2207 *      @dev:  network device
2208 *      @napi: NAPI context
2209 *      @poll: polling function
2210 *      @weight: default weight
2211 *
2212 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2213 * *any* of the other NAPI-related functions.
2214 */
2215void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2216                    int (*poll)(struct napi_struct *, int), int weight);
2217
2218/**
2219 *      netif_tx_napi_add - initialize a NAPI context
2220 *      @dev:  network device
2221 *      @napi: NAPI context
2222 *      @poll: polling function
2223 *      @weight: default weight
2224 *
2225 * This variant of netif_napi_add() should be used from drivers using NAPI
2226 * to exclusively poll a TX queue.
2227 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2228 */
2229static inline void netif_tx_napi_add(struct net_device *dev,
2230                                     struct napi_struct *napi,
2231                                     int (*poll)(struct napi_struct *, int),
2232                                     int weight)
2233{
2234        set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2235        netif_napi_add(dev, napi, poll, weight);
2236}
2237
2238/**
2239 *  netif_napi_del - remove a NAPI context
2240 *  @napi: NAPI context
2241 *
2242 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2243 */
2244void netif_napi_del(struct napi_struct *napi);
2245
2246struct napi_gro_cb {
2247        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2248        void    *frag0;
2249
2250        /* Length of frag0. */
2251        unsigned int frag0_len;
2252
2253        /* This indicates where we are processing relative to skb->data. */
2254        int     data_offset;
2255
2256        /* This is non-zero if the packet cannot be merged with the new skb. */
2257        u16     flush;
2258
2259        /* Save the IP ID here and check when we get to the transport layer */
2260        u16     flush_id;
2261
2262        /* Number of segments aggregated. */
2263        u16     count;
2264
2265        /* Start offset for remote checksum offload */
2266        u16     gro_remcsum_start;
2267
2268        /* jiffies when first packet was created/queued */
2269        unsigned long age;
2270
2271        /* Used in ipv6_gro_receive() and foo-over-udp */
2272        u16     proto;
2273
2274        /* This is non-zero if the packet may be of the same flow. */
2275        u8      same_flow:1;
2276
2277        /* Used in tunnel GRO receive */
2278        u8      encap_mark:1;
2279
2280        /* GRO checksum is valid */
2281        u8      csum_valid:1;
2282
2283        /* Number of checksums via CHECKSUM_UNNECESSARY */
2284        u8      csum_cnt:3;
2285
2286        /* Free the skb? */
2287        u8      free:2;
2288#define NAPI_GRO_FREE             1
2289#define NAPI_GRO_FREE_STOLEN_HEAD 2
2290
2291        /* Used in foo-over-udp, set in udp[46]_gro_receive */
2292        u8      is_ipv6:1;
2293
2294        /* Used in GRE, set in fou/gue_gro_receive */
2295        u8      is_fou:1;
2296
2297        /* Used to determine if flush_id can be ignored */
2298        u8      is_atomic:1;
2299
2300        /* Number of gro_receive callbacks this packet already went through */
2301        u8 recursion_counter:4;
2302
2303        /* 1 bit hole */
2304
2305        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2306        __wsum  csum;
2307
2308        /* used in skb_gro_receive() slow path */
2309        struct sk_buff *last;
2310};
2311
2312#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2313
2314#define GRO_RECURSION_LIMIT 15
2315static inline int gro_recursion_inc_test(struct sk_buff *skb)
2316{
2317        return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2318}
2319
2320typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2321static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2322                                               struct list_head *head,
2323                                               struct sk_buff *skb)
2324{
2325        if (unlikely(gro_recursion_inc_test(skb))) {
2326                NAPI_GRO_CB(skb)->flush |= 1;
2327                return NULL;
2328        }
2329
2330        return cb(head, skb);
2331}
2332
2333typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2334                                            struct sk_buff *);
2335static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2336                                                  struct sock *sk,
2337                                                  struct list_head *head,
2338                                                  struct sk_buff *skb)
2339{
2340        if (unlikely(gro_recursion_inc_test(skb))) {
2341                NAPI_GRO_CB(skb)->flush |= 1;
2342                return NULL;
2343        }
2344
2345        return cb(sk, head, skb);
2346}
2347
2348struct packet_type {
2349        __be16                  type;   /* This is really htons(ether_type). */
2350        bool                    ignore_outgoing;
2351        struct net_device       *dev;   /* NULL is wildcarded here           */
2352        int                     (*func) (struct sk_buff *,
2353                                         struct net_device *,
2354                                         struct packet_type *,
2355                                         struct net_device *);
2356        void                    (*list_func) (struct list_head *,
2357                                              struct packet_type *,
2358                                              struct net_device *);
2359        bool                    (*id_match)(struct packet_type *ptype,
2360                                            struct sock *sk);
2361        void                    *af_packet_priv;
2362        struct list_head        list;
2363};
2364
2365struct offload_callbacks {
2366        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2367                                                netdev_features_t features);
2368        struct sk_buff          *(*gro_receive)(struct list_head *head,
2369                                                struct sk_buff *skb);
2370        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2371};
2372
2373struct packet_offload {
2374        __be16                   type;  /* This is really htons(ether_type). */
2375        u16                      priority;
2376        struct offload_callbacks callbacks;
2377        struct list_head         list;
2378};
2379
2380/* often modified stats are per-CPU, other are shared (netdev->stats) */
2381struct pcpu_sw_netstats {
2382        u64     rx_packets;
2383        u64     rx_bytes;
2384        u64     tx_packets;
2385        u64     tx_bytes;
2386        struct u64_stats_sync   syncp;
2387} __aligned(4 * sizeof(u64));
2388
2389struct pcpu_lstats {
2390        u64 packets;
2391        u64 bytes;
2392        struct u64_stats_sync syncp;
2393} __aligned(2 * sizeof(u64));
2394
2395#define __netdev_alloc_pcpu_stats(type, gfp)                            \
2396({                                                                      \
2397        typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2398        if (pcpu_stats) {                                               \
2399                int __cpu;                                              \
2400                for_each_possible_cpu(__cpu) {                          \
2401                        typeof(type) *stat;                             \
2402                        stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2403                        u64_stats_init(&stat->syncp);                   \
2404                }                                                       \
2405        }                                                               \
2406        pcpu_stats;                                                     \
2407})
2408
2409#define netdev_alloc_pcpu_stats(type)                                   \
2410        __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2411
2412enum netdev_lag_tx_type {
2413        NETDEV_LAG_TX_TYPE_UNKNOWN,
2414        NETDEV_LAG_TX_TYPE_RANDOM,
2415        NETDEV_LAG_TX_TYPE_BROADCAST,
2416        NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2417        NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2418        NETDEV_LAG_TX_TYPE_HASH,
2419};
2420
2421enum netdev_lag_hash {
2422        NETDEV_LAG_HASH_NONE,
2423        NETDEV_LAG_HASH_L2,
2424        NETDEV_LAG_HASH_L34,
2425        NETDEV_LAG_HASH_L23,
2426        NETDEV_LAG_HASH_E23,
2427        NETDEV_LAG_HASH_E34,
2428        NETDEV_LAG_HASH_UNKNOWN,
2429};
2430
2431struct netdev_lag_upper_info {
2432        enum netdev_lag_tx_type tx_type;
2433        enum netdev_lag_hash hash_type;
2434};
2435
2436struct netdev_lag_lower_state_info {
2437        u8 link_up : 1,
2438           tx_enabled : 1;
2439};
2440
2441#include <linux/notifier.h>
2442
2443/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2444 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2445 * adding new types.
2446 */
2447enum netdev_cmd {
2448        NETDEV_UP       = 1,    /* For now you can't veto a device up/down */
2449        NETDEV_DOWN,
2450        NETDEV_REBOOT,          /* Tell a protocol stack a network interface
2451                                   detected a hardware crash and restarted
2452                                   - we can use this eg to kick tcp sessions
2453                                   once done */
2454        NETDEV_CHANGE,          /* Notify device state change */
2455        NETDEV_REGISTER,
2456        NETDEV_UNREGISTER,
2457        NETDEV_CHANGEMTU,       /* notify after mtu change happened */
2458        NETDEV_CHANGEADDR,      /* notify after the address change */
2459        NETDEV_PRE_CHANGEADDR,  /* notify before the address change */
2460        NETDEV_GOING_DOWN,
2461        NETDEV_CHANGENAME,
2462        NETDEV_FEAT_CHANGE,
2463        NETDEV_BONDING_FAILOVER,
2464        NETDEV_PRE_UP,
2465        NETDEV_PRE_TYPE_CHANGE,
2466        NETDEV_POST_TYPE_CHANGE,
2467        NETDEV_POST_INIT,
2468        NETDEV_RELEASE,
2469        NETDEV_NOTIFY_PEERS,
2470        NETDEV_JOIN,
2471        NETDEV_CHANGEUPPER,
2472        NETDEV_RESEND_IGMP,
2473        NETDEV_PRECHANGEMTU,    /* notify before mtu change happened */
2474        NETDEV_CHANGEINFODATA,
2475        NETDEV_BONDING_INFO,
2476        NETDEV_PRECHANGEUPPER,
2477        NETDEV_CHANGELOWERSTATE,
2478        NETDEV_UDP_TUNNEL_PUSH_INFO,
2479        NETDEV_UDP_TUNNEL_DROP_INFO,
2480        NETDEV_CHANGE_TX_QUEUE_LEN,
2481        NETDEV_CVLAN_FILTER_PUSH_INFO,
2482        NETDEV_CVLAN_FILTER_DROP_INFO,
2483        NETDEV_SVLAN_FILTER_PUSH_INFO,
2484        NETDEV_SVLAN_FILTER_DROP_INFO,
2485};
2486const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2487
2488int register_netdevice_notifier(struct notifier_block *nb);
2489int unregister_netdevice_notifier(struct notifier_block *nb);
2490
2491struct netdev_notifier_info {
2492        struct net_device       *dev;
2493        struct netlink_ext_ack  *extack;
2494};
2495
2496struct netdev_notifier_info_ext {
2497        struct netdev_notifier_info info; /* must be first */
2498        union {
2499                u32 mtu;
2500        } ext;
2501};
2502
2503struct netdev_notifier_change_info {
2504        struct netdev_notifier_info info; /* must be first */
2505        unsigned int flags_changed;
2506};
2507
2508struct netdev_notifier_changeupper_info {
2509        struct netdev_notifier_info info; /* must be first */
2510        struct net_device *upper_dev; /* new upper dev */
2511        bool master; /* is upper dev master */
2512        bool linking; /* is the notification for link or unlink */
2513        void *upper_info; /* upper dev info */
2514};
2515
2516struct netdev_notifier_changelowerstate_info {
2517        struct netdev_notifier_info info; /* must be first */
2518        void *lower_state_info; /* is lower dev state */
2519};
2520
2521struct netdev_notifier_pre_changeaddr_info {
2522        struct netdev_notifier_info info; /* must be first */
2523        const unsigned char *dev_addr;
2524};
2525
2526static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2527                                             struct net_device *dev)
2528{
2529        info->dev = dev;
2530        info->extack = NULL;
2531}
2532
2533static inline struct net_device *
2534netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2535{
2536        return info->dev;
2537}
2538
2539static inline struct netlink_ext_ack *
2540netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2541{
2542        return info->extack;
2543}
2544
2545int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2546
2547
2548extern rwlock_t                         dev_base_lock;          /* Device list lock */
2549
2550#define for_each_netdev(net, d)         \
2551                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2552#define for_each_netdev_reverse(net, d) \
2553                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2554#define for_each_netdev_rcu(net, d)             \
2555                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2556#define for_each_netdev_safe(net, d, n) \
2557                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2558#define for_each_netdev_continue(net, d)                \
2559                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2560#define for_each_netdev_continue_rcu(net, d)            \
2561        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2562#define for_each_netdev_in_bond_rcu(bond, slave)        \
2563                for_each_netdev_rcu(&init_net, slave)   \
2564                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2565#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2566
2567static inline struct net_device *next_net_device(struct net_device *dev)
2568{
2569        struct list_head *lh;
2570        struct net *net;
2571
2572        net = dev_net(dev);
2573        lh = dev->dev_list.next;
2574        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2575}
2576
2577static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2578{
2579        struct list_head *lh;
2580        struct net *net;
2581
2582        net = dev_net(dev);
2583        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2584        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2585}
2586
2587static inline struct net_device *first_net_device(struct net *net)
2588{
2589        return list_empty(&net->dev_base_head) ? NULL :
2590                net_device_entry(net->dev_base_head.next);
2591}
2592
2593static inline struct net_device *first_net_device_rcu(struct net *net)
2594{
2595        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2596
2597        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2598}
2599
2600int netdev_boot_setup_check(struct net_device *dev);
2601unsigned long netdev_boot_base(const char *prefix, int unit);
2602struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2603                                       const char *hwaddr);
2604struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2605struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2606void dev_add_pack(struct packet_type *pt);
2607void dev_remove_pack(struct packet_type *pt);
2608void __dev_remove_pack(struct packet_type *pt);
2609void dev_add_offload(struct packet_offload *po);
2610void dev_remove_offload(struct packet_offload *po);
2611
2612int dev_get_iflink(const struct net_device *dev);
2613int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2614struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2615                                      unsigned short mask);
2616struct net_device *dev_get_by_name(struct net *net, const char *name);
2617struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2618struct net_device *__dev_get_by_name(struct net *net, const char *name);
2619int dev_alloc_name(struct net_device *dev, const char *name);
2620int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2621void dev_close(struct net_device *dev);
2622void dev_close_many(struct list_head *head, bool unlink);
2623void dev_disable_lro(struct net_device *dev);
2624int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2625u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2626                     struct net_device *sb_dev);
2627u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2628                       struct net_device *sb_dev);
2629int dev_queue_xmit(struct sk_buff *skb);
2630int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2631int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2632int register_netdevice(struct net_device *dev);
2633void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2634void unregister_netdevice_many(struct list_head *head);
2635static inline void unregister_netdevice(struct net_device *dev)
2636{
2637        unregister_netdevice_queue(dev, NULL);
2638}
2639
2640int netdev_refcnt_read(const struct net_device *dev);
2641void free_netdev(struct net_device *dev);
2642void netdev_freemem(struct net_device *dev);
2643void synchronize_net(void);
2644int init_dummy_netdev(struct net_device *dev);
2645
2646struct net_device *dev_get_by_index(struct net *net, int ifindex);
2647struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2648struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2649struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2650int netdev_get_name(struct net *net, char *name, int ifindex);
2651int dev_restart(struct net_device *dev);
2652int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2653
2654static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2655{
2656        return NAPI_GRO_CB(skb)->data_offset;
2657}
2658
2659static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2660{
2661        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2662}
2663
2664static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2665{
2666        NAPI_GRO_CB(skb)->data_offset += len;
2667}
2668
2669static inline void *skb_gro_header_fast(struct sk_buff *skb,
2670                                        unsigned int offset)
2671{
2672        return NAPI_GRO_CB(skb)->frag0 + offset;
2673}
2674
2675static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2676{
2677        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2678}
2679
2680static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2681{
2682        NAPI_GRO_CB(skb)->frag0 = NULL;
2683        NAPI_GRO_CB(skb)->frag0_len = 0;
2684}
2685
2686static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2687                                        unsigned int offset)
2688{
2689        if (!pskb_may_pull(skb, hlen))
2690                return NULL;
2691
2692        skb_gro_frag0_invalidate(skb);
2693        return skb->data + offset;
2694}
2695
2696static inline void *skb_gro_network_header(struct sk_buff *skb)
2697{
2698        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2699               skb_network_offset(skb);
2700}
2701
2702static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2703                                        const void *start, unsigned int len)
2704{
2705        if (NAPI_GRO_CB(skb)->csum_valid)
2706                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2707                                                  csum_partial(start, len, 0));
2708}
2709
2710/* GRO checksum functions. These are logical equivalents of the normal
2711 * checksum functions (in skbuff.h) except that they operate on the GRO
2712 * offsets and fields in sk_buff.
2713 */
2714
2715__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2716
2717static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2718{
2719        return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2720}
2721
2722static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2723                                                      bool zero_okay,
2724                                                      __sum16 check)
2725{
2726        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2727                skb_checksum_start_offset(skb) <
2728                 skb_gro_offset(skb)) &&
2729                !skb_at_gro_remcsum_start(skb) &&
2730                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2731                (!zero_okay || check));
2732}
2733
2734static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2735                                                           __wsum psum)
2736{
2737        if (NAPI_GRO_CB(skb)->csum_valid &&
2738            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2739                return 0;
2740
2741        NAPI_GRO_CB(skb)->csum = psum;
2742
2743        return __skb_gro_checksum_complete(skb);
2744}
2745
2746static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2747{
2748        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2749                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2750                NAPI_GRO_CB(skb)->csum_cnt--;
2751        } else {
2752                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2753                 * verified a new top level checksum or an encapsulated one
2754                 * during GRO. This saves work if we fallback to normal path.
2755                 */
2756                __skb_incr_checksum_unnecessary(skb);
2757        }
2758}
2759
2760#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2761                                    compute_pseudo)                     \
2762({                                                                      \
2763        __sum16 __ret = 0;                                              \
2764        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2765                __ret = __skb_gro_checksum_validate_complete(skb,       \
2766                                compute_pseudo(skb, proto));            \
2767        if (!__ret)                                                     \
2768                skb_gro_incr_csum_unnecessary(skb);                     \
2769        __ret;                                                          \
2770})
2771
2772#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2773        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2774
2775#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2776                                             compute_pseudo)            \
2777        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2778
2779#define skb_gro_checksum_simple_validate(skb)                           \
2780        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2781
2782static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2783{
2784        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2785                !NAPI_GRO_CB(skb)->csum_valid);
2786}
2787
2788static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2789                                              __sum16 check, __wsum pseudo)
2790{
2791        NAPI_GRO_CB(skb)->csum = ~pseudo;
2792        NAPI_GRO_CB(skb)->csum_valid = 1;
2793}
2794
2795#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2796do {                                                                    \
2797        if (__skb_gro_checksum_convert_check(skb))                      \
2798                __skb_gro_checksum_convert(skb, check,                  \
2799                                           compute_pseudo(skb, proto)); \
2800} while (0)
2801
2802struct gro_remcsum {
2803        int offset;
2804        __wsum delta;
2805};
2806
2807static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2808{
2809        grc->offset = 0;
2810        grc->delta = 0;
2811}
2812
2813static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2814                                            unsigned int off, size_t hdrlen,
2815                                            int start, int offset,
2816                                            struct gro_remcsum *grc,
2817                                            bool nopartial)
2818{
2819        __wsum delta;
2820        size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2821
2822        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2823
2824        if (!nopartial) {
2825                NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2826                return ptr;
2827        }
2828
2829        ptr = skb_gro_header_fast(skb, off);
2830        if (skb_gro_header_hard(skb, off + plen)) {
2831                ptr = skb_gro_header_slow(skb, off + plen, off);
2832                if (!ptr)
2833                        return NULL;
2834        }
2835
2836        delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2837                               start, offset);
2838
2839        /* Adjust skb->csum since we changed the packet */
2840        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2841
2842        grc->offset = off + hdrlen + offset;
2843        grc->delta = delta;
2844
2845        return ptr;
2846}
2847
2848static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2849                                           struct gro_remcsum *grc)
2850{
2851        void *ptr;
2852        size_t plen = grc->offset + sizeof(u16);
2853
2854        if (!grc->delta)
2855                return;
2856
2857        ptr = skb_gro_header_fast(skb, grc->offset);
2858        if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2859                ptr = skb_gro_header_slow(skb, plen, grc->offset);
2860                if (!ptr)
2861                        return;
2862        }
2863
2864        remcsum_unadjust((__sum16 *)ptr, grc->delta);
2865}
2866
2867#ifdef CONFIG_XFRM_OFFLOAD
2868static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2869{
2870        if (PTR_ERR(pp) != -EINPROGRESS)
2871                NAPI_GRO_CB(skb)->flush |= flush;
2872}
2873static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2874                                               struct sk_buff *pp,
2875                                               int flush,
2876                                               struct gro_remcsum *grc)
2877{
2878        if (PTR_ERR(pp) != -EINPROGRESS) {
2879                NAPI_GRO_CB(skb)->flush |= flush;
2880                skb_gro_remcsum_cleanup(skb, grc);
2881                skb->remcsum_offload = 0;
2882        }
2883}
2884#else
2885static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2886{
2887        NAPI_GRO_CB(skb)->flush |= flush;
2888}
2889static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2890                                               struct sk_buff *pp,
2891                                               int flush,
2892                                               struct gro_remcsum *grc)
2893{
2894        NAPI_GRO_CB(skb)->flush |= flush;
2895        skb_gro_remcsum_cleanup(skb, grc);
2896        skb->remcsum_offload = 0;
2897}
2898#endif
2899
2900static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2901                                  unsigned short type,
2902                                  const void *daddr, const void *saddr,
2903                                  unsigned int len)
2904{
2905        if (!dev->header_ops || !dev->header_ops->create)
2906                return 0;
2907
2908        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2909}
2910
2911static inline int dev_parse_header(const struct sk_buff *skb,
2912                                   unsigned char *haddr)
2913{
2914        const struct net_device *dev = skb->dev;
2915
2916        if (!dev->header_ops || !dev->header_ops->parse)
2917                return 0;
2918        return dev->header_ops->parse(skb, haddr);
2919}
2920
2921static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2922{
2923        const struct net_device *dev = skb->dev;
2924
2925        if (!dev->header_ops || !dev->header_ops->parse_protocol)
2926                return 0;
2927        return dev->header_ops->parse_protocol(skb);
2928}
2929
2930/* ll_header must have at least hard_header_len allocated */
2931static inline bool dev_validate_header(const struct net_device *dev,
2932                                       char *ll_header, int len)
2933{
2934        if (likely(len >= dev->hard_header_len))
2935                return true;
2936        if (len < dev->min_header_len)
2937                return false;
2938
2939        if (capable(CAP_SYS_RAWIO)) {
2940                memset(ll_header + len, 0, dev->hard_header_len - len);
2941                return true;
2942        }
2943
2944        if (dev->header_ops && dev->header_ops->validate)
2945                return dev->header_ops->validate(ll_header, len);
2946
2947        return false;
2948}
2949
2950typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2951                           int len, int size);
2952int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2953static inline int unregister_gifconf(unsigned int family)
2954{
2955        return register_gifconf(family, NULL);
2956}
2957
2958#ifdef CONFIG_NET_FLOW_LIMIT
2959#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2960struct sd_flow_limit {
2961        u64                     count;
2962        unsigned int            num_buckets;
2963        unsigned int            history_head;
2964        u16                     history[FLOW_LIMIT_HISTORY];
2965        u8                      buckets[];
2966};
2967
2968extern int netdev_flow_limit_table_len;
2969#endif /* CONFIG_NET_FLOW_LIMIT */
2970
2971/*
2972 * Incoming packets are placed on per-CPU queues
2973 */
2974struct softnet_data {
2975        struct list_head        poll_list;
2976        struct sk_buff_head     process_queue;
2977
2978        /* stats */
2979        unsigned int            processed;
2980        unsigned int            time_squeeze;
2981        unsigned int            received_rps;
2982#ifdef CONFIG_RPS
2983        struct softnet_data     *rps_ipi_list;
2984#endif
2985#ifdef CONFIG_NET_FLOW_LIMIT
2986        struct sd_flow_limit __rcu *flow_limit;
2987#endif
2988        struct Qdisc            *output_queue;
2989        struct Qdisc            **output_queue_tailp;
2990        struct sk_buff          *completion_queue;
2991#ifdef CONFIG_XFRM_OFFLOAD
2992        struct sk_buff_head     xfrm_backlog;
2993#endif
2994        /* written and read only by owning cpu: */
2995        struct {
2996                u16 recursion;
2997                u8  more;
2998        } xmit;
2999#ifdef CONFIG_RPS
3000        /* input_queue_head should be written by cpu owning this struct,
3001         * and only read by other cpus. Worth using a cache line.
3002         */
3003        unsigned int            input_queue_head ____cacheline_aligned_in_smp;
3004
3005        /* Elements below can be accessed between CPUs for RPS/RFS */
3006        call_single_data_t      csd ____cacheline_aligned_in_smp;
3007        struct softnet_data     *rps_ipi_next;
3008        unsigned int            cpu;
3009        unsigned int            input_queue_tail;
3010#endif
3011        unsigned int            dropped;
3012        struct sk_buff_head     input_pkt_queue;
3013        struct napi_struct      backlog;
3014
3015};
3016
3017static inline void input_queue_head_incr(struct softnet_data *sd)
3018{
3019#ifdef CONFIG_RPS
3020        sd->input_queue_head++;
3021#endif
3022}
3023
3024static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3025                                              unsigned int *qtail)
3026{
3027#ifdef CONFIG_RPS
3028        *qtail = ++sd->input_queue_tail;
3029#endif
3030}
3031
3032DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3033
3034static inline int dev_recursion_level(void)
3035{
3036        return this_cpu_read(softnet_data.xmit.recursion);
3037}
3038
3039#define XMIT_RECURSION_LIMIT    10
3040static inline bool dev_xmit_recursion(void)
3041{
3042        return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3043                        XMIT_RECURSION_LIMIT);
3044}
3045
3046static inline void dev_xmit_recursion_inc(void)
3047{
3048        __this_cpu_inc(softnet_data.xmit.recursion);
3049}
3050
3051static inline void dev_xmit_recursion_dec(void)
3052{
3053        __this_cpu_dec(softnet_data.xmit.recursion);
3054}
3055
3056void __netif_schedule(struct Qdisc *q);
3057void netif_schedule_queue(struct netdev_queue *txq);
3058
3059static inline void netif_tx_schedule_all(struct net_device *dev)
3060{
3061        unsigned int i;
3062
3063        for (i = 0; i < dev->num_tx_queues; i++)
3064                netif_schedule_queue(netdev_get_tx_queue(dev, i));
3065}
3066
3067static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3068{
3069        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3070}
3071
3072/**
3073 *      netif_start_queue - allow transmit
3074 *      @dev: network device
3075 *
3076 *      Allow upper layers to call the device hard_start_xmit routine.
3077 */
3078static inline void netif_start_queue(struct net_device *dev)
3079{
3080        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3081}
3082
3083static inline void netif_tx_start_all_queues(struct net_device *dev)
3084{
3085        unsigned int i;
3086
3087        for (i = 0; i < dev->num_tx_queues; i++) {
3088                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3089                netif_tx_start_queue(txq);
3090        }
3091}
3092
3093void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3094
3095/**
3096 *      netif_wake_queue - restart transmit
3097 *      @dev: network device
3098 *
3099 *      Allow upper layers to call the device hard_start_xmit routine.
3100 *      Used for flow control when transmit resources are available.
3101 */
3102static inline void netif_wake_queue(struct net_device *dev)
3103{
3104        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3105}
3106
3107static inline void netif_tx_wake_all_queues(struct net_device *dev)
3108{
3109        unsigned int i;
3110
3111        for (i = 0; i < dev->num_tx_queues; i++) {
3112                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3113                netif_tx_wake_queue(txq);
3114        }
3115}
3116
3117static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3118{
3119        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3120}
3121
3122/**
3123 *      netif_stop_queue - stop transmitted packets
3124 *      @dev: network device
3125 *
3126 *      Stop upper layers calling the device hard_start_xmit routine.
3127 *      Used for flow control when transmit resources are unavailable.
3128 */
3129static inline void netif_stop_queue(struct net_device *dev)
3130{
3131        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3132}
3133
3134void netif_tx_stop_all_queues(struct net_device *dev);
3135void netdev_update_lockdep_key(struct net_device *dev);
3136
3137static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3138{
3139        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3140}
3141
3142/**
3143 *      netif_queue_stopped - test if transmit queue is flowblocked
3144 *      @dev: network device
3145 *
3146 *      Test if transmit queue on device is currently unable to send.
3147 */
3148static inline bool netif_queue_stopped(const struct net_device *dev)
3149{
3150        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3151}
3152
3153static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3154{
3155        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3156}
3157
3158static inline bool
3159netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3160{
3161        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3162}
3163
3164static inline bool
3165netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3166{
3167        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3168}
3169
3170/**
3171 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3172 *      @dev_queue: pointer to transmit queue
3173 *
3174 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3175 * to give appropriate hint to the CPU.
3176 */
3177static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3178{
3179#ifdef CONFIG_BQL
3180        prefetchw(&dev_queue->dql.num_queued);
3181#endif
3182}
3183
3184/**
3185 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3186 *      @dev_queue: pointer to transmit queue
3187 *
3188 * BQL enabled drivers might use this helper in their TX completion path,
3189 * to give appropriate hint to the CPU.
3190 */
3191static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3192{
3193#ifdef CONFIG_BQL
3194        prefetchw(&dev_queue->dql.limit);
3195#endif
3196}
3197
3198static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3199                                        unsigned int bytes)
3200{
3201#ifdef CONFIG_BQL
3202        dql_queued(&dev_queue->dql, bytes);
3203
3204        if (likely(dql_avail(&dev_queue->dql) >= 0))
3205                return;
3206
3207        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3208
3209        /*
3210         * The XOFF flag must be set before checking the dql_avail below,
3211         * because in netdev_tx_completed_queue we update the dql_completed
3212         * before checking the XOFF flag.
3213         */
3214        smp_mb();
3215
3216        /* check again in case another CPU has just made room avail */
3217        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3218                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3219#endif
3220}
3221
3222/* Variant of netdev_tx_sent_queue() for drivers that are aware
3223 * that they should not test BQL status themselves.
3224 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3225 * skb of a batch.
3226 * Returns true if the doorbell must be used to kick the NIC.
3227 */
3228static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3229                                          unsigned int bytes,
3230                                          bool xmit_more)
3231{
3232        if (xmit_more) {
3233#ifdef CONFIG_BQL
3234                dql_queued(&dev_queue->dql, bytes);
3235#endif
3236                return netif_tx_queue_stopped(dev_queue);
3237        }
3238        netdev_tx_sent_queue(dev_queue, bytes);
3239        return true;
3240}
3241
3242/**
3243 *      netdev_sent_queue - report the number of bytes queued to hardware
3244 *      @dev: network device
3245 *      @bytes: number of bytes queued to the hardware device queue
3246 *
3247 *      Report the number of bytes queued for sending/completion to the network
3248 *      device hardware queue. @bytes should be a good approximation and should
3249 *      exactly match netdev_completed_queue() @bytes
3250 */
3251static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3252{
3253        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3254}
3255
3256static inline bool __netdev_sent_queue(struct net_device *dev,
3257                                       unsigned int bytes,
3258                                       bool xmit_more)
3259{
3260        return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3261                                      xmit_more);
3262}
3263
3264static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3265                                             unsigned int pkts, unsigned int bytes)
3266{
3267#ifdef CONFIG_BQL
3268        if (unlikely(!bytes))
3269                return;
3270
3271        dql_completed(&dev_queue->dql, bytes);
3272
3273        /*
3274         * Without the memory barrier there is a small possiblity that
3275         * netdev_tx_sent_queue will miss the update and cause the queue to
3276         * be stopped forever
3277         */
3278        smp_mb();
3279
3280        if (unlikely(dql_avail(&dev_queue->dql) < 0))
3281                return;
3282
3283        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3284                netif_schedule_queue(dev_queue);
3285#endif
3286}
3287
3288/**
3289 *      netdev_completed_queue - report bytes and packets completed by device
3290 *      @dev: network device
3291 *      @pkts: actual number of packets sent over the medium
3292 *      @bytes: actual number of bytes sent over the medium
3293 *
3294 *      Report the number of bytes and packets transmitted by the network device
3295 *      hardware queue over the physical medium, @bytes must exactly match the
3296 *      @bytes amount passed to netdev_sent_queue()
3297 */
3298static inline void netdev_completed_queue(struct net_device *dev,
3299                                          unsigned int pkts, unsigned int bytes)
3300{
3301        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3302}
3303
3304static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3305{
3306#ifdef CONFIG_BQL
3307        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3308        dql_reset(&q->dql);
3309#endif
3310}
3311
3312/**
3313 *      netdev_reset_queue - reset the packets and bytes count of a network device
3314 *      @dev_queue: network device
3315 *
3316 *      Reset the bytes and packet count of a network device and clear the
3317 *      software flow control OFF bit for this network device
3318 */
3319static inline void netdev_reset_queue(struct net_device *dev_queue)
3320{
3321        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3322}
3323
3324/**
3325 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3326 *      @dev: network device
3327 *      @queue_index: given tx queue index
3328 *
3329 *      Returns 0 if given tx queue index >= number of device tx queues,
3330 *      otherwise returns the originally passed tx queue index.
3331 */
3332static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3333{
3334        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3335                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3336                                     dev->name, queue_index,
3337                                     dev->real_num_tx_queues);
3338                return 0;
3339        }
3340
3341        return queue_index;
3342}
3343
3344/**
3345 *      netif_running - test if up
3346 *      @dev: network device
3347 *
3348 *      Test if the device has been brought up.
3349 */
3350static inline bool netif_running(const struct net_device *dev)
3351{
3352        return test_bit(__LINK_STATE_START, &dev->state);
3353}
3354
3355/*
3356 * Routines to manage the subqueues on a device.  We only need start,
3357 * stop, and a check if it's stopped.  All other device management is
3358 * done at the overall netdevice level.
3359 * Also test the device if we're multiqueue.
3360 */
3361
3362/**
3363 *      netif_start_subqueue - allow sending packets on subqueue
3364 *      @dev: network device
3365 *      @queue_index: sub queue index
3366 *
3367 * Start individual transmit queue of a device with multiple transmit queues.
3368 */
3369static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3370{
3371        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3372
3373        netif_tx_start_queue(txq);
3374}
3375
3376/**
3377 *      netif_stop_subqueue - stop sending packets on subqueue
3378 *      @dev: network device
3379 *      @queue_index: sub queue index
3380 *
3381 * Stop individual transmit queue of a device with multiple transmit queues.
3382 */
3383static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3384{
3385        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3386        netif_tx_stop_queue(txq);
3387}
3388
3389/**
3390 *      netif_subqueue_stopped - test status of subqueue
3391 *      @dev: network device
3392 *      @queue_index: sub queue index
3393 *
3394 * Check individual transmit queue of a device with multiple transmit queues.
3395 */
3396static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3397                                            u16 queue_index)
3398{
3399        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3400
3401        return netif_tx_queue_stopped(txq);
3402}
3403
3404static inline bool netif_subqueue_stopped(const struct net_device *dev,
3405                                          struct sk_buff *skb)
3406{
3407        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3408}
3409
3410/**
3411 *      netif_wake_subqueue - allow sending packets on subqueue
3412 *      @dev: network device
3413 *      @queue_index: sub queue index
3414 *
3415 * Resume individual transmit queue of a device with multiple transmit queues.
3416 */
3417static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3418{
3419        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3420
3421        netif_tx_wake_queue(txq);
3422}
3423
3424#ifdef CONFIG_XPS
3425int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3426                        u16 index);
3427int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3428                          u16 index, bool is_rxqs_map);
3429
3430/**
3431 *      netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3432 *      @j: CPU/Rx queue index
3433 *      @mask: bitmask of all cpus/rx queues
3434 *      @nr_bits: number of bits in the bitmask
3435 *
3436 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3437 */
3438static inline bool netif_attr_test_mask(unsigned long j,
3439                                        const unsigned long *mask,
3440                                        unsigned int nr_bits)
3441{
3442        cpu_max_bits_warn(j, nr_bits);
3443        return test_bit(j, mask);
3444}
3445
3446/**
3447 *      netif_attr_test_online - Test for online CPU/Rx queue
3448 *      @j: CPU/Rx queue index
3449 *      @online_mask: bitmask for CPUs/Rx queues that are online
3450 *      @nr_bits: number of bits in the bitmask
3451 *
3452 * Returns true if a CPU/Rx queue is online.
3453 */
3454static inline bool netif_attr_test_online(unsigned long j,
3455                                          const unsigned long *online_mask,
3456                                          unsigned int nr_bits)
3457{
3458        cpu_max_bits_warn(j, nr_bits);
3459
3460        if (online_mask)
3461                return test_bit(j, online_mask);
3462
3463        return (j < nr_bits);
3464}
3465
3466/**
3467 *      netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3468 *      @n: CPU/Rx queue index
3469 *      @srcp: the cpumask/Rx queue mask pointer
3470 *      @nr_bits: number of bits in the bitmask
3471 *
3472 * Returns >= nr_bits if no further CPUs/Rx queues set.
3473 */
3474static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3475                                               unsigned int nr_bits)
3476{
3477        /* -1 is a legal arg here. */
3478        if (n != -1)
3479                cpu_max_bits_warn(n, nr_bits);
3480
3481        if (srcp)
3482                return find_next_bit(srcp, nr_bits, n + 1);
3483
3484        return n + 1;
3485}
3486
3487/**
3488 *      netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3489 *      @n: CPU/Rx queue index
3490 *      @src1p: the first CPUs/Rx queues mask pointer
3491 *      @src2p: the second CPUs/Rx queues mask pointer
3492 *      @nr_bits: number of bits in the bitmask
3493 *
3494 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3495 */
3496static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3497                                          const unsigned long *src2p,
3498                                          unsigned int nr_bits)
3499{
3500        /* -1 is a legal arg here. */
3501        if (n != -1)
3502                cpu_max_bits_warn(n, nr_bits);
3503
3504        if (src1p && src2p)
3505                return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3506        else if (src1p)
3507                return find_next_bit(src1p, nr_bits, n + 1);
3508        else if (src2p)
3509                return find_next_bit(src2p, nr_bits, n + 1);
3510
3511        return n + 1;
3512}
3513#else
3514static inline int netif_set_xps_queue(struct net_device *dev,
3515                                      const struct cpumask *mask,
3516                                      u16 index)
3517{
3518        return 0;
3519}
3520
3521static inline int __netif_set_xps_queue(struct net_device *dev,
3522                                        const unsigned long *mask,
3523                                        u16 index, bool is_rxqs_map)
3524{
3525        return 0;
3526}
3527#endif
3528
3529/**
3530 *      netif_is_multiqueue - test if device has multiple transmit queues
3531 *      @dev: network device
3532 *
3533 * Check if device has multiple transmit queues
3534 */
3535static inline bool netif_is_multiqueue(const struct net_device *dev)
3536{
3537        return dev->num_tx_queues > 1;
3538}
3539
3540int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3541
3542#ifdef CONFIG_SYSFS
3543int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3544#else
3545static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3546                                                unsigned int rxqs)
3547{
3548        dev->real_num_rx_queues = rxqs;
3549        return 0;
3550}
3551#endif
3552
3553static inline struct netdev_rx_queue *
3554__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3555{
3556        return dev->_rx + rxq;
3557}
3558
3559#ifdef CONFIG_SYSFS
3560static inline unsigned int get_netdev_rx_queue_index(
3561                struct netdev_rx_queue *queue)
3562{
3563        struct net_device *dev = queue->dev;
3564        int index = queue - dev->_rx;
3565
3566        BUG_ON(index >= dev->num_rx_queues);
3567        return index;
3568}
3569#endif
3570
3571#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3572int netif_get_num_default_rss_queues(void);
3573
3574enum skb_free_reason {
3575        SKB_REASON_CONSUMED,
3576        SKB_REASON_DROPPED,
3577};
3578
3579void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3580void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3581
3582/*
3583 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3584 * interrupt context or with hardware interrupts being disabled.
3585 * (in_irq() || irqs_disabled())
3586 *
3587 * We provide four helpers that can be used in following contexts :
3588 *
3589 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3590 *  replacing kfree_skb(skb)
3591 *
3592 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3593 *  Typically used in place of consume_skb(skb) in TX completion path
3594 *
3595 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3596 *  replacing kfree_skb(skb)
3597 *
3598 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3599 *  and consumed a packet. Used in place of consume_skb(skb)
3600 */
3601static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3602{
3603        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3604}
3605
3606static inline void dev_consume_skb_irq(struct sk_buff *skb)
3607{
3608        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3609}
3610
3611static inline void dev_kfree_skb_any(struct sk_buff *skb)
3612{
3613        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3614}
3615
3616static inline void dev_consume_skb_any(struct sk_buff *skb)
3617{
3618        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3619}
3620
3621void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3622int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3623int netif_rx(struct sk_buff *skb);
3624int netif_rx_ni(struct sk_buff *skb);
3625int netif_receive_skb(struct sk_buff *skb);
3626int netif_receive_skb_core(struct sk_buff *skb);
3627void netif_receive_skb_list(struct list_head *head);
3628gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3629void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3630struct sk_buff *napi_get_frags(struct napi_struct *napi);
3631gro_result_t napi_gro_frags(struct napi_struct *napi);
3632struct packet_offload *gro_find_receive_by_type(__be16 type);
3633struct packet_offload *gro_find_complete_by_type(__be16 type);
3634
3635static inline void napi_free_frags(struct napi_struct *napi)
3636{
3637        kfree_skb(napi->skb);
3638        napi->skb = NULL;
3639}
3640
3641bool netdev_is_rx_handler_busy(struct net_device *dev);
3642int netdev_rx_handler_register(struct net_device *dev,
3643                               rx_handler_func_t *rx_handler,
3644                               void *rx_handler_data);
3645void netdev_rx_handler_unregister(struct net_device *dev);
3646
3647bool dev_valid_name(const char *name);
3648int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3649                bool *need_copyout);
3650int dev_ifconf(struct net *net, struct ifconf *, int);
3651int dev_ethtool(struct net *net, struct ifreq *);
3652unsigned int dev_get_flags(const struct net_device *);
3653int __dev_change_flags(struct net_device *dev, unsigned int flags,
3654                       struct netlink_ext_ack *extack);
3655int dev_change_flags(struct net_device *dev, unsigned int flags,
3656                     struct netlink_ext_ack *extack);
3657void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3658                        unsigned int gchanges);
3659int dev_change_name(struct net_device *, const char *);
3660int dev_set_alias(struct net_device *, const char *, size_t);
3661int dev_get_alias(const struct net_device *, char *, size_t);
3662int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3663int __dev_set_mtu(struct net_device *, int);
3664int dev_set_mtu_ext(struct net_device *dev, int mtu,
3665                    struct netlink_ext_ack *extack);
3666int dev_set_mtu(struct net_device *, int);
3667int dev_change_tx_queue_len(struct net_device *, unsigned long);
3668void dev_set_group(struct net_device *, int);
3669int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3670                              struct netlink_ext_ack *extack);
3671int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3672                        struct netlink_ext_ack *extack);
3673int dev_change_carrier(struct net_device *, bool new_carrier);
3674int dev_get_phys_port_id(struct net_device *dev,
3675                         struct netdev_phys_item_id *ppid);
3676int dev_get_phys_port_name(struct net_device *dev,
3677                           char *name, size_t len);
3678int dev_get_port_parent_id(struct net_device *dev,
3679                           struct netdev_phys_item_id *ppid, bool recurse);
3680bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3681int dev_change_proto_down(struct net_device *dev, bool proto_down);
3682int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3683struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3684struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3685                                    struct netdev_queue *txq, int *ret);
3686
3687typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3688int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3689                      int fd, u32 flags);
3690u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3691                    enum bpf_netdev_command cmd);
3692int xdp_umem_query(struct net_device *dev, u16 queue_id);
3693
3694int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3695int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3696bool is_skb_forwardable(const struct net_device *dev,
3697                        const struct sk_buff *skb);
3698
3699static __always_inline int ____dev_forward_skb(struct net_device *dev,
3700                                               struct sk_buff *skb)
3701{
3702        if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3703            unlikely(!is_skb_forwardable(dev, skb))) {
3704                atomic_long_inc(&dev->rx_dropped);
3705                kfree_skb(skb);
3706                return NET_RX_DROP;
3707        }
3708
3709        skb_scrub_packet(skb, true);
3710        skb->priority = 0;
3711        return 0;
3712}
3713
3714bool dev_nit_active(struct net_device *dev);
3715void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3716
3717extern int              netdev_budget;
3718extern unsigned int     netdev_budget_usecs;
3719
3720/* Called by rtnetlink.c:rtnl_unlock() */
3721void netdev_run_todo(void);
3722
3723/**
3724 *      dev_put - release reference to device
3725 *      @dev: network device
3726 *
3727 * Release reference to device to allow it to be freed.
3728 */
3729static inline void dev_put(struct net_device *dev)
3730{
3731        this_cpu_dec(*dev->pcpu_refcnt);
3732}
3733
3734/**
3735 *      dev_hold - get reference to device
3736 *      @dev: network device
3737 *
3738 * Hold reference to device to keep it from being freed.
3739 */
3740static inline void dev_hold(struct net_device *dev)
3741{
3742        this_cpu_inc(*dev->pcpu_refcnt);
3743}
3744
3745/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3746 * and _off may be called from IRQ context, but it is caller
3747 * who is responsible for serialization of these calls.
3748 *
3749 * The name carrier is inappropriate, these functions should really be
3750 * called netif_lowerlayer_*() because they represent the state of any
3751 * kind of lower layer not just hardware media.
3752 */
3753
3754void linkwatch_init_dev(struct net_device *dev);
3755void linkwatch_fire_event(struct net_device *dev);
3756void linkwatch_forget_dev(struct net_device *dev);
3757
3758/**
3759 *      netif_carrier_ok - test if carrier present
3760 *      @dev: network device
3761 *
3762 * Check if carrier is present on device
3763 */
3764static inline bool netif_carrier_ok(const struct net_device *dev)
3765{
3766        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3767}
3768
3769unsigned long dev_trans_start(struct net_device *dev);
3770
3771void __netdev_watchdog_up(struct net_device *dev);
3772
3773void netif_carrier_on(struct net_device *dev);
3774
3775void netif_carrier_off(struct net_device *dev);
3776
3777/**
3778 *      netif_dormant_on - mark device as dormant.
3779 *      @dev: network device
3780 *
3781 * Mark device as dormant (as per RFC2863).
3782 *
3783 * The dormant state indicates that the relevant interface is not
3784 * actually in a condition to pass packets (i.e., it is not 'up') but is
3785 * in a "pending" state, waiting for some external event.  For "on-
3786 * demand" interfaces, this new state identifies the situation where the
3787 * interface is waiting for events to place it in the up state.
3788 */
3789static inline void netif_dormant_on(struct net_device *dev)
3790{
3791        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3792                linkwatch_fire_event(dev);
3793}
3794
3795/**
3796 *      netif_dormant_off - set device as not dormant.
3797 *      @dev: network device
3798 *
3799 * Device is not in dormant state.
3800 */
3801static inline void netif_dormant_off(struct net_device *dev)
3802{
3803        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3804                linkwatch_fire_event(dev);
3805}
3806
3807/**
3808 *      netif_dormant - test if device is dormant
3809 *      @dev: network device
3810 *
3811 * Check if device is dormant.
3812 */
3813static inline bool netif_dormant(const struct net_device *dev)
3814{
3815        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3816}
3817
3818
3819/**
3820 *      netif_oper_up - test if device is operational
3821 *      @dev: network device
3822 *
3823 * Check if carrier is operational
3824 */
3825static inline bool netif_oper_up(const struct net_device *dev)
3826{
3827        return (dev->operstate == IF_OPER_UP ||
3828                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3829}
3830
3831/**
3832 *      netif_device_present - is device available or removed
3833 *      @dev: network device
3834 *
3835 * Check if device has not been removed from system.
3836 */
3837static inline bool netif_device_present(struct net_device *dev)
3838{
3839        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3840}
3841
3842void netif_device_detach(struct net_device *dev);
3843
3844void netif_device_attach(struct net_device *dev);
3845
3846/*
3847 * Network interface message level settings
3848 */
3849
3850enum {
3851        NETIF_MSG_DRV           = 0x0001,
3852        NETIF_MSG_PROBE         = 0x0002,
3853        NETIF_MSG_LINK          = 0x0004,
3854        NETIF_MSG_TIMER         = 0x0008,
3855        NETIF_MSG_IFDOWN        = 0x0010,
3856        NETIF_MSG_IFUP          = 0x0020,
3857        NETIF_MSG_RX_ERR        = 0x0040,
3858        NETIF_MSG_TX_ERR        = 0x0080,
3859        NETIF_MSG_TX_QUEUED     = 0x0100,
3860        NETIF_MSG_INTR          = 0x0200,
3861        NETIF_MSG_TX_DONE       = 0x0400,
3862        NETIF_MSG_RX_STATUS     = 0x0800,
3863        NETIF_MSG_PKTDATA       = 0x1000,
3864        NETIF_MSG_HW            = 0x2000,
3865        NETIF_MSG_WOL           = 0x4000,
3866};
3867
3868#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3869#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3870#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3871#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3872#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3873#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3874#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3875#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3876#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3877#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3878#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3879#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3880#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3881#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3882#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3883
3884static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3885{
3886        /* use default */
3887        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3888                return default_msg_enable_bits;
3889        if (debug_value == 0)   /* no output */
3890                return 0;
3891        /* set low N bits */
3892        return (1U << debug_value) - 1;
3893}
3894
3895static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3896{
3897        spin_lock(&txq->_xmit_lock);
3898        txq->xmit_lock_owner = cpu;
3899}
3900
3901static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3902{
3903        __acquire(&txq->_xmit_lock);
3904        return true;
3905}
3906
3907static inline void __netif_tx_release(struct netdev_queue *txq)
3908{
3909        __release(&txq->_xmit_lock);
3910}
3911
3912static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3913{
3914        spin_lock_bh(&txq->_xmit_lock);
3915        txq->xmit_lock_owner = smp_processor_id();
3916}
3917
3918static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3919{
3920        bool ok = spin_trylock(&txq->_xmit_lock);
3921        if (likely(ok))
3922                txq->xmit_lock_owner = smp_processor_id();
3923        return ok;
3924}
3925
3926static inline void __netif_tx_unlock(struct netdev_queue *txq)
3927{
3928        txq->xmit_lock_owner = -1;
3929        spin_unlock(&txq->_xmit_lock);
3930}
3931
3932static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3933{
3934        txq->xmit_lock_owner = -1;
3935        spin_unlock_bh(&txq->_xmit_lock);
3936}
3937
3938static inline void txq_trans_update(struct netdev_queue *txq)
3939{
3940        if (txq->xmit_lock_owner != -1)
3941                txq->trans_start = jiffies;
3942}
3943
3944/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3945static inline void netif_trans_update(struct net_device *dev)
3946{
3947        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3948
3949        if (txq->trans_start != jiffies)
3950                txq->trans_start = jiffies;
3951}
3952
3953/**
3954 *      netif_tx_lock - grab network device transmit lock
3955 *      @dev: network device
3956 *
3957 * Get network device transmit lock
3958 */
3959static inline void netif_tx_lock(struct net_device *dev)
3960{
3961        unsigned int i;
3962        int cpu;
3963
3964        spin_lock(&dev->tx_global_lock);
3965        cpu = smp_processor_id();
3966        for (i = 0; i < dev->num_tx_queues; i++) {
3967                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3968
3969                /* We are the only thread of execution doing a
3970                 * freeze, but we have to grab the _xmit_lock in
3971                 * order to synchronize with threads which are in
3972                 * the ->hard_start_xmit() handler and already
3973                 * checked the frozen bit.
3974                 */
3975                __netif_tx_lock(txq, cpu);
3976                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3977                __netif_tx_unlock(txq);
3978        }
3979}
3980
3981static inline void netif_tx_lock_bh(struct net_device *dev)
3982{
3983        local_bh_disable();
3984        netif_tx_lock(dev);
3985}
3986
3987static inline void netif_tx_unlock(struct net_device *dev)
3988{
3989        unsigned int i;
3990
3991        for (i = 0; i < dev->num_tx_queues; i++) {
3992                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3993
3994                /* No need to grab the _xmit_lock here.  If the
3995                 * queue is not stopped for another reason, we
3996                 * force a schedule.
3997                 */
3998                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3999                netif_schedule_queue(txq);
4000        }
4001        spin_unlock(&dev->tx_global_lock);
4002}
4003
4004static inline void netif_tx_unlock_bh(struct net_device *dev)
4005{
4006        netif_tx_unlock(dev);
4007        local_bh_enable();
4008}
4009
4010#define HARD_TX_LOCK(dev, txq, cpu) {                   \
4011        if ((dev->features & NETIF_F_LLTX) == 0) {      \
4012                __netif_tx_lock(txq, cpu);              \
4013        } else {                                        \
4014                __netif_tx_acquire(txq);                \
4015        }                                               \
4016}
4017
4018#define HARD_TX_TRYLOCK(dev, txq)                       \
4019        (((dev->features & NETIF_F_LLTX) == 0) ?        \
4020                __netif_tx_trylock(txq) :               \
4021                __netif_tx_acquire(txq))
4022
4023#define HARD_TX_UNLOCK(dev, txq) {                      \
4024        if ((dev->features & NETIF_F_LLTX) == 0) {      \
4025                __netif_tx_unlock(txq);                 \
4026        } else {                                        \
4027                __netif_tx_release(txq);                \
4028        }                                               \
4029}
4030
4031static inline void netif_tx_disable(struct net_device *dev)
4032{
4033        unsigned int i;
4034        int cpu;
4035
4036        local_bh_disable();
4037        cpu = smp_processor_id();
4038        for (i = 0; i < dev->num_tx_queues; i++) {
4039                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4040
4041                __netif_tx_lock(txq, cpu);
4042                netif_tx_stop_queue(txq);
4043                __netif_tx_unlock(txq);
4044        }
4045        local_bh_enable();
4046}
4047
4048static inline void netif_addr_lock(struct net_device *dev)
4049{
4050        spin_lock(&dev->addr_list_lock);
4051}
4052
4053static inline void netif_addr_lock_bh(struct net_device *dev)
4054{
4055        spin_lock_bh(&dev->addr_list_lock);
4056}
4057
4058static inline void netif_addr_unlock(struct net_device *dev)
4059{
4060        spin_unlock(&dev->addr_list_lock);
4061}
4062
4063static inline void netif_addr_unlock_bh(struct net_device *dev)
4064{
4065        spin_unlock_bh(&dev->addr_list_lock);
4066}
4067
4068/*
4069 * dev_addrs walker. Should be used only for read access. Call with
4070 * rcu_read_lock held.
4071 */
4072#define for_each_dev_addr(dev, ha) \
4073                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4074
4075/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4076
4077void ether_setup(struct net_device *dev);
4078
4079/* Support for loadable net-drivers */
4080struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4081                                    unsigned char name_assign_type,
4082                                    void (*setup)(struct net_device *),
4083                                    unsigned int txqs, unsigned int rxqs);
4084int dev_get_valid_name(struct net *net, struct net_device *dev,
4085                       const char *name);
4086
4087#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4088        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4089
4090#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4091        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4092                         count)
4093
4094int register_netdev(struct net_device *dev);
4095void unregister_netdev(struct net_device *dev);
4096
4097/* General hardware address lists handling functions */
4098int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4099                   struct netdev_hw_addr_list *from_list, int addr_len);
4100void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4101                      struct netdev_hw_addr_list *from_list, int addr_len);
4102int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4103                       struct net_device *dev,
4104                       int (*sync)(struct net_device *, const unsigned char *),
4105                       int (*unsync)(struct net_device *,
4106                                     const unsigned char *));
4107int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4108                           struct net_device *dev,
4109                           int (*sync)(struct net_device *,
4110                                       const unsigned char *, int),
4111                           int (*unsync)(struct net_device *,
4112                                         const unsigned char *, int));
4113void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4114                              struct net_device *dev,
4115                              int (*unsync)(struct net_device *,
4116                                            const unsigned char *, int));
4117void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4118                          struct net_device *dev,
4119                          int (*unsync)(struct net_device *,
4120                                        const unsigned char *));
4121void __hw_addr_init(struct netdev_hw_addr_list *list);
4122
4123/* Functions used for device addresses handling */
4124int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4125                 unsigned char addr_type);
4126int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4127                 unsigned char addr_type);
4128void dev_addr_flush(struct net_device *dev);
4129int dev_addr_init(struct net_device *dev);
4130
4131/* Functions used for unicast addresses handling */
4132int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4133int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4134int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4135int dev_uc_sync(struct net_device *to, struct net_device *from);
4136int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4137void dev_uc_unsync(struct net_device *to, struct net_device *from);
4138void dev_uc_flush(struct net_device *dev);
4139void dev_uc_init(struct net_device *dev);
4140
4141/**
4142 *  __dev_uc_sync - Synchonize device's unicast list
4143 *  @dev:  device to sync
4144 *  @sync: function to call if address should be added
4145 *  @unsync: function to call if address should be removed
4146 *
4147 *  Add newly added addresses to the interface, and release
4148 *  addresses that have been deleted.
4149 */
4150static inline int __dev_uc_sync(struct net_device *dev,
4151                                int (*sync)(struct net_device *,
4152                                            const unsigned char *),
4153                                int (*unsync)(struct net_device *,
4154                                              const unsigned char *))
4155{
4156        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4157}
4158
4159/**
4160 *  __dev_uc_unsync - Remove synchronized addresses from device
4161 *  @dev:  device to sync
4162 *  @unsync: function to call if address should be removed
4163 *
4164 *  Remove all addresses that were added to the device by dev_uc_sync().
4165 */
4166static inline void __dev_uc_unsync(struct net_device *dev,
4167                                   int (*unsync)(struct net_device *,
4168                                                 const unsigned char *))
4169{
4170        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4171}
4172
4173/* Functions used for multicast addresses handling */
4174int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4175int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4176int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4177int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4178int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4179int dev_mc_sync(struct net_device *to, struct net_device *from);
4180int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4181void dev_mc_unsync(struct net_device *to, struct net_device *from);
4182void dev_mc_flush(struct net_device *dev);
4183void dev_mc_init(struct net_device *dev);
4184
4185/**
4186 *  __dev_mc_sync - Synchonize device's multicast list
4187 *  @dev:  device to sync
4188 *  @sync: function to call if address should be added
4189 *  @unsync: function to call if address should be removed
4190 *
4191 *  Add newly added addresses to the interface, and release
4192 *  addresses that have been deleted.
4193 */
4194static inline int __dev_mc_sync(struct net_device *dev,
4195                                int (*sync)(struct net_device *,
4196                                            const unsigned char *),
4197                                int (*unsync)(struct net_device *,
4198                                              const unsigned char *))
4199{
4200        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4201}
4202
4203/**
4204 *  __dev_mc_unsync - Remove synchronized addresses from device
4205 *  @dev:  device to sync
4206 *  @unsync: function to call if address should be removed
4207 *
4208 *  Remove all addresses that were added to the device by dev_mc_sync().
4209 */
4210static inline void __dev_mc_unsync(struct net_device *dev,
4211                                   int (*unsync)(struct net_device *,
4212                                                 const unsigned char *))
4213{
4214        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4215}
4216
4217/* Functions used for secondary unicast and multicast support */
4218void dev_set_rx_mode(struct net_device *dev);
4219void __dev_set_rx_mode(struct net_device *dev);
4220int dev_set_promiscuity(struct net_device *dev, int inc);
4221int dev_set_allmulti(struct net_device *dev, int inc);
4222void netdev_state_change(struct net_device *dev);
4223void netdev_notify_peers(struct net_device *dev);
4224void netdev_features_change(struct net_device *dev);
4225/* Load a device via the kmod */
4226void dev_load(struct net *net, const char *name);
4227struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4228                                        struct rtnl_link_stats64 *storage);
4229void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4230                             const struct net_device_stats *netdev_stats);
4231
4232extern int              netdev_max_backlog;
4233extern int              netdev_tstamp_prequeue;
4234extern int              weight_p;
4235extern int              dev_weight_rx_bias;
4236extern int              dev_weight_tx_bias;
4237extern int              dev_rx_weight;
4238extern int              dev_tx_weight;
4239extern int              gro_normal_batch;
4240
4241bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4242struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4243                                                     struct list_head **iter);
4244struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4245                                                     struct list_head **iter);
4246
4247/* iterate through upper list, must be called under RCU read lock */
4248#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4249        for (iter = &(dev)->adj_list.upper, \
4250             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4251             updev; \
4252             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4253
4254int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4255                                  int (*fn)(struct net_device *upper_dev,
4256                                            void *data),
4257                                  void *data);
4258
4259bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4260                                  struct net_device *upper_dev);
4261
4262bool netdev_has_any_upper_dev(struct net_device *dev);
4263
4264void *netdev_lower_get_next_private(struct net_device *dev,
4265                                    struct list_head **iter);
4266void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4267                                        struct list_head **iter);
4268
4269#define netdev_for_each_lower_private(dev, priv, iter) \
4270        for (iter = (dev)->adj_list.lower.next, \
4271             priv = netdev_lower_get_next_private(dev, &(iter)); \
4272             priv; \
4273             priv = netdev_lower_get_next_private(dev, &(iter)))
4274
4275#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4276        for (iter = &(dev)->adj_list.lower, \
4277             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4278             priv; \
4279             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4280
4281void *netdev_lower_get_next(struct net_device *dev,
4282                                struct list_head **iter);
4283
4284#define netdev_for_each_lower_dev(dev, ldev, iter) \
4285        for (iter = (dev)->adj_list.lower.next, \
4286             ldev = netdev_lower_get_next(dev, &(iter)); \
4287             ldev; \
4288             ldev = netdev_lower_get_next(dev, &(iter)))
4289
4290struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4291                                             struct list_head **iter);
4292struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4293                                                 struct list_head **iter);
4294
4295int netdev_walk_all_lower_dev(struct net_device *dev,
4296                              int (*fn)(struct net_device *lower_dev,
4297                                        void *data),
4298                              void *data);
4299int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4300                                  int (*fn)(struct net_device *lower_dev,
4301                                            void *data),
4302                                  void *data);
4303
4304void *netdev_adjacent_get_private(struct list_head *adj_list);
4305void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4306struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4307struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4308int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4309                          struct netlink_ext_ack *extack);
4310int netdev_master_upper_dev_link(struct net_device *dev,
4311                                 struct net_device *upper_dev,
4312                                 void *upper_priv, void *upper_info,
4313                                 struct netlink_ext_ack *extack);
4314void netdev_upper_dev_unlink(struct net_device *dev,
4315                             struct net_device *upper_dev);
4316int netdev_adjacent_change_prepare(struct net_device *old_dev,
4317                                   struct net_device *new_dev,
4318                                   struct net_device *dev,
4319                                   struct netlink_ext_ack *extack);
4320void netdev_adjacent_change_commit(struct net_device *old_dev,
4321                                   struct net_device *new_dev,
4322                                   struct net_device *dev);
4323void netdev_adjacent_change_abort(struct net_device *old_dev,
4324                                  struct net_device *new_dev,
4325                                  struct net_device *dev);
4326void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4327void *netdev_lower_dev_get_private(struct net_device *dev,
4328                                   struct net_device *lower_dev);
4329void netdev_lower_state_changed(struct net_device *lower_dev,
4330                                void *lower_state_info);
4331
4332/* RSS keys are 40 or 52 bytes long */
4333#define NETDEV_RSS_KEY_LEN 52
4334extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4335void netdev_rss_key_fill(void *buffer, size_t len);
4336
4337int skb_checksum_help(struct sk_buff *skb);
4338int skb_crc32c_csum_help(struct sk_buff *skb);
4339int skb_csum_hwoffload_help(struct sk_buff *skb,
4340                            const netdev_features_t features);
4341
4342struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4343                                  netdev_features_t features, bool tx_path);
4344struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4345                                    netdev_features_t features);
4346
4347struct netdev_bonding_info {
4348        ifslave slave;
4349        ifbond  master;
4350};
4351
4352struct netdev_notifier_bonding_info {
4353        struct netdev_notifier_info info; /* must be first */
4354        struct netdev_bonding_info  bonding_info;
4355};
4356
4357void netdev_bonding_info_change(struct net_device *dev,
4358                                struct netdev_bonding_info *bonding_info);
4359
4360static inline
4361struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4362{
4363        return __skb_gso_segment(skb, features, true);
4364}
4365__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4366
4367static inline bool can_checksum_protocol(netdev_features_t features,
4368                                         __be16 protocol)
4369{
4370        if (protocol == htons(ETH_P_FCOE))
4371                return !!(features & NETIF_F_FCOE_CRC);
4372
4373        /* Assume this is an IP checksum (not SCTP CRC) */
4374
4375        if (features & NETIF_F_HW_CSUM) {
4376                /* Can checksum everything */
4377                return true;
4378        }
4379
4380        switch (protocol) {
4381        case htons(ETH_P_IP):
4382                return !!(features & NETIF_F_IP_CSUM);
4383        case htons(ETH_P_IPV6):
4384                return !!(features & NETIF_F_IPV6_CSUM);
4385        default:
4386                return false;
4387        }
4388}
4389
4390#ifdef CONFIG_BUG
4391void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4392#else
4393static inline void netdev_rx_csum_fault(struct net_device *dev,
4394                                        struct sk_buff *skb)
4395{
4396}
4397#endif
4398/* rx skb timestamps */
4399void net_enable_timestamp(void);
4400void net_disable_timestamp(void);
4401
4402#ifdef CONFIG_PROC_FS
4403int __init dev_proc_init(void);
4404#else
4405#define dev_proc_init() 0
4406#endif
4407
4408static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4409                                              struct sk_buff *skb, struct net_device *dev,
4410                                              bool more)
4411{
4412        __this_cpu_write(softnet_data.xmit.more, more);
4413        return ops->ndo_start_xmit(skb, dev);
4414}
4415
4416static inline bool netdev_xmit_more(void)
4417{
4418        return __this_cpu_read(softnet_data.xmit.more);
4419}
4420
4421static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4422                                            struct netdev_queue *txq, bool more)
4423{
4424        const struct net_device_ops *ops = dev->netdev_ops;
4425        netdev_tx_t rc;
4426
4427        rc = __netdev_start_xmit(ops, skb, dev, more);
4428        if (rc == NETDEV_TX_OK)
4429                txq_trans_update(txq);
4430
4431        return rc;
4432}
4433
4434int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4435                                const void *ns);
4436void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4437                                 const void *ns);
4438
4439static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4440{
4441        return netdev_class_create_file_ns(class_attr, NULL);
4442}
4443
4444static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4445{
4446        netdev_class_remove_file_ns(class_attr, NULL);
4447}
4448
4449extern const struct kobj_ns_type_operations net_ns_type_operations;
4450
4451const char *netdev_drivername(const struct net_device *dev);
4452
4453void linkwatch_run_queue(void);
4454
4455static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4456                                                          netdev_features_t f2)
4457{
4458        if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4459                if (f1 & NETIF_F_HW_CSUM)
4460                        f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4461                else
4462                        f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4463        }
4464
4465        return f1 & f2;
4466}
4467
4468static inline netdev_features_t netdev_get_wanted_features(
4469        struct net_device *dev)
4470{
4471        return (dev->features & ~dev->hw_features) | dev->wanted_features;
4472}
4473netdev_features_t netdev_increment_features(netdev_features_t all,
4474        netdev_features_t one, netdev_features_t mask);
4475
4476/* Allow TSO being used on stacked device :
4477 * Performing the GSO segmentation before last device
4478 * is a performance improvement.
4479 */
4480static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4481                                                        netdev_features_t mask)
4482{
4483        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4484}
4485
4486int __netdev_update_features(struct net_device *dev);
4487void netdev_update_features(struct net_device *dev);
4488void netdev_change_features(struct net_device *dev);
4489
4490void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4491                                        struct net_device *dev);
4492
4493netdev_features_t passthru_features_check(struct sk_buff *skb,
4494                                          struct net_device *dev,
4495                                          netdev_features_t features);
4496netdev_features_t netif_skb_features(struct sk_buff *skb);
4497
4498static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4499{
4500        netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4501
4502        /* check flags correspondence */
4503        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4504        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4505        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4506        BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4507        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4508        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4509        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4510        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4511        BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4512        BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4513        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4514        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4515        BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4516        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4517        BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4518        BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4519        BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4520        BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4521
4522        return (features & feature) == feature;
4523}
4524
4525static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4526{
4527        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4528               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4529}
4530
4531static inline bool netif_needs_gso(struct sk_buff *skb,
4532                                   netdev_features_t features)
4533{
4534        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4535                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4536                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4537}
4538
4539static inline void netif_set_gso_max_size(struct net_device *dev,
4540                                          unsigned int size)
4541{
4542        dev->gso_max_size = size;
4543}
4544
4545static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4546                                        int pulled_hlen, u16 mac_offset,
4547                                        int mac_len)
4548{
4549        skb->protocol = protocol;
4550        skb->encapsulation = 1;
4551        skb_push(skb, pulled_hlen);
4552        skb_reset_transport_header(skb);
4553        skb->mac_header = mac_offset;
4554        skb->network_header = skb->mac_header + mac_len;
4555        skb->mac_len = mac_len;
4556}
4557
4558static inline bool netif_is_macsec(const struct net_device *dev)
4559{
4560        return dev->priv_flags & IFF_MACSEC;
4561}
4562
4563static inline bool netif_is_macvlan(const struct net_device *dev)
4564{
4565        return dev->priv_flags & IFF_MACVLAN;
4566}
4567
4568static inline bool netif_is_macvlan_port(const struct net_device *dev)
4569{
4570        return dev->priv_flags & IFF_MACVLAN_PORT;
4571}
4572
4573static inline bool netif_is_bond_master(const struct net_device *dev)
4574{
4575        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4576}
4577
4578static inline bool netif_is_bond_slave(const struct net_device *dev)
4579{
4580        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4581}
4582
4583static inline bool netif_supports_nofcs(struct net_device *dev)
4584{
4585        return dev->priv_flags & IFF_SUPP_NOFCS;
4586}
4587
4588static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4589{
4590        return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4591}
4592
4593static inline bool netif_is_l3_master(const struct net_device *dev)
4594{
4595        return dev->priv_flags & IFF_L3MDEV_MASTER;
4596}
4597
4598static inline bool netif_is_l3_slave(const struct net_device *dev)
4599{
4600        return dev->priv_flags & IFF_L3MDEV_SLAVE;
4601}
4602
4603static inline bool netif_is_bridge_master(const struct net_device *dev)
4604{
4605        return dev->priv_flags & IFF_EBRIDGE;
4606}
4607
4608static inline bool netif_is_bridge_port(const struct net_device *dev)
4609{
4610        return dev->priv_flags & IFF_BRIDGE_PORT;
4611}
4612
4613static inline bool netif_is_ovs_master(const struct net_device *dev)
4614{
4615        return dev->priv_flags & IFF_OPENVSWITCH;
4616}
4617
4618static inline bool netif_is_ovs_port(const struct net_device *dev)
4619{
4620        return dev->priv_flags & IFF_OVS_DATAPATH;
4621}
4622
4623static inline bool netif_is_team_master(const struct net_device *dev)
4624{
4625        return dev->priv_flags & IFF_TEAM;
4626}
4627
4628static inline bool netif_is_team_port(const struct net_device *dev)
4629{
4630        return dev->priv_flags & IFF_TEAM_PORT;
4631}
4632
4633static inline bool netif_is_lag_master(const struct net_device *dev)
4634{
4635        return netif_is_bond_master(dev) || netif_is_team_master(dev);
4636}
4637
4638static inline bool netif_is_lag_port(const struct net_device *dev)
4639{
4640        return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4641}
4642
4643static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4644{
4645        return dev->priv_flags & IFF_RXFH_CONFIGURED;
4646}
4647
4648static inline bool netif_is_failover(const struct net_device *dev)
4649{
4650        return dev->priv_flags & IFF_FAILOVER;
4651}
4652
4653static inline bool netif_is_failover_slave(const struct net_device *dev)
4654{
4655        return dev->priv_flags & IFF_FAILOVER_SLAVE;
4656}
4657
4658/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4659static inline void netif_keep_dst(struct net_device *dev)
4660{
4661        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4662}
4663
4664/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4665static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4666{
4667        /* TODO: reserve and use an additional IFF bit, if we get more users */
4668        return dev->priv_flags & IFF_MACSEC;
4669}
4670
4671extern struct pernet_operations __net_initdata loopback_net_ops;
4672
4673/* Logging, debugging and troubleshooting/diagnostic helpers. */
4674
4675/* netdev_printk helpers, similar to dev_printk */
4676
4677static inline const char *netdev_name(const struct net_device *dev)
4678{
4679        if (!dev->name[0] || strchr(dev->name, '%'))
4680                return "(unnamed net_device)";
4681        return dev->name;
4682}
4683
4684static inline bool netdev_unregistering(const struct net_device *dev)
4685{
4686        return dev->reg_state == NETREG_UNREGISTERING;
4687}
4688
4689static inline const char *netdev_reg_state(const struct net_device *dev)
4690{
4691        switch (dev->reg_state) {
4692        case NETREG_UNINITIALIZED: return " (uninitialized)";
4693        case NETREG_REGISTERED: return "";
4694        case NETREG_UNREGISTERING: return " (unregistering)";
4695        case NETREG_UNREGISTERED: return " (unregistered)";
4696        case NETREG_RELEASED: return " (released)";
4697        case NETREG_DUMMY: return " (dummy)";
4698        }
4699
4700        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4701        return " (unknown)";
4702}
4703
4704__printf(3, 4) __cold
4705void netdev_printk(const char *level, const struct net_device *dev,
4706                   const char *format, ...);
4707__printf(2, 3) __cold
4708void netdev_emerg(const struct net_device *dev, const char *format, ...);
4709__printf(2, 3) __cold
4710void netdev_alert(const struct net_device *dev, const char *format, ...);
4711__printf(2, 3) __cold
4712void netdev_crit(const struct net_device *dev, const char *format, ...);
4713__printf(2, 3) __cold
4714void netdev_err(const struct net_device *dev, const char *format, ...);
4715__printf(2, 3) __cold
4716void netdev_warn(const struct net_device *dev, const char *format, ...);
4717__printf(2, 3) __cold
4718void netdev_notice(const struct net_device *dev, const char *format, ...);
4719__printf(2, 3) __cold
4720void netdev_info(const struct net_device *dev, const char *format, ...);
4721
4722#define netdev_level_once(level, dev, fmt, ...)                 \
4723do {                                                            \
4724        static bool __print_once __read_mostly;                 \
4725                                                                \
4726        if (!__print_once) {                                    \
4727                __print_once = true;                            \
4728                netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
4729        }                                                       \
4730} while (0)
4731
4732#define netdev_emerg_once(dev, fmt, ...) \
4733        netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4734#define netdev_alert_once(dev, fmt, ...) \
4735        netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4736#define netdev_crit_once(dev, fmt, ...) \
4737        netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4738#define netdev_err_once(dev, fmt, ...) \
4739        netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4740#define netdev_warn_once(dev, fmt, ...) \
4741        netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4742#define netdev_notice_once(dev, fmt, ...) \
4743        netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4744#define netdev_info_once(dev, fmt, ...) \
4745        netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4746
4747#define MODULE_ALIAS_NETDEV(device) \
4748        MODULE_ALIAS("netdev-" device)
4749
4750#if defined(CONFIG_DYNAMIC_DEBUG)
4751#define netdev_dbg(__dev, format, args...)                      \
4752do {                                                            \
4753        dynamic_netdev_dbg(__dev, format, ##args);              \
4754} while (0)
4755#elif defined(DEBUG)
4756#define netdev_dbg(__dev, format, args...)                      \
4757        netdev_printk(KERN_DEBUG, __dev, format, ##args)
4758#else
4759#define netdev_dbg(__dev, format, args...)                      \
4760({                                                              \
4761        if (0)                                                  \
4762                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4763})
4764#endif
4765
4766#if defined(VERBOSE_DEBUG)
4767#define netdev_vdbg     netdev_dbg
4768#else
4769
4770#define netdev_vdbg(dev, format, args...)                       \
4771({                                                              \
4772        if (0)                                                  \
4773                netdev_printk(KERN_DEBUG, dev, format, ##args); \
4774        0;                                                      \
4775})
4776#endif
4777
4778/*
4779 * netdev_WARN() acts like dev_printk(), but with the key difference
4780 * of using a WARN/WARN_ON to get the message out, including the
4781 * file/line information and a backtrace.
4782 */
4783#define netdev_WARN(dev, format, args...)                       \
4784        WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
4785             netdev_reg_state(dev), ##args)
4786
4787#define netdev_WARN_ONCE(dev, format, args...)                          \
4788        WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
4789                  netdev_reg_state(dev), ##args)
4790
4791/* netif printk helpers, similar to netdev_printk */
4792
4793#define netif_printk(priv, type, level, dev, fmt, args...)      \
4794do {                                                            \
4795        if (netif_msg_##type(priv))                             \
4796                netdev_printk(level, (dev), fmt, ##args);       \
4797} while (0)
4798
4799#define netif_level(level, priv, type, dev, fmt, args...)       \
4800do {                                                            \
4801        if (netif_msg_##type(priv))                             \
4802                netdev_##level(dev, fmt, ##args);               \
4803} while (0)
4804
4805#define netif_emerg(priv, type, dev, fmt, args...)              \
4806        netif_level(emerg, priv, type, dev, fmt, ##args)
4807#define netif_alert(priv, type, dev, fmt, args...)              \
4808        netif_level(alert, priv, type, dev, fmt, ##args)
4809#define netif_crit(priv, type, dev, fmt, args...)               \
4810        netif_level(crit, priv, type, dev, fmt, ##args)
4811#define netif_err(priv, type, dev, fmt, args...)                \
4812        netif_level(err, priv, type, dev, fmt, ##args)
4813#define netif_warn(priv, type, dev, fmt, args...)               \
4814        netif_level(warn, priv, type, dev, fmt, ##args)
4815#define netif_notice(priv, type, dev, fmt, args...)             \
4816        netif_level(notice, priv, type, dev, fmt, ##args)
4817#define netif_info(priv, type, dev, fmt, args...)               \
4818        netif_level(info, priv, type, dev, fmt, ##args)
4819
4820#if defined(CONFIG_DYNAMIC_DEBUG)
4821#define netif_dbg(priv, type, netdev, format, args...)          \
4822do {                                                            \
4823        if (netif_msg_##type(priv))                             \
4824                dynamic_netdev_dbg(netdev, format, ##args);     \
4825} while (0)
4826#elif defined(DEBUG)
4827#define netif_dbg(priv, type, dev, format, args...)             \
4828        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4829#else
4830#define netif_dbg(priv, type, dev, format, args...)                     \
4831({                                                                      \
4832        if (0)                                                          \
4833                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4834        0;                                                              \
4835})
4836#endif
4837
4838/* if @cond then downgrade to debug, else print at @level */
4839#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4840        do {                                                              \
4841                if (cond)                                                 \
4842                        netif_dbg(priv, type, netdev, fmt, ##args);       \
4843                else                                                      \
4844                        netif_ ## level(priv, type, netdev, fmt, ##args); \
4845        } while (0)
4846
4847#if defined(VERBOSE_DEBUG)
4848#define netif_vdbg      netif_dbg
4849#else
4850#define netif_vdbg(priv, type, dev, format, args...)            \
4851({                                                              \
4852        if (0)                                                  \
4853                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4854        0;                                                      \
4855})
4856#endif
4857
4858/*
4859 *      The list of packet types we will receive (as opposed to discard)
4860 *      and the routines to invoke.
4861 *
4862 *      Why 16. Because with 16 the only overlap we get on a hash of the
4863 *      low nibble of the protocol value is RARP/SNAP/X.25.
4864 *
4865 *              0800    IP
4866 *              0001    802.3
4867 *              0002    AX.25
4868 *              0004    802.2
4869 *              8035    RARP
4870 *              0005    SNAP
4871 *              0805    X.25
4872 *              0806    ARP
4873 *              8137    IPX
4874 *              0009    Localtalk
4875 *              86DD    IPv6
4876 */
4877#define PTYPE_HASH_SIZE (16)
4878#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4879
4880extern struct net_device *blackhole_netdev;
4881
4882#endif  /* _LINUX_NETDEVICE_H */
4883