linux/include/net/sock.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the AF_INET socket handler.
   8 *
   9 * Version:     @(#)sock.h      1.0.4   05/13/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *              Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *              Alan Cox        :       Volatiles in skbuff pointers. See
  18 *                                      skbuff comments. May be overdone,
  19 *                                      better to prove they can be removed
  20 *                                      than the reverse.
  21 *              Alan Cox        :       Added a zapped field for tcp to note
  22 *                                      a socket is reset and must stay shut up
  23 *              Alan Cox        :       New fields for options
  24 *      Pauline Middelink       :       identd support
  25 *              Alan Cox        :       Eliminate low level recv/recvfrom
  26 *              David S. Miller :       New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  29 *                                      protinfo be just a void pointer, as the
  30 *                                      protocol specific parts were moved to
  31 *                                      respective headers and ipv4/v6, etc now
  32 *                                      use private slabcaches for its socks
  33 *              Pedro Hortas    :       New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>       /* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62
  63#include <linux/atomic.h>
  64#include <linux/refcount.h>
  65#include <net/dst.h>
  66#include <net/checksum.h>
  67#include <net/tcp_states.h>
  68#include <linux/net_tstamp.h>
  69#include <net/smc.h>
  70#include <net/l3mdev.h>
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82                                        printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96        spinlock_t              slock;
  97        int                     owned;
  98        wait_queue_head_t       wq;
  99        /*
 100         * We express the mutex-alike socket_lock semantics
 101         * to the lock validator by explicitly managing
 102         * the slock as a lock variant (in addition to
 103         * the slock itself):
 104         */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106        struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *      struct sock_common - minimal network layer representation of sockets
 119 *      @skc_daddr: Foreign IPv4 addr
 120 *      @skc_rcv_saddr: Bound local IPv4 addr
 121 *      @skc_hash: hash value used with various protocol lookup tables
 122 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 123 *      @skc_dport: placeholder for inet_dport/tw_dport
 124 *      @skc_num: placeholder for inet_num/tw_num
 125 *      @skc_family: network address family
 126 *      @skc_state: Connection state
 127 *      @skc_reuse: %SO_REUSEADDR setting
 128 *      @skc_reuseport: %SO_REUSEPORT setting
 129 *      @skc_bound_dev_if: bound device index if != 0
 130 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 131 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 132 *      @skc_prot: protocol handlers inside a network family
 133 *      @skc_net: reference to the network namespace of this socket
 134 *      @skc_node: main hash linkage for various protocol lookup tables
 135 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 136 *      @skc_tx_queue_mapping: tx queue number for this connection
 137 *      @skc_rx_queue_mapping: rx queue number for this connection
 138 *      @skc_flags: place holder for sk_flags
 139 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 140 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 141 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 142 *      @skc_refcnt: reference count
 143 *
 144 *      This is the minimal network layer representation of sockets, the header
 145 *      for struct sock and struct inet_timewait_sock.
 146 */
 147struct sock_common {
 148        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 149         * address on 64bit arches : cf INET_MATCH()
 150         */
 151        union {
 152                __addrpair      skc_addrpair;
 153                struct {
 154                        __be32  skc_daddr;
 155                        __be32  skc_rcv_saddr;
 156                };
 157        };
 158        union  {
 159                unsigned int    skc_hash;
 160                __u16           skc_u16hashes[2];
 161        };
 162        /* skc_dport && skc_num must be grouped as well */
 163        union {
 164                __portpair      skc_portpair;
 165                struct {
 166                        __be16  skc_dport;
 167                        __u16   skc_num;
 168                };
 169        };
 170
 171        unsigned short          skc_family;
 172        volatile unsigned char  skc_state;
 173        unsigned char           skc_reuse:4;
 174        unsigned char           skc_reuseport:1;
 175        unsigned char           skc_ipv6only:1;
 176        unsigned char           skc_net_refcnt:1;
 177        int                     skc_bound_dev_if;
 178        union {
 179                struct hlist_node       skc_bind_node;
 180                struct hlist_node       skc_portaddr_node;
 181        };
 182        struct proto            *skc_prot;
 183        possible_net_t          skc_net;
 184
 185#if IS_ENABLED(CONFIG_IPV6)
 186        struct in6_addr         skc_v6_daddr;
 187        struct in6_addr         skc_v6_rcv_saddr;
 188#endif
 189
 190        atomic64_t              skc_cookie;
 191
 192        /* following fields are padding to force
 193         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 194         * assuming IPV6 is enabled. We use this padding differently
 195         * for different kind of 'sockets'
 196         */
 197        union {
 198                unsigned long   skc_flags;
 199                struct sock     *skc_listener; /* request_sock */
 200                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 201        };
 202        /*
 203         * fields between dontcopy_begin/dontcopy_end
 204         * are not copied in sock_copy()
 205         */
 206        /* private: */
 207        int                     skc_dontcopy_begin[0];
 208        /* public: */
 209        union {
 210                struct hlist_node       skc_node;
 211                struct hlist_nulls_node skc_nulls_node;
 212        };
 213        unsigned short          skc_tx_queue_mapping;
 214#ifdef CONFIG_XPS
 215        unsigned short          skc_rx_queue_mapping;
 216#endif
 217        union {
 218                int             skc_incoming_cpu;
 219                u32             skc_rcv_wnd;
 220                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 221        };
 222
 223        refcount_t              skc_refcnt;
 224        /* private: */
 225        int                     skc_dontcopy_end[0];
 226        union {
 227                u32             skc_rxhash;
 228                u32             skc_window_clamp;
 229                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 230        };
 231        /* public: */
 232};
 233
 234struct bpf_sk_storage;
 235
 236/**
 237  *     struct sock - network layer representation of sockets
 238  *     @__sk_common: shared layout with inet_timewait_sock
 239  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 240  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 241  *     @sk_lock:       synchronizer
 242  *     @sk_kern_sock: True if sock is using kernel lock classes
 243  *     @sk_rcvbuf: size of receive buffer in bytes
 244  *     @sk_wq: sock wait queue and async head
 245  *     @sk_rx_dst: receive input route used by early demux
 246  *     @sk_dst_cache: destination cache
 247  *     @sk_dst_pending_confirm: need to confirm neighbour
 248  *     @sk_policy: flow policy
 249  *     @sk_receive_queue: incoming packets
 250  *     @sk_wmem_alloc: transmit queue bytes committed
 251  *     @sk_tsq_flags: TCP Small Queues flags
 252  *     @sk_write_queue: Packet sending queue
 253  *     @sk_omem_alloc: "o" is "option" or "other"
 254  *     @sk_wmem_queued: persistent queue size
 255  *     @sk_forward_alloc: space allocated forward
 256  *     @sk_napi_id: id of the last napi context to receive data for sk
 257  *     @sk_ll_usec: usecs to busypoll when there is no data
 258  *     @sk_allocation: allocation mode
 259  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 260  *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
 261  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 262  *     @sk_sndbuf: size of send buffer in bytes
 263  *     @__sk_flags_offset: empty field used to determine location of bitfield
 264  *     @sk_padding: unused element for alignment
 265  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 266  *     @sk_no_check_rx: allow zero checksum in RX packets
 267  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 268  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 269  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 270  *     @sk_gso_max_size: Maximum GSO segment size to build
 271  *     @sk_gso_max_segs: Maximum number of GSO segments
 272  *     @sk_pacing_shift: scaling factor for TCP Small Queues
 273  *     @sk_lingertime: %SO_LINGER l_linger setting
 274  *     @sk_backlog: always used with the per-socket spinlock held
 275  *     @sk_callback_lock: used with the callbacks in the end of this struct
 276  *     @sk_error_queue: rarely used
 277  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 278  *                       IPV6_ADDRFORM for instance)
 279  *     @sk_err: last error
 280  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 281  *                   persistent failure not just 'timed out'
 282  *     @sk_drops: raw/udp drops counter
 283  *     @sk_ack_backlog: current listen backlog
 284  *     @sk_max_ack_backlog: listen backlog set in listen()
 285  *     @sk_uid: user id of owner
 286  *     @sk_priority: %SO_PRIORITY setting
 287  *     @sk_type: socket type (%SOCK_STREAM, etc)
 288  *     @sk_protocol: which protocol this socket belongs in this network family
 289  *     @sk_peer_pid: &struct pid for this socket's peer
 290  *     @sk_peer_cred: %SO_PEERCRED setting
 291  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 292  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 293  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 294  *     @sk_txhash: computed flow hash for use on transmit
 295  *     @sk_filter: socket filtering instructions
 296  *     @sk_timer: sock cleanup timer
 297  *     @sk_stamp: time stamp of last packet received
 298  *     @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 299  *     @sk_tsflags: SO_TIMESTAMPING socket options
 300  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 301  *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
 302  *     @sk_socket: Identd and reporting IO signals
 303  *     @sk_user_data: RPC layer private data
 304  *     @sk_frag: cached page frag
 305  *     @sk_peek_off: current peek_offset value
 306  *     @sk_send_head: front of stuff to transmit
 307  *     @sk_security: used by security modules
 308  *     @sk_mark: generic packet mark
 309  *     @sk_cgrp_data: cgroup data for this cgroup
 310  *     @sk_memcg: this socket's memory cgroup association
 311  *     @sk_write_pending: a write to stream socket waits to start
 312  *     @sk_state_change: callback to indicate change in the state of the sock
 313  *     @sk_data_ready: callback to indicate there is data to be processed
 314  *     @sk_write_space: callback to indicate there is bf sending space available
 315  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 316  *     @sk_backlog_rcv: callback to process the backlog
 317  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 318  *     @sk_reuseport_cb: reuseport group container
 319  *     @sk_rcu: used during RCU grace period
 320  *     @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 321  *     @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 322  *     @sk_txtime_unused: unused txtime flags
 323  */
 324struct sock {
 325        /*
 326         * Now struct inet_timewait_sock also uses sock_common, so please just
 327         * don't add nothing before this first member (__sk_common) --acme
 328         */
 329        struct sock_common      __sk_common;
 330#define sk_node                 __sk_common.skc_node
 331#define sk_nulls_node           __sk_common.skc_nulls_node
 332#define sk_refcnt               __sk_common.skc_refcnt
 333#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 334#ifdef CONFIG_XPS
 335#define sk_rx_queue_mapping     __sk_common.skc_rx_queue_mapping
 336#endif
 337
 338#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 339#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 340#define sk_hash                 __sk_common.skc_hash
 341#define sk_portpair             __sk_common.skc_portpair
 342#define sk_num                  __sk_common.skc_num
 343#define sk_dport                __sk_common.skc_dport
 344#define sk_addrpair             __sk_common.skc_addrpair
 345#define sk_daddr                __sk_common.skc_daddr
 346#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 347#define sk_family               __sk_common.skc_family
 348#define sk_state                __sk_common.skc_state
 349#define sk_reuse                __sk_common.skc_reuse
 350#define sk_reuseport            __sk_common.skc_reuseport
 351#define sk_ipv6only             __sk_common.skc_ipv6only
 352#define sk_net_refcnt           __sk_common.skc_net_refcnt
 353#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 354#define sk_bind_node            __sk_common.skc_bind_node
 355#define sk_prot                 __sk_common.skc_prot
 356#define sk_net                  __sk_common.skc_net
 357#define sk_v6_daddr             __sk_common.skc_v6_daddr
 358#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 359#define sk_cookie               __sk_common.skc_cookie
 360#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 361#define sk_flags                __sk_common.skc_flags
 362#define sk_rxhash               __sk_common.skc_rxhash
 363
 364        socket_lock_t           sk_lock;
 365        atomic_t                sk_drops;
 366        int                     sk_rcvlowat;
 367        struct sk_buff_head     sk_error_queue;
 368        struct sk_buff          *sk_rx_skb_cache;
 369        struct sk_buff_head     sk_receive_queue;
 370        /*
 371         * The backlog queue is special, it is always used with
 372         * the per-socket spinlock held and requires low latency
 373         * access. Therefore we special case it's implementation.
 374         * Note : rmem_alloc is in this structure to fill a hole
 375         * on 64bit arches, not because its logically part of
 376         * backlog.
 377         */
 378        struct {
 379                atomic_t        rmem_alloc;
 380                int             len;
 381                struct sk_buff  *head;
 382                struct sk_buff  *tail;
 383        } sk_backlog;
 384#define sk_rmem_alloc sk_backlog.rmem_alloc
 385
 386        int                     sk_forward_alloc;
 387#ifdef CONFIG_NET_RX_BUSY_POLL
 388        unsigned int            sk_ll_usec;
 389        /* ===== mostly read cache line ===== */
 390        unsigned int            sk_napi_id;
 391#endif
 392        int                     sk_rcvbuf;
 393
 394        struct sk_filter __rcu  *sk_filter;
 395        union {
 396                struct socket_wq __rcu  *sk_wq;
 397                struct socket_wq        *sk_wq_raw;
 398        };
 399#ifdef CONFIG_XFRM
 400        struct xfrm_policy __rcu *sk_policy[2];
 401#endif
 402        struct dst_entry        *sk_rx_dst;
 403        struct dst_entry __rcu  *sk_dst_cache;
 404        atomic_t                sk_omem_alloc;
 405        int                     sk_sndbuf;
 406
 407        /* ===== cache line for TX ===== */
 408        int                     sk_wmem_queued;
 409        refcount_t              sk_wmem_alloc;
 410        unsigned long           sk_tsq_flags;
 411        union {
 412                struct sk_buff  *sk_send_head;
 413                struct rb_root  tcp_rtx_queue;
 414        };
 415        struct sk_buff          *sk_tx_skb_cache;
 416        struct sk_buff_head     sk_write_queue;
 417        __s32                   sk_peek_off;
 418        int                     sk_write_pending;
 419        __u32                   sk_dst_pending_confirm;
 420        u32                     sk_pacing_status; /* see enum sk_pacing */
 421        long                    sk_sndtimeo;
 422        struct timer_list       sk_timer;
 423        __u32                   sk_priority;
 424        __u32                   sk_mark;
 425        unsigned long           sk_pacing_rate; /* bytes per second */
 426        unsigned long           sk_max_pacing_rate;
 427        struct page_frag        sk_frag;
 428        netdev_features_t       sk_route_caps;
 429        netdev_features_t       sk_route_nocaps;
 430        netdev_features_t       sk_route_forced_caps;
 431        int                     sk_gso_type;
 432        unsigned int            sk_gso_max_size;
 433        gfp_t                   sk_allocation;
 434        __u32                   sk_txhash;
 435
 436        /*
 437         * Because of non atomicity rules, all
 438         * changes are protected by socket lock.
 439         */
 440        unsigned int            __sk_flags_offset[0];
 441#ifdef __BIG_ENDIAN_BITFIELD
 442#define SK_FL_PROTO_SHIFT  16
 443#define SK_FL_PROTO_MASK   0x00ff0000
 444
 445#define SK_FL_TYPE_SHIFT   0
 446#define SK_FL_TYPE_MASK    0x0000ffff
 447#else
 448#define SK_FL_PROTO_SHIFT  8
 449#define SK_FL_PROTO_MASK   0x0000ff00
 450
 451#define SK_FL_TYPE_SHIFT   16
 452#define SK_FL_TYPE_MASK    0xffff0000
 453#endif
 454
 455        unsigned int            sk_padding : 1,
 456                                sk_kern_sock : 1,
 457                                sk_no_check_tx : 1,
 458                                sk_no_check_rx : 1,
 459                                sk_userlocks : 4,
 460                                sk_protocol  : 8,
 461                                sk_type      : 16;
 462#define SK_PROTOCOL_MAX U8_MAX
 463        u16                     sk_gso_max_segs;
 464        u8                      sk_pacing_shift;
 465        unsigned long           sk_lingertime;
 466        struct proto            *sk_prot_creator;
 467        rwlock_t                sk_callback_lock;
 468        int                     sk_err,
 469                                sk_err_soft;
 470        u32                     sk_ack_backlog;
 471        u32                     sk_max_ack_backlog;
 472        kuid_t                  sk_uid;
 473        struct pid              *sk_peer_pid;
 474        const struct cred       *sk_peer_cred;
 475        long                    sk_rcvtimeo;
 476        ktime_t                 sk_stamp;
 477#if BITS_PER_LONG==32
 478        seqlock_t               sk_stamp_seq;
 479#endif
 480        u16                     sk_tsflags;
 481        u8                      sk_shutdown;
 482        u32                     sk_tskey;
 483        atomic_t                sk_zckey;
 484
 485        u8                      sk_clockid;
 486        u8                      sk_txtime_deadline_mode : 1,
 487                                sk_txtime_report_errors : 1,
 488                                sk_txtime_unused : 6;
 489
 490        struct socket           *sk_socket;
 491        void                    *sk_user_data;
 492#ifdef CONFIG_SECURITY
 493        void                    *sk_security;
 494#endif
 495        struct sock_cgroup_data sk_cgrp_data;
 496        struct mem_cgroup       *sk_memcg;
 497        void                    (*sk_state_change)(struct sock *sk);
 498        void                    (*sk_data_ready)(struct sock *sk);
 499        void                    (*sk_write_space)(struct sock *sk);
 500        void                    (*sk_error_report)(struct sock *sk);
 501        int                     (*sk_backlog_rcv)(struct sock *sk,
 502                                                  struct sk_buff *skb);
 503#ifdef CONFIG_SOCK_VALIDATE_XMIT
 504        struct sk_buff*         (*sk_validate_xmit_skb)(struct sock *sk,
 505                                                        struct net_device *dev,
 506                                                        struct sk_buff *skb);
 507#endif
 508        void                    (*sk_destruct)(struct sock *sk);
 509        struct sock_reuseport __rcu     *sk_reuseport_cb;
 510#ifdef CONFIG_BPF_SYSCALL
 511        struct bpf_sk_storage __rcu     *sk_bpf_storage;
 512#endif
 513        struct rcu_head         sk_rcu;
 514};
 515
 516enum sk_pacing {
 517        SK_PACING_NONE          = 0,
 518        SK_PACING_NEEDED        = 1,
 519        SK_PACING_FQ            = 2,
 520};
 521
 522#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 523
 524#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 525#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 526
 527/*
 528 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 529 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 530 * on a socket means that the socket will reuse everybody else's port
 531 * without looking at the other's sk_reuse value.
 532 */
 533
 534#define SK_NO_REUSE     0
 535#define SK_CAN_REUSE    1
 536#define SK_FORCE_REUSE  2
 537
 538int sk_set_peek_off(struct sock *sk, int val);
 539
 540static inline int sk_peek_offset(struct sock *sk, int flags)
 541{
 542        if (unlikely(flags & MSG_PEEK)) {
 543                return READ_ONCE(sk->sk_peek_off);
 544        }
 545
 546        return 0;
 547}
 548
 549static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 550{
 551        s32 off = READ_ONCE(sk->sk_peek_off);
 552
 553        if (unlikely(off >= 0)) {
 554                off = max_t(s32, off - val, 0);
 555                WRITE_ONCE(sk->sk_peek_off, off);
 556        }
 557}
 558
 559static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 560{
 561        sk_peek_offset_bwd(sk, -val);
 562}
 563
 564/*
 565 * Hashed lists helper routines
 566 */
 567static inline struct sock *sk_entry(const struct hlist_node *node)
 568{
 569        return hlist_entry(node, struct sock, sk_node);
 570}
 571
 572static inline struct sock *__sk_head(const struct hlist_head *head)
 573{
 574        return hlist_entry(head->first, struct sock, sk_node);
 575}
 576
 577static inline struct sock *sk_head(const struct hlist_head *head)
 578{
 579        return hlist_empty(head) ? NULL : __sk_head(head);
 580}
 581
 582static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 583{
 584        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 585}
 586
 587static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 588{
 589        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 590}
 591
 592static inline struct sock *sk_next(const struct sock *sk)
 593{
 594        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 595}
 596
 597static inline struct sock *sk_nulls_next(const struct sock *sk)
 598{
 599        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 600                hlist_nulls_entry(sk->sk_nulls_node.next,
 601                                  struct sock, sk_nulls_node) :
 602                NULL;
 603}
 604
 605static inline bool sk_unhashed(const struct sock *sk)
 606{
 607        return hlist_unhashed(&sk->sk_node);
 608}
 609
 610static inline bool sk_hashed(const struct sock *sk)
 611{
 612        return !sk_unhashed(sk);
 613}
 614
 615static inline void sk_node_init(struct hlist_node *node)
 616{
 617        node->pprev = NULL;
 618}
 619
 620static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 621{
 622        node->pprev = NULL;
 623}
 624
 625static inline void __sk_del_node(struct sock *sk)
 626{
 627        __hlist_del(&sk->sk_node);
 628}
 629
 630/* NB: equivalent to hlist_del_init_rcu */
 631static inline bool __sk_del_node_init(struct sock *sk)
 632{
 633        if (sk_hashed(sk)) {
 634                __sk_del_node(sk);
 635                sk_node_init(&sk->sk_node);
 636                return true;
 637        }
 638        return false;
 639}
 640
 641/* Grab socket reference count. This operation is valid only
 642   when sk is ALREADY grabbed f.e. it is found in hash table
 643   or a list and the lookup is made under lock preventing hash table
 644   modifications.
 645 */
 646
 647static __always_inline void sock_hold(struct sock *sk)
 648{
 649        refcount_inc(&sk->sk_refcnt);
 650}
 651
 652/* Ungrab socket in the context, which assumes that socket refcnt
 653   cannot hit zero, f.e. it is true in context of any socketcall.
 654 */
 655static __always_inline void __sock_put(struct sock *sk)
 656{
 657        refcount_dec(&sk->sk_refcnt);
 658}
 659
 660static inline bool sk_del_node_init(struct sock *sk)
 661{
 662        bool rc = __sk_del_node_init(sk);
 663
 664        if (rc) {
 665                /* paranoid for a while -acme */
 666                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 667                __sock_put(sk);
 668        }
 669        return rc;
 670}
 671#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 672
 673static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 674{
 675        if (sk_hashed(sk)) {
 676                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 677                return true;
 678        }
 679        return false;
 680}
 681
 682static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 683{
 684        bool rc = __sk_nulls_del_node_init_rcu(sk);
 685
 686        if (rc) {
 687                /* paranoid for a while -acme */
 688                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 689                __sock_put(sk);
 690        }
 691        return rc;
 692}
 693
 694static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 695{
 696        hlist_add_head(&sk->sk_node, list);
 697}
 698
 699static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 700{
 701        sock_hold(sk);
 702        __sk_add_node(sk, list);
 703}
 704
 705static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 706{
 707        sock_hold(sk);
 708        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 709            sk->sk_family == AF_INET6)
 710                hlist_add_tail_rcu(&sk->sk_node, list);
 711        else
 712                hlist_add_head_rcu(&sk->sk_node, list);
 713}
 714
 715static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 716{
 717        sock_hold(sk);
 718        hlist_add_tail_rcu(&sk->sk_node, list);
 719}
 720
 721static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 722{
 723        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 724}
 725
 726static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 727{
 728        sock_hold(sk);
 729        __sk_nulls_add_node_rcu(sk, list);
 730}
 731
 732static inline void __sk_del_bind_node(struct sock *sk)
 733{
 734        __hlist_del(&sk->sk_bind_node);
 735}
 736
 737static inline void sk_add_bind_node(struct sock *sk,
 738                                        struct hlist_head *list)
 739{
 740        hlist_add_head(&sk->sk_bind_node, list);
 741}
 742
 743#define sk_for_each(__sk, list) \
 744        hlist_for_each_entry(__sk, list, sk_node)
 745#define sk_for_each_rcu(__sk, list) \
 746        hlist_for_each_entry_rcu(__sk, list, sk_node)
 747#define sk_nulls_for_each(__sk, node, list) \
 748        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 749#define sk_nulls_for_each_rcu(__sk, node, list) \
 750        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 751#define sk_for_each_from(__sk) \
 752        hlist_for_each_entry_from(__sk, sk_node)
 753#define sk_nulls_for_each_from(__sk, node) \
 754        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 755                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 756#define sk_for_each_safe(__sk, tmp, list) \
 757        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 758#define sk_for_each_bound(__sk, list) \
 759        hlist_for_each_entry(__sk, list, sk_bind_node)
 760
 761/**
 762 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 763 * @tpos:       the type * to use as a loop cursor.
 764 * @pos:        the &struct hlist_node to use as a loop cursor.
 765 * @head:       the head for your list.
 766 * @offset:     offset of hlist_node within the struct.
 767 *
 768 */
 769#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 770        for (pos = rcu_dereference(hlist_first_rcu(head));                     \
 771             pos != NULL &&                                                    \
 772                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 773             pos = rcu_dereference(hlist_next_rcu(pos)))
 774
 775static inline struct user_namespace *sk_user_ns(struct sock *sk)
 776{
 777        /* Careful only use this in a context where these parameters
 778         * can not change and must all be valid, such as recvmsg from
 779         * userspace.
 780         */
 781        return sk->sk_socket->file->f_cred->user_ns;
 782}
 783
 784/* Sock flags */
 785enum sock_flags {
 786        SOCK_DEAD,
 787        SOCK_DONE,
 788        SOCK_URGINLINE,
 789        SOCK_KEEPOPEN,
 790        SOCK_LINGER,
 791        SOCK_DESTROY,
 792        SOCK_BROADCAST,
 793        SOCK_TIMESTAMP,
 794        SOCK_ZAPPED,
 795        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 796        SOCK_DBG, /* %SO_DEBUG setting */
 797        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 798        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 799        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 800        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 801        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 802        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 803        SOCK_FASYNC, /* fasync() active */
 804        SOCK_RXQ_OVFL,
 805        SOCK_ZEROCOPY, /* buffers from userspace */
 806        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 807        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 808                     * Will use last 4 bytes of packet sent from
 809                     * user-space instead.
 810                     */
 811        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 812        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 813        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 814        SOCK_TXTIME,
 815        SOCK_XDP, /* XDP is attached */
 816        SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 817};
 818
 819#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 820
 821static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 822{
 823        nsk->sk_flags = osk->sk_flags;
 824}
 825
 826static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 827{
 828        __set_bit(flag, &sk->sk_flags);
 829}
 830
 831static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 832{
 833        __clear_bit(flag, &sk->sk_flags);
 834}
 835
 836static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 837{
 838        return test_bit(flag, &sk->sk_flags);
 839}
 840
 841#ifdef CONFIG_NET
 842DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 843static inline int sk_memalloc_socks(void)
 844{
 845        return static_branch_unlikely(&memalloc_socks_key);
 846}
 847#else
 848
 849static inline int sk_memalloc_socks(void)
 850{
 851        return 0;
 852}
 853
 854#endif
 855
 856static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 857{
 858        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 859}
 860
 861static inline void sk_acceptq_removed(struct sock *sk)
 862{
 863        sk->sk_ack_backlog--;
 864}
 865
 866static inline void sk_acceptq_added(struct sock *sk)
 867{
 868        sk->sk_ack_backlog++;
 869}
 870
 871static inline bool sk_acceptq_is_full(const struct sock *sk)
 872{
 873        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 874}
 875
 876/*
 877 * Compute minimal free write space needed to queue new packets.
 878 */
 879static inline int sk_stream_min_wspace(const struct sock *sk)
 880{
 881        return READ_ONCE(sk->sk_wmem_queued) >> 1;
 882}
 883
 884static inline int sk_stream_wspace(const struct sock *sk)
 885{
 886        return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 887}
 888
 889static inline void sk_wmem_queued_add(struct sock *sk, int val)
 890{
 891        WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 892}
 893
 894void sk_stream_write_space(struct sock *sk);
 895
 896/* OOB backlog add */
 897static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 898{
 899        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 900        skb_dst_force(skb);
 901
 902        if (!sk->sk_backlog.tail)
 903                sk->sk_backlog.head = skb;
 904        else
 905                sk->sk_backlog.tail->next = skb;
 906
 907        sk->sk_backlog.tail = skb;
 908        skb->next = NULL;
 909}
 910
 911/*
 912 * Take into account size of receive queue and backlog queue
 913 * Do not take into account this skb truesize,
 914 * to allow even a single big packet to come.
 915 */
 916static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 917{
 918        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 919
 920        return qsize > limit;
 921}
 922
 923/* The per-socket spinlock must be held here. */
 924static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 925                                              unsigned int limit)
 926{
 927        if (sk_rcvqueues_full(sk, limit))
 928                return -ENOBUFS;
 929
 930        /*
 931         * If the skb was allocated from pfmemalloc reserves, only
 932         * allow SOCK_MEMALLOC sockets to use it as this socket is
 933         * helping free memory
 934         */
 935        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 936                return -ENOMEM;
 937
 938        __sk_add_backlog(sk, skb);
 939        sk->sk_backlog.len += skb->truesize;
 940        return 0;
 941}
 942
 943int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 944
 945static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 946{
 947        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 948                return __sk_backlog_rcv(sk, skb);
 949
 950        return sk->sk_backlog_rcv(sk, skb);
 951}
 952
 953static inline void sk_incoming_cpu_update(struct sock *sk)
 954{
 955        int cpu = raw_smp_processor_id();
 956
 957        if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
 958                WRITE_ONCE(sk->sk_incoming_cpu, cpu);
 959}
 960
 961static inline void sock_rps_record_flow_hash(__u32 hash)
 962{
 963#ifdef CONFIG_RPS
 964        struct rps_sock_flow_table *sock_flow_table;
 965
 966        rcu_read_lock();
 967        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 968        rps_record_sock_flow(sock_flow_table, hash);
 969        rcu_read_unlock();
 970#endif
 971}
 972
 973static inline void sock_rps_record_flow(const struct sock *sk)
 974{
 975#ifdef CONFIG_RPS
 976        if (static_branch_unlikely(&rfs_needed)) {
 977                /* Reading sk->sk_rxhash might incur an expensive cache line
 978                 * miss.
 979                 *
 980                 * TCP_ESTABLISHED does cover almost all states where RFS
 981                 * might be useful, and is cheaper [1] than testing :
 982                 *      IPv4: inet_sk(sk)->inet_daddr
 983                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
 984                 * OR   an additional socket flag
 985                 * [1] : sk_state and sk_prot are in the same cache line.
 986                 */
 987                if (sk->sk_state == TCP_ESTABLISHED)
 988                        sock_rps_record_flow_hash(sk->sk_rxhash);
 989        }
 990#endif
 991}
 992
 993static inline void sock_rps_save_rxhash(struct sock *sk,
 994                                        const struct sk_buff *skb)
 995{
 996#ifdef CONFIG_RPS
 997        if (unlikely(sk->sk_rxhash != skb->hash))
 998                sk->sk_rxhash = skb->hash;
 999#endif
1000}
1001
1002static inline void sock_rps_reset_rxhash(struct sock *sk)
1003{
1004#ifdef CONFIG_RPS
1005        sk->sk_rxhash = 0;
1006#endif
1007}
1008
1009#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
1010        ({      int __rc;                                               \
1011                release_sock(__sk);                                     \
1012                __rc = __condition;                                     \
1013                if (!__rc) {                                            \
1014                        *(__timeo) = wait_woken(__wait,                 \
1015                                                TASK_INTERRUPTIBLE,     \
1016                                                *(__timeo));            \
1017                }                                                       \
1018                sched_annotate_sleep();                                 \
1019                lock_sock(__sk);                                        \
1020                __rc = __condition;                                     \
1021                __rc;                                                   \
1022        })
1023
1024int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1025int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1026void sk_stream_wait_close(struct sock *sk, long timeo_p);
1027int sk_stream_error(struct sock *sk, int flags, int err);
1028void sk_stream_kill_queues(struct sock *sk);
1029void sk_set_memalloc(struct sock *sk);
1030void sk_clear_memalloc(struct sock *sk);
1031
1032void __sk_flush_backlog(struct sock *sk);
1033
1034static inline bool sk_flush_backlog(struct sock *sk)
1035{
1036        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1037                __sk_flush_backlog(sk);
1038                return true;
1039        }
1040        return false;
1041}
1042
1043int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1044
1045struct request_sock_ops;
1046struct timewait_sock_ops;
1047struct inet_hashinfo;
1048struct raw_hashinfo;
1049struct smc_hashinfo;
1050struct module;
1051
1052/*
1053 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1054 * un-modified. Special care is taken when initializing object to zero.
1055 */
1056static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1057{
1058        if (offsetof(struct sock, sk_node.next) != 0)
1059                memset(sk, 0, offsetof(struct sock, sk_node.next));
1060        memset(&sk->sk_node.pprev, 0,
1061               size - offsetof(struct sock, sk_node.pprev));
1062}
1063
1064/* Networking protocol blocks we attach to sockets.
1065 * socket layer -> transport layer interface
1066 */
1067struct proto {
1068        void                    (*close)(struct sock *sk,
1069                                        long timeout);
1070        int                     (*pre_connect)(struct sock *sk,
1071                                        struct sockaddr *uaddr,
1072                                        int addr_len);
1073        int                     (*connect)(struct sock *sk,
1074                                        struct sockaddr *uaddr,
1075                                        int addr_len);
1076        int                     (*disconnect)(struct sock *sk, int flags);
1077
1078        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1079                                          bool kern);
1080
1081        int                     (*ioctl)(struct sock *sk, int cmd,
1082                                         unsigned long arg);
1083        int                     (*init)(struct sock *sk);
1084        void                    (*destroy)(struct sock *sk);
1085        void                    (*shutdown)(struct sock *sk, int how);
1086        int                     (*setsockopt)(struct sock *sk, int level,
1087                                        int optname, char __user *optval,
1088                                        unsigned int optlen);
1089        int                     (*getsockopt)(struct sock *sk, int level,
1090                                        int optname, char __user *optval,
1091                                        int __user *option);
1092        void                    (*keepalive)(struct sock *sk, int valbool);
1093#ifdef CONFIG_COMPAT
1094        int                     (*compat_setsockopt)(struct sock *sk,
1095                                        int level,
1096                                        int optname, char __user *optval,
1097                                        unsigned int optlen);
1098        int                     (*compat_getsockopt)(struct sock *sk,
1099                                        int level,
1100                                        int optname, char __user *optval,
1101                                        int __user *option);
1102        int                     (*compat_ioctl)(struct sock *sk,
1103                                        unsigned int cmd, unsigned long arg);
1104#endif
1105        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1106                                           size_t len);
1107        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1108                                           size_t len, int noblock, int flags,
1109                                           int *addr_len);
1110        int                     (*sendpage)(struct sock *sk, struct page *page,
1111                                        int offset, size_t size, int flags);
1112        int                     (*bind)(struct sock *sk,
1113                                        struct sockaddr *uaddr, int addr_len);
1114
1115        int                     (*backlog_rcv) (struct sock *sk,
1116                                                struct sk_buff *skb);
1117
1118        void            (*release_cb)(struct sock *sk);
1119
1120        /* Keeping track of sk's, looking them up, and port selection methods. */
1121        int                     (*hash)(struct sock *sk);
1122        void                    (*unhash)(struct sock *sk);
1123        void                    (*rehash)(struct sock *sk);
1124        int                     (*get_port)(struct sock *sk, unsigned short snum);
1125
1126        /* Keeping track of sockets in use */
1127#ifdef CONFIG_PROC_FS
1128        unsigned int            inuse_idx;
1129#endif
1130
1131        bool                    (*stream_memory_free)(const struct sock *sk, int wake);
1132        bool                    (*stream_memory_read)(const struct sock *sk);
1133        /* Memory pressure */
1134        void                    (*enter_memory_pressure)(struct sock *sk);
1135        void                    (*leave_memory_pressure)(struct sock *sk);
1136        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1137        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1138        /*
1139         * Pressure flag: try to collapse.
1140         * Technical note: it is used by multiple contexts non atomically.
1141         * All the __sk_mem_schedule() is of this nature: accounting
1142         * is strict, actions are advisory and have some latency.
1143         */
1144        unsigned long           *memory_pressure;
1145        long                    *sysctl_mem;
1146
1147        int                     *sysctl_wmem;
1148        int                     *sysctl_rmem;
1149        u32                     sysctl_wmem_offset;
1150        u32                     sysctl_rmem_offset;
1151
1152        int                     max_header;
1153        bool                    no_autobind;
1154
1155        struct kmem_cache       *slab;
1156        unsigned int            obj_size;
1157        slab_flags_t            slab_flags;
1158        unsigned int            useroffset;     /* Usercopy region offset */
1159        unsigned int            usersize;       /* Usercopy region size */
1160
1161        struct percpu_counter   *orphan_count;
1162
1163        struct request_sock_ops *rsk_prot;
1164        struct timewait_sock_ops *twsk_prot;
1165
1166        union {
1167                struct inet_hashinfo    *hashinfo;
1168                struct udp_table        *udp_table;
1169                struct raw_hashinfo     *raw_hash;
1170                struct smc_hashinfo     *smc_hash;
1171        } h;
1172
1173        struct module           *owner;
1174
1175        char                    name[32];
1176
1177        struct list_head        node;
1178#ifdef SOCK_REFCNT_DEBUG
1179        atomic_t                socks;
1180#endif
1181        int                     (*diag_destroy)(struct sock *sk, int err);
1182} __randomize_layout;
1183
1184int proto_register(struct proto *prot, int alloc_slab);
1185void proto_unregister(struct proto *prot);
1186int sock_load_diag_module(int family, int protocol);
1187
1188#ifdef SOCK_REFCNT_DEBUG
1189static inline void sk_refcnt_debug_inc(struct sock *sk)
1190{
1191        atomic_inc(&sk->sk_prot->socks);
1192}
1193
1194static inline void sk_refcnt_debug_dec(struct sock *sk)
1195{
1196        atomic_dec(&sk->sk_prot->socks);
1197        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1198               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1199}
1200
1201static inline void sk_refcnt_debug_release(const struct sock *sk)
1202{
1203        if (refcount_read(&sk->sk_refcnt) != 1)
1204                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1205                       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1206}
1207#else /* SOCK_REFCNT_DEBUG */
1208#define sk_refcnt_debug_inc(sk) do { } while (0)
1209#define sk_refcnt_debug_dec(sk) do { } while (0)
1210#define sk_refcnt_debug_release(sk) do { } while (0)
1211#endif /* SOCK_REFCNT_DEBUG */
1212
1213static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1214{
1215        if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1216                return false;
1217
1218        return sk->sk_prot->stream_memory_free ?
1219                sk->sk_prot->stream_memory_free(sk, wake) : true;
1220}
1221
1222static inline bool sk_stream_memory_free(const struct sock *sk)
1223{
1224        return __sk_stream_memory_free(sk, 0);
1225}
1226
1227static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1228{
1229        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1230               __sk_stream_memory_free(sk, wake);
1231}
1232
1233static inline bool sk_stream_is_writeable(const struct sock *sk)
1234{
1235        return __sk_stream_is_writeable(sk, 0);
1236}
1237
1238static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1239                                            struct cgroup *ancestor)
1240{
1241#ifdef CONFIG_SOCK_CGROUP_DATA
1242        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1243                                    ancestor);
1244#else
1245        return -ENOTSUPP;
1246#endif
1247}
1248
1249static inline bool sk_has_memory_pressure(const struct sock *sk)
1250{
1251        return sk->sk_prot->memory_pressure != NULL;
1252}
1253
1254static inline bool sk_under_memory_pressure(const struct sock *sk)
1255{
1256        if (!sk->sk_prot->memory_pressure)
1257                return false;
1258
1259        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1260            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1261                return true;
1262
1263        return !!*sk->sk_prot->memory_pressure;
1264}
1265
1266static inline long
1267sk_memory_allocated(const struct sock *sk)
1268{
1269        return atomic_long_read(sk->sk_prot->memory_allocated);
1270}
1271
1272static inline long
1273sk_memory_allocated_add(struct sock *sk, int amt)
1274{
1275        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1276}
1277
1278static inline void
1279sk_memory_allocated_sub(struct sock *sk, int amt)
1280{
1281        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1282}
1283
1284static inline void sk_sockets_allocated_dec(struct sock *sk)
1285{
1286        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1287}
1288
1289static inline void sk_sockets_allocated_inc(struct sock *sk)
1290{
1291        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1292}
1293
1294static inline u64
1295sk_sockets_allocated_read_positive(struct sock *sk)
1296{
1297        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1298}
1299
1300static inline int
1301proto_sockets_allocated_sum_positive(struct proto *prot)
1302{
1303        return percpu_counter_sum_positive(prot->sockets_allocated);
1304}
1305
1306static inline long
1307proto_memory_allocated(struct proto *prot)
1308{
1309        return atomic_long_read(prot->memory_allocated);
1310}
1311
1312static inline bool
1313proto_memory_pressure(struct proto *prot)
1314{
1315        if (!prot->memory_pressure)
1316                return false;
1317        return !!*prot->memory_pressure;
1318}
1319
1320
1321#ifdef CONFIG_PROC_FS
1322/* Called with local bh disabled */
1323void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1324int sock_prot_inuse_get(struct net *net, struct proto *proto);
1325int sock_inuse_get(struct net *net);
1326#else
1327static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1328                int inc)
1329{
1330}
1331#endif
1332
1333
1334/* With per-bucket locks this operation is not-atomic, so that
1335 * this version is not worse.
1336 */
1337static inline int __sk_prot_rehash(struct sock *sk)
1338{
1339        sk->sk_prot->unhash(sk);
1340        return sk->sk_prot->hash(sk);
1341}
1342
1343/* About 10 seconds */
1344#define SOCK_DESTROY_TIME (10*HZ)
1345
1346/* Sockets 0-1023 can't be bound to unless you are superuser */
1347#define PROT_SOCK       1024
1348
1349#define SHUTDOWN_MASK   3
1350#define RCV_SHUTDOWN    1
1351#define SEND_SHUTDOWN   2
1352
1353#define SOCK_SNDBUF_LOCK        1
1354#define SOCK_RCVBUF_LOCK        2
1355#define SOCK_BINDADDR_LOCK      4
1356#define SOCK_BINDPORT_LOCK      8
1357
1358struct socket_alloc {
1359        struct socket socket;
1360        struct inode vfs_inode;
1361};
1362
1363static inline struct socket *SOCKET_I(struct inode *inode)
1364{
1365        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1366}
1367
1368static inline struct inode *SOCK_INODE(struct socket *socket)
1369{
1370        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1371}
1372
1373/*
1374 * Functions for memory accounting
1375 */
1376int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1377int __sk_mem_schedule(struct sock *sk, int size, int kind);
1378void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1379void __sk_mem_reclaim(struct sock *sk, int amount);
1380
1381/* We used to have PAGE_SIZE here, but systems with 64KB pages
1382 * do not necessarily have 16x time more memory than 4KB ones.
1383 */
1384#define SK_MEM_QUANTUM 4096
1385#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1386#define SK_MEM_SEND     0
1387#define SK_MEM_RECV     1
1388
1389/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1390static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1391{
1392        long val = sk->sk_prot->sysctl_mem[index];
1393
1394#if PAGE_SIZE > SK_MEM_QUANTUM
1395        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1396#elif PAGE_SIZE < SK_MEM_QUANTUM
1397        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1398#endif
1399        return val;
1400}
1401
1402static inline int sk_mem_pages(int amt)
1403{
1404        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1405}
1406
1407static inline bool sk_has_account(struct sock *sk)
1408{
1409        /* return true if protocol supports memory accounting */
1410        return !!sk->sk_prot->memory_allocated;
1411}
1412
1413static inline bool sk_wmem_schedule(struct sock *sk, int size)
1414{
1415        if (!sk_has_account(sk))
1416                return true;
1417        return size <= sk->sk_forward_alloc ||
1418                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1419}
1420
1421static inline bool
1422sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1423{
1424        if (!sk_has_account(sk))
1425                return true;
1426        return size<= sk->sk_forward_alloc ||
1427                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1428                skb_pfmemalloc(skb);
1429}
1430
1431static inline void sk_mem_reclaim(struct sock *sk)
1432{
1433        if (!sk_has_account(sk))
1434                return;
1435        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1436                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1437}
1438
1439static inline void sk_mem_reclaim_partial(struct sock *sk)
1440{
1441        if (!sk_has_account(sk))
1442                return;
1443        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1444                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1445}
1446
1447static inline void sk_mem_charge(struct sock *sk, int size)
1448{
1449        if (!sk_has_account(sk))
1450                return;
1451        sk->sk_forward_alloc -= size;
1452}
1453
1454static inline void sk_mem_uncharge(struct sock *sk, int size)
1455{
1456        if (!sk_has_account(sk))
1457                return;
1458        sk->sk_forward_alloc += size;
1459
1460        /* Avoid a possible overflow.
1461         * TCP send queues can make this happen, if sk_mem_reclaim()
1462         * is not called and more than 2 GBytes are released at once.
1463         *
1464         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1465         * no need to hold that much forward allocation anyway.
1466         */
1467        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1468                __sk_mem_reclaim(sk, 1 << 20);
1469}
1470
1471DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1472static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1473{
1474        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1475        sk_wmem_queued_add(sk, -skb->truesize);
1476        sk_mem_uncharge(sk, skb->truesize);
1477        if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1478            !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1479                skb_zcopy_clear(skb, true);
1480                sk->sk_tx_skb_cache = skb;
1481                return;
1482        }
1483        __kfree_skb(skb);
1484}
1485
1486static inline void sock_release_ownership(struct sock *sk)
1487{
1488        if (sk->sk_lock.owned) {
1489                sk->sk_lock.owned = 0;
1490
1491                /* The sk_lock has mutex_unlock() semantics: */
1492                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1493        }
1494}
1495
1496/*
1497 * Macro so as to not evaluate some arguments when
1498 * lockdep is not enabled.
1499 *
1500 * Mark both the sk_lock and the sk_lock.slock as a
1501 * per-address-family lock class.
1502 */
1503#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1504do {                                                                    \
1505        sk->sk_lock.owned = 0;                                          \
1506        init_waitqueue_head(&sk->sk_lock.wq);                           \
1507        spin_lock_init(&(sk)->sk_lock.slock);                           \
1508        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1509                        sizeof((sk)->sk_lock));                         \
1510        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1511                                (skey), (sname));                               \
1512        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1513} while (0)
1514
1515#ifdef CONFIG_LOCKDEP
1516static inline bool lockdep_sock_is_held(const struct sock *sk)
1517{
1518        return lockdep_is_held(&sk->sk_lock) ||
1519               lockdep_is_held(&sk->sk_lock.slock);
1520}
1521#endif
1522
1523void lock_sock_nested(struct sock *sk, int subclass);
1524
1525static inline void lock_sock(struct sock *sk)
1526{
1527        lock_sock_nested(sk, 0);
1528}
1529
1530void __release_sock(struct sock *sk);
1531void release_sock(struct sock *sk);
1532
1533/* BH context may only use the following locking interface. */
1534#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1535#define bh_lock_sock_nested(__sk) \
1536                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1537                                SINGLE_DEPTH_NESTING)
1538#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1539
1540bool lock_sock_fast(struct sock *sk);
1541/**
1542 * unlock_sock_fast - complement of lock_sock_fast
1543 * @sk: socket
1544 * @slow: slow mode
1545 *
1546 * fast unlock socket for user context.
1547 * If slow mode is on, we call regular release_sock()
1548 */
1549static inline void unlock_sock_fast(struct sock *sk, bool slow)
1550{
1551        if (slow)
1552                release_sock(sk);
1553        else
1554                spin_unlock_bh(&sk->sk_lock.slock);
1555}
1556
1557/* Used by processes to "lock" a socket state, so that
1558 * interrupts and bottom half handlers won't change it
1559 * from under us. It essentially blocks any incoming
1560 * packets, so that we won't get any new data or any
1561 * packets that change the state of the socket.
1562 *
1563 * While locked, BH processing will add new packets to
1564 * the backlog queue.  This queue is processed by the
1565 * owner of the socket lock right before it is released.
1566 *
1567 * Since ~2.3.5 it is also exclusive sleep lock serializing
1568 * accesses from user process context.
1569 */
1570
1571static inline void sock_owned_by_me(const struct sock *sk)
1572{
1573#ifdef CONFIG_LOCKDEP
1574        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1575#endif
1576}
1577
1578static inline bool sock_owned_by_user(const struct sock *sk)
1579{
1580        sock_owned_by_me(sk);
1581        return sk->sk_lock.owned;
1582}
1583
1584static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1585{
1586        return sk->sk_lock.owned;
1587}
1588
1589/* no reclassification while locks are held */
1590static inline bool sock_allow_reclassification(const struct sock *csk)
1591{
1592        struct sock *sk = (struct sock *)csk;
1593
1594        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1595}
1596
1597struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1598                      struct proto *prot, int kern);
1599void sk_free(struct sock *sk);
1600void sk_destruct(struct sock *sk);
1601struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1602void sk_free_unlock_clone(struct sock *sk);
1603
1604struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1605                             gfp_t priority);
1606void __sock_wfree(struct sk_buff *skb);
1607void sock_wfree(struct sk_buff *skb);
1608struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1609                             gfp_t priority);
1610void skb_orphan_partial(struct sk_buff *skb);
1611void sock_rfree(struct sk_buff *skb);
1612void sock_efree(struct sk_buff *skb);
1613#ifdef CONFIG_INET
1614void sock_edemux(struct sk_buff *skb);
1615#else
1616#define sock_edemux sock_efree
1617#endif
1618
1619int sock_setsockopt(struct socket *sock, int level, int op,
1620                    char __user *optval, unsigned int optlen);
1621
1622int sock_getsockopt(struct socket *sock, int level, int op,
1623                    char __user *optval, int __user *optlen);
1624int sock_gettstamp(struct socket *sock, void __user *userstamp,
1625                   bool timeval, bool time32);
1626struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1627                                    int noblock, int *errcode);
1628struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1629                                     unsigned long data_len, int noblock,
1630                                     int *errcode, int max_page_order);
1631void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1632void sock_kfree_s(struct sock *sk, void *mem, int size);
1633void sock_kzfree_s(struct sock *sk, void *mem, int size);
1634void sk_send_sigurg(struct sock *sk);
1635
1636struct sockcm_cookie {
1637        u64 transmit_time;
1638        u32 mark;
1639        u16 tsflags;
1640};
1641
1642static inline void sockcm_init(struct sockcm_cookie *sockc,
1643                               const struct sock *sk)
1644{
1645        *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1646}
1647
1648int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1649                     struct sockcm_cookie *sockc);
1650int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1651                   struct sockcm_cookie *sockc);
1652
1653/*
1654 * Functions to fill in entries in struct proto_ops when a protocol
1655 * does not implement a particular function.
1656 */
1657int sock_no_bind(struct socket *, struct sockaddr *, int);
1658int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1659int sock_no_socketpair(struct socket *, struct socket *);
1660int sock_no_accept(struct socket *, struct socket *, int, bool);
1661int sock_no_getname(struct socket *, struct sockaddr *, int);
1662int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1663int sock_no_listen(struct socket *, int);
1664int sock_no_shutdown(struct socket *, int);
1665int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1666int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1667int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1668int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1669int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1670int sock_no_mmap(struct file *file, struct socket *sock,
1671                 struct vm_area_struct *vma);
1672ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1673                         size_t size, int flags);
1674ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1675                                int offset, size_t size, int flags);
1676
1677/*
1678 * Functions to fill in entries in struct proto_ops when a protocol
1679 * uses the inet style.
1680 */
1681int sock_common_getsockopt(struct socket *sock, int level, int optname,
1682                                  char __user *optval, int __user *optlen);
1683int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1684                        int flags);
1685int sock_common_setsockopt(struct socket *sock, int level, int optname,
1686                                  char __user *optval, unsigned int optlen);
1687int compat_sock_common_getsockopt(struct socket *sock, int level,
1688                int optname, char __user *optval, int __user *optlen);
1689int compat_sock_common_setsockopt(struct socket *sock, int level,
1690                int optname, char __user *optval, unsigned int optlen);
1691
1692void sk_common_release(struct sock *sk);
1693
1694/*
1695 *      Default socket callbacks and setup code
1696 */
1697
1698/* Initialise core socket variables */
1699void sock_init_data(struct socket *sock, struct sock *sk);
1700
1701/*
1702 * Socket reference counting postulates.
1703 *
1704 * * Each user of socket SHOULD hold a reference count.
1705 * * Each access point to socket (an hash table bucket, reference from a list,
1706 *   running timer, skb in flight MUST hold a reference count.
1707 * * When reference count hits 0, it means it will never increase back.
1708 * * When reference count hits 0, it means that no references from
1709 *   outside exist to this socket and current process on current CPU
1710 *   is last user and may/should destroy this socket.
1711 * * sk_free is called from any context: process, BH, IRQ. When
1712 *   it is called, socket has no references from outside -> sk_free
1713 *   may release descendant resources allocated by the socket, but
1714 *   to the time when it is called, socket is NOT referenced by any
1715 *   hash tables, lists etc.
1716 * * Packets, delivered from outside (from network or from another process)
1717 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1718 *   when they sit in queue. Otherwise, packets will leak to hole, when
1719 *   socket is looked up by one cpu and unhasing is made by another CPU.
1720 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1721 *   (leak to backlog). Packet socket does all the processing inside
1722 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1723 *   use separate SMP lock, so that they are prone too.
1724 */
1725
1726/* Ungrab socket and destroy it, if it was the last reference. */
1727static inline void sock_put(struct sock *sk)
1728{
1729        if (refcount_dec_and_test(&sk->sk_refcnt))
1730                sk_free(sk);
1731}
1732/* Generic version of sock_put(), dealing with all sockets
1733 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1734 */
1735void sock_gen_put(struct sock *sk);
1736
1737int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1738                     unsigned int trim_cap, bool refcounted);
1739static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1740                                 const int nested)
1741{
1742        return __sk_receive_skb(sk, skb, nested, 1, true);
1743}
1744
1745static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1746{
1747        /* sk_tx_queue_mapping accept only upto a 16-bit value */
1748        if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1749                return;
1750        sk->sk_tx_queue_mapping = tx_queue;
1751}
1752
1753#define NO_QUEUE_MAPPING        USHRT_MAX
1754
1755static inline void sk_tx_queue_clear(struct sock *sk)
1756{
1757        sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1758}
1759
1760static inline int sk_tx_queue_get(const struct sock *sk)
1761{
1762        if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1763                return sk->sk_tx_queue_mapping;
1764
1765        return -1;
1766}
1767
1768static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1769{
1770#ifdef CONFIG_XPS
1771        if (skb_rx_queue_recorded(skb)) {
1772                u16 rx_queue = skb_get_rx_queue(skb);
1773
1774                if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1775                        return;
1776
1777                sk->sk_rx_queue_mapping = rx_queue;
1778        }
1779#endif
1780}
1781
1782static inline void sk_rx_queue_clear(struct sock *sk)
1783{
1784#ifdef CONFIG_XPS
1785        sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1786#endif
1787}
1788
1789#ifdef CONFIG_XPS
1790static inline int sk_rx_queue_get(const struct sock *sk)
1791{
1792        if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1793                return sk->sk_rx_queue_mapping;
1794
1795        return -1;
1796}
1797#endif
1798
1799static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1800{
1801        sk_tx_queue_clear(sk);
1802        sk->sk_socket = sock;
1803}
1804
1805static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1806{
1807        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1808        return &rcu_dereference_raw(sk->sk_wq)->wait;
1809}
1810/* Detach socket from process context.
1811 * Announce socket dead, detach it from wait queue and inode.
1812 * Note that parent inode held reference count on this struct sock,
1813 * we do not release it in this function, because protocol
1814 * probably wants some additional cleanups or even continuing
1815 * to work with this socket (TCP).
1816 */
1817static inline void sock_orphan(struct sock *sk)
1818{
1819        write_lock_bh(&sk->sk_callback_lock);
1820        sock_set_flag(sk, SOCK_DEAD);
1821        sk_set_socket(sk, NULL);
1822        sk->sk_wq  = NULL;
1823        write_unlock_bh(&sk->sk_callback_lock);
1824}
1825
1826static inline void sock_graft(struct sock *sk, struct socket *parent)
1827{
1828        WARN_ON(parent->sk);
1829        write_lock_bh(&sk->sk_callback_lock);
1830        rcu_assign_pointer(sk->sk_wq, &parent->wq);
1831        parent->sk = sk;
1832        sk_set_socket(sk, parent);
1833        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1834        security_sock_graft(sk, parent);
1835        write_unlock_bh(&sk->sk_callback_lock);
1836}
1837
1838kuid_t sock_i_uid(struct sock *sk);
1839unsigned long sock_i_ino(struct sock *sk);
1840
1841static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1842{
1843        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1844}
1845
1846static inline u32 net_tx_rndhash(void)
1847{
1848        u32 v = prandom_u32();
1849
1850        return v ?: 1;
1851}
1852
1853static inline void sk_set_txhash(struct sock *sk)
1854{
1855        sk->sk_txhash = net_tx_rndhash();
1856}
1857
1858static inline void sk_rethink_txhash(struct sock *sk)
1859{
1860        if (sk->sk_txhash)
1861                sk_set_txhash(sk);
1862}
1863
1864static inline struct dst_entry *
1865__sk_dst_get(struct sock *sk)
1866{
1867        return rcu_dereference_check(sk->sk_dst_cache,
1868                                     lockdep_sock_is_held(sk));
1869}
1870
1871static inline struct dst_entry *
1872sk_dst_get(struct sock *sk)
1873{
1874        struct dst_entry *dst;
1875
1876        rcu_read_lock();
1877        dst = rcu_dereference(sk->sk_dst_cache);
1878        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1879                dst = NULL;
1880        rcu_read_unlock();
1881        return dst;
1882}
1883
1884static inline void dst_negative_advice(struct sock *sk)
1885{
1886        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1887
1888        sk_rethink_txhash(sk);
1889
1890        if (dst && dst->ops->negative_advice) {
1891                ndst = dst->ops->negative_advice(dst);
1892
1893                if (ndst != dst) {
1894                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1895                        sk_tx_queue_clear(sk);
1896                        sk->sk_dst_pending_confirm = 0;
1897                }
1898        }
1899}
1900
1901static inline void
1902__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1903{
1904        struct dst_entry *old_dst;
1905
1906        sk_tx_queue_clear(sk);
1907        sk->sk_dst_pending_confirm = 0;
1908        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1909                                            lockdep_sock_is_held(sk));
1910        rcu_assign_pointer(sk->sk_dst_cache, dst);
1911        dst_release(old_dst);
1912}
1913
1914static inline void
1915sk_dst_set(struct sock *sk, struct dst_entry *dst)
1916{
1917        struct dst_entry *old_dst;
1918
1919        sk_tx_queue_clear(sk);
1920        sk->sk_dst_pending_confirm = 0;
1921        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1922        dst_release(old_dst);
1923}
1924
1925static inline void
1926__sk_dst_reset(struct sock *sk)
1927{
1928        __sk_dst_set(sk, NULL);
1929}
1930
1931static inline void
1932sk_dst_reset(struct sock *sk)
1933{
1934        sk_dst_set(sk, NULL);
1935}
1936
1937struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1938
1939struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1940
1941static inline void sk_dst_confirm(struct sock *sk)
1942{
1943        if (!sk->sk_dst_pending_confirm)
1944                sk->sk_dst_pending_confirm = 1;
1945}
1946
1947static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1948{
1949        if (skb_get_dst_pending_confirm(skb)) {
1950                struct sock *sk = skb->sk;
1951                unsigned long now = jiffies;
1952
1953                /* avoid dirtying neighbour */
1954                if (n->confirmed != now)
1955                        n->confirmed = now;
1956                if (sk && sk->sk_dst_pending_confirm)
1957                        sk->sk_dst_pending_confirm = 0;
1958        }
1959}
1960
1961bool sk_mc_loop(struct sock *sk);
1962
1963static inline bool sk_can_gso(const struct sock *sk)
1964{
1965        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1966}
1967
1968void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1969
1970static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1971{
1972        sk->sk_route_nocaps |= flags;
1973        sk->sk_route_caps &= ~flags;
1974}
1975
1976static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1977                                           struct iov_iter *from, char *to,
1978                                           int copy, int offset)
1979{
1980        if (skb->ip_summed == CHECKSUM_NONE) {
1981                __wsum csum = 0;
1982                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1983                        return -EFAULT;
1984                skb->csum = csum_block_add(skb->csum, csum, offset);
1985        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1986                if (!copy_from_iter_full_nocache(to, copy, from))
1987                        return -EFAULT;
1988        } else if (!copy_from_iter_full(to, copy, from))
1989                return -EFAULT;
1990
1991        return 0;
1992}
1993
1994static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1995                                       struct iov_iter *from, int copy)
1996{
1997        int err, offset = skb->len;
1998
1999        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2000                                       copy, offset);
2001        if (err)
2002                __skb_trim(skb, offset);
2003
2004        return err;
2005}
2006
2007static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2008                                           struct sk_buff *skb,
2009                                           struct page *page,
2010                                           int off, int copy)
2011{
2012        int err;
2013
2014        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2015                                       copy, skb->len);
2016        if (err)
2017                return err;
2018
2019        skb->len             += copy;
2020        skb->data_len        += copy;
2021        skb->truesize        += copy;
2022        sk_wmem_queued_add(sk, copy);
2023        sk_mem_charge(sk, copy);
2024        return 0;
2025}
2026
2027/**
2028 * sk_wmem_alloc_get - returns write allocations
2029 * @sk: socket
2030 *
2031 * Returns sk_wmem_alloc minus initial offset of one
2032 */
2033static inline int sk_wmem_alloc_get(const struct sock *sk)
2034{
2035        return refcount_read(&sk->sk_wmem_alloc) - 1;
2036}
2037
2038/**
2039 * sk_rmem_alloc_get - returns read allocations
2040 * @sk: socket
2041 *
2042 * Returns sk_rmem_alloc
2043 */
2044static inline int sk_rmem_alloc_get(const struct sock *sk)
2045{
2046        return atomic_read(&sk->sk_rmem_alloc);
2047}
2048
2049/**
2050 * sk_has_allocations - check if allocations are outstanding
2051 * @sk: socket
2052 *
2053 * Returns true if socket has write or read allocations
2054 */
2055static inline bool sk_has_allocations(const struct sock *sk)
2056{
2057        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2058}
2059
2060/**
2061 * skwq_has_sleeper - check if there are any waiting processes
2062 * @wq: struct socket_wq
2063 *
2064 * Returns true if socket_wq has waiting processes
2065 *
2066 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2067 * barrier call. They were added due to the race found within the tcp code.
2068 *
2069 * Consider following tcp code paths::
2070 *
2071 *   CPU1                CPU2
2072 *   sys_select          receive packet
2073 *   ...                 ...
2074 *   __add_wait_queue    update tp->rcv_nxt
2075 *   ...                 ...
2076 *   tp->rcv_nxt check   sock_def_readable
2077 *   ...                 {
2078 *   schedule               rcu_read_lock();
2079 *                          wq = rcu_dereference(sk->sk_wq);
2080 *                          if (wq && waitqueue_active(&wq->wait))
2081 *                              wake_up_interruptible(&wq->wait)
2082 *                          ...
2083 *                       }
2084 *
2085 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2086 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2087 * could then endup calling schedule and sleep forever if there are no more
2088 * data on the socket.
2089 *
2090 */
2091static inline bool skwq_has_sleeper(struct socket_wq *wq)
2092{
2093        return wq && wq_has_sleeper(&wq->wait);
2094}
2095
2096/**
2097 * sock_poll_wait - place memory barrier behind the poll_wait call.
2098 * @filp:           file
2099 * @sock:           socket to wait on
2100 * @p:              poll_table
2101 *
2102 * See the comments in the wq_has_sleeper function.
2103 */
2104static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2105                                  poll_table *p)
2106{
2107        if (!poll_does_not_wait(p)) {
2108                poll_wait(filp, &sock->wq.wait, p);
2109                /* We need to be sure we are in sync with the
2110                 * socket flags modification.
2111                 *
2112                 * This memory barrier is paired in the wq_has_sleeper.
2113                 */
2114                smp_mb();
2115        }
2116}
2117
2118static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2119{
2120        if (sk->sk_txhash) {
2121                skb->l4_hash = 1;
2122                skb->hash = sk->sk_txhash;
2123        }
2124}
2125
2126void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2127
2128/*
2129 *      Queue a received datagram if it will fit. Stream and sequenced
2130 *      protocols can't normally use this as they need to fit buffers in
2131 *      and play with them.
2132 *
2133 *      Inlined as it's very short and called for pretty much every
2134 *      packet ever received.
2135 */
2136static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2137{
2138        skb_orphan(skb);
2139        skb->sk = sk;
2140        skb->destructor = sock_rfree;
2141        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2142        sk_mem_charge(sk, skb->truesize);
2143}
2144
2145void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2146                    unsigned long expires);
2147
2148void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2149
2150int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2151                        struct sk_buff *skb, unsigned int flags,
2152                        void (*destructor)(struct sock *sk,
2153                                           struct sk_buff *skb));
2154int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2155int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2156
2157int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2158struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2159
2160/*
2161 *      Recover an error report and clear atomically
2162 */
2163
2164static inline int sock_error(struct sock *sk)
2165{
2166        int err;
2167        if (likely(!sk->sk_err))
2168                return 0;
2169        err = xchg(&sk->sk_err, 0);
2170        return -err;
2171}
2172
2173static inline unsigned long sock_wspace(struct sock *sk)
2174{
2175        int amt = 0;
2176
2177        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2178                amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2179                if (amt < 0)
2180                        amt = 0;
2181        }
2182        return amt;
2183}
2184
2185/* Note:
2186 *  We use sk->sk_wq_raw, from contexts knowing this
2187 *  pointer is not NULL and cannot disappear/change.
2188 */
2189static inline void sk_set_bit(int nr, struct sock *sk)
2190{
2191        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2192            !sock_flag(sk, SOCK_FASYNC))
2193                return;
2194
2195        set_bit(nr, &sk->sk_wq_raw->flags);
2196}
2197
2198static inline void sk_clear_bit(int nr, struct sock *sk)
2199{
2200        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2201            !sock_flag(sk, SOCK_FASYNC))
2202                return;
2203
2204        clear_bit(nr, &sk->sk_wq_raw->flags);
2205}
2206
2207static inline void sk_wake_async(const struct sock *sk, int how, int band)
2208{
2209        if (sock_flag(sk, SOCK_FASYNC)) {
2210                rcu_read_lock();
2211                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2212                rcu_read_unlock();
2213        }
2214}
2215
2216/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2217 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2218 * Note: for send buffers, TCP works better if we can build two skbs at
2219 * minimum.
2220 */
2221#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2222
2223#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2224#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2225
2226static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2227{
2228        u32 val;
2229
2230        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2231                return;
2232
2233        val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2234
2235        WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2236}
2237
2238struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2239                                    bool force_schedule);
2240
2241/**
2242 * sk_page_frag - return an appropriate page_frag
2243 * @sk: socket
2244 *
2245 * Use the per task page_frag instead of the per socket one for
2246 * optimization when we know that we're in the normal context and owns
2247 * everything that's associated with %current.
2248 *
2249 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2250 * inside other socket operations and end up recursing into sk_page_frag()
2251 * while it's already in use.
2252 */
2253static inline struct page_frag *sk_page_frag(struct sock *sk)
2254{
2255        if (gfpflags_normal_context(sk->sk_allocation))
2256                return &current->task_frag;
2257
2258        return &sk->sk_frag;
2259}
2260
2261bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2262
2263/*
2264 *      Default write policy as shown to user space via poll/select/SIGIO
2265 */
2266static inline bool sock_writeable(const struct sock *sk)
2267{
2268        return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2269}
2270
2271static inline gfp_t gfp_any(void)
2272{
2273        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2274}
2275
2276static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2277{
2278        return noblock ? 0 : sk->sk_rcvtimeo;
2279}
2280
2281static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2282{
2283        return noblock ? 0 : sk->sk_sndtimeo;
2284}
2285
2286static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2287{
2288        int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2289
2290        return v ?: 1;
2291}
2292
2293/* Alas, with timeout socket operations are not restartable.
2294 * Compare this to poll().
2295 */
2296static inline int sock_intr_errno(long timeo)
2297{
2298        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2299}
2300
2301struct sock_skb_cb {
2302        u32 dropcount;
2303};
2304
2305/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2306 * using skb->cb[] would keep using it directly and utilize its
2307 * alignement guarantee.
2308 */
2309#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2310                            sizeof(struct sock_skb_cb)))
2311
2312#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2313                            SOCK_SKB_CB_OFFSET))
2314
2315#define sock_skb_cb_check_size(size) \
2316        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2317
2318static inline void
2319sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2320{
2321        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2322                                                atomic_read(&sk->sk_drops) : 0;
2323}
2324
2325static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2326{
2327        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2328
2329        atomic_add(segs, &sk->sk_drops);
2330}
2331
2332static inline ktime_t sock_read_timestamp(struct sock *sk)
2333{
2334#if BITS_PER_LONG==32
2335        unsigned int seq;
2336        ktime_t kt;
2337
2338        do {
2339                seq = read_seqbegin(&sk->sk_stamp_seq);
2340                kt = sk->sk_stamp;
2341        } while (read_seqretry(&sk->sk_stamp_seq, seq));
2342
2343        return kt;
2344#else
2345        return READ_ONCE(sk->sk_stamp);
2346#endif
2347}
2348
2349static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2350{
2351#if BITS_PER_LONG==32
2352        write_seqlock(&sk->sk_stamp_seq);
2353        sk->sk_stamp = kt;
2354        write_sequnlock(&sk->sk_stamp_seq);
2355#else
2356        WRITE_ONCE(sk->sk_stamp, kt);
2357#endif
2358}
2359
2360void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2361                           struct sk_buff *skb);
2362void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2363                             struct sk_buff *skb);
2364
2365static inline void
2366sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2367{
2368        ktime_t kt = skb->tstamp;
2369        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2370
2371        /*
2372         * generate control messages if
2373         * - receive time stamping in software requested
2374         * - software time stamp available and wanted
2375         * - hardware time stamps available and wanted
2376         */
2377        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2378            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2379            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2380            (hwtstamps->hwtstamp &&
2381             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2382                __sock_recv_timestamp(msg, sk, skb);
2383        else
2384                sock_write_timestamp(sk, kt);
2385
2386        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2387                __sock_recv_wifi_status(msg, sk, skb);
2388}
2389
2390void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2391                              struct sk_buff *skb);
2392
2393#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2394static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2395                                          struct sk_buff *skb)
2396{
2397#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2398                           (1UL << SOCK_RCVTSTAMP))
2399#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2400                           SOF_TIMESTAMPING_RAW_HARDWARE)
2401
2402        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2403                __sock_recv_ts_and_drops(msg, sk, skb);
2404        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2405                sock_write_timestamp(sk, skb->tstamp);
2406        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2407                sock_write_timestamp(sk, 0);
2408}
2409
2410void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2411
2412/**
2413 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2414 * @sk:         socket sending this packet
2415 * @tsflags:    timestamping flags to use
2416 * @tx_flags:   completed with instructions for time stamping
2417 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2418 *
2419 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2420 */
2421static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2422                                      __u8 *tx_flags, __u32 *tskey)
2423{
2424        if (unlikely(tsflags)) {
2425                __sock_tx_timestamp(tsflags, tx_flags);
2426                if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2427                    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2428                        *tskey = sk->sk_tskey++;
2429        }
2430        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2431                *tx_flags |= SKBTX_WIFI_STATUS;
2432}
2433
2434static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2435                                     __u8 *tx_flags)
2436{
2437        _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2438}
2439
2440static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2441{
2442        _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2443                           &skb_shinfo(skb)->tskey);
2444}
2445
2446/**
2447 * sk_eat_skb - Release a skb if it is no longer needed
2448 * @sk: socket to eat this skb from
2449 * @skb: socket buffer to eat
2450 *
2451 * This routine must be called with interrupts disabled or with the socket
2452 * locked so that the sk_buff queue operation is ok.
2453*/
2454DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2455static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2456{
2457        __skb_unlink(skb, &sk->sk_receive_queue);
2458        if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2459            !sk->sk_rx_skb_cache) {
2460                sk->sk_rx_skb_cache = skb;
2461                skb_orphan(skb);
2462                return;
2463        }
2464        __kfree_skb(skb);
2465}
2466
2467static inline
2468struct net *sock_net(const struct sock *sk)
2469{
2470        return read_pnet(&sk->sk_net);
2471}
2472
2473static inline
2474void sock_net_set(struct sock *sk, struct net *net)
2475{
2476        write_pnet(&sk->sk_net, net);
2477}
2478
2479static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2480{
2481        if (skb->sk) {
2482                struct sock *sk = skb->sk;
2483
2484                skb->destructor = NULL;
2485                skb->sk = NULL;
2486                return sk;
2487        }
2488        return NULL;
2489}
2490
2491/* This helper checks if a socket is a full socket,
2492 * ie _not_ a timewait or request socket.
2493 */
2494static inline bool sk_fullsock(const struct sock *sk)
2495{
2496        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2497}
2498
2499/* Checks if this SKB belongs to an HW offloaded socket
2500 * and whether any SW fallbacks are required based on dev.
2501 * Check decrypted mark in case skb_orphan() cleared socket.
2502 */
2503static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2504                                                   struct net_device *dev)
2505{
2506#ifdef CONFIG_SOCK_VALIDATE_XMIT
2507        struct sock *sk = skb->sk;
2508
2509        if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2510                skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2511#ifdef CONFIG_TLS_DEVICE
2512        } else if (unlikely(skb->decrypted)) {
2513                pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2514                kfree_skb(skb);
2515                skb = NULL;
2516#endif
2517        }
2518#endif
2519
2520        return skb;
2521}
2522
2523/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2524 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2525 */
2526static inline bool sk_listener(const struct sock *sk)
2527{
2528        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2529}
2530
2531void sock_enable_timestamp(struct sock *sk, int flag);
2532int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2533                       int type);
2534
2535bool sk_ns_capable(const struct sock *sk,
2536                   struct user_namespace *user_ns, int cap);
2537bool sk_capable(const struct sock *sk, int cap);
2538bool sk_net_capable(const struct sock *sk, int cap);
2539
2540void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2541
2542/* Take into consideration the size of the struct sk_buff overhead in the
2543 * determination of these values, since that is non-constant across
2544 * platforms.  This makes socket queueing behavior and performance
2545 * not depend upon such differences.
2546 */
2547#define _SK_MEM_PACKETS         256
2548#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2549#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2550#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2551
2552extern __u32 sysctl_wmem_max;
2553extern __u32 sysctl_rmem_max;
2554
2555extern int sysctl_tstamp_allow_data;
2556extern int sysctl_optmem_max;
2557
2558extern __u32 sysctl_wmem_default;
2559extern __u32 sysctl_rmem_default;
2560
2561DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2562
2563static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2564{
2565        /* Does this proto have per netns sysctl_wmem ? */
2566        if (proto->sysctl_wmem_offset)
2567                return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2568
2569        return *proto->sysctl_wmem;
2570}
2571
2572static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2573{
2574        /* Does this proto have per netns sysctl_rmem ? */
2575        if (proto->sysctl_rmem_offset)
2576                return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2577
2578        return *proto->sysctl_rmem;
2579}
2580
2581/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2582 * Some wifi drivers need to tweak it to get more chunks.
2583 * They can use this helper from their ndo_start_xmit()
2584 */
2585static inline void sk_pacing_shift_update(struct sock *sk, int val)
2586{
2587        if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2588                return;
2589        sk->sk_pacing_shift = val;
2590}
2591
2592/* if a socket is bound to a device, check that the given device
2593 * index is either the same or that the socket is bound to an L3
2594 * master device and the given device index is also enslaved to
2595 * that L3 master
2596 */
2597static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2598{
2599        int mdif;
2600
2601        if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2602                return true;
2603
2604        mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2605        if (mdif && mdif == sk->sk_bound_dev_if)
2606                return true;
2607
2608        return false;
2609}
2610
2611#endif  /* _SOCK_H */
2612