linux/kernel/time/sched_clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic sched_clock() support, to extend low level hardware time
   4 * counters to full 64-bit ns values.
   5 */
   6#include <linux/clocksource.h>
   7#include <linux/init.h>
   8#include <linux/jiffies.h>
   9#include <linux/ktime.h>
  10#include <linux/kernel.h>
  11#include <linux/moduleparam.h>
  12#include <linux/sched.h>
  13#include <linux/sched/clock.h>
  14#include <linux/syscore_ops.h>
  15#include <linux/hrtimer.h>
  16#include <linux/sched_clock.h>
  17#include <linux/seqlock.h>
  18#include <linux/bitops.h>
  19
  20#include "timekeeping.h"
  21
  22/**
  23 * struct clock_read_data - data required to read from sched_clock()
  24 *
  25 * @epoch_ns:           sched_clock() value at last update
  26 * @epoch_cyc:          Clock cycle value at last update.
  27 * @sched_clock_mask:   Bitmask for two's complement subtraction of non 64bit
  28 *                      clocks.
  29 * @read_sched_clock:   Current clock source (or dummy source when suspended).
  30 * @mult:               Multipler for scaled math conversion.
  31 * @shift:              Shift value for scaled math conversion.
  32 *
  33 * Care must be taken when updating this structure; it is read by
  34 * some very hot code paths. It occupies <=40 bytes and, when combined
  35 * with the seqcount used to synchronize access, comfortably fits into
  36 * a 64 byte cache line.
  37 */
  38struct clock_read_data {
  39        u64 epoch_ns;
  40        u64 epoch_cyc;
  41        u64 sched_clock_mask;
  42        u64 (*read_sched_clock)(void);
  43        u32 mult;
  44        u32 shift;
  45};
  46
  47/**
  48 * struct clock_data - all data needed for sched_clock() (including
  49 *                     registration of a new clock source)
  50 *
  51 * @seq:                Sequence counter for protecting updates. The lowest
  52 *                      bit is the index for @read_data.
  53 * @read_data:          Data required to read from sched_clock.
  54 * @wrap_kt:            Duration for which clock can run before wrapping.
  55 * @rate:               Tick rate of the registered clock.
  56 * @actual_read_sched_clock: Registered hardware level clock read function.
  57 *
  58 * The ordering of this structure has been chosen to optimize cache
  59 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
  60 * into a single 64-byte cache line.
  61 */
  62struct clock_data {
  63        seqcount_t              seq;
  64        struct clock_read_data  read_data[2];
  65        ktime_t                 wrap_kt;
  66        unsigned long           rate;
  67
  68        u64 (*actual_read_sched_clock)(void);
  69};
  70
  71static struct hrtimer sched_clock_timer;
  72static int irqtime = -1;
  73
  74core_param(irqtime, irqtime, int, 0400);
  75
  76static u64 notrace jiffy_sched_clock_read(void)
  77{
  78        /*
  79         * We don't need to use get_jiffies_64 on 32-bit arches here
  80         * because we register with BITS_PER_LONG
  81         */
  82        return (u64)(jiffies - INITIAL_JIFFIES);
  83}
  84
  85static struct clock_data cd ____cacheline_aligned = {
  86        .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
  87                          .read_sched_clock = jiffy_sched_clock_read, },
  88        .actual_read_sched_clock = jiffy_sched_clock_read,
  89};
  90
  91static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
  92{
  93        return (cyc * mult) >> shift;
  94}
  95
  96unsigned long long notrace sched_clock(void)
  97{
  98        u64 cyc, res;
  99        unsigned int seq;
 100        struct clock_read_data *rd;
 101
 102        do {
 103                seq = raw_read_seqcount(&cd.seq);
 104                rd = cd.read_data + (seq & 1);
 105
 106                cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
 107                      rd->sched_clock_mask;
 108                res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
 109        } while (read_seqcount_retry(&cd.seq, seq));
 110
 111        return res;
 112}
 113
 114/*
 115 * Updating the data required to read the clock.
 116 *
 117 * sched_clock() will never observe mis-matched data even if called from
 118 * an NMI. We do this by maintaining an odd/even copy of the data and
 119 * steering sched_clock() to one or the other using a sequence counter.
 120 * In order to preserve the data cache profile of sched_clock() as much
 121 * as possible the system reverts back to the even copy when the update
 122 * completes; the odd copy is used *only* during an update.
 123 */
 124static void update_clock_read_data(struct clock_read_data *rd)
 125{
 126        /* update the backup (odd) copy with the new data */
 127        cd.read_data[1] = *rd;
 128
 129        /* steer readers towards the odd copy */
 130        raw_write_seqcount_latch(&cd.seq);
 131
 132        /* now its safe for us to update the normal (even) copy */
 133        cd.read_data[0] = *rd;
 134
 135        /* switch readers back to the even copy */
 136        raw_write_seqcount_latch(&cd.seq);
 137}
 138
 139/*
 140 * Atomically update the sched_clock() epoch.
 141 */
 142static void update_sched_clock(void)
 143{
 144        u64 cyc;
 145        u64 ns;
 146        struct clock_read_data rd;
 147
 148        rd = cd.read_data[0];
 149
 150        cyc = cd.actual_read_sched_clock();
 151        ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
 152
 153        rd.epoch_ns = ns;
 154        rd.epoch_cyc = cyc;
 155
 156        update_clock_read_data(&rd);
 157}
 158
 159static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
 160{
 161        update_sched_clock();
 162        hrtimer_forward_now(hrt, cd.wrap_kt);
 163
 164        return HRTIMER_RESTART;
 165}
 166
 167void __init
 168sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
 169{
 170        u64 res, wrap, new_mask, new_epoch, cyc, ns;
 171        u32 new_mult, new_shift;
 172        unsigned long r;
 173        char r_unit;
 174        struct clock_read_data rd;
 175
 176        if (cd.rate > rate)
 177                return;
 178
 179        WARN_ON(!irqs_disabled());
 180
 181        /* Calculate the mult/shift to convert counter ticks to ns. */
 182        clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
 183
 184        new_mask = CLOCKSOURCE_MASK(bits);
 185        cd.rate = rate;
 186
 187        /* Calculate how many nanosecs until we risk wrapping */
 188        wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
 189        cd.wrap_kt = ns_to_ktime(wrap);
 190
 191        rd = cd.read_data[0];
 192
 193        /* Update epoch for new counter and update 'epoch_ns' from old counter*/
 194        new_epoch = read();
 195        cyc = cd.actual_read_sched_clock();
 196        ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
 197        cd.actual_read_sched_clock = read;
 198
 199        rd.read_sched_clock     = read;
 200        rd.sched_clock_mask     = new_mask;
 201        rd.mult                 = new_mult;
 202        rd.shift                = new_shift;
 203        rd.epoch_cyc            = new_epoch;
 204        rd.epoch_ns             = ns;
 205
 206        update_clock_read_data(&rd);
 207
 208        if (sched_clock_timer.function != NULL) {
 209                /* update timeout for clock wrap */
 210                hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
 211        }
 212
 213        r = rate;
 214        if (r >= 4000000) {
 215                r /= 1000000;
 216                r_unit = 'M';
 217        } else {
 218                if (r >= 1000) {
 219                        r /= 1000;
 220                        r_unit = 'k';
 221                } else {
 222                        r_unit = ' ';
 223                }
 224        }
 225
 226        /* Calculate the ns resolution of this counter */
 227        res = cyc_to_ns(1ULL, new_mult, new_shift);
 228
 229        pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
 230                bits, r, r_unit, res, wrap);
 231
 232        /* Enable IRQ time accounting if we have a fast enough sched_clock() */
 233        if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
 234                enable_sched_clock_irqtime();
 235
 236        pr_debug("Registered %pS as sched_clock source\n", read);
 237}
 238
 239void __init generic_sched_clock_init(void)
 240{
 241        /*
 242         * If no sched_clock() function has been provided at that point,
 243         * make it the final one one.
 244         */
 245        if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
 246                sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
 247
 248        update_sched_clock();
 249
 250        /*
 251         * Start the timer to keep sched_clock() properly updated and
 252         * sets the initial epoch.
 253         */
 254        hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 255        sched_clock_timer.function = sched_clock_poll;
 256        hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
 257}
 258
 259/*
 260 * Clock read function for use when the clock is suspended.
 261 *
 262 * This function makes it appear to sched_clock() as if the clock
 263 * stopped counting at its last update.
 264 *
 265 * This function must only be called from the critical
 266 * section in sched_clock(). It relies on the read_seqcount_retry()
 267 * at the end of the critical section to be sure we observe the
 268 * correct copy of 'epoch_cyc'.
 269 */
 270static u64 notrace suspended_sched_clock_read(void)
 271{
 272        unsigned int seq = raw_read_seqcount(&cd.seq);
 273
 274        return cd.read_data[seq & 1].epoch_cyc;
 275}
 276
 277int sched_clock_suspend(void)
 278{
 279        struct clock_read_data *rd = &cd.read_data[0];
 280
 281        update_sched_clock();
 282        hrtimer_cancel(&sched_clock_timer);
 283        rd->read_sched_clock = suspended_sched_clock_read;
 284
 285        return 0;
 286}
 287
 288void sched_clock_resume(void)
 289{
 290        struct clock_read_data *rd = &cd.read_data[0];
 291
 292        rd->epoch_cyc = cd.actual_read_sched_clock();
 293        hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
 294        rd->read_sched_clock = cd.actual_read_sched_clock;
 295}
 296
 297static struct syscore_ops sched_clock_ops = {
 298        .suspend        = sched_clock_suspend,
 299        .resume         = sched_clock_resume,
 300};
 301
 302static int __init sched_clock_syscore_init(void)
 303{
 304        register_syscore_ops(&sched_clock_ops);
 305
 306        return 0;
 307}
 308device_initcall(sched_clock_syscore_init);
 309