linux/mm/hugetlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/mmdebug.h>
  23#include <linux/sched/signal.h>
  24#include <linux/rmap.h>
  25#include <linux/string_helpers.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/jhash.h>
  29#include <linux/numa.h>
  30
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/tlb.h>
  34
  35#include <linux/io.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/node.h>
  39#include <linux/userfaultfd_k.h>
  40#include <linux/page_owner.h>
  41#include "internal.h"
  42
  43int hugetlb_max_hstate __read_mostly;
  44unsigned int default_hstate_idx;
  45struct hstate hstates[HUGE_MAX_HSTATE];
  46/*
  47 * Minimum page order among possible hugepage sizes, set to a proper value
  48 * at boot time.
  49 */
  50static unsigned int minimum_order __read_mostly = UINT_MAX;
  51
  52__initdata LIST_HEAD(huge_boot_pages);
  53
  54/* for command line parsing */
  55static struct hstate * __initdata parsed_hstate;
  56static unsigned long __initdata default_hstate_max_huge_pages;
  57static unsigned long __initdata default_hstate_size;
  58static bool __initdata parsed_valid_hugepagesz = true;
  59
  60/*
  61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  62 * free_huge_pages, and surplus_huge_pages.
  63 */
  64DEFINE_SPINLOCK(hugetlb_lock);
  65
  66/*
  67 * Serializes faults on the same logical page.  This is used to
  68 * prevent spurious OOMs when the hugepage pool is fully utilized.
  69 */
  70static int num_fault_mutexes;
  71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  72
  73/* Forward declaration */
  74static int hugetlb_acct_memory(struct hstate *h, long delta);
  75
  76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  77{
  78        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  79
  80        spin_unlock(&spool->lock);
  81
  82        /* If no pages are used, and no other handles to the subpool
  83         * remain, give up any reservations mased on minimum size and
  84         * free the subpool */
  85        if (free) {
  86                if (spool->min_hpages != -1)
  87                        hugetlb_acct_memory(spool->hstate,
  88                                                -spool->min_hpages);
  89                kfree(spool);
  90        }
  91}
  92
  93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  94                                                long min_hpages)
  95{
  96        struct hugepage_subpool *spool;
  97
  98        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  99        if (!spool)
 100                return NULL;
 101
 102        spin_lock_init(&spool->lock);
 103        spool->count = 1;
 104        spool->max_hpages = max_hpages;
 105        spool->hstate = h;
 106        spool->min_hpages = min_hpages;
 107
 108        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 109                kfree(spool);
 110                return NULL;
 111        }
 112        spool->rsv_hpages = min_hpages;
 113
 114        return spool;
 115}
 116
 117void hugepage_put_subpool(struct hugepage_subpool *spool)
 118{
 119        spin_lock(&spool->lock);
 120        BUG_ON(!spool->count);
 121        spool->count--;
 122        unlock_or_release_subpool(spool);
 123}
 124
 125/*
 126 * Subpool accounting for allocating and reserving pages.
 127 * Return -ENOMEM if there are not enough resources to satisfy the
 128 * the request.  Otherwise, return the number of pages by which the
 129 * global pools must be adjusted (upward).  The returned value may
 130 * only be different than the passed value (delta) in the case where
 131 * a subpool minimum size must be manitained.
 132 */
 133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 134                                      long delta)
 135{
 136        long ret = delta;
 137
 138        if (!spool)
 139                return ret;
 140
 141        spin_lock(&spool->lock);
 142
 143        if (spool->max_hpages != -1) {          /* maximum size accounting */
 144                if ((spool->used_hpages + delta) <= spool->max_hpages)
 145                        spool->used_hpages += delta;
 146                else {
 147                        ret = -ENOMEM;
 148                        goto unlock_ret;
 149                }
 150        }
 151
 152        /* minimum size accounting */
 153        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 154                if (delta > spool->rsv_hpages) {
 155                        /*
 156                         * Asking for more reserves than those already taken on
 157                         * behalf of subpool.  Return difference.
 158                         */
 159                        ret = delta - spool->rsv_hpages;
 160                        spool->rsv_hpages = 0;
 161                } else {
 162                        ret = 0;        /* reserves already accounted for */
 163                        spool->rsv_hpages -= delta;
 164                }
 165        }
 166
 167unlock_ret:
 168        spin_unlock(&spool->lock);
 169        return ret;
 170}
 171
 172/*
 173 * Subpool accounting for freeing and unreserving pages.
 174 * Return the number of global page reservations that must be dropped.
 175 * The return value may only be different than the passed value (delta)
 176 * in the case where a subpool minimum size must be maintained.
 177 */
 178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 179                                       long delta)
 180{
 181        long ret = delta;
 182
 183        if (!spool)
 184                return delta;
 185
 186        spin_lock(&spool->lock);
 187
 188        if (spool->max_hpages != -1)            /* maximum size accounting */
 189                spool->used_hpages -= delta;
 190
 191         /* minimum size accounting */
 192        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 193                if (spool->rsv_hpages + delta <= spool->min_hpages)
 194                        ret = 0;
 195                else
 196                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 197
 198                spool->rsv_hpages += delta;
 199                if (spool->rsv_hpages > spool->min_hpages)
 200                        spool->rsv_hpages = spool->min_hpages;
 201        }
 202
 203        /*
 204         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 205         * quota reference, free it now.
 206         */
 207        unlock_or_release_subpool(spool);
 208
 209        return ret;
 210}
 211
 212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 213{
 214        return HUGETLBFS_SB(inode->i_sb)->spool;
 215}
 216
 217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 218{
 219        return subpool_inode(file_inode(vma->vm_file));
 220}
 221
 222/*
 223 * Region tracking -- allows tracking of reservations and instantiated pages
 224 *                    across the pages in a mapping.
 225 *
 226 * The region data structures are embedded into a resv_map and protected
 227 * by a resv_map's lock.  The set of regions within the resv_map represent
 228 * reservations for huge pages, or huge pages that have already been
 229 * instantiated within the map.  The from and to elements are huge page
 230 * indicies into the associated mapping.  from indicates the starting index
 231 * of the region.  to represents the first index past the end of  the region.
 232 *
 233 * For example, a file region structure with from == 0 and to == 4 represents
 234 * four huge pages in a mapping.  It is important to note that the to element
 235 * represents the first element past the end of the region. This is used in
 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 237 *
 238 * Interval notation of the form [from, to) will be used to indicate that
 239 * the endpoint from is inclusive and to is exclusive.
 240 */
 241struct file_region {
 242        struct list_head link;
 243        long from;
 244        long to;
 245};
 246
 247/*
 248 * Add the huge page range represented by [f, t) to the reserve
 249 * map.  In the normal case, existing regions will be expanded
 250 * to accommodate the specified range.  Sufficient regions should
 251 * exist for expansion due to the previous call to region_chg
 252 * with the same range.  However, it is possible that region_del
 253 * could have been called after region_chg and modifed the map
 254 * in such a way that no region exists to be expanded.  In this
 255 * case, pull a region descriptor from the cache associated with
 256 * the map and use that for the new range.
 257 *
 258 * Return the number of new huge pages added to the map.  This
 259 * number is greater than or equal to zero.
 260 */
 261static long region_add(struct resv_map *resv, long f, long t)
 262{
 263        struct list_head *head = &resv->regions;
 264        struct file_region *rg, *nrg, *trg;
 265        long add = 0;
 266
 267        spin_lock(&resv->lock);
 268        /* Locate the region we are either in or before. */
 269        list_for_each_entry(rg, head, link)
 270                if (f <= rg->to)
 271                        break;
 272
 273        /*
 274         * If no region exists which can be expanded to include the
 275         * specified range, the list must have been modified by an
 276         * interleving call to region_del().  Pull a region descriptor
 277         * from the cache and use it for this range.
 278         */
 279        if (&rg->link == head || t < rg->from) {
 280                VM_BUG_ON(resv->region_cache_count <= 0);
 281
 282                resv->region_cache_count--;
 283                nrg = list_first_entry(&resv->region_cache, struct file_region,
 284                                        link);
 285                list_del(&nrg->link);
 286
 287                nrg->from = f;
 288                nrg->to = t;
 289                list_add(&nrg->link, rg->link.prev);
 290
 291                add += t - f;
 292                goto out_locked;
 293        }
 294
 295        /* Round our left edge to the current segment if it encloses us. */
 296        if (f > rg->from)
 297                f = rg->from;
 298
 299        /* Check for and consume any regions we now overlap with. */
 300        nrg = rg;
 301        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 302                if (&rg->link == head)
 303                        break;
 304                if (rg->from > t)
 305                        break;
 306
 307                /* If this area reaches higher then extend our area to
 308                 * include it completely.  If this is not the first area
 309                 * which we intend to reuse, free it. */
 310                if (rg->to > t)
 311                        t = rg->to;
 312                if (rg != nrg) {
 313                        /* Decrement return value by the deleted range.
 314                         * Another range will span this area so that by
 315                         * end of routine add will be >= zero
 316                         */
 317                        add -= (rg->to - rg->from);
 318                        list_del(&rg->link);
 319                        kfree(rg);
 320                }
 321        }
 322
 323        add += (nrg->from - f);         /* Added to beginning of region */
 324        nrg->from = f;
 325        add += t - nrg->to;             /* Added to end of region */
 326        nrg->to = t;
 327
 328out_locked:
 329        resv->adds_in_progress--;
 330        spin_unlock(&resv->lock);
 331        VM_BUG_ON(add < 0);
 332        return add;
 333}
 334
 335/*
 336 * Examine the existing reserve map and determine how many
 337 * huge pages in the specified range [f, t) are NOT currently
 338 * represented.  This routine is called before a subsequent
 339 * call to region_add that will actually modify the reserve
 340 * map to add the specified range [f, t).  region_chg does
 341 * not change the number of huge pages represented by the
 342 * map.  However, if the existing regions in the map can not
 343 * be expanded to represent the new range, a new file_region
 344 * structure is added to the map as a placeholder.  This is
 345 * so that the subsequent region_add call will have all the
 346 * regions it needs and will not fail.
 347 *
 348 * Upon entry, region_chg will also examine the cache of region descriptors
 349 * associated with the map.  If there are not enough descriptors cached, one
 350 * will be allocated for the in progress add operation.
 351 *
 352 * Returns the number of huge pages that need to be added to the existing
 353 * reservation map for the range [f, t).  This number is greater or equal to
 354 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 355 * is needed and can not be allocated.
 356 */
 357static long region_chg(struct resv_map *resv, long f, long t)
 358{
 359        struct list_head *head = &resv->regions;
 360        struct file_region *rg, *nrg = NULL;
 361        long chg = 0;
 362
 363retry:
 364        spin_lock(&resv->lock);
 365retry_locked:
 366        resv->adds_in_progress++;
 367
 368        /*
 369         * Check for sufficient descriptors in the cache to accommodate
 370         * the number of in progress add operations.
 371         */
 372        if (resv->adds_in_progress > resv->region_cache_count) {
 373                struct file_region *trg;
 374
 375                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 376                /* Must drop lock to allocate a new descriptor. */
 377                resv->adds_in_progress--;
 378                spin_unlock(&resv->lock);
 379
 380                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 381                if (!trg) {
 382                        kfree(nrg);
 383                        return -ENOMEM;
 384                }
 385
 386                spin_lock(&resv->lock);
 387                list_add(&trg->link, &resv->region_cache);
 388                resv->region_cache_count++;
 389                goto retry_locked;
 390        }
 391
 392        /* Locate the region we are before or in. */
 393        list_for_each_entry(rg, head, link)
 394                if (f <= rg->to)
 395                        break;
 396
 397        /* If we are below the current region then a new region is required.
 398         * Subtle, allocate a new region at the position but make it zero
 399         * size such that we can guarantee to record the reservation. */
 400        if (&rg->link == head || t < rg->from) {
 401                if (!nrg) {
 402                        resv->adds_in_progress--;
 403                        spin_unlock(&resv->lock);
 404                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 405                        if (!nrg)
 406                                return -ENOMEM;
 407
 408                        nrg->from = f;
 409                        nrg->to   = f;
 410                        INIT_LIST_HEAD(&nrg->link);
 411                        goto retry;
 412                }
 413
 414                list_add(&nrg->link, rg->link.prev);
 415                chg = t - f;
 416                goto out_nrg;
 417        }
 418
 419        /* Round our left edge to the current segment if it encloses us. */
 420        if (f > rg->from)
 421                f = rg->from;
 422        chg = t - f;
 423
 424        /* Check for and consume any regions we now overlap with. */
 425        list_for_each_entry(rg, rg->link.prev, link) {
 426                if (&rg->link == head)
 427                        break;
 428                if (rg->from > t)
 429                        goto out;
 430
 431                /* We overlap with this area, if it extends further than
 432                 * us then we must extend ourselves.  Account for its
 433                 * existing reservation. */
 434                if (rg->to > t) {
 435                        chg += rg->to - t;
 436                        t = rg->to;
 437                }
 438                chg -= rg->to - rg->from;
 439        }
 440
 441out:
 442        spin_unlock(&resv->lock);
 443        /*  We already know we raced and no longer need the new region */
 444        kfree(nrg);
 445        return chg;
 446out_nrg:
 447        spin_unlock(&resv->lock);
 448        return chg;
 449}
 450
 451/*
 452 * Abort the in progress add operation.  The adds_in_progress field
 453 * of the resv_map keeps track of the operations in progress between
 454 * calls to region_chg and region_add.  Operations are sometimes
 455 * aborted after the call to region_chg.  In such cases, region_abort
 456 * is called to decrement the adds_in_progress counter.
 457 *
 458 * NOTE: The range arguments [f, t) are not needed or used in this
 459 * routine.  They are kept to make reading the calling code easier as
 460 * arguments will match the associated region_chg call.
 461 */
 462static void region_abort(struct resv_map *resv, long f, long t)
 463{
 464        spin_lock(&resv->lock);
 465        VM_BUG_ON(!resv->region_cache_count);
 466        resv->adds_in_progress--;
 467        spin_unlock(&resv->lock);
 468}
 469
 470/*
 471 * Delete the specified range [f, t) from the reserve map.  If the
 472 * t parameter is LONG_MAX, this indicates that ALL regions after f
 473 * should be deleted.  Locate the regions which intersect [f, t)
 474 * and either trim, delete or split the existing regions.
 475 *
 476 * Returns the number of huge pages deleted from the reserve map.
 477 * In the normal case, the return value is zero or more.  In the
 478 * case where a region must be split, a new region descriptor must
 479 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 480 * NOTE: If the parameter t == LONG_MAX, then we will never split
 481 * a region and possibly return -ENOMEM.  Callers specifying
 482 * t == LONG_MAX do not need to check for -ENOMEM error.
 483 */
 484static long region_del(struct resv_map *resv, long f, long t)
 485{
 486        struct list_head *head = &resv->regions;
 487        struct file_region *rg, *trg;
 488        struct file_region *nrg = NULL;
 489        long del = 0;
 490
 491retry:
 492        spin_lock(&resv->lock);
 493        list_for_each_entry_safe(rg, trg, head, link) {
 494                /*
 495                 * Skip regions before the range to be deleted.  file_region
 496                 * ranges are normally of the form [from, to).  However, there
 497                 * may be a "placeholder" entry in the map which is of the form
 498                 * (from, to) with from == to.  Check for placeholder entries
 499                 * at the beginning of the range to be deleted.
 500                 */
 501                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 502                        continue;
 503
 504                if (rg->from >= t)
 505                        break;
 506
 507                if (f > rg->from && t < rg->to) { /* Must split region */
 508                        /*
 509                         * Check for an entry in the cache before dropping
 510                         * lock and attempting allocation.
 511                         */
 512                        if (!nrg &&
 513                            resv->region_cache_count > resv->adds_in_progress) {
 514                                nrg = list_first_entry(&resv->region_cache,
 515                                                        struct file_region,
 516                                                        link);
 517                                list_del(&nrg->link);
 518                                resv->region_cache_count--;
 519                        }
 520
 521                        if (!nrg) {
 522                                spin_unlock(&resv->lock);
 523                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 524                                if (!nrg)
 525                                        return -ENOMEM;
 526                                goto retry;
 527                        }
 528
 529                        del += t - f;
 530
 531                        /* New entry for end of split region */
 532                        nrg->from = t;
 533                        nrg->to = rg->to;
 534                        INIT_LIST_HEAD(&nrg->link);
 535
 536                        /* Original entry is trimmed */
 537                        rg->to = f;
 538
 539                        list_add(&nrg->link, &rg->link);
 540                        nrg = NULL;
 541                        break;
 542                }
 543
 544                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 545                        del += rg->to - rg->from;
 546                        list_del(&rg->link);
 547                        kfree(rg);
 548                        continue;
 549                }
 550
 551                if (f <= rg->from) {    /* Trim beginning of region */
 552                        del += t - rg->from;
 553                        rg->from = t;
 554                } else {                /* Trim end of region */
 555                        del += rg->to - f;
 556                        rg->to = f;
 557                }
 558        }
 559
 560        spin_unlock(&resv->lock);
 561        kfree(nrg);
 562        return del;
 563}
 564
 565/*
 566 * A rare out of memory error was encountered which prevented removal of
 567 * the reserve map region for a page.  The huge page itself was free'ed
 568 * and removed from the page cache.  This routine will adjust the subpool
 569 * usage count, and the global reserve count if needed.  By incrementing
 570 * these counts, the reserve map entry which could not be deleted will
 571 * appear as a "reserved" entry instead of simply dangling with incorrect
 572 * counts.
 573 */
 574void hugetlb_fix_reserve_counts(struct inode *inode)
 575{
 576        struct hugepage_subpool *spool = subpool_inode(inode);
 577        long rsv_adjust;
 578
 579        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 580        if (rsv_adjust) {
 581                struct hstate *h = hstate_inode(inode);
 582
 583                hugetlb_acct_memory(h, 1);
 584        }
 585}
 586
 587/*
 588 * Count and return the number of huge pages in the reserve map
 589 * that intersect with the range [f, t).
 590 */
 591static long region_count(struct resv_map *resv, long f, long t)
 592{
 593        struct list_head *head = &resv->regions;
 594        struct file_region *rg;
 595        long chg = 0;
 596
 597        spin_lock(&resv->lock);
 598        /* Locate each segment we overlap with, and count that overlap. */
 599        list_for_each_entry(rg, head, link) {
 600                long seg_from;
 601                long seg_to;
 602
 603                if (rg->to <= f)
 604                        continue;
 605                if (rg->from >= t)
 606                        break;
 607
 608                seg_from = max(rg->from, f);
 609                seg_to = min(rg->to, t);
 610
 611                chg += seg_to - seg_from;
 612        }
 613        spin_unlock(&resv->lock);
 614
 615        return chg;
 616}
 617
 618/*
 619 * Convert the address within this vma to the page offset within
 620 * the mapping, in pagecache page units; huge pages here.
 621 */
 622static pgoff_t vma_hugecache_offset(struct hstate *h,
 623                        struct vm_area_struct *vma, unsigned long address)
 624{
 625        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 626                        (vma->vm_pgoff >> huge_page_order(h));
 627}
 628
 629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 630                                     unsigned long address)
 631{
 632        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 633}
 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
 635
 636/*
 637 * Return the size of the pages allocated when backing a VMA. In the majority
 638 * cases this will be same size as used by the page table entries.
 639 */
 640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 641{
 642        if (vma->vm_ops && vma->vm_ops->pagesize)
 643                return vma->vm_ops->pagesize(vma);
 644        return PAGE_SIZE;
 645}
 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 647
 648/*
 649 * Return the page size being used by the MMU to back a VMA. In the majority
 650 * of cases, the page size used by the kernel matches the MMU size. On
 651 * architectures where it differs, an architecture-specific 'strong'
 652 * version of this symbol is required.
 653 */
 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 655{
 656        return vma_kernel_pagesize(vma);
 657}
 658
 659/*
 660 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 661 * bits of the reservation map pointer, which are always clear due to
 662 * alignment.
 663 */
 664#define HPAGE_RESV_OWNER    (1UL << 0)
 665#define HPAGE_RESV_UNMAPPED (1UL << 1)
 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 667
 668/*
 669 * These helpers are used to track how many pages are reserved for
 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 671 * is guaranteed to have their future faults succeed.
 672 *
 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 674 * the reserve counters are updated with the hugetlb_lock held. It is safe
 675 * to reset the VMA at fork() time as it is not in use yet and there is no
 676 * chance of the global counters getting corrupted as a result of the values.
 677 *
 678 * The private mapping reservation is represented in a subtly different
 679 * manner to a shared mapping.  A shared mapping has a region map associated
 680 * with the underlying file, this region map represents the backing file
 681 * pages which have ever had a reservation assigned which this persists even
 682 * after the page is instantiated.  A private mapping has a region map
 683 * associated with the original mmap which is attached to all VMAs which
 684 * reference it, this region map represents those offsets which have consumed
 685 * reservation ie. where pages have been instantiated.
 686 */
 687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 688{
 689        return (unsigned long)vma->vm_private_data;
 690}
 691
 692static void set_vma_private_data(struct vm_area_struct *vma,
 693                                                        unsigned long value)
 694{
 695        vma->vm_private_data = (void *)value;
 696}
 697
 698struct resv_map *resv_map_alloc(void)
 699{
 700        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 701        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 702
 703        if (!resv_map || !rg) {
 704                kfree(resv_map);
 705                kfree(rg);
 706                return NULL;
 707        }
 708
 709        kref_init(&resv_map->refs);
 710        spin_lock_init(&resv_map->lock);
 711        INIT_LIST_HEAD(&resv_map->regions);
 712
 713        resv_map->adds_in_progress = 0;
 714
 715        INIT_LIST_HEAD(&resv_map->region_cache);
 716        list_add(&rg->link, &resv_map->region_cache);
 717        resv_map->region_cache_count = 1;
 718
 719        return resv_map;
 720}
 721
 722void resv_map_release(struct kref *ref)
 723{
 724        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 725        struct list_head *head = &resv_map->region_cache;
 726        struct file_region *rg, *trg;
 727
 728        /* Clear out any active regions before we release the map. */
 729        region_del(resv_map, 0, LONG_MAX);
 730
 731        /* ... and any entries left in the cache */
 732        list_for_each_entry_safe(rg, trg, head, link) {
 733                list_del(&rg->link);
 734                kfree(rg);
 735        }
 736
 737        VM_BUG_ON(resv_map->adds_in_progress);
 738
 739        kfree(resv_map);
 740}
 741
 742static inline struct resv_map *inode_resv_map(struct inode *inode)
 743{
 744        /*
 745         * At inode evict time, i_mapping may not point to the original
 746         * address space within the inode.  This original address space
 747         * contains the pointer to the resv_map.  So, always use the
 748         * address space embedded within the inode.
 749         * The VERY common case is inode->mapping == &inode->i_data but,
 750         * this may not be true for device special inodes.
 751         */
 752        return (struct resv_map *)(&inode->i_data)->private_data;
 753}
 754
 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 756{
 757        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 758        if (vma->vm_flags & VM_MAYSHARE) {
 759                struct address_space *mapping = vma->vm_file->f_mapping;
 760                struct inode *inode = mapping->host;
 761
 762                return inode_resv_map(inode);
 763
 764        } else {
 765                return (struct resv_map *)(get_vma_private_data(vma) &
 766                                                        ~HPAGE_RESV_MASK);
 767        }
 768}
 769
 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 771{
 772        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775        set_vma_private_data(vma, (get_vma_private_data(vma) &
 776                                HPAGE_RESV_MASK) | (unsigned long)map);
 777}
 778
 779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 780{
 781        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 782        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 783
 784        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 785}
 786
 787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 788{
 789        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 790
 791        return (get_vma_private_data(vma) & flag) != 0;
 792}
 793
 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 796{
 797        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 798        if (!(vma->vm_flags & VM_MAYSHARE))
 799                vma->vm_private_data = (void *)0;
 800}
 801
 802/* Returns true if the VMA has associated reserve pages */
 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 804{
 805        if (vma->vm_flags & VM_NORESERVE) {
 806                /*
 807                 * This address is already reserved by other process(chg == 0),
 808                 * so, we should decrement reserved count. Without decrementing,
 809                 * reserve count remains after releasing inode, because this
 810                 * allocated page will go into page cache and is regarded as
 811                 * coming from reserved pool in releasing step.  Currently, we
 812                 * don't have any other solution to deal with this situation
 813                 * properly, so add work-around here.
 814                 */
 815                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 816                        return true;
 817                else
 818                        return false;
 819        }
 820
 821        /* Shared mappings always use reserves */
 822        if (vma->vm_flags & VM_MAYSHARE) {
 823                /*
 824                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 825                 * be a region map for all pages.  The only situation where
 826                 * there is no region map is if a hole was punched via
 827                 * fallocate.  In this case, there really are no reverves to
 828                 * use.  This situation is indicated if chg != 0.
 829                 */
 830                if (chg)
 831                        return false;
 832                else
 833                        return true;
 834        }
 835
 836        /*
 837         * Only the process that called mmap() has reserves for
 838         * private mappings.
 839         */
 840        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 841                /*
 842                 * Like the shared case above, a hole punch or truncate
 843                 * could have been performed on the private mapping.
 844                 * Examine the value of chg to determine if reserves
 845                 * actually exist or were previously consumed.
 846                 * Very Subtle - The value of chg comes from a previous
 847                 * call to vma_needs_reserves().  The reserve map for
 848                 * private mappings has different (opposite) semantics
 849                 * than that of shared mappings.  vma_needs_reserves()
 850                 * has already taken this difference in semantics into
 851                 * account.  Therefore, the meaning of chg is the same
 852                 * as in the shared case above.  Code could easily be
 853                 * combined, but keeping it separate draws attention to
 854                 * subtle differences.
 855                 */
 856                if (chg)
 857                        return false;
 858                else
 859                        return true;
 860        }
 861
 862        return false;
 863}
 864
 865static void enqueue_huge_page(struct hstate *h, struct page *page)
 866{
 867        int nid = page_to_nid(page);
 868        list_move(&page->lru, &h->hugepage_freelists[nid]);
 869        h->free_huge_pages++;
 870        h->free_huge_pages_node[nid]++;
 871}
 872
 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 874{
 875        struct page *page;
 876
 877        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 878                if (!PageHWPoison(page))
 879                        break;
 880        /*
 881         * if 'non-isolated free hugepage' not found on the list,
 882         * the allocation fails.
 883         */
 884        if (&h->hugepage_freelists[nid] == &page->lru)
 885                return NULL;
 886        list_move(&page->lru, &h->hugepage_activelist);
 887        set_page_refcounted(page);
 888        h->free_huge_pages--;
 889        h->free_huge_pages_node[nid]--;
 890        return page;
 891}
 892
 893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 894                nodemask_t *nmask)
 895{
 896        unsigned int cpuset_mems_cookie;
 897        struct zonelist *zonelist;
 898        struct zone *zone;
 899        struct zoneref *z;
 900        int node = NUMA_NO_NODE;
 901
 902        zonelist = node_zonelist(nid, gfp_mask);
 903
 904retry_cpuset:
 905        cpuset_mems_cookie = read_mems_allowed_begin();
 906        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 907                struct page *page;
 908
 909                if (!cpuset_zone_allowed(zone, gfp_mask))
 910                        continue;
 911                /*
 912                 * no need to ask again on the same node. Pool is node rather than
 913                 * zone aware
 914                 */
 915                if (zone_to_nid(zone) == node)
 916                        continue;
 917                node = zone_to_nid(zone);
 918
 919                page = dequeue_huge_page_node_exact(h, node);
 920                if (page)
 921                        return page;
 922        }
 923        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 924                goto retry_cpuset;
 925
 926        return NULL;
 927}
 928
 929/* Movability of hugepages depends on migration support. */
 930static inline gfp_t htlb_alloc_mask(struct hstate *h)
 931{
 932        if (hugepage_movable_supported(h))
 933                return GFP_HIGHUSER_MOVABLE;
 934        else
 935                return GFP_HIGHUSER;
 936}
 937
 938static struct page *dequeue_huge_page_vma(struct hstate *h,
 939                                struct vm_area_struct *vma,
 940                                unsigned long address, int avoid_reserve,
 941                                long chg)
 942{
 943        struct page *page;
 944        struct mempolicy *mpol;
 945        gfp_t gfp_mask;
 946        nodemask_t *nodemask;
 947        int nid;
 948
 949        /*
 950         * A child process with MAP_PRIVATE mappings created by their parent
 951         * have no page reserves. This check ensures that reservations are
 952         * not "stolen". The child may still get SIGKILLed
 953         */
 954        if (!vma_has_reserves(vma, chg) &&
 955                        h->free_huge_pages - h->resv_huge_pages == 0)
 956                goto err;
 957
 958        /* If reserves cannot be used, ensure enough pages are in the pool */
 959        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 960                goto err;
 961
 962        gfp_mask = htlb_alloc_mask(h);
 963        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 964        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 965        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 966                SetPagePrivate(page);
 967                h->resv_huge_pages--;
 968        }
 969
 970        mpol_cond_put(mpol);
 971        return page;
 972
 973err:
 974        return NULL;
 975}
 976
 977/*
 978 * common helper functions for hstate_next_node_to_{alloc|free}.
 979 * We may have allocated or freed a huge page based on a different
 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 981 * be outside of *nodes_allowed.  Ensure that we use an allowed
 982 * node for alloc or free.
 983 */
 984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 985{
 986        nid = next_node_in(nid, *nodes_allowed);
 987        VM_BUG_ON(nid >= MAX_NUMNODES);
 988
 989        return nid;
 990}
 991
 992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 993{
 994        if (!node_isset(nid, *nodes_allowed))
 995                nid = next_node_allowed(nid, nodes_allowed);
 996        return nid;
 997}
 998
 999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006                                        nodemask_t *nodes_allowed)
1007{
1008        int nid;
1009
1010        VM_BUG_ON(!nodes_allowed);
1011
1012        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015        return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page.  Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026        int nid;
1027
1028        VM_BUG_ON(!nodes_allowed);
1029
1030        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033        return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1037        for (nr_nodes = nodes_weight(*mask);                            \
1038                nr_nodes > 0 &&                                         \
1039                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1040                nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1043        for (nr_nodes = nodes_weight(*mask);                            \
1044                nr_nodes > 0 &&                                         \
1045                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1046                nr_nodes--)
1047
1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049static void destroy_compound_gigantic_page(struct page *page,
1050                                        unsigned int order)
1051{
1052        int i;
1053        int nr_pages = 1 << order;
1054        struct page *p = page + 1;
1055
1056        atomic_set(compound_mapcount_ptr(page), 0);
1057        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058                clear_compound_head(p);
1059                set_page_refcounted(p);
1060        }
1061
1062        set_compound_order(page, 0);
1063        __ClearPageHead(page);
1064}
1065
1066static void free_gigantic_page(struct page *page, unsigned int order)
1067{
1068        free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
1071#ifdef CONFIG_CONTIG_ALLOC
1072static int __alloc_gigantic_page(unsigned long start_pfn,
1073                                unsigned long nr_pages, gfp_t gfp_mask)
1074{
1075        unsigned long end_pfn = start_pfn + nr_pages;
1076        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077                                  gfp_mask);
1078}
1079
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081                        unsigned long start_pfn, unsigned long nr_pages)
1082{
1083        unsigned long i, end_pfn = start_pfn + nr_pages;
1084        struct page *page;
1085
1086        for (i = start_pfn; i < end_pfn; i++) {
1087                page = pfn_to_online_page(i);
1088                if (!page)
1089                        return false;
1090
1091                if (page_zone(page) != z)
1092                        return false;
1093
1094                if (PageReserved(page))
1095                        return false;
1096
1097                if (page_count(page) > 0)
1098                        return false;
1099
1100                if (PageHuge(page))
1101                        return false;
1102        }
1103
1104        return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108                        unsigned long start_pfn, unsigned long nr_pages)
1109{
1110        unsigned long last_pfn = start_pfn + nr_pages - 1;
1111        return zone_spans_pfn(zone, last_pfn);
1112}
1113
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115                int nid, nodemask_t *nodemask)
1116{
1117        unsigned int order = huge_page_order(h);
1118        unsigned long nr_pages = 1 << order;
1119        unsigned long ret, pfn, flags;
1120        struct zonelist *zonelist;
1121        struct zone *zone;
1122        struct zoneref *z;
1123
1124        zonelist = node_zonelist(nid, gfp_mask);
1125        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126                spin_lock_irqsave(&zone->lock, flags);
1127
1128                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130                        if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131                                /*
1132                                 * We release the zone lock here because
1133                                 * alloc_contig_range() will also lock the zone
1134                                 * at some point. If there's an allocation
1135                                 * spinning on this lock, it may win the race
1136                                 * and cause alloc_contig_range() to fail...
1137                                 */
1138                                spin_unlock_irqrestore(&zone->lock, flags);
1139                                ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140                                if (!ret)
1141                                        return pfn_to_page(pfn);
1142                                spin_lock_irqsave(&zone->lock, flags);
1143                        }
1144                        pfn += nr_pages;
1145                }
1146
1147                spin_unlock_irqrestore(&zone->lock, flags);
1148        }
1149
1150        return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157                                        int nid, nodemask_t *nodemask)
1158{
1159        return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
1162
1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165                                        int nid, nodemask_t *nodemask)
1166{
1167        return NULL;
1168}
1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170static inline void destroy_compound_gigantic_page(struct page *page,
1171                                                unsigned int order) { }
1172#endif
1173
1174static void update_and_free_page(struct hstate *h, struct page *page)
1175{
1176        int i;
1177
1178        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179                return;
1180
1181        h->nr_huge_pages--;
1182        h->nr_huge_pages_node[page_to_nid(page)]--;
1183        for (i = 0; i < pages_per_huge_page(h); i++) {
1184                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185                                1 << PG_referenced | 1 << PG_dirty |
1186                                1 << PG_active | 1 << PG_private |
1187                                1 << PG_writeback);
1188        }
1189        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191        set_page_refcounted(page);
1192        if (hstate_is_gigantic(h)) {
1193                destroy_compound_gigantic_page(page, huge_page_order(h));
1194                free_gigantic_page(page, huge_page_order(h));
1195        } else {
1196                __free_pages(page, huge_page_order(h));
1197        }
1198}
1199
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202        struct hstate *h;
1203
1204        for_each_hstate(h) {
1205                if (huge_page_size(h) == size)
1206                        return h;
1207        }
1208        return NULL;
1209}
1210
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219        VM_BUG_ON_PAGE(!PageHuge(page), page);
1220        return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227        SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233        ClearPagePrivate(&page[1]);
1234}
1235
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242        if (!PageHuge(page))
1243                return false;
1244
1245        return (unsigned long)page[2].mapping == -1U;
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250        page[2].mapping = (void *)-1U;
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255        page[2].mapping = NULL;
1256}
1257
1258void free_huge_page(struct page *page)
1259{
1260        /*
1261         * Can't pass hstate in here because it is called from the
1262         * compound page destructor.
1263         */
1264        struct hstate *h = page_hstate(page);
1265        int nid = page_to_nid(page);
1266        struct hugepage_subpool *spool =
1267                (struct hugepage_subpool *)page_private(page);
1268        bool restore_reserve;
1269
1270        VM_BUG_ON_PAGE(page_count(page), page);
1271        VM_BUG_ON_PAGE(page_mapcount(page), page);
1272
1273        set_page_private(page, 0);
1274        page->mapping = NULL;
1275        restore_reserve = PagePrivate(page);
1276        ClearPagePrivate(page);
1277
1278        /*
1279         * If PagePrivate() was set on page, page allocation consumed a
1280         * reservation.  If the page was associated with a subpool, there
1281         * would have been a page reserved in the subpool before allocation
1282         * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283         * reservtion, do not call hugepage_subpool_put_pages() as this will
1284         * remove the reserved page from the subpool.
1285         */
1286        if (!restore_reserve) {
1287                /*
1288                 * A return code of zero implies that the subpool will be
1289                 * under its minimum size if the reservation is not restored
1290                 * after page is free.  Therefore, force restore_reserve
1291                 * operation.
1292                 */
1293                if (hugepage_subpool_put_pages(spool, 1) == 0)
1294                        restore_reserve = true;
1295        }
1296
1297        spin_lock(&hugetlb_lock);
1298        clear_page_huge_active(page);
1299        hugetlb_cgroup_uncharge_page(hstate_index(h),
1300                                     pages_per_huge_page(h), page);
1301        if (restore_reserve)
1302                h->resv_huge_pages++;
1303
1304        if (PageHugeTemporary(page)) {
1305                list_del(&page->lru);
1306                ClearPageHugeTemporary(page);
1307                update_and_free_page(h, page);
1308        } else if (h->surplus_huge_pages_node[nid]) {
1309                /* remove the page from active list */
1310                list_del(&page->lru);
1311                update_and_free_page(h, page);
1312                h->surplus_huge_pages--;
1313                h->surplus_huge_pages_node[nid]--;
1314        } else {
1315                arch_clear_hugepage_flags(page);
1316                enqueue_huge_page(h, page);
1317        }
1318        spin_unlock(&hugetlb_lock);
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322{
1323        INIT_LIST_HEAD(&page->lru);
1324        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325        spin_lock(&hugetlb_lock);
1326        set_hugetlb_cgroup(page, NULL);
1327        h->nr_huge_pages++;
1328        h->nr_huge_pages_node[nid]++;
1329        spin_unlock(&hugetlb_lock);
1330}
1331
1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333{
1334        int i;
1335        int nr_pages = 1 << order;
1336        struct page *p = page + 1;
1337
1338        /* we rely on prep_new_huge_page to set the destructor */
1339        set_compound_order(page, order);
1340        __ClearPageReserved(page);
1341        __SetPageHead(page);
1342        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343                /*
1344                 * For gigantic hugepages allocated through bootmem at
1345                 * boot, it's safer to be consistent with the not-gigantic
1346                 * hugepages and clear the PG_reserved bit from all tail pages
1347                 * too.  Otherwse drivers using get_user_pages() to access tail
1348                 * pages may get the reference counting wrong if they see
1349                 * PG_reserved set on a tail page (despite the head page not
1350                 * having PG_reserved set).  Enforcing this consistency between
1351                 * head and tail pages allows drivers to optimize away a check
1352                 * on the head page when they need know if put_page() is needed
1353                 * after get_user_pages().
1354                 */
1355                __ClearPageReserved(p);
1356                set_page_count(p, 0);
1357                set_compound_head(p, page);
1358        }
1359        atomic_set(compound_mapcount_ptr(page), -1);
1360}
1361
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages.  See the PageTransHuge() documentation for more
1365 * details.
1366 */
1367int PageHuge(struct page *page)
1368{
1369        if (!PageCompound(page))
1370                return 0;
1371
1372        page = compound_head(page);
1373        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374}
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
1383        if (!PageHead(page_head))
1384                return 0;
1385
1386        return get_compound_page_dtor(page_head) == free_huge_page;
1387}
1388
1389pgoff_t __basepage_index(struct page *page)
1390{
1391        struct page *page_head = compound_head(page);
1392        pgoff_t index = page_index(page_head);
1393        unsigned long compound_idx;
1394
1395        if (!PageHuge(page_head))
1396                return page_index(page);
1397
1398        if (compound_order(page_head) >= MAX_ORDER)
1399                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400        else
1401                compound_idx = page - page_head;
1402
1403        return (index << compound_order(page_head)) + compound_idx;
1404}
1405
1406static struct page *alloc_buddy_huge_page(struct hstate *h,
1407                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408                nodemask_t *node_alloc_noretry)
1409{
1410        int order = huge_page_order(h);
1411        struct page *page;
1412        bool alloc_try_hard = true;
1413
1414        /*
1415         * By default we always try hard to allocate the page with
1416         * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1417         * a loop (to adjust global huge page counts) and previous allocation
1418         * failed, do not continue to try hard on the same node.  Use the
1419         * node_alloc_noretry bitmap to manage this state information.
1420         */
1421        if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422                alloc_try_hard = false;
1423        gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424        if (alloc_try_hard)
1425                gfp_mask |= __GFP_RETRY_MAYFAIL;
1426        if (nid == NUMA_NO_NODE)
1427                nid = numa_mem_id();
1428        page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429        if (page)
1430                __count_vm_event(HTLB_BUDDY_PGALLOC);
1431        else
1432                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1433
1434        /*
1435         * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436         * indicates an overall state change.  Clear bit so that we resume
1437         * normal 'try hard' allocations.
1438         */
1439        if (node_alloc_noretry && page && !alloc_try_hard)
1440                node_clear(nid, *node_alloc_noretry);
1441
1442        /*
1443         * If we tried hard to get a page but failed, set bit so that
1444         * subsequent attempts will not try as hard until there is an
1445         * overall state change.
1446         */
1447        if (node_alloc_noretry && !page && alloc_try_hard)
1448                node_set(nid, *node_alloc_noretry);
1449
1450        return page;
1451}
1452
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
1458                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459                nodemask_t *node_alloc_noretry)
1460{
1461        struct page *page;
1462
1463        if (hstate_is_gigantic(h))
1464                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465        else
1466                page = alloc_buddy_huge_page(h, gfp_mask,
1467                                nid, nmask, node_alloc_noretry);
1468        if (!page)
1469                return NULL;
1470
1471        if (hstate_is_gigantic(h))
1472                prep_compound_gigantic_page(page, huge_page_order(h));
1473        prep_new_huge_page(h, page, page_to_nid(page));
1474
1475        return page;
1476}
1477
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
1481 */
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483                                nodemask_t *node_alloc_noretry)
1484{
1485        struct page *page;
1486        int nr_nodes, node;
1487        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1488
1489        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491                                                node_alloc_noretry);
1492                if (page)
1493                        break;
1494        }
1495
1496        if (!page)
1497                return 0;
1498
1499        put_page(page); /* free it into the hugepage allocator */
1500
1501        return 1;
1502}
1503
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
1508 * Called with hugetlb_lock locked.
1509 */
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511                                                         bool acct_surplus)
1512{
1513        int nr_nodes, node;
1514        int ret = 0;
1515
1516        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517                /*
1518                 * If we're returning unused surplus pages, only examine
1519                 * nodes with surplus pages.
1520                 */
1521                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522                    !list_empty(&h->hugepage_freelists[node])) {
1523                        struct page *page =
1524                                list_entry(h->hugepage_freelists[node].next,
1525                                          struct page, lru);
1526                        list_del(&page->lru);
1527                        h->free_huge_pages--;
1528                        h->free_huge_pages_node[node]--;
1529                        if (acct_surplus) {
1530                                h->surplus_huge_pages--;
1531                                h->surplus_huge_pages_node[node]--;
1532                        }
1533                        update_and_free_page(h, page);
1534                        ret = 1;
1535                        break;
1536                }
1537        }
1538
1539        return ret;
1540}
1541
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 *          (allocated or reserved.)
1549 *       0: successfully dissolved free hugepages or the page is not a
1550 *          hugepage (considered as already dissolved)
1551 */
1552int dissolve_free_huge_page(struct page *page)
1553{
1554        int rc = -EBUSY;
1555
1556        /* Not to disrupt normal path by vainly holding hugetlb_lock */
1557        if (!PageHuge(page))
1558                return 0;
1559
1560        spin_lock(&hugetlb_lock);
1561        if (!PageHuge(page)) {
1562                rc = 0;
1563                goto out;
1564        }
1565
1566        if (!page_count(page)) {
1567                struct page *head = compound_head(page);
1568                struct hstate *h = page_hstate(head);
1569                int nid = page_to_nid(head);
1570                if (h->free_huge_pages - h->resv_huge_pages == 0)
1571                        goto out;
1572                /*
1573                 * Move PageHWPoison flag from head page to the raw error page,
1574                 * which makes any subpages rather than the error page reusable.
1575                 */
1576                if (PageHWPoison(head) && page != head) {
1577                        SetPageHWPoison(page);
1578                        ClearPageHWPoison(head);
1579                }
1580                list_del(&head->lru);
1581                h->free_huge_pages--;
1582                h->free_huge_pages_node[nid]--;
1583                h->max_huge_pages--;
1584                update_and_free_page(h, head);
1585                rc = 0;
1586        }
1587out:
1588        spin_unlock(&hugetlb_lock);
1589        return rc;
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
1599 */
1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602        unsigned long pfn;
1603        struct page *page;
1604        int rc = 0;
1605
1606        if (!hugepages_supported())
1607                return rc;
1608
1609        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610                page = pfn_to_page(pfn);
1611                rc = dissolve_free_huge_page(page);
1612                if (rc)
1613                        break;
1614        }
1615
1616        return rc;
1617}
1618
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623                int nid, nodemask_t *nmask)
1624{
1625        struct page *page = NULL;
1626
1627        if (hstate_is_gigantic(h))
1628                return NULL;
1629
1630        spin_lock(&hugetlb_lock);
1631        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632                goto out_unlock;
1633        spin_unlock(&hugetlb_lock);
1634
1635        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636        if (!page)
1637                return NULL;
1638
1639        spin_lock(&hugetlb_lock);
1640        /*
1641         * We could have raced with the pool size change.
1642         * Double check that and simply deallocate the new page
1643         * if we would end up overcommiting the surpluses. Abuse
1644         * temporary page to workaround the nasty free_huge_page
1645         * codeflow
1646         */
1647        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648                SetPageHugeTemporary(page);
1649                spin_unlock(&hugetlb_lock);
1650                put_page(page);
1651                return NULL;
1652        } else {
1653                h->surplus_huge_pages++;
1654                h->surplus_huge_pages_node[page_to_nid(page)]++;
1655        }
1656
1657out_unlock:
1658        spin_unlock(&hugetlb_lock);
1659
1660        return page;
1661}
1662
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664                                     int nid, nodemask_t *nmask)
1665{
1666        struct page *page;
1667
1668        if (hstate_is_gigantic(h))
1669                return NULL;
1670
1671        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672        if (!page)
1673                return NULL;
1674
1675        /*
1676         * We do not account these pages as surplus because they are only
1677         * temporary and will be released properly on the last reference
1678         */
1679        SetPageHugeTemporary(page);
1680
1681        return page;
1682}
1683
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686 */
1687static
1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689                struct vm_area_struct *vma, unsigned long addr)
1690{
1691        struct page *page;
1692        struct mempolicy *mpol;
1693        gfp_t gfp_mask = htlb_alloc_mask(h);
1694        int nid;
1695        nodemask_t *nodemask;
1696
1697        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698        page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699        mpol_cond_put(mpol);
1700
1701        return page;
1702}
1703
1704/* page migration callback function */
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
1707        gfp_t gfp_mask = htlb_alloc_mask(h);
1708        struct page *page = NULL;
1709
1710        if (nid != NUMA_NO_NODE)
1711                gfp_mask |= __GFP_THISNODE;
1712
1713        spin_lock(&hugetlb_lock);
1714        if (h->free_huge_pages - h->resv_huge_pages > 0)
1715                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716        spin_unlock(&hugetlb_lock);
1717
1718        if (!page)
1719                page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720
1721        return page;
1722}
1723
1724/* page migration callback function */
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726                nodemask_t *nmask)
1727{
1728        gfp_t gfp_mask = htlb_alloc_mask(h);
1729
1730        spin_lock(&hugetlb_lock);
1731        if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732                struct page *page;
1733
1734                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735                if (page) {
1736                        spin_unlock(&hugetlb_lock);
1737                        return page;
1738                }
1739        }
1740        spin_unlock(&hugetlb_lock);
1741
1742        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743}
1744
1745/* mempolicy aware migration callback */
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747                unsigned long address)
1748{
1749        struct mempolicy *mpol;
1750        nodemask_t *nodemask;
1751        struct page *page;
1752        gfp_t gfp_mask;
1753        int node;
1754
1755        gfp_mask = htlb_alloc_mask(h);
1756        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757        page = alloc_huge_page_nodemask(h, node, nodemask);
1758        mpol_cond_put(mpol);
1759
1760        return page;
1761}
1762
1763/*
1764 * Increase the hugetlb pool such that it can accommodate a reservation
1765 * of size 'delta'.
1766 */
1767static int gather_surplus_pages(struct hstate *h, int delta)
1768{
1769        struct list_head surplus_list;
1770        struct page *page, *tmp;
1771        int ret, i;
1772        int needed, allocated;
1773        bool alloc_ok = true;
1774
1775        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776        if (needed <= 0) {
1777                h->resv_huge_pages += delta;
1778                return 0;
1779        }
1780
1781        allocated = 0;
1782        INIT_LIST_HEAD(&surplus_list);
1783
1784        ret = -ENOMEM;
1785retry:
1786        spin_unlock(&hugetlb_lock);
1787        for (i = 0; i < needed; i++) {
1788                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789                                NUMA_NO_NODE, NULL);
1790                if (!page) {
1791                        alloc_ok = false;
1792                        break;
1793                }
1794                list_add(&page->lru, &surplus_list);
1795                cond_resched();
1796        }
1797        allocated += i;
1798
1799        /*
1800         * After retaking hugetlb_lock, we need to recalculate 'needed'
1801         * because either resv_huge_pages or free_huge_pages may have changed.
1802         */
1803        spin_lock(&hugetlb_lock);
1804        needed = (h->resv_huge_pages + delta) -
1805                        (h->free_huge_pages + allocated);
1806        if (needed > 0) {
1807                if (alloc_ok)
1808                        goto retry;
1809                /*
1810                 * We were not able to allocate enough pages to
1811                 * satisfy the entire reservation so we free what
1812                 * we've allocated so far.
1813                 */
1814                goto free;
1815        }
1816        /*
1817         * The surplus_list now contains _at_least_ the number of extra pages
1818         * needed to accommodate the reservation.  Add the appropriate number
1819         * of pages to the hugetlb pool and free the extras back to the buddy
1820         * allocator.  Commit the entire reservation here to prevent another
1821         * process from stealing the pages as they are added to the pool but
1822         * before they are reserved.
1823         */
1824        needed += allocated;
1825        h->resv_huge_pages += delta;
1826        ret = 0;
1827
1828        /* Free the needed pages to the hugetlb pool */
1829        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1830                if ((--needed) < 0)
1831                        break;
1832                /*
1833                 * This page is now managed by the hugetlb allocator and has
1834                 * no users -- drop the buddy allocator's reference.
1835                 */
1836                put_page_testzero(page);
1837                VM_BUG_ON_PAGE(page_count(page), page);
1838                enqueue_huge_page(h, page);
1839        }
1840free:
1841        spin_unlock(&hugetlb_lock);
1842
1843        /* Free unnecessary surplus pages to the buddy allocator */
1844        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845                put_page(page);
1846        spin_lock(&hugetlb_lock);
1847
1848        return ret;
1849}
1850
1851/*
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1855 *    to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 *    the reservation.  As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
1864 */
1865static void return_unused_surplus_pages(struct hstate *h,
1866                                        unsigned long unused_resv_pages)
1867{
1868        unsigned long nr_pages;
1869
1870        /* Cannot return gigantic pages currently */
1871        if (hstate_is_gigantic(h))
1872                goto out;
1873
1874        /*
1875         * Part (or even all) of the reservation could have been backed
1876         * by pre-allocated pages. Only free surplus pages.
1877         */
1878        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879
1880        /*
1881         * We want to release as many surplus pages as possible, spread
1882         * evenly across all nodes with memory. Iterate across these nodes
1883         * until we can no longer free unreserved surplus pages. This occurs
1884         * when the nodes with surplus pages have no free pages.
1885         * free_pool_huge_page() will balance the the freed pages across the
1886         * on-line nodes with memory and will handle the hstate accounting.
1887         *
1888         * Note that we decrement resv_huge_pages as we free the pages.  If
1889         * we drop the lock, resv_huge_pages will still be sufficiently large
1890         * to cover subsequent pages we may free.
1891         */
1892        while (nr_pages--) {
1893                h->resv_huge_pages--;
1894                unused_resv_pages--;
1895                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1896                        goto out;
1897                cond_resched_lock(&hugetlb_lock);
1898        }
1899
1900out:
1901        /* Fully uncommit the reservation */
1902        h->resv_huge_pages -= unused_resv_pages;
1903}
1904
1905
1906/*
1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908 * are used by the huge page allocation routines to manage reservations.
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation.  If a reservation is
1912 * needed, the value 1 is returned.  The caller is then responsible for
1913 * managing the global reservation and subpool usage counts.  After
1914 * the huge page has been allocated, vma_commit_reservation is called
1915 * to add the page to the reservation map.  If the page allocation fails,
1916 * the reservation must be ended instead of committed.  vma_end_reservation
1917 * is called in such cases.
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call.  The only time this
1921 * is not the case is if a reserve map was changed between calls.  It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed.  It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
1929 */
1930enum vma_resv_mode {
1931        VMA_NEEDS_RESV,
1932        VMA_COMMIT_RESV,
1933        VMA_END_RESV,
1934        VMA_ADD_RESV,
1935};
1936static long __vma_reservation_common(struct hstate *h,
1937                                struct vm_area_struct *vma, unsigned long addr,
1938                                enum vma_resv_mode mode)
1939{
1940        struct resv_map *resv;
1941        pgoff_t idx;
1942        long ret;
1943
1944        resv = vma_resv_map(vma);
1945        if (!resv)
1946                return 1;
1947
1948        idx = vma_hugecache_offset(h, vma, addr);
1949        switch (mode) {
1950        case VMA_NEEDS_RESV:
1951                ret = region_chg(resv, idx, idx + 1);
1952                break;
1953        case VMA_COMMIT_RESV:
1954                ret = region_add(resv, idx, idx + 1);
1955                break;
1956        case VMA_END_RESV:
1957                region_abort(resv, idx, idx + 1);
1958                ret = 0;
1959                break;
1960        case VMA_ADD_RESV:
1961                if (vma->vm_flags & VM_MAYSHARE)
1962                        ret = region_add(resv, idx, idx + 1);
1963                else {
1964                        region_abort(resv, idx, idx + 1);
1965                        ret = region_del(resv, idx, idx + 1);
1966                }
1967                break;
1968        default:
1969                BUG();
1970        }
1971
1972        if (vma->vm_flags & VM_MAYSHARE)
1973                return ret;
1974        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975                /*
1976                 * In most cases, reserves always exist for private mappings.
1977                 * However, a file associated with mapping could have been
1978                 * hole punched or truncated after reserves were consumed.
1979                 * As subsequent fault on such a range will not use reserves.
1980                 * Subtle - The reserve map for private mappings has the
1981                 * opposite meaning than that of shared mappings.  If NO
1982                 * entry is in the reserve map, it means a reservation exists.
1983                 * If an entry exists in the reserve map, it means the
1984                 * reservation has already been consumed.  As a result, the
1985                 * return value of this routine is the opposite of the
1986                 * value returned from reserve map manipulation routines above.
1987                 */
1988                if (ret)
1989                        return 0;
1990                else
1991                        return 1;
1992        }
1993        else
1994                return ret < 0 ? ret : 0;
1995}
1996
1997static long vma_needs_reservation(struct hstate *h,
1998                        struct vm_area_struct *vma, unsigned long addr)
1999{
2000        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001}
2002
2003static long vma_commit_reservation(struct hstate *h,
2004                        struct vm_area_struct *vma, unsigned long addr)
2005{
2006        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
2009static void vma_end_reservation(struct hstate *h,
2010                        struct vm_area_struct *vma, unsigned long addr)
2011{
2012        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013}
2014
2015static long vma_add_reservation(struct hstate *h,
2016                        struct vm_area_struct *vma, unsigned long addr)
2017{
2018        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
2021/*
2022 * This routine is called to restore a reservation on error paths.  In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed.  If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page.  When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map.  Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033                        struct vm_area_struct *vma, unsigned long address,
2034                        struct page *page)
2035{
2036        if (unlikely(PagePrivate(page))) {
2037                long rc = vma_needs_reservation(h, vma, address);
2038
2039                if (unlikely(rc < 0)) {
2040                        /*
2041                         * Rare out of memory condition in reserve map
2042                         * manipulation.  Clear PagePrivate so that
2043                         * global reserve count will not be incremented
2044                         * by free_huge_page.  This will make it appear
2045                         * as though the reservation for this page was
2046                         * consumed.  This may prevent the task from
2047                         * faulting in the page at a later time.  This
2048                         * is better than inconsistent global huge page
2049                         * accounting of reserve counts.
2050                         */
2051                        ClearPagePrivate(page);
2052                } else if (rc) {
2053                        rc = vma_add_reservation(h, vma, address);
2054                        if (unlikely(rc < 0))
2055                                /*
2056                                 * See above comment about rare out of
2057                                 * memory condition.
2058                                 */
2059                                ClearPagePrivate(page);
2060                } else
2061                        vma_end_reservation(h, vma, address);
2062        }
2063}
2064
2065struct page *alloc_huge_page(struct vm_area_struct *vma,
2066                                    unsigned long addr, int avoid_reserve)
2067{
2068        struct hugepage_subpool *spool = subpool_vma(vma);
2069        struct hstate *h = hstate_vma(vma);
2070        struct page *page;
2071        long map_chg, map_commit;
2072        long gbl_chg;
2073        int ret, idx;
2074        struct hugetlb_cgroup *h_cg;
2075
2076        idx = hstate_index(h);
2077        /*
2078         * Examine the region/reserve map to determine if the process
2079         * has a reservation for the page to be allocated.  A return
2080         * code of zero indicates a reservation exists (no change).
2081         */
2082        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083        if (map_chg < 0)
2084                return ERR_PTR(-ENOMEM);
2085
2086        /*
2087         * Processes that did not create the mapping will have no
2088         * reserves as indicated by the region/reserve map. Check
2089         * that the allocation will not exceed the subpool limit.
2090         * Allocations for MAP_NORESERVE mappings also need to be
2091         * checked against any subpool limit.
2092         */
2093        if (map_chg || avoid_reserve) {
2094                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095                if (gbl_chg < 0) {
2096                        vma_end_reservation(h, vma, addr);
2097                        return ERR_PTR(-ENOSPC);
2098                }
2099
2100                /*
2101                 * Even though there was no reservation in the region/reserve
2102                 * map, there could be reservations associated with the
2103                 * subpool that can be used.  This would be indicated if the
2104                 * return value of hugepage_subpool_get_pages() is zero.
2105                 * However, if avoid_reserve is specified we still avoid even
2106                 * the subpool reservations.
2107                 */
2108                if (avoid_reserve)
2109                        gbl_chg = 1;
2110        }
2111
2112        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113        if (ret)
2114                goto out_subpool_put;
2115
2116        spin_lock(&hugetlb_lock);
2117        /*
2118         * glb_chg is passed to indicate whether or not a page must be taken
2119         * from the global free pool (global change).  gbl_chg == 0 indicates
2120         * a reservation exists for the allocation.
2121         */
2122        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123        if (!page) {
2124                spin_unlock(&hugetlb_lock);
2125                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126                if (!page)
2127                        goto out_uncharge_cgroup;
2128                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129                        SetPagePrivate(page);
2130                        h->resv_huge_pages--;
2131                }
2132                spin_lock(&hugetlb_lock);
2133                list_move(&page->lru, &h->hugepage_activelist);
2134                /* Fall through */
2135        }
2136        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137        spin_unlock(&hugetlb_lock);
2138
2139        set_page_private(page, (unsigned long)spool);
2140
2141        map_commit = vma_commit_reservation(h, vma, addr);
2142        if (unlikely(map_chg > map_commit)) {
2143                /*
2144                 * The page was added to the reservation map between
2145                 * vma_needs_reservation and vma_commit_reservation.
2146                 * This indicates a race with hugetlb_reserve_pages.
2147                 * Adjust for the subpool count incremented above AND
2148                 * in hugetlb_reserve_pages for the same page.  Also,
2149                 * the reservation count added in hugetlb_reserve_pages
2150                 * no longer applies.
2151                 */
2152                long rsv_adjust;
2153
2154                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155                hugetlb_acct_memory(h, -rsv_adjust);
2156        }
2157        return page;
2158
2159out_uncharge_cgroup:
2160        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2161out_subpool_put:
2162        if (map_chg || avoid_reserve)
2163                hugepage_subpool_put_pages(spool, 1);
2164        vma_end_reservation(h, vma, addr);
2165        return ERR_PTR(-ENOSPC);
2166}
2167
2168int alloc_bootmem_huge_page(struct hstate *h)
2169        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
2171{
2172        struct huge_bootmem_page *m;
2173        int nr_nodes, node;
2174
2175        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176                void *addr;
2177
2178                addr = memblock_alloc_try_nid_raw(
2179                                huge_page_size(h), huge_page_size(h),
2180                                0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181                if (addr) {
2182                        /*
2183                         * Use the beginning of the huge page to store the
2184                         * huge_bootmem_page struct (until gather_bootmem
2185                         * puts them into the mem_map).
2186                         */
2187                        m = addr;
2188                        goto found;
2189                }
2190        }
2191        return 0;
2192
2193found:
2194        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195        /* Put them into a private list first because mem_map is not up yet */
2196        INIT_LIST_HEAD(&m->list);
2197        list_add(&m->list, &huge_boot_pages);
2198        m->hstate = h;
2199        return 1;
2200}
2201
2202static void __init prep_compound_huge_page(struct page *page,
2203                unsigned int order)
2204{
2205        if (unlikely(order > (MAX_ORDER - 1)))
2206                prep_compound_gigantic_page(page, order);
2207        else
2208                prep_compound_page(page, order);
2209}
2210
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214        struct huge_bootmem_page *m;
2215
2216        list_for_each_entry(m, &huge_boot_pages, list) {
2217                struct page *page = virt_to_page(m);
2218                struct hstate *h = m->hstate;
2219
2220                WARN_ON(page_count(page) != 1);
2221                prep_compound_huge_page(page, h->order);
2222                WARN_ON(PageReserved(page));
2223                prep_new_huge_page(h, page, page_to_nid(page));
2224                put_page(page); /* free it into the hugepage allocator */
2225
2226                /*
2227                 * If we had gigantic hugepages allocated at boot time, we need
2228                 * to restore the 'stolen' pages to totalram_pages in order to
2229                 * fix confusing memory reports from free(1) and another
2230                 * side-effects, like CommitLimit going negative.
2231                 */
2232                if (hstate_is_gigantic(h))
2233                        adjust_managed_page_count(page, 1 << h->order);
2234                cond_resched();
2235        }
2236}
2237
2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2239{
2240        unsigned long i;
2241        nodemask_t *node_alloc_noretry;
2242
2243        if (!hstate_is_gigantic(h)) {
2244                /*
2245                 * Bit mask controlling how hard we retry per-node allocations.
2246                 * Ignore errors as lower level routines can deal with
2247                 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2248                 * time, we are likely in bigger trouble.
2249                 */
2250                node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251                                                GFP_KERNEL);
2252        } else {
2253                /* allocations done at boot time */
2254                node_alloc_noretry = NULL;
2255        }
2256
2257        /* bit mask controlling how hard we retry per-node allocations */
2258        if (node_alloc_noretry)
2259                nodes_clear(*node_alloc_noretry);
2260
2261        for (i = 0; i < h->max_huge_pages; ++i) {
2262                if (hstate_is_gigantic(h)) {
2263                        if (!alloc_bootmem_huge_page(h))
2264                                break;
2265                } else if (!alloc_pool_huge_page(h,
2266                                         &node_states[N_MEMORY],
2267                                         node_alloc_noretry))
2268                        break;
2269                cond_resched();
2270        }
2271        if (i < h->max_huge_pages) {
2272                char buf[32];
2273
2274                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2276                        h->max_huge_pages, buf, i);
2277                h->max_huge_pages = i;
2278        }
2279
2280        kfree(node_alloc_noretry);
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285        struct hstate *h;
2286
2287        for_each_hstate(h) {
2288                if (minimum_order > huge_page_order(h))
2289                        minimum_order = huge_page_order(h);
2290
2291                /* oversize hugepages were init'ed in early boot */
2292                if (!hstate_is_gigantic(h))
2293                        hugetlb_hstate_alloc_pages(h);
2294        }
2295        VM_BUG_ON(minimum_order == UINT_MAX);
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300        struct hstate *h;
2301
2302        for_each_hstate(h) {
2303                char buf[32];
2304
2305                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307                        buf, h->free_huge_pages);
2308        }
2309}
2310
2311#ifdef CONFIG_HIGHMEM
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313                                                nodemask_t *nodes_allowed)
2314{
2315        int i;
2316
2317        if (hstate_is_gigantic(h))
2318                return;
2319
2320        for_each_node_mask(i, *nodes_allowed) {
2321                struct page *page, *next;
2322                struct list_head *freel = &h->hugepage_freelists[i];
2323                list_for_each_entry_safe(page, next, freel, lru) {
2324                        if (count >= h->nr_huge_pages)
2325                                return;
2326                        if (PageHighMem(page))
2327                                continue;
2328                        list_del(&page->lru);
2329                        update_and_free_page(h, page);
2330                        h->free_huge_pages--;
2331                        h->free_huge_pages_node[page_to_nid(page)]--;
2332                }
2333        }
2334}
2335#else
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337                                                nodemask_t *nodes_allowed)
2338{
2339}
2340#endif
2341
2342/*
2343 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348                                int delta)
2349{
2350        int nr_nodes, node;
2351
2352        VM_BUG_ON(delta != -1 && delta != 1);
2353
2354        if (delta < 0) {
2355                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356                        if (h->surplus_huge_pages_node[node])
2357                                goto found;
2358                }
2359        } else {
2360                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361                        if (h->surplus_huge_pages_node[node] <
2362                                        h->nr_huge_pages_node[node])
2363                                goto found;
2364                }
2365        }
2366        return 0;
2367
2368found:
2369        h->surplus_huge_pages += delta;
2370        h->surplus_huge_pages_node[node] += delta;
2371        return 1;
2372}
2373
2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376                              nodemask_t *nodes_allowed)
2377{
2378        unsigned long min_count, ret;
2379        NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381        /*
2382         * Bit mask controlling how hard we retry per-node allocations.
2383         * If we can not allocate the bit mask, do not attempt to allocate
2384         * the requested huge pages.
2385         */
2386        if (node_alloc_noretry)
2387                nodes_clear(*node_alloc_noretry);
2388        else
2389                return -ENOMEM;
2390
2391        spin_lock(&hugetlb_lock);
2392
2393        /*
2394         * Check for a node specific request.
2395         * Changing node specific huge page count may require a corresponding
2396         * change to the global count.  In any case, the passed node mask
2397         * (nodes_allowed) will restrict alloc/free to the specified node.
2398         */
2399        if (nid != NUMA_NO_NODE) {
2400                unsigned long old_count = count;
2401
2402                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403                /*
2404                 * User may have specified a large count value which caused the
2405                 * above calculation to overflow.  In this case, they wanted
2406                 * to allocate as many huge pages as possible.  Set count to
2407                 * largest possible value to align with their intention.
2408                 */
2409                if (count < old_count)
2410                        count = ULONG_MAX;
2411        }
2412
2413        /*
2414         * Gigantic pages runtime allocation depend on the capability for large
2415         * page range allocation.
2416         * If the system does not provide this feature, return an error when
2417         * the user tries to allocate gigantic pages but let the user free the
2418         * boottime allocated gigantic pages.
2419         */
2420        if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421                if (count > persistent_huge_pages(h)) {
2422                        spin_unlock(&hugetlb_lock);
2423                        NODEMASK_FREE(node_alloc_noretry);
2424                        return -EINVAL;
2425                }
2426                /* Fall through to decrease pool */
2427        }
2428
2429        /*
2430         * Increase the pool size
2431         * First take pages out of surplus state.  Then make up the
2432         * remaining difference by allocating fresh huge pages.
2433         *
2434         * We might race with alloc_surplus_huge_page() here and be unable
2435         * to convert a surplus huge page to a normal huge page. That is
2436         * not critical, though, it just means the overall size of the
2437         * pool might be one hugepage larger than it needs to be, but
2438         * within all the constraints specified by the sysctls.
2439         */
2440        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442                        break;
2443        }
2444
2445        while (count > persistent_huge_pages(h)) {
2446                /*
2447                 * If this allocation races such that we no longer need the
2448                 * page, free_huge_page will handle it by freeing the page
2449                 * and reducing the surplus.
2450                 */
2451                spin_unlock(&hugetlb_lock);
2452
2453                /* yield cpu to avoid soft lockup */
2454                cond_resched();
2455
2456                ret = alloc_pool_huge_page(h, nodes_allowed,
2457                                                node_alloc_noretry);
2458                spin_lock(&hugetlb_lock);
2459                if (!ret)
2460                        goto out;
2461
2462                /* Bail for signals. Probably ctrl-c from user */
2463                if (signal_pending(current))
2464                        goto out;
2465        }
2466
2467        /*
2468         * Decrease the pool size
2469         * First return free pages to the buddy allocator (being careful
2470         * to keep enough around to satisfy reservations).  Then place
2471         * pages into surplus state as needed so the pool will shrink
2472         * to the desired size as pages become free.
2473         *
2474         * By placing pages into the surplus state independent of the
2475         * overcommit value, we are allowing the surplus pool size to
2476         * exceed overcommit. There are few sane options here. Since
2477         * alloc_surplus_huge_page() is checking the global counter,
2478         * though, we'll note that we're not allowed to exceed surplus
2479         * and won't grow the pool anywhere else. Not until one of the
2480         * sysctls are changed, or the surplus pages go out of use.
2481         */
2482        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483        min_count = max(count, min_count);
2484        try_to_free_low(h, min_count, nodes_allowed);
2485        while (min_count < persistent_huge_pages(h)) {
2486                if (!free_pool_huge_page(h, nodes_allowed, 0))
2487                        break;
2488                cond_resched_lock(&hugetlb_lock);
2489        }
2490        while (count < persistent_huge_pages(h)) {
2491                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492                        break;
2493        }
2494out:
2495        h->max_huge_pages = persistent_huge_pages(h);
2496        spin_unlock(&hugetlb_lock);
2497
2498        NODEMASK_FREE(node_alloc_noretry);
2499
2500        return 0;
2501}
2502
2503#define HSTATE_ATTR_RO(_name) \
2504        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
2506#define HSTATE_ATTR(_name) \
2507        static struct kobj_attribute _name##_attr = \
2508                __ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516{
2517        int i;
2518
2519        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520                if (hstate_kobjs[i] == kobj) {
2521                        if (nidp)
2522                                *nidp = NUMA_NO_NODE;
2523                        return &hstates[i];
2524                }
2525
2526        return kobj_to_node_hstate(kobj, nidp);
2527}
2528
2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530                                        struct kobj_attribute *attr, char *buf)
2531{
2532        struct hstate *h;
2533        unsigned long nr_huge_pages;
2534        int nid;
2535
2536        h = kobj_to_hstate(kobj, &nid);
2537        if (nid == NUMA_NO_NODE)
2538                nr_huge_pages = h->nr_huge_pages;
2539        else
2540                nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542        return sprintf(buf, "%lu\n", nr_huge_pages);
2543}
2544
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546                                           struct hstate *h, int nid,
2547                                           unsigned long count, size_t len)
2548{
2549        int err;
2550        nodemask_t nodes_allowed, *n_mask;
2551
2552        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553                return -EINVAL;
2554
2555        if (nid == NUMA_NO_NODE) {
2556                /*
2557                 * global hstate attribute
2558                 */
2559                if (!(obey_mempolicy &&
2560                                init_nodemask_of_mempolicy(&nodes_allowed)))
2561                        n_mask = &node_states[N_MEMORY];
2562                else
2563                        n_mask = &nodes_allowed;
2564        } else {
2565                /*
2566                 * Node specific request.  count adjustment happens in
2567                 * set_max_huge_pages() after acquiring hugetlb_lock.
2568                 */
2569                init_nodemask_of_node(&nodes_allowed, nid);
2570                n_mask = &nodes_allowed;
2571        }
2572
2573        err = set_max_huge_pages(h, count, nid, n_mask);
2574
2575        return err ? err : len;
2576}
2577
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579                                         struct kobject *kobj, const char *buf,
2580                                         size_t len)
2581{
2582        struct hstate *h;
2583        unsigned long count;
2584        int nid;
2585        int err;
2586
2587        err = kstrtoul(buf, 10, &count);
2588        if (err)
2589                return err;
2590
2591        h = kobj_to_hstate(kobj, &nid);
2592        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593}
2594
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596                                       struct kobj_attribute *attr, char *buf)
2597{
2598        return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602               struct kobj_attribute *attr, const char *buf, size_t len)
2603{
2604        return nr_hugepages_store_common(false, kobj, buf, len);
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615                                       struct kobj_attribute *attr, char *buf)
2616{
2617        return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621               struct kobj_attribute *attr, const char *buf, size_t len)
2622{
2623        return nr_hugepages_store_common(true, kobj, buf, len);
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630                                        struct kobj_attribute *attr, char *buf)
2631{
2632        struct hstate *h = kobj_to_hstate(kobj, NULL);
2633        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
2635
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637                struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639        int err;
2640        unsigned long input;
2641        struct hstate *h = kobj_to_hstate(kobj, NULL);
2642
2643        if (hstate_is_gigantic(h))
2644                return -EINVAL;
2645
2646        err = kstrtoul(buf, 10, &input);
2647        if (err)
2648                return err;
2649
2650        spin_lock(&hugetlb_lock);
2651        h->nr_overcommit_huge_pages = input;
2652        spin_unlock(&hugetlb_lock);
2653
2654        return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659                                        struct kobj_attribute *attr, char *buf)
2660{
2661        struct hstate *h;
2662        unsigned long free_huge_pages;
2663        int nid;
2664
2665        h = kobj_to_hstate(kobj, &nid);
2666        if (nid == NUMA_NO_NODE)
2667                free_huge_pages = h->free_huge_pages;
2668        else
2669                free_huge_pages = h->free_huge_pages_node[nid];
2670
2671        return sprintf(buf, "%lu\n", free_huge_pages);
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676                                        struct kobj_attribute *attr, char *buf)
2677{
2678        struct hstate *h = kobj_to_hstate(kobj, NULL);
2679        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684                                        struct kobj_attribute *attr, char *buf)
2685{
2686        struct hstate *h;
2687        unsigned long surplus_huge_pages;
2688        int nid;
2689
2690        h = kobj_to_hstate(kobj, &nid);
2691        if (nid == NUMA_NO_NODE)
2692                surplus_huge_pages = h->surplus_huge_pages;
2693        else
2694                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696        return sprintf(buf, "%lu\n", surplus_huge_pages);
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
2700static struct attribute *hstate_attrs[] = {
2701        &nr_hugepages_attr.attr,
2702        &nr_overcommit_hugepages_attr.attr,
2703        &free_hugepages_attr.attr,
2704        &resv_hugepages_attr.attr,
2705        &surplus_hugepages_attr.attr,
2706#ifdef CONFIG_NUMA
2707        &nr_hugepages_mempolicy_attr.attr,
2708#endif
2709        NULL,
2710};
2711
2712static const struct attribute_group hstate_attr_group = {
2713        .attrs = hstate_attrs,
2714};
2715
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717                                    struct kobject **hstate_kobjs,
2718                                    const struct attribute_group *hstate_attr_group)
2719{
2720        int retval;
2721        int hi = hstate_index(h);
2722
2723        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724        if (!hstate_kobjs[hi])
2725                return -ENOMEM;
2726
2727        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728        if (retval)
2729                kobject_put(hstate_kobjs[hi]);
2730
2731        return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736        struct hstate *h;
2737        int err;
2738
2739        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740        if (!hugepages_kobj)
2741                return;
2742
2743        for_each_hstate(h) {
2744                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745                                         hstate_kobjs, &hstate_attr_group);
2746                if (err)
2747                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748        }
2749}
2750
2751#ifdef CONFIG_NUMA
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755 * with node devices in node_devices[] using a parallel array.  The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761        struct kobject          *hugepages_kobj;
2762        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2763};
2764static struct node_hstate node_hstates[MAX_NUMNODES];
2765
2766/*
2767 * A subset of global hstate attributes for node devices
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770        &nr_hugepages_attr.attr,
2771        &free_hugepages_attr.attr,
2772        &surplus_hugepages_attr.attr,
2773        NULL,
2774};
2775
2776static const struct attribute_group per_node_hstate_attr_group = {
2777        .attrs = per_node_hstate_attrs,
2778};
2779
2780/*
2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786        int nid;
2787
2788        for (nid = 0; nid < nr_node_ids; nid++) {
2789                struct node_hstate *nhs = &node_hstates[nid];
2790                int i;
2791                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792                        if (nhs->hstate_kobjs[i] == kobj) {
2793                                if (nidp)
2794                                        *nidp = nid;
2795                                return &hstates[i];
2796                        }
2797        }
2798
2799        BUG();
2800        return NULL;
2801}
2802
2803/*
2804 * Unregister hstate attributes from a single node device.
2805 * No-op if no hstate attributes attached.
2806 */
2807static void hugetlb_unregister_node(struct node *node)
2808{
2809        struct hstate *h;
2810        struct node_hstate *nhs = &node_hstates[node->dev.id];
2811
2812        if (!nhs->hugepages_kobj)
2813                return;         /* no hstate attributes */
2814
2815        for_each_hstate(h) {
2816                int idx = hstate_index(h);
2817                if (nhs->hstate_kobjs[idx]) {
2818                        kobject_put(nhs->hstate_kobjs[idx]);
2819                        nhs->hstate_kobjs[idx] = NULL;
2820                }
2821        }
2822
2823        kobject_put(nhs->hugepages_kobj);
2824        nhs->hugepages_kobj = NULL;
2825}
2826
2827
2828/*
2829 * Register hstate attributes for a single node device.
2830 * No-op if attributes already registered.
2831 */
2832static void hugetlb_register_node(struct node *node)
2833{
2834        struct hstate *h;
2835        struct node_hstate *nhs = &node_hstates[node->dev.id];
2836        int err;
2837
2838        if (nhs->hugepages_kobj)
2839                return;         /* already allocated */
2840
2841        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842                                                        &node->dev.kobj);
2843        if (!nhs->hugepages_kobj)
2844                return;
2845
2846        for_each_hstate(h) {
2847                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848                                                nhs->hstate_kobjs,
2849                                                &per_node_hstate_attr_group);
2850                if (err) {
2851                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852                                h->name, node->dev.id);
2853                        hugetlb_unregister_node(node);
2854                        break;
2855                }
2856        }
2857}
2858
2859/*
2860 * hugetlb init time:  register hstate attributes for all registered node
2861 * devices of nodes that have memory.  All on-line nodes should have
2862 * registered their associated device by this time.
2863 */
2864static void __init hugetlb_register_all_nodes(void)
2865{
2866        int nid;
2867
2868        for_each_node_state(nid, N_MEMORY) {
2869                struct node *node = node_devices[nid];
2870                if (node->dev.id == nid)
2871                        hugetlb_register_node(node);
2872        }
2873
2874        /*
2875         * Let the node device driver know we're here so it can
2876         * [un]register hstate attributes on node hotplug.
2877         */
2878        register_hugetlbfs_with_node(hugetlb_register_node,
2879                                     hugetlb_unregister_node);
2880}
2881#else   /* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885        BUG();
2886        if (nidp)
2887                *nidp = -1;
2888        return NULL;
2889}
2890
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
2895static int __init hugetlb_init(void)
2896{
2897        int i;
2898
2899        if (!hugepages_supported())
2900                return 0;
2901
2902        if (!size_to_hstate(default_hstate_size)) {
2903                if (default_hstate_size != 0) {
2904                        pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905                               default_hstate_size, HPAGE_SIZE);
2906                }
2907
2908                default_hstate_size = HPAGE_SIZE;
2909                if (!size_to_hstate(default_hstate_size))
2910                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911        }
2912        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913        if (default_hstate_max_huge_pages) {
2914                if (!default_hstate.max_huge_pages)
2915                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916        }
2917
2918        hugetlb_init_hstates();
2919        gather_bootmem_prealloc();
2920        report_hugepages();
2921
2922        hugetlb_sysfs_init();
2923        hugetlb_register_all_nodes();
2924        hugetlb_cgroup_file_init();
2925
2926#ifdef CONFIG_SMP
2927        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929        num_fault_mutexes = 1;
2930#endif
2931        hugetlb_fault_mutex_table =
2932                kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933                              GFP_KERNEL);
2934        BUG_ON(!hugetlb_fault_mutex_table);
2935
2936        for (i = 0; i < num_fault_mutexes; i++)
2937                mutex_init(&hugetlb_fault_mutex_table[i]);
2938        return 0;
2939}
2940subsys_initcall(hugetlb_init);
2941
2942/* Should be called on processing a hugepagesz=... option */
2943void __init hugetlb_bad_size(void)
2944{
2945        parsed_valid_hugepagesz = false;
2946}
2947
2948void __init hugetlb_add_hstate(unsigned int order)
2949{
2950        struct hstate *h;
2951        unsigned long i;
2952
2953        if (size_to_hstate(PAGE_SIZE << order)) {
2954                pr_warn("hugepagesz= specified twice, ignoring\n");
2955                return;
2956        }
2957        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958        BUG_ON(order == 0);
2959        h = &hstates[hugetlb_max_hstate++];
2960        h->order = order;
2961        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962        h->nr_huge_pages = 0;
2963        h->free_huge_pages = 0;
2964        for (i = 0; i < MAX_NUMNODES; ++i)
2965                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966        INIT_LIST_HEAD(&h->hugepage_activelist);
2967        h->next_nid_to_alloc = first_memory_node;
2968        h->next_nid_to_free = first_memory_node;
2969        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970                                        huge_page_size(h)/1024);
2971
2972        parsed_hstate = h;
2973}
2974
2975static int __init hugetlb_nrpages_setup(char *s)
2976{
2977        unsigned long *mhp;
2978        static unsigned long *last_mhp;
2979
2980        if (!parsed_valid_hugepagesz) {
2981                pr_warn("hugepages = %s preceded by "
2982                        "an unsupported hugepagesz, ignoring\n", s);
2983                parsed_valid_hugepagesz = true;
2984                return 1;
2985        }
2986        /*
2987         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988         * so this hugepages= parameter goes to the "default hstate".
2989         */
2990        else if (!hugetlb_max_hstate)
2991                mhp = &default_hstate_max_huge_pages;
2992        else
2993                mhp = &parsed_hstate->max_huge_pages;
2994
2995        if (mhp == last_mhp) {
2996                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2997                return 1;
2998        }
2999
3000        if (sscanf(s, "%lu", mhp) <= 0)
3001                *mhp = 0;
3002
3003        /*
3004         * Global state is always initialized later in hugetlb_init.
3005         * But we need to allocate >= MAX_ORDER hstates here early to still
3006         * use the bootmem allocator.
3007         */
3008        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009                hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011        last_mhp = mhp;
3012
3013        return 1;
3014}
3015__setup("hugepages=", hugetlb_nrpages_setup);
3016
3017static int __init hugetlb_default_setup(char *s)
3018{
3019        default_hstate_size = memparse(s, &s);
3020        return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
3023
3024static unsigned int cpuset_mems_nr(unsigned int *array)
3025{
3026        int node;
3027        unsigned int nr = 0;
3028
3029        for_each_node_mask(node, cpuset_current_mems_allowed)
3030                nr += array[node];
3031
3032        return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037                         struct ctl_table *table, int write,
3038                         void __user *buffer, size_t *length, loff_t *ppos)
3039{
3040        struct hstate *h = &default_hstate;
3041        unsigned long tmp = h->max_huge_pages;
3042        int ret;
3043
3044        if (!hugepages_supported())
3045                return -EOPNOTSUPP;
3046
3047        table->data = &tmp;
3048        table->maxlen = sizeof(unsigned long);
3049        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050        if (ret)
3051                goto out;
3052
3053        if (write)
3054                ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055                                                  NUMA_NO_NODE, tmp, *length);
3056out:
3057        return ret;
3058}
3059
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061                          void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064        return hugetlb_sysctl_handler_common(false, table, write,
3065                                                        buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070                          void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072        return hugetlb_sysctl_handler_common(true, table, write,
3073                                                        buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078                        void __user *buffer,
3079                        size_t *length, loff_t *ppos)
3080{
3081        struct hstate *h = &default_hstate;
3082        unsigned long tmp;
3083        int ret;
3084
3085        if (!hugepages_supported())
3086                return -EOPNOTSUPP;
3087
3088        tmp = h->nr_overcommit_huge_pages;
3089
3090        if (write && hstate_is_gigantic(h))
3091                return -EINVAL;
3092
3093        table->data = &tmp;
3094        table->maxlen = sizeof(unsigned long);
3095        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096        if (ret)
3097                goto out;
3098
3099        if (write) {
3100                spin_lock(&hugetlb_lock);
3101                h->nr_overcommit_huge_pages = tmp;
3102                spin_unlock(&hugetlb_lock);
3103        }
3104out:
3105        return ret;
3106}
3107
3108#endif /* CONFIG_SYSCTL */
3109
3110void hugetlb_report_meminfo(struct seq_file *m)
3111{
3112        struct hstate *h;
3113        unsigned long total = 0;
3114
3115        if (!hugepages_supported())
3116                return;
3117
3118        for_each_hstate(h) {
3119                unsigned long count = h->nr_huge_pages;
3120
3121                total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123                if (h == &default_hstate)
3124                        seq_printf(m,
3125                                   "HugePages_Total:   %5lu\n"
3126                                   "HugePages_Free:    %5lu\n"
3127                                   "HugePages_Rsvd:    %5lu\n"
3128                                   "HugePages_Surp:    %5lu\n"
3129                                   "Hugepagesize:   %8lu kB\n",
3130                                   count,
3131                                   h->free_huge_pages,
3132                                   h->resv_huge_pages,
3133                                   h->surplus_huge_pages,
3134                                   (PAGE_SIZE << huge_page_order(h)) / 1024);
3135        }
3136
3137        seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
3142        struct hstate *h = &default_hstate;
3143        if (!hugepages_supported())
3144                return 0;
3145        return sprintf(buf,
3146                "Node %d HugePages_Total: %5u\n"
3147                "Node %d HugePages_Free:  %5u\n"
3148                "Node %d HugePages_Surp:  %5u\n",
3149                nid, h->nr_huge_pages_node[nid],
3150                nid, h->free_huge_pages_node[nid],
3151                nid, h->surplus_huge_pages_node[nid]);
3152}
3153
3154void hugetlb_show_meminfo(void)
3155{
3156        struct hstate *h;
3157        int nid;
3158
3159        if (!hugepages_supported())
3160                return;
3161
3162        for_each_node_state(nid, N_MEMORY)
3163                for_each_hstate(h)
3164                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165                                nid,
3166                                h->nr_huge_pages_node[nid],
3167                                h->free_huge_pages_node[nid],
3168                                h->surplus_huge_pages_node[nid],
3169                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
3181        struct hstate *h;
3182        unsigned long nr_total_pages = 0;
3183
3184        for_each_hstate(h)
3185                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186        return nr_total_pages;
3187}
3188
3189static int hugetlb_acct_memory(struct hstate *h, long delta)
3190{
3191        int ret = -ENOMEM;
3192
3193        spin_lock(&hugetlb_lock);
3194        /*
3195         * When cpuset is configured, it breaks the strict hugetlb page
3196         * reservation as the accounting is done on a global variable. Such
3197         * reservation is completely rubbish in the presence of cpuset because
3198         * the reservation is not checked against page availability for the
3199         * current cpuset. Application can still potentially OOM'ed by kernel
3200         * with lack of free htlb page in cpuset that the task is in.
3201         * Attempt to enforce strict accounting with cpuset is almost
3202         * impossible (or too ugly) because cpuset is too fluid that
3203         * task or memory node can be dynamically moved between cpusets.
3204         *
3205         * The change of semantics for shared hugetlb mapping with cpuset is
3206         * undesirable. However, in order to preserve some of the semantics,
3207         * we fall back to check against current free page availability as
3208         * a best attempt and hopefully to minimize the impact of changing
3209         * semantics that cpuset has.
3210         */
3211        if (delta > 0) {
3212                if (gather_surplus_pages(h, delta) < 0)
3213                        goto out;
3214
3215                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216                        return_unused_surplus_pages(h, delta);
3217                        goto out;
3218                }
3219        }
3220
3221        ret = 0;
3222        if (delta < 0)
3223                return_unused_surplus_pages(h, (unsigned long) -delta);
3224
3225out:
3226        spin_unlock(&hugetlb_lock);
3227        return ret;
3228}
3229
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
3232        struct resv_map *resv = vma_resv_map(vma);
3233
3234        /*
3235         * This new VMA should share its siblings reservation map if present.
3236         * The VMA will only ever have a valid reservation map pointer where
3237         * it is being copied for another still existing VMA.  As that VMA
3238         * has a reference to the reservation map it cannot disappear until
3239         * after this open call completes.  It is therefore safe to take a
3240         * new reference here without additional locking.
3241         */
3242        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3243                kref_get(&resv->refs);
3244}
3245
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
3248        struct hstate *h = hstate_vma(vma);
3249        struct resv_map *resv = vma_resv_map(vma);
3250        struct hugepage_subpool *spool = subpool_vma(vma);
3251        unsigned long reserve, start, end;
3252        long gbl_reserve;
3253
3254        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255                return;
3256
3257        start = vma_hugecache_offset(h, vma, vma->vm_start);
3258        end = vma_hugecache_offset(h, vma, vma->vm_end);
3259
3260        reserve = (end - start) - region_count(resv, start, end);
3261
3262        kref_put(&resv->refs, resv_map_release);
3263
3264        if (reserve) {
3265                /*
3266                 * Decrement reserve counts.  The global reserve count may be
3267                 * adjusted if the subpool has a minimum size.
3268                 */
3269                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270                hugetlb_acct_memory(h, -gbl_reserve);
3271        }
3272}
3273
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276        if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277                return -EINVAL;
3278        return 0;
3279}
3280
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283        struct hstate *hstate = hstate_vma(vma);
3284
3285        return 1UL << huge_page_shift(hstate);
3286}
3287
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295{
3296        BUG();
3297        return 0;
3298}
3299
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
3307const struct vm_operations_struct hugetlb_vm_ops = {
3308        .fault = hugetlb_vm_op_fault,
3309        .open = hugetlb_vm_op_open,
3310        .close = hugetlb_vm_op_close,
3311        .split = hugetlb_vm_op_split,
3312        .pagesize = hugetlb_vm_op_pagesize,
3313};
3314
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316                                int writable)
3317{
3318        pte_t entry;
3319
3320        if (writable) {
3321                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322                                         vma->vm_page_prot)));
3323        } else {
3324                entry = huge_pte_wrprotect(mk_huge_pte(page,
3325                                           vma->vm_page_prot));
3326        }
3327        entry = pte_mkyoung(entry);
3328        entry = pte_mkhuge(entry);
3329        entry = arch_make_huge_pte(entry, vma, page, writable);
3330
3331        return entry;
3332}
3333
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335                                   unsigned long address, pte_t *ptep)
3336{
3337        pte_t entry;
3338
3339        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341                update_mmu_cache(vma, address, ptep);
3342}
3343
3344bool is_hugetlb_entry_migration(pte_t pte)
3345{
3346        swp_entry_t swp;
3347
3348        if (huge_pte_none(pte) || pte_present(pte))
3349                return false;
3350        swp = pte_to_swp_entry(pte);
3351        if (non_swap_entry(swp) && is_migration_entry(swp))
3352                return true;
3353        else
3354                return false;
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359        swp_entry_t swp;
3360
3361        if (huge_pte_none(pte) || pte_present(pte))
3362                return 0;
3363        swp = pte_to_swp_entry(pte);
3364        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365                return 1;
3366        else
3367                return 0;
3368}
3369
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371                            struct vm_area_struct *vma)
3372{
3373        pte_t *src_pte, *dst_pte, entry, dst_entry;
3374        struct page *ptepage;
3375        unsigned long addr;
3376        int cow;
3377        struct hstate *h = hstate_vma(vma);
3378        unsigned long sz = huge_page_size(h);
3379        struct mmu_notifier_range range;
3380        int ret = 0;
3381
3382        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383
3384        if (cow) {
3385                mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386                                        vma->vm_start,
3387                                        vma->vm_end);
3388                mmu_notifier_invalidate_range_start(&range);
3389        }
3390
3391        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3392                spinlock_t *src_ptl, *dst_ptl;
3393                src_pte = huge_pte_offset(src, addr, sz);
3394                if (!src_pte)
3395                        continue;
3396                dst_pte = huge_pte_alloc(dst, addr, sz);
3397                if (!dst_pte) {
3398                        ret = -ENOMEM;
3399                        break;
3400                }
3401
3402                /*
3403                 * If the pagetables are shared don't copy or take references.
3404                 * dst_pte == src_pte is the common case of src/dest sharing.
3405                 *
3406                 * However, src could have 'unshared' and dst shares with
3407                 * another vma.  If dst_pte !none, this implies sharing.
3408                 * Check here before taking page table lock, and once again
3409                 * after taking the lock below.
3410                 */
3411                dst_entry = huge_ptep_get(dst_pte);
3412                if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413                        continue;
3414
3415                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416                src_ptl = huge_pte_lockptr(h, src, src_pte);
3417                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418                entry = huge_ptep_get(src_pte);
3419                dst_entry = huge_ptep_get(dst_pte);
3420                if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421                        /*
3422                         * Skip if src entry none.  Also, skip in the
3423                         * unlikely case dst entry !none as this implies
3424                         * sharing with another vma.
3425                         */
3426                        ;
3427                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428                                    is_hugetlb_entry_hwpoisoned(entry))) {
3429                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430
3431                        if (is_write_migration_entry(swp_entry) && cow) {
3432                                /*
3433                                 * COW mappings require pages in both
3434                                 * parent and child to be set to read.
3435                                 */
3436                                make_migration_entry_read(&swp_entry);
3437                                entry = swp_entry_to_pte(swp_entry);
3438                                set_huge_swap_pte_at(src, addr, src_pte,
3439                                                     entry, sz);
3440                        }
3441                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3442                } else {
3443                        if (cow) {
3444                                /*
3445                                 * No need to notify as we are downgrading page
3446                                 * table protection not changing it to point
3447                                 * to a new page.
3448                                 *
3449                                 * See Documentation/vm/mmu_notifier.rst
3450                                 */
3451                                huge_ptep_set_wrprotect(src, addr, src_pte);
3452                        }
3453                        entry = huge_ptep_get(src_pte);
3454                        ptepage = pte_page(entry);
3455                        get_page(ptepage);
3456                        page_dup_rmap(ptepage, true);
3457                        set_huge_pte_at(dst, addr, dst_pte, entry);
3458                        hugetlb_count_add(pages_per_huge_page(h), dst);
3459                }
3460                spin_unlock(src_ptl);
3461                spin_unlock(dst_ptl);
3462        }
3463
3464        if (cow)
3465                mmu_notifier_invalidate_range_end(&range);
3466
3467        return ret;
3468}
3469
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471                            unsigned long start, unsigned long end,
3472                            struct page *ref_page)
3473{
3474        struct mm_struct *mm = vma->vm_mm;
3475        unsigned long address;
3476        pte_t *ptep;
3477        pte_t pte;
3478        spinlock_t *ptl;
3479        struct page *page;
3480        struct hstate *h = hstate_vma(vma);
3481        unsigned long sz = huge_page_size(h);
3482        struct mmu_notifier_range range;
3483
3484        WARN_ON(!is_vm_hugetlb_page(vma));
3485        BUG_ON(start & ~huge_page_mask(h));
3486        BUG_ON(end & ~huge_page_mask(h));
3487
3488        /*
3489         * This is a hugetlb vma, all the pte entries should point
3490         * to huge page.
3491         */
3492        tlb_change_page_size(tlb, sz);
3493        tlb_start_vma(tlb, vma);
3494
3495        /*
3496         * If sharing possible, alert mmu notifiers of worst case.
3497         */
3498        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499                                end);
3500        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501        mmu_notifier_invalidate_range_start(&range);
3502        address = start;
3503        for (; address < end; address += sz) {
3504                ptep = huge_pte_offset(mm, address, sz);
3505                if (!ptep)
3506                        continue;
3507
3508                ptl = huge_pte_lock(h, mm, ptep);
3509                if (huge_pmd_unshare(mm, &address, ptep)) {
3510                        spin_unlock(ptl);
3511                        /*
3512                         * We just unmapped a page of PMDs by clearing a PUD.
3513                         * The caller's TLB flush range should cover this area.
3514                         */
3515                        continue;
3516                }
3517
3518                pte = huge_ptep_get(ptep);
3519                if (huge_pte_none(pte)) {
3520                        spin_unlock(ptl);
3521                        continue;
3522                }
3523
3524                /*
3525                 * Migrating hugepage or HWPoisoned hugepage is already
3526                 * unmapped and its refcount is dropped, so just clear pte here.
3527                 */
3528                if (unlikely(!pte_present(pte))) {
3529                        huge_pte_clear(mm, address, ptep, sz);
3530                        spin_unlock(ptl);
3531                        continue;
3532                }
3533
3534                page = pte_page(pte);
3535                /*
3536                 * If a reference page is supplied, it is because a specific
3537                 * page is being unmapped, not a range. Ensure the page we
3538                 * are about to unmap is the actual page of interest.
3539                 */
3540                if (ref_page) {
3541                        if (page != ref_page) {
3542                                spin_unlock(ptl);
3543                                continue;
3544                        }
3545                        /*
3546                         * Mark the VMA as having unmapped its page so that
3547                         * future faults in this VMA will fail rather than
3548                         * looking like data was lost
3549                         */
3550                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551                }
3552
3553                pte = huge_ptep_get_and_clear(mm, address, ptep);
3554                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555                if (huge_pte_dirty(pte))
3556                        set_page_dirty(page);
3557
3558                hugetlb_count_sub(pages_per_huge_page(h), mm);
3559                page_remove_rmap(page, true);
3560
3561                spin_unlock(ptl);
3562                tlb_remove_page_size(tlb, page, huge_page_size(h));
3563                /*
3564                 * Bail out after unmapping reference page if supplied
3565                 */
3566                if (ref_page)
3567                        break;
3568        }
3569        mmu_notifier_invalidate_range_end(&range);
3570        tlb_end_vma(tlb, vma);
3571}
3572
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574                          struct vm_area_struct *vma, unsigned long start,
3575                          unsigned long end, struct page *ref_page)
3576{
3577        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579        /*
3580         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581         * test will fail on a vma being torn down, and not grab a page table
3582         * on its way out.  We're lucky that the flag has such an appropriate
3583         * name, and can in fact be safely cleared here. We could clear it
3584         * before the __unmap_hugepage_range above, but all that's necessary
3585         * is to clear it before releasing the i_mmap_rwsem. This works
3586         * because in the context this is called, the VMA is about to be
3587         * destroyed and the i_mmap_rwsem is held.
3588         */
3589        vma->vm_flags &= ~VM_MAYSHARE;
3590}
3591
3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593                          unsigned long end, struct page *ref_page)
3594{
3595        struct mm_struct *mm;
3596        struct mmu_gather tlb;
3597        unsigned long tlb_start = start;
3598        unsigned long tlb_end = end;
3599
3600        /*
3601         * If shared PMDs were possibly used within this vma range, adjust
3602         * start/end for worst case tlb flushing.
3603         * Note that we can not be sure if PMDs are shared until we try to
3604         * unmap pages.  However, we want to make sure TLB flushing covers
3605         * the largest possible range.
3606         */
3607        adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608
3609        mm = vma->vm_mm;
3610
3611        tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613        tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614}
3615
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623                              struct page *page, unsigned long address)
3624{
3625        struct hstate *h = hstate_vma(vma);
3626        struct vm_area_struct *iter_vma;
3627        struct address_space *mapping;
3628        pgoff_t pgoff;
3629
3630        /*
3631         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632         * from page cache lookup which is in HPAGE_SIZE units.
3633         */
3634        address = address & huge_page_mask(h);
3635        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636                        vma->vm_pgoff;
3637        mapping = vma->vm_file->f_mapping;
3638
3639        /*
3640         * Take the mapping lock for the duration of the table walk. As
3641         * this mapping should be shared between all the VMAs,
3642         * __unmap_hugepage_range() is called as the lock is already held
3643         */
3644        i_mmap_lock_write(mapping);
3645        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646                /* Do not unmap the current VMA */
3647                if (iter_vma == vma)
3648                        continue;
3649
3650                /*
3651                 * Shared VMAs have their own reserves and do not affect
3652                 * MAP_PRIVATE accounting but it is possible that a shared
3653                 * VMA is using the same page so check and skip such VMAs.
3654                 */
3655                if (iter_vma->vm_flags & VM_MAYSHARE)
3656                        continue;
3657
3658                /*
3659                 * Unmap the page from other VMAs without their own reserves.
3660                 * They get marked to be SIGKILLed if they fault in these
3661                 * areas. This is because a future no-page fault on this VMA
3662                 * could insert a zeroed page instead of the data existing
3663                 * from the time of fork. This would look like data corruption
3664                 */
3665                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666                        unmap_hugepage_range(iter_vma, address,
3667                                             address + huge_page_size(h), page);
3668        }
3669        i_mmap_unlock_write(mapping);
3670}
3671
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
3677 */
3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679                       unsigned long address, pte_t *ptep,
3680                       struct page *pagecache_page, spinlock_t *ptl)
3681{
3682        pte_t pte;
3683        struct hstate *h = hstate_vma(vma);
3684        struct page *old_page, *new_page;
3685        int outside_reserve = 0;
3686        vm_fault_t ret = 0;
3687        unsigned long haddr = address & huge_page_mask(h);
3688        struct mmu_notifier_range range;
3689
3690        pte = huge_ptep_get(ptep);
3691        old_page = pte_page(pte);
3692
3693retry_avoidcopy:
3694        /* If no-one else is actually using this page, avoid the copy
3695         * and just make the page writable */
3696        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697                page_move_anon_rmap(old_page, vma);
3698                set_huge_ptep_writable(vma, haddr, ptep);
3699                return 0;
3700        }
3701
3702        /*
3703         * If the process that created a MAP_PRIVATE mapping is about to
3704         * perform a COW due to a shared page count, attempt to satisfy
3705         * the allocation without using the existing reserves. The pagecache
3706         * page is used to determine if the reserve at this address was
3707         * consumed or not. If reserves were used, a partial faulted mapping
3708         * at the time of fork() could consume its reserves on COW instead
3709         * of the full address range.
3710         */
3711        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712                        old_page != pagecache_page)
3713                outside_reserve = 1;
3714
3715        get_page(old_page);
3716
3717        /*
3718         * Drop page table lock as buddy allocator may be called. It will
3719         * be acquired again before returning to the caller, as expected.
3720         */
3721        spin_unlock(ptl);
3722        new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723
3724        if (IS_ERR(new_page)) {
3725                /*
3726                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727                 * it is due to references held by a child and an insufficient
3728                 * huge page pool. To guarantee the original mappers
3729                 * reliability, unmap the page from child processes. The child
3730                 * may get SIGKILLed if it later faults.
3731                 */
3732                if (outside_reserve) {
3733                        put_page(old_page);
3734                        BUG_ON(huge_pte_none(pte));
3735                        unmap_ref_private(mm, vma, old_page, haddr);
3736                        BUG_ON(huge_pte_none(pte));
3737                        spin_lock(ptl);
3738                        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739                        if (likely(ptep &&
3740                                   pte_same(huge_ptep_get(ptep), pte)))
3741                                goto retry_avoidcopy;
3742                        /*
3743                         * race occurs while re-acquiring page table
3744                         * lock, and our job is done.
3745                         */
3746                        return 0;
3747                }
3748
3749                ret = vmf_error(PTR_ERR(new_page));
3750                goto out_release_old;
3751        }
3752
3753        /*
3754         * When the original hugepage is shared one, it does not have
3755         * anon_vma prepared.
3756         */
3757        if (unlikely(anon_vma_prepare(vma))) {
3758                ret = VM_FAULT_OOM;
3759                goto out_release_all;
3760        }
3761
3762        copy_user_huge_page(new_page, old_page, address, vma,
3763                            pages_per_huge_page(h));
3764        __SetPageUptodate(new_page);
3765
3766        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767                                haddr + huge_page_size(h));
3768        mmu_notifier_invalidate_range_start(&range);
3769
3770        /*
3771         * Retake the page table lock to check for racing updates
3772         * before the page tables are altered
3773         */
3774        spin_lock(ptl);
3775        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777                ClearPagePrivate(new_page);
3778
3779                /* Break COW */
3780                huge_ptep_clear_flush(vma, haddr, ptep);
3781                mmu_notifier_invalidate_range(mm, range.start, range.end);
3782                set_huge_pte_at(mm, haddr, ptep,
3783                                make_huge_pte(vma, new_page, 1));
3784                page_remove_rmap(old_page, true);
3785                hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786                set_page_huge_active(new_page);
3787                /* Make the old page be freed below */
3788                new_page = old_page;
3789        }
3790        spin_unlock(ptl);
3791        mmu_notifier_invalidate_range_end(&range);
3792out_release_all:
3793        restore_reserve_on_error(h, vma, haddr, new_page);
3794        put_page(new_page);
3795out_release_old:
3796        put_page(old_page);
3797
3798        spin_lock(ptl); /* Caller expects lock to be held */
3799        return ret;
3800}
3801
3802/* Return the pagecache page at a given address within a VMA */
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804                        struct vm_area_struct *vma, unsigned long address)
3805{
3806        struct address_space *mapping;
3807        pgoff_t idx;
3808
3809        mapping = vma->vm_file->f_mapping;
3810        idx = vma_hugecache_offset(h, vma, address);
3811
3812        return find_lock_page(mapping, idx);
3813}
3814
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
3820                        struct vm_area_struct *vma, unsigned long address)
3821{
3822        struct address_space *mapping;
3823        pgoff_t idx;
3824        struct page *page;
3825
3826        mapping = vma->vm_file->f_mapping;
3827        idx = vma_hugecache_offset(h, vma, address);
3828
3829        page = find_get_page(mapping, idx);
3830        if (page)
3831                put_page(page);
3832        return page != NULL;
3833}
3834
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836                           pgoff_t idx)
3837{
3838        struct inode *inode = mapping->host;
3839        struct hstate *h = hstate_inode(inode);
3840        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842        if (err)
3843                return err;
3844        ClearPagePrivate(page);
3845
3846        /*
3847         * set page dirty so that it will not be removed from cache/file
3848         * by non-hugetlbfs specific code paths.
3849         */
3850        set_page_dirty(page);
3851
3852        spin_lock(&inode->i_lock);
3853        inode->i_blocks += blocks_per_huge_page(h);
3854        spin_unlock(&inode->i_lock);
3855        return 0;
3856}
3857
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859                        struct vm_area_struct *vma,
3860                        struct address_space *mapping, pgoff_t idx,
3861                        unsigned long address, pte_t *ptep, unsigned int flags)
3862{
3863        struct hstate *h = hstate_vma(vma);
3864        vm_fault_t ret = VM_FAULT_SIGBUS;
3865        int anon_rmap = 0;
3866        unsigned long size;
3867        struct page *page;
3868        pte_t new_pte;
3869        spinlock_t *ptl;
3870        unsigned long haddr = address & huge_page_mask(h);
3871        bool new_page = false;
3872
3873        /*
3874         * Currently, we are forced to kill the process in the event the
3875         * original mapper has unmapped pages from the child due to a failed
3876         * COW. Warn that such a situation has occurred as it may not be obvious
3877         */
3878        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880                           current->pid);
3881                return ret;
3882        }
3883
3884        /*
3885         * Use page lock to guard against racing truncation
3886         * before we get page_table_lock.
3887         */
3888retry:
3889        page = find_lock_page(mapping, idx);
3890        if (!page) {
3891                size = i_size_read(mapping->host) >> huge_page_shift(h);
3892                if (idx >= size)
3893                        goto out;
3894
3895                /*
3896                 * Check for page in userfault range
3897                 */
3898                if (userfaultfd_missing(vma)) {
3899                        u32 hash;
3900                        struct vm_fault vmf = {
3901                                .vma = vma,
3902                                .address = haddr,
3903                                .flags = flags,
3904                                /*
3905                                 * Hard to debug if it ends up being
3906                                 * used by a callee that assumes
3907                                 * something about the other
3908                                 * uninitialized fields... same as in
3909                                 * memory.c
3910                                 */
3911                        };
3912
3913                        /*
3914                         * hugetlb_fault_mutex must be dropped before
3915                         * handling userfault.  Reacquire after handling
3916                         * fault to make calling code simpler.
3917                         */
3918                        hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922                        goto out;
3923                }
3924
3925                page = alloc_huge_page(vma, haddr, 0);
3926                if (IS_ERR(page)) {
3927                        /*
3928                         * Returning error will result in faulting task being
3929                         * sent SIGBUS.  The hugetlb fault mutex prevents two
3930                         * tasks from racing to fault in the same page which
3931                         * could result in false unable to allocate errors.
3932                         * Page migration does not take the fault mutex, but
3933                         * does a clear then write of pte's under page table
3934                         * lock.  Page fault code could race with migration,
3935                         * notice the clear pte and try to allocate a page
3936                         * here.  Before returning error, get ptl and make
3937                         * sure there really is no pte entry.
3938                         */
3939                        ptl = huge_pte_lock(h, mm, ptep);
3940                        if (!huge_pte_none(huge_ptep_get(ptep))) {
3941                                ret = 0;
3942                                spin_unlock(ptl);
3943                                goto out;
3944                        }
3945                        spin_unlock(ptl);
3946                        ret = vmf_error(PTR_ERR(page));
3947                        goto out;
3948                }
3949                clear_huge_page(page, address, pages_per_huge_page(h));
3950                __SetPageUptodate(page);
3951                new_page = true;
3952
3953                if (vma->vm_flags & VM_MAYSHARE) {
3954                        int err = huge_add_to_page_cache(page, mapping, idx);
3955                        if (err) {
3956                                put_page(page);
3957                                if (err == -EEXIST)
3958                                        goto retry;
3959                                goto out;
3960                        }
3961                } else {
3962                        lock_page(page);
3963                        if (unlikely(anon_vma_prepare(vma))) {
3964                                ret = VM_FAULT_OOM;
3965                                goto backout_unlocked;
3966                        }
3967                        anon_rmap = 1;
3968                }
3969        } else {
3970                /*
3971                 * If memory error occurs between mmap() and fault, some process
3972                 * don't have hwpoisoned swap entry for errored virtual address.
3973                 * So we need to block hugepage fault by PG_hwpoison bit check.
3974                 */
3975                if (unlikely(PageHWPoison(page))) {
3976                        ret = VM_FAULT_HWPOISON |
3977                                VM_FAULT_SET_HINDEX(hstate_index(h));
3978                        goto backout_unlocked;
3979                }
3980        }
3981
3982        /*
3983         * If we are going to COW a private mapping later, we examine the
3984         * pending reservations for this page now. This will ensure that
3985         * any allocations necessary to record that reservation occur outside
3986         * the spinlock.
3987         */
3988        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989                if (vma_needs_reservation(h, vma, haddr) < 0) {
3990                        ret = VM_FAULT_OOM;
3991                        goto backout_unlocked;
3992                }
3993                /* Just decrements count, does not deallocate */
3994                vma_end_reservation(h, vma, haddr);
3995        }
3996
3997        ptl = huge_pte_lock(h, mm, ptep);
3998        size = i_size_read(mapping->host) >> huge_page_shift(h);
3999        if (idx >= size)
4000                goto backout;
4001
4002        ret = 0;
4003        if (!huge_pte_none(huge_ptep_get(ptep)))
4004                goto backout;
4005
4006        if (anon_rmap) {
4007                ClearPagePrivate(page);
4008                hugepage_add_new_anon_rmap(page, vma, haddr);
4009        } else
4010                page_dup_rmap(page, true);
4011        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012                                && (vma->vm_flags & VM_SHARED)));
4013        set_huge_pte_at(mm, haddr, ptep, new_pte);
4014
4015        hugetlb_count_add(pages_per_huge_page(h), mm);
4016        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017                /* Optimization, do the COW without a second fault */
4018                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019        }
4020
4021        spin_unlock(ptl);
4022
4023        /*
4024         * Only make newly allocated pages active.  Existing pages found
4025         * in the pagecache could be !page_huge_active() if they have been
4026         * isolated for migration.
4027         */
4028        if (new_page)
4029                set_page_huge_active(page);
4030
4031        unlock_page(page);
4032out:
4033        return ret;
4034
4035backout:
4036        spin_unlock(ptl);
4037backout_unlocked:
4038        unlock_page(page);
4039        restore_reserve_on_error(h, vma, haddr, page);
4040        put_page(page);
4041        goto out;
4042}
4043
4044#ifdef CONFIG_SMP
4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4046                            pgoff_t idx, unsigned long address)
4047{
4048        unsigned long key[2];
4049        u32 hash;
4050
4051        key[0] = (unsigned long) mapping;
4052        key[1] = idx;
4053
4054        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056        return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4064                            pgoff_t idx, unsigned long address)
4065{
4066        return 0;
4067}
4068#endif
4069
4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071                        unsigned long address, unsigned int flags)
4072{
4073        pte_t *ptep, entry;
4074        spinlock_t *ptl;
4075        vm_fault_t ret;
4076        u32 hash;
4077        pgoff_t idx;
4078        struct page *page = NULL;
4079        struct page *pagecache_page = NULL;
4080        struct hstate *h = hstate_vma(vma);
4081        struct address_space *mapping;
4082        int need_wait_lock = 0;
4083        unsigned long haddr = address & huge_page_mask(h);
4084
4085        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4086        if (ptep) {
4087                entry = huge_ptep_get(ptep);
4088                if (unlikely(is_hugetlb_entry_migration(entry))) {
4089                        migration_entry_wait_huge(vma, mm, ptep);
4090                        return 0;
4091                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092                        return VM_FAULT_HWPOISON_LARGE |
4093                                VM_FAULT_SET_HINDEX(hstate_index(h));
4094        } else {
4095                ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096                if (!ptep)
4097                        return VM_FAULT_OOM;
4098        }
4099
4100        mapping = vma->vm_file->f_mapping;
4101        idx = vma_hugecache_offset(h, vma, haddr);
4102
4103        /*
4104         * Serialize hugepage allocation and instantiation, so that we don't
4105         * get spurious allocation failures if two CPUs race to instantiate
4106         * the same page in the page cache.
4107         */
4108        hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4109        mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110
4111        entry = huge_ptep_get(ptep);
4112        if (huge_pte_none(entry)) {
4113                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114                goto out_mutex;
4115        }
4116
4117        ret = 0;
4118
4119        /*
4120         * entry could be a migration/hwpoison entry at this point, so this
4121         * check prevents the kernel from going below assuming that we have
4122         * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124         * handle it.
4125         */
4126        if (!pte_present(entry))
4127                goto out_mutex;
4128
4129        /*
4130         * If we are going to COW the mapping later, we examine the pending
4131         * reservations for this page now. This will ensure that any
4132         * allocations necessary to record that reservation occur outside the
4133         * spinlock. For private mappings, we also lookup the pagecache
4134         * page now as it is used to determine if a reservation has been
4135         * consumed.
4136         */
4137        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4138                if (vma_needs_reservation(h, vma, haddr) < 0) {
4139                        ret = VM_FAULT_OOM;
4140                        goto out_mutex;
4141                }
4142                /* Just decrements count, does not deallocate */
4143                vma_end_reservation(h, vma, haddr);
4144
4145                if (!(vma->vm_flags & VM_MAYSHARE))
4146                        pagecache_page = hugetlbfs_pagecache_page(h,
4147                                                                vma, haddr);
4148        }
4149
4150        ptl = huge_pte_lock(h, mm, ptep);
4151
4152        /* Check for a racing update before calling hugetlb_cow */
4153        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154                goto out_ptl;
4155
4156        /*
4157         * hugetlb_cow() requires page locks of pte_page(entry) and
4158         * pagecache_page, so here we need take the former one
4159         * when page != pagecache_page or !pagecache_page.
4160         */
4161        page = pte_page(entry);
4162        if (page != pagecache_page)
4163                if (!trylock_page(page)) {
4164                        need_wait_lock = 1;
4165                        goto out_ptl;
4166                }
4167
4168        get_page(page);
4169
4170        if (flags & FAULT_FLAG_WRITE) {
4171                if (!huge_pte_write(entry)) {
4172                        ret = hugetlb_cow(mm, vma, address, ptep,
4173                                          pagecache_page, ptl);
4174                        goto out_put_page;
4175                }
4176                entry = huge_pte_mkdirty(entry);
4177        }
4178        entry = pte_mkyoung(entry);
4179        if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180                                                flags & FAULT_FLAG_WRITE))
4181                update_mmu_cache(vma, haddr, ptep);
4182out_put_page:
4183        if (page != pagecache_page)
4184                unlock_page(page);
4185        put_page(page);
4186out_ptl:
4187        spin_unlock(ptl);
4188
4189        if (pagecache_page) {
4190                unlock_page(pagecache_page);
4191                put_page(pagecache_page);
4192        }
4193out_mutex:
4194        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195        /*
4196         * Generally it's safe to hold refcount during waiting page lock. But
4197         * here we just wait to defer the next page fault to avoid busy loop and
4198         * the page is not used after unlocked before returning from the current
4199         * page fault. So we are safe from accessing freed page, even if we wait
4200         * here without taking refcount.
4201         */
4202        if (need_wait_lock)
4203                wait_on_page_locked(page);
4204        return ret;
4205}
4206
4207/*
4208 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212                            pte_t *dst_pte,
4213                            struct vm_area_struct *dst_vma,
4214                            unsigned long dst_addr,
4215                            unsigned long src_addr,
4216                            struct page **pagep)
4217{
4218        struct address_space *mapping;
4219        pgoff_t idx;
4220        unsigned long size;
4221        int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222        struct hstate *h = hstate_vma(dst_vma);
4223        pte_t _dst_pte;
4224        spinlock_t *ptl;
4225        int ret;
4226        struct page *page;
4227
4228        if (!*pagep) {
4229                ret = -ENOMEM;
4230                page = alloc_huge_page(dst_vma, dst_addr, 0);
4231                if (IS_ERR(page))
4232                        goto out;
4233
4234                ret = copy_huge_page_from_user(page,
4235                                                (const void __user *) src_addr,
4236                                                pages_per_huge_page(h), false);
4237
4238                /* fallback to copy_from_user outside mmap_sem */
4239                if (unlikely(ret)) {
4240                        ret = -ENOENT;
4241                        *pagep = page;
4242                        /* don't free the page */
4243                        goto out;
4244                }
4245        } else {
4246                page = *pagep;
4247                *pagep = NULL;
4248        }
4249
4250        /*
4251         * The memory barrier inside __SetPageUptodate makes sure that
4252         * preceding stores to the page contents become visible before
4253         * the set_pte_at() write.
4254         */
4255        __SetPageUptodate(page);
4256
4257        mapping = dst_vma->vm_file->f_mapping;
4258        idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
4260        /*
4261         * If shared, add to page cache
4262         */
4263        if (vm_shared) {
4264                size = i_size_read(mapping->host) >> huge_page_shift(h);
4265                ret = -EFAULT;
4266                if (idx >= size)
4267                        goto out_release_nounlock;
4268
4269                /*
4270                 * Serialization between remove_inode_hugepages() and
4271                 * huge_add_to_page_cache() below happens through the
4272                 * hugetlb_fault_mutex_table that here must be hold by
4273                 * the caller.
4274                 */
4275                ret = huge_add_to_page_cache(page, mapping, idx);
4276                if (ret)
4277                        goto out_release_nounlock;
4278        }
4279
4280        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281        spin_lock(ptl);
4282
4283        /*
4284         * Recheck the i_size after holding PT lock to make sure not
4285         * to leave any page mapped (as page_mapped()) beyond the end
4286         * of the i_size (remove_inode_hugepages() is strict about
4287         * enforcing that). If we bail out here, we'll also leave a
4288         * page in the radix tree in the vm_shared case beyond the end
4289         * of the i_size, but remove_inode_hugepages() will take care
4290         * of it as soon as we drop the hugetlb_fault_mutex_table.
4291         */
4292        size = i_size_read(mapping->host) >> huge_page_shift(h);
4293        ret = -EFAULT;
4294        if (idx >= size)
4295                goto out_release_unlock;
4296
4297        ret = -EEXIST;
4298        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299                goto out_release_unlock;
4300
4301        if (vm_shared) {
4302                page_dup_rmap(page, true);
4303        } else {
4304                ClearPagePrivate(page);
4305                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306        }
4307
4308        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309        if (dst_vma->vm_flags & VM_WRITE)
4310                _dst_pte = huge_pte_mkdirty(_dst_pte);
4311        _dst_pte = pte_mkyoung(_dst_pte);
4312
4313        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314
4315        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316                                        dst_vma->vm_flags & VM_WRITE);
4317        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319        /* No need to invalidate - it was non-present before */
4320        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322        spin_unlock(ptl);
4323        set_page_huge_active(page);
4324        if (vm_shared)
4325                unlock_page(page);
4326        ret = 0;
4327out:
4328        return ret;
4329out_release_unlock:
4330        spin_unlock(ptl);
4331        if (vm_shared)
4332                unlock_page(page);
4333out_release_nounlock:
4334        put_page(page);
4335        goto out;
4336}
4337
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339                         struct page **pages, struct vm_area_struct **vmas,
4340                         unsigned long *position, unsigned long *nr_pages,
4341                         long i, unsigned int flags, int *nonblocking)
4342{
4343        unsigned long pfn_offset;
4344        unsigned long vaddr = *position;
4345        unsigned long remainder = *nr_pages;
4346        struct hstate *h = hstate_vma(vma);
4347        int err = -EFAULT;
4348
4349        while (vaddr < vma->vm_end && remainder) {
4350                pte_t *pte;
4351                spinlock_t *ptl = NULL;
4352                int absent;
4353                struct page *page;
4354
4355                /*
4356                 * If we have a pending SIGKILL, don't keep faulting pages and
4357                 * potentially allocating memory.
4358                 */
4359                if (fatal_signal_pending(current)) {
4360                        remainder = 0;
4361                        break;
4362                }
4363
4364                /*
4365                 * Some archs (sparc64, sh*) have multiple pte_ts to
4366                 * each hugepage.  We have to make sure we get the
4367                 * first, for the page indexing below to work.
4368                 *
4369                 * Note that page table lock is not held when pte is null.
4370                 */
4371                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372                                      huge_page_size(h));
4373                if (pte)
4374                        ptl = huge_pte_lock(h, mm, pte);
4375                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377                /*
4378                 * When coredumping, it suits get_dump_page if we just return
4379                 * an error where there's an empty slot with no huge pagecache
4380                 * to back it.  This way, we avoid allocating a hugepage, and
4381                 * the sparse dumpfile avoids allocating disk blocks, but its
4382                 * huge holes still show up with zeroes where they need to be.
4383                 */
4384                if (absent && (flags & FOLL_DUMP) &&
4385                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386                        if (pte)
4387                                spin_unlock(ptl);
4388                        remainder = 0;
4389                        break;
4390                }
4391
4392                /*
4393                 * We need call hugetlb_fault for both hugepages under migration
4394                 * (in which case hugetlb_fault waits for the migration,) and
4395                 * hwpoisoned hugepages (in which case we need to prevent the
4396                 * caller from accessing to them.) In order to do this, we use
4397                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399                 * both cases, and because we can't follow correct pages
4400                 * directly from any kind of swap entries.
4401                 */
4402                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403                    ((flags & FOLL_WRITE) &&
4404                      !huge_pte_write(huge_ptep_get(pte)))) {
4405                        vm_fault_t ret;
4406                        unsigned int fault_flags = 0;
4407
4408                        if (pte)
4409                                spin_unlock(ptl);
4410                        if (flags & FOLL_WRITE)
4411                                fault_flags |= FAULT_FLAG_WRITE;
4412                        if (nonblocking)
4413                                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4414                        if (flags & FOLL_NOWAIT)
4415                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416                                        FAULT_FLAG_RETRY_NOWAIT;
4417                        if (flags & FOLL_TRIED) {
4418                                VM_WARN_ON_ONCE(fault_flags &
4419                                                FAULT_FLAG_ALLOW_RETRY);
4420                                fault_flags |= FAULT_FLAG_TRIED;
4421                        }
4422                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423                        if (ret & VM_FAULT_ERROR) {
4424                                err = vm_fault_to_errno(ret, flags);
4425                                remainder = 0;
4426                                break;
4427                        }
4428                        if (ret & VM_FAULT_RETRY) {
4429                                if (nonblocking &&
4430                                    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431                                        *nonblocking = 0;
4432                                *nr_pages = 0;
4433                                /*
4434                                 * VM_FAULT_RETRY must not return an
4435                                 * error, it will return zero
4436                                 * instead.
4437                                 *
4438                                 * No need to update "position" as the
4439                                 * caller will not check it after
4440                                 * *nr_pages is set to 0.
4441                                 */
4442                                return i;
4443                        }
4444                        continue;
4445                }
4446
4447                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448                page = pte_page(huge_ptep_get(pte));
4449
4450                /*
4451                 * Instead of doing 'try_get_page()' below in the same_page
4452                 * loop, just check the count once here.
4453                 */
4454                if (unlikely(page_count(page) <= 0)) {
4455                        if (pages) {
4456                                spin_unlock(ptl);
4457                                remainder = 0;
4458                                err = -ENOMEM;
4459                                break;
4460                        }
4461                }
4462same_page:
4463                if (pages) {
4464                        pages[i] = mem_map_offset(page, pfn_offset);
4465                        get_page(pages[i]);
4466                }
4467
4468                if (vmas)
4469                        vmas[i] = vma;
4470
4471                vaddr += PAGE_SIZE;
4472                ++pfn_offset;
4473                --remainder;
4474                ++i;
4475                if (vaddr < vma->vm_end && remainder &&
4476                                pfn_offset < pages_per_huge_page(h)) {
4477                        /*
4478                         * We use pfn_offset to avoid touching the pageframes
4479                         * of this compound page.
4480                         */
4481                        goto same_page;
4482                }
4483                spin_unlock(ptl);
4484        }
4485        *nr_pages = remainder;
4486        /*
4487         * setting position is actually required only if remainder is
4488         * not zero but it's faster not to add a "if (remainder)"
4489         * branch.
4490         */
4491        *position = vaddr;
4492
4493        return i ? i : err;
4494}
4495
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4502#endif
4503
4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505                unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507        struct mm_struct *mm = vma->vm_mm;
4508        unsigned long start = address;
4509        pte_t *ptep;
4510        pte_t pte;
4511        struct hstate *h = hstate_vma(vma);
4512        unsigned long pages = 0;
4513        bool shared_pmd = false;
4514        struct mmu_notifier_range range;
4515
4516        /*
4517         * In the case of shared PMDs, the area to flush could be beyond
4518         * start/end.  Set range.start/range.end to cover the maximum possible
4519         * range if PMD sharing is possible.
4520         */
4521        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522                                0, vma, mm, start, end);
4523        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524
4525        BUG_ON(address >= end);
4526        flush_cache_range(vma, range.start, range.end);
4527
4528        mmu_notifier_invalidate_range_start(&range);
4529        i_mmap_lock_write(vma->vm_file->f_mapping);
4530        for (; address < end; address += huge_page_size(h)) {
4531                spinlock_t *ptl;
4532                ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533                if (!ptep)
4534                        continue;
4535                ptl = huge_pte_lock(h, mm, ptep);
4536                if (huge_pmd_unshare(mm, &address, ptep)) {
4537                        pages++;
4538                        spin_unlock(ptl);
4539                        shared_pmd = true;
4540                        continue;
4541                }
4542                pte = huge_ptep_get(ptep);
4543                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544                        spin_unlock(ptl);
4545                        continue;
4546                }
4547                if (unlikely(is_hugetlb_entry_migration(pte))) {
4548                        swp_entry_t entry = pte_to_swp_entry(pte);
4549
4550                        if (is_write_migration_entry(entry)) {
4551                                pte_t newpte;
4552
4553                                make_migration_entry_read(&entry);
4554                                newpte = swp_entry_to_pte(entry);
4555                                set_huge_swap_pte_at(mm, address, ptep,
4556                                                     newpte, huge_page_size(h));
4557                                pages++;
4558                        }
4559                        spin_unlock(ptl);
4560                        continue;
4561                }
4562                if (!huge_pte_none(pte)) {
4563                        pte_t old_pte;
4564
4565                        old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566                        pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4568                        huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569                        pages++;
4570                }
4571                spin_unlock(ptl);
4572        }
4573        /*
4574         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575         * may have cleared our pud entry and done put_page on the page table:
4576         * once we release i_mmap_rwsem, another task can do the final put_page
4577         * and that page table be reused and filled with junk.  If we actually
4578         * did unshare a page of pmds, flush the range corresponding to the pud.
4579         */
4580        if (shared_pmd)
4581                flush_hugetlb_tlb_range(vma, range.start, range.end);
4582        else
4583                flush_hugetlb_tlb_range(vma, start, end);
4584        /*
4585         * No need to call mmu_notifier_invalidate_range() we are downgrading
4586         * page table protection not changing it to point to a new page.
4587         *
4588         * See Documentation/vm/mmu_notifier.rst
4589         */
4590        i_mmap_unlock_write(vma->vm_file->f_mapping);
4591        mmu_notifier_invalidate_range_end(&range);
4592
4593        return pages << h->order;
4594}
4595
4596int hugetlb_reserve_pages(struct inode *inode,
4597                                        long from, long to,
4598                                        struct vm_area_struct *vma,
4599                                        vm_flags_t vm_flags)
4600{
4601        long ret, chg;
4602        struct hstate *h = hstate_inode(inode);
4603        struct hugepage_subpool *spool = subpool_inode(inode);
4604        struct resv_map *resv_map;
4605        long gbl_reserve;
4606
4607        /* This should never happen */
4608        if (from > to) {
4609                VM_WARN(1, "%s called with a negative range\n", __func__);
4610                return -EINVAL;
4611        }
4612
4613        /*
4614         * Only apply hugepage reservation if asked. At fault time, an
4615         * attempt will be made for VM_NORESERVE to allocate a page
4616         * without using reserves
4617         */
4618        if (vm_flags & VM_NORESERVE)
4619                return 0;
4620
4621        /*
4622         * Shared mappings base their reservation on the number of pages that
4623         * are already allocated on behalf of the file. Private mappings need
4624         * to reserve the full area even if read-only as mprotect() may be
4625         * called to make the mapping read-write. Assume !vma is a shm mapping
4626         */
4627        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628                /*
4629                 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630                 * called for inodes for which resv_maps were created (see
4631                 * hugetlbfs_get_inode).
4632                 */
4633                resv_map = inode_resv_map(inode);
4634
4635                chg = region_chg(resv_map, from, to);
4636
4637        } else {
4638                resv_map = resv_map_alloc();
4639                if (!resv_map)
4640                        return -ENOMEM;
4641
4642                chg = to - from;
4643
4644                set_vma_resv_map(vma, resv_map);
4645                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646        }
4647
4648        if (chg < 0) {
4649                ret = chg;
4650                goto out_err;
4651        }
4652
4653        /*
4654         * There must be enough pages in the subpool for the mapping. If
4655         * the subpool has a minimum size, there may be some global
4656         * reservations already in place (gbl_reserve).
4657         */
4658        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659        if (gbl_reserve < 0) {
4660                ret = -ENOSPC;
4661                goto out_err;
4662        }
4663
4664        /*
4665         * Check enough hugepages are available for the reservation.
4666         * Hand the pages back to the subpool if there are not
4667         */
4668        ret = hugetlb_acct_memory(h, gbl_reserve);
4669        if (ret < 0) {
4670                /* put back original number of pages, chg */
4671                (void)hugepage_subpool_put_pages(spool, chg);
4672                goto out_err;
4673        }
4674
4675        /*
4676         * Account for the reservations made. Shared mappings record regions
4677         * that have reservations as they are shared by multiple VMAs.
4678         * When the last VMA disappears, the region map says how much
4679         * the reservation was and the page cache tells how much of
4680         * the reservation was consumed. Private mappings are per-VMA and
4681         * only the consumed reservations are tracked. When the VMA
4682         * disappears, the original reservation is the VMA size and the
4683         * consumed reservations are stored in the map. Hence, nothing
4684         * else has to be done for private mappings here
4685         */
4686        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687                long add = region_add(resv_map, from, to);
4688
4689                if (unlikely(chg > add)) {
4690                        /*
4691                         * pages in this range were added to the reserve
4692                         * map between region_chg and region_add.  This
4693                         * indicates a race with alloc_huge_page.  Adjust
4694                         * the subpool and reserve counts modified above
4695                         * based on the difference.
4696                         */
4697                        long rsv_adjust;
4698
4699                        rsv_adjust = hugepage_subpool_put_pages(spool,
4700                                                                chg - add);
4701                        hugetlb_acct_memory(h, -rsv_adjust);
4702                }
4703        }
4704        return 0;
4705out_err:
4706        if (!vma || vma->vm_flags & VM_MAYSHARE)
4707                /* Don't call region_abort if region_chg failed */
4708                if (chg >= 0)
4709                        region_abort(resv_map, from, to);
4710        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711                kref_put(&resv_map->refs, resv_map_release);
4712        return ret;
4713}
4714
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716                                                                long freed)
4717{
4718        struct hstate *h = hstate_inode(inode);
4719        struct resv_map *resv_map = inode_resv_map(inode);
4720        long chg = 0;
4721        struct hugepage_subpool *spool = subpool_inode(inode);
4722        long gbl_reserve;
4723
4724        /*
4725         * Since this routine can be called in the evict inode path for all
4726         * hugetlbfs inodes, resv_map could be NULL.
4727         */
4728        if (resv_map) {
4729                chg = region_del(resv_map, start, end);
4730                /*
4731                 * region_del() can fail in the rare case where a region
4732                 * must be split and another region descriptor can not be
4733                 * allocated.  If end == LONG_MAX, it will not fail.
4734                 */
4735                if (chg < 0)
4736                        return chg;
4737        }
4738
4739        spin_lock(&inode->i_lock);
4740        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741        spin_unlock(&inode->i_lock);
4742
4743        /*
4744         * If the subpool has a minimum size, the number of global
4745         * reservations to be released may be adjusted.
4746         */
4747        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748        hugetlb_acct_memory(h, -gbl_reserve);
4749
4750        return 0;
4751}
4752
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755                                struct vm_area_struct *vma,
4756                                unsigned long addr, pgoff_t idx)
4757{
4758        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759                                svma->vm_start;
4760        unsigned long sbase = saddr & PUD_MASK;
4761        unsigned long s_end = sbase + PUD_SIZE;
4762
4763        /* Allow segments to share if only one is marked locked */
4764        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766
4767        /*
4768         * match the virtual addresses, permission and the alignment of the
4769         * page table page.
4770         */
4771        if (pmd_index(addr) != pmd_index(saddr) ||
4772            vm_flags != svm_flags ||
4773            sbase < svma->vm_start || svma->vm_end < s_end)
4774                return 0;
4775
4776        return saddr;
4777}
4778
4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780{
4781        unsigned long base = addr & PUD_MASK;
4782        unsigned long end = base + PUD_SIZE;
4783
4784        /*
4785         * check on proper vm_flags and page table alignment
4786         */
4787        if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788                return true;
4789        return false;
4790}
4791
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798                                unsigned long *start, unsigned long *end)
4799{
4800        unsigned long check_addr = *start;
4801
4802        if (!(vma->vm_flags & VM_MAYSHARE))
4803                return;
4804
4805        for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806                unsigned long a_start = check_addr & PUD_MASK;
4807                unsigned long a_end = a_start + PUD_SIZE;
4808
4809                /*
4810                 * If sharing is possible, adjust start/end if necessary.
4811                 */
4812                if (range_in_vma(vma, a_start, a_end)) {
4813                        if (a_start < *start)
4814                                *start = a_start;
4815                        if (a_end > *end)
4816                                *end = a_end;
4817                }
4818        }
4819}
4820
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4831{
4832        struct vm_area_struct *vma = find_vma(mm, addr);
4833        struct address_space *mapping = vma->vm_file->f_mapping;
4834        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835                        vma->vm_pgoff;
4836        struct vm_area_struct *svma;
4837        unsigned long saddr;
4838        pte_t *spte = NULL;
4839        pte_t *pte;
4840        spinlock_t *ptl;
4841
4842        if (!vma_shareable(vma, addr))
4843                return (pte_t *)pmd_alloc(mm, pud, addr);
4844
4845        i_mmap_lock_write(mapping);
4846        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847                if (svma == vma)
4848                        continue;
4849
4850                saddr = page_table_shareable(svma, vma, addr, idx);
4851                if (saddr) {
4852                        spte = huge_pte_offset(svma->vm_mm, saddr,
4853                                               vma_mmu_pagesize(svma));
4854                        if (spte) {
4855                                get_page(virt_to_page(spte));
4856                                break;
4857                        }
4858                }
4859        }
4860
4861        if (!spte)
4862                goto out;
4863
4864        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865        if (pud_none(*pud)) {
4866                pud_populate(mm, pud,
4867                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4868                mm_inc_nr_pmds(mm);
4869        } else {
4870                put_page(virt_to_page(spte));
4871        }
4872        spin_unlock(ptl);
4873out:
4874        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875        i_mmap_unlock_write(mapping);
4876        return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
4886 * called with page table lock held.
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 *          0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4892{
4893        pgd_t *pgd = pgd_offset(mm, *addr);
4894        p4d_t *p4d = p4d_offset(pgd, *addr);
4895        pud_t *pud = pud_offset(p4d, *addr);
4896
4897        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898        if (page_count(virt_to_page(ptep)) == 1)
4899                return 0;
4900
4901        pud_clear(pud);
4902        put_page(virt_to_page(ptep));
4903        mm_dec_nr_pmds(mm);
4904        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905        return 1;
4906}
4907#define want_pmd_share()        (1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4910{
4911        return NULL;
4912}
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4915{
4916        return 0;
4917}
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920                                unsigned long *start, unsigned long *end)
4921{
4922}
4923#define want_pmd_share()        (0)
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928                        unsigned long addr, unsigned long sz)
4929{
4930        pgd_t *pgd;
4931        p4d_t *p4d;
4932        pud_t *pud;
4933        pte_t *pte = NULL;
4934
4935        pgd = pgd_offset(mm, addr);
4936        p4d = p4d_alloc(mm, pgd, addr);
4937        if (!p4d)
4938                return NULL;
4939        pud = pud_alloc(mm, p4d, addr);
4940        if (pud) {
4941                if (sz == PUD_SIZE) {
4942                        pte = (pte_t *)pud;
4943                } else {
4944                        BUG_ON(sz != PMD_SIZE);
4945                        if (want_pmd_share() && pud_none(*pud))
4946                                pte = huge_pmd_share(mm, addr, pud);
4947                        else
4948                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949                }
4950        }
4951        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4952
4953        return pte;
4954}
4955
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966                       unsigned long addr, unsigned long sz)
4967{
4968        pgd_t *pgd;
4969        p4d_t *p4d;
4970        pud_t *pud;
4971        pmd_t *pmd;
4972
4973        pgd = pgd_offset(mm, addr);
4974        if (!pgd_present(*pgd))
4975                return NULL;
4976        p4d = p4d_offset(pgd, addr);
4977        if (!p4d_present(*p4d))
4978                return NULL;
4979
4980        pud = pud_offset(p4d, addr);
4981        if (sz != PUD_SIZE && pud_none(*pud))
4982                return NULL;
4983        /* hugepage or swap? */
4984        if (pud_huge(*pud) || !pud_present(*pud))
4985                return (pte_t *)pud;
4986
4987        pmd = pmd_offset(pud, addr);
4988        if (sz != PMD_SIZE && pmd_none(*pmd))
4989                return NULL;
4990        /* hugepage or swap? */
4991        if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992                return (pte_t *)pmd;
4993
4994        return NULL;
4995}
4996
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005                              int write)
5006{
5007        return ERR_PTR(-EINVAL);
5008}
5009
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012               unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015        return NULL;
5016}
5017
5018struct page * __weak
5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020                pmd_t *pmd, int flags)
5021{
5022        struct page *page = NULL;
5023        spinlock_t *ptl;
5024        pte_t pte;
5025retry:
5026        ptl = pmd_lockptr(mm, pmd);
5027        spin_lock(ptl);
5028        /*
5029         * make sure that the address range covered by this pmd is not
5030         * unmapped from other threads.
5031         */
5032        if (!pmd_huge(*pmd))
5033                goto out;
5034        pte = huge_ptep_get((pte_t *)pmd);
5035        if (pte_present(pte)) {
5036                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037                if (flags & FOLL_GET)
5038                        get_page(page);
5039        } else {
5040                if (is_hugetlb_entry_migration(pte)) {
5041                        spin_unlock(ptl);
5042                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043                        goto retry;
5044                }
5045                /*
5046                 * hwpoisoned entry is treated as no_page_table in
5047                 * follow_page_mask().
5048                 */
5049        }
5050out:
5051        spin_unlock(ptl);
5052        return page;
5053}
5054
5055struct page * __weak
5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057                pud_t *pud, int flags)
5058{
5059        if (flags & FOLL_GET)
5060                return NULL;
5061
5062        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5063}
5064
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067{
5068        if (flags & FOLL_GET)
5069                return NULL;
5070
5071        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5072}
5073
5074bool isolate_huge_page(struct page *page, struct list_head *list)
5075{
5076        bool ret = true;
5077
5078        VM_BUG_ON_PAGE(!PageHead(page), page);
5079        spin_lock(&hugetlb_lock);
5080        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081                ret = false;
5082                goto unlock;
5083        }
5084        clear_page_huge_active(page);
5085        list_move_tail(&page->lru, list);
5086unlock:
5087        spin_unlock(&hugetlb_lock);
5088        return ret;
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
5093        VM_BUG_ON_PAGE(!PageHead(page), page);
5094        spin_lock(&hugetlb_lock);
5095        set_page_huge_active(page);
5096        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097        spin_unlock(&hugetlb_lock);
5098        put_page(page);
5099}
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103        struct hstate *h = page_hstate(oldpage);
5104
5105        hugetlb_cgroup_migrate(oldpage, newpage);
5106        set_page_owner_migrate_reason(newpage, reason);
5107
5108        /*
5109         * transfer temporary state of the new huge page. This is
5110         * reverse to other transitions because the newpage is going to
5111         * be final while the old one will be freed so it takes over
5112         * the temporary status.
5113         *
5114         * Also note that we have to transfer the per-node surplus state
5115         * here as well otherwise the global surplus count will not match
5116         * the per-node's.
5117         */
5118        if (PageHugeTemporary(newpage)) {
5119                int old_nid = page_to_nid(oldpage);
5120                int new_nid = page_to_nid(newpage);
5121
5122                SetPageHugeTemporary(oldpage);
5123                ClearPageHugeTemporary(newpage);
5124
5125                spin_lock(&hugetlb_lock);
5126                if (h->surplus_huge_pages_node[old_nid]) {
5127                        h->surplus_huge_pages_node[old_nid]--;
5128                        h->surplus_huge_pages_node[new_nid]++;
5129                }
5130                spin_unlock(&hugetlb_lock);
5131        }
5132}
5133