linux/mm/oom_kill.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *      Thanks go out to Claus Fischer for some serious inspiration and
   7 *      for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *      Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
  29#include <linux/swap.h>
  30#include <linux/timex.h>
  31#include <linux/jiffies.h>
  32#include <linux/cpuset.h>
  33#include <linux/export.h>
  34#include <linux/notifier.h>
  35#include <linux/memcontrol.h>
  36#include <linux/mempolicy.h>
  37#include <linux/security.h>
  38#include <linux/ptrace.h>
  39#include <linux/freezer.h>
  40#include <linux/ftrace.h>
  41#include <linux/ratelimit.h>
  42#include <linux/kthread.h>
  43#include <linux/init.h>
  44#include <linux/mmu_notifier.h>
  45
  46#include <asm/tlb.h>
  47#include "internal.h"
  48#include "slab.h"
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/oom.h>
  52
  53int sysctl_panic_on_oom;
  54int sysctl_oom_kill_allocating_task;
  55int sysctl_oom_dump_tasks = 1;
  56
  57/*
  58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  60 * from different domains).
  61 *
  62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  63 * and mark_oom_victim
  64 */
  65DEFINE_MUTEX(oom_lock);
  66
  67static inline bool is_memcg_oom(struct oom_control *oc)
  68{
  69        return oc->memcg != NULL;
  70}
  71
  72#ifdef CONFIG_NUMA
  73/**
  74 * oom_cpuset_eligible() - check task eligiblity for kill
  75 * @start: task struct of which task to consider
  76 * @oc: pointer to struct oom_control
  77 *
  78 * Task eligibility is determined by whether or not a candidate task, @tsk,
  79 * shares the same mempolicy nodes as current if it is bound by such a policy
  80 * and whether or not it has the same set of allowed cpuset nodes.
  81 *
  82 * This function is assuming oom-killer context and 'current' has triggered
  83 * the oom-killer.
  84 */
  85static bool oom_cpuset_eligible(struct task_struct *start,
  86                                struct oom_control *oc)
  87{
  88        struct task_struct *tsk;
  89        bool ret = false;
  90        const nodemask_t *mask = oc->nodemask;
  91
  92        if (is_memcg_oom(oc))
  93                return true;
  94
  95        rcu_read_lock();
  96        for_each_thread(start, tsk) {
  97                if (mask) {
  98                        /*
  99                         * If this is a mempolicy constrained oom, tsk's
 100                         * cpuset is irrelevant.  Only return true if its
 101                         * mempolicy intersects current, otherwise it may be
 102                         * needlessly killed.
 103                         */
 104                        ret = mempolicy_nodemask_intersects(tsk, mask);
 105                } else {
 106                        /*
 107                         * This is not a mempolicy constrained oom, so only
 108                         * check the mems of tsk's cpuset.
 109                         */
 110                        ret = cpuset_mems_allowed_intersects(current, tsk);
 111                }
 112                if (ret)
 113                        break;
 114        }
 115        rcu_read_unlock();
 116
 117        return ret;
 118}
 119#else
 120static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 121{
 122        return true;
 123}
 124#endif /* CONFIG_NUMA */
 125
 126/*
 127 * The process p may have detached its own ->mm while exiting or through
 128 * use_mm(), but one or more of its subthreads may still have a valid
 129 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 130 * task_lock() held.
 131 */
 132struct task_struct *find_lock_task_mm(struct task_struct *p)
 133{
 134        struct task_struct *t;
 135
 136        rcu_read_lock();
 137
 138        for_each_thread(p, t) {
 139                task_lock(t);
 140                if (likely(t->mm))
 141                        goto found;
 142                task_unlock(t);
 143        }
 144        t = NULL;
 145found:
 146        rcu_read_unlock();
 147
 148        return t;
 149}
 150
 151/*
 152 * order == -1 means the oom kill is required by sysrq, otherwise only
 153 * for display purposes.
 154 */
 155static inline bool is_sysrq_oom(struct oom_control *oc)
 156{
 157        return oc->order == -1;
 158}
 159
 160/* return true if the task is not adequate as candidate victim task. */
 161static bool oom_unkillable_task(struct task_struct *p)
 162{
 163        if (is_global_init(p))
 164                return true;
 165        if (p->flags & PF_KTHREAD)
 166                return true;
 167        return false;
 168}
 169
 170/*
 171 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 172 * than all user memory (LRU pages)
 173 */
 174static bool is_dump_unreclaim_slabs(void)
 175{
 176        unsigned long nr_lru;
 177
 178        nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 179                 global_node_page_state(NR_INACTIVE_ANON) +
 180                 global_node_page_state(NR_ACTIVE_FILE) +
 181                 global_node_page_state(NR_INACTIVE_FILE) +
 182                 global_node_page_state(NR_ISOLATED_ANON) +
 183                 global_node_page_state(NR_ISOLATED_FILE) +
 184                 global_node_page_state(NR_UNEVICTABLE);
 185
 186        return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
 187}
 188
 189/**
 190 * oom_badness - heuristic function to determine which candidate task to kill
 191 * @p: task struct of which task we should calculate
 192 * @totalpages: total present RAM allowed for page allocation
 193 *
 194 * The heuristic for determining which task to kill is made to be as simple and
 195 * predictable as possible.  The goal is to return the highest value for the
 196 * task consuming the most memory to avoid subsequent oom failures.
 197 */
 198unsigned long oom_badness(struct task_struct *p, unsigned long totalpages)
 199{
 200        long points;
 201        long adj;
 202
 203        if (oom_unkillable_task(p))
 204                return 0;
 205
 206        p = find_lock_task_mm(p);
 207        if (!p)
 208                return 0;
 209
 210        /*
 211         * Do not even consider tasks which are explicitly marked oom
 212         * unkillable or have been already oom reaped or the are in
 213         * the middle of vfork
 214         */
 215        adj = (long)p->signal->oom_score_adj;
 216        if (adj == OOM_SCORE_ADJ_MIN ||
 217                        test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 218                        in_vfork(p)) {
 219                task_unlock(p);
 220                return 0;
 221        }
 222
 223        /*
 224         * The baseline for the badness score is the proportion of RAM that each
 225         * task's rss, pagetable and swap space use.
 226         */
 227        points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 228                mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 229        task_unlock(p);
 230
 231        /* Normalize to oom_score_adj units */
 232        adj *= totalpages / 1000;
 233        points += adj;
 234
 235        /*
 236         * Never return 0 for an eligible task regardless of the root bonus and
 237         * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 238         */
 239        return points > 0 ? points : 1;
 240}
 241
 242static const char * const oom_constraint_text[] = {
 243        [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 244        [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 245        [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 246        [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 247};
 248
 249/*
 250 * Determine the type of allocation constraint.
 251 */
 252static enum oom_constraint constrained_alloc(struct oom_control *oc)
 253{
 254        struct zone *zone;
 255        struct zoneref *z;
 256        enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 257        bool cpuset_limited = false;
 258        int nid;
 259
 260        if (is_memcg_oom(oc)) {
 261                oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 262                return CONSTRAINT_MEMCG;
 263        }
 264
 265        /* Default to all available memory */
 266        oc->totalpages = totalram_pages() + total_swap_pages;
 267
 268        if (!IS_ENABLED(CONFIG_NUMA))
 269                return CONSTRAINT_NONE;
 270
 271        if (!oc->zonelist)
 272                return CONSTRAINT_NONE;
 273        /*
 274         * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 275         * to kill current.We have to random task kill in this case.
 276         * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 277         */
 278        if (oc->gfp_mask & __GFP_THISNODE)
 279                return CONSTRAINT_NONE;
 280
 281        /*
 282         * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 283         * the page allocator means a mempolicy is in effect.  Cpuset policy
 284         * is enforced in get_page_from_freelist().
 285         */
 286        if (oc->nodemask &&
 287            !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 288                oc->totalpages = total_swap_pages;
 289                for_each_node_mask(nid, *oc->nodemask)
 290                        oc->totalpages += node_present_pages(nid);
 291                return CONSTRAINT_MEMORY_POLICY;
 292        }
 293
 294        /* Check this allocation failure is caused by cpuset's wall function */
 295        for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 296                        high_zoneidx, oc->nodemask)
 297                if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 298                        cpuset_limited = true;
 299
 300        if (cpuset_limited) {
 301                oc->totalpages = total_swap_pages;
 302                for_each_node_mask(nid, cpuset_current_mems_allowed)
 303                        oc->totalpages += node_present_pages(nid);
 304                return CONSTRAINT_CPUSET;
 305        }
 306        return CONSTRAINT_NONE;
 307}
 308
 309static int oom_evaluate_task(struct task_struct *task, void *arg)
 310{
 311        struct oom_control *oc = arg;
 312        unsigned long points;
 313
 314        if (oom_unkillable_task(task))
 315                goto next;
 316
 317        /* p may not have freeable memory in nodemask */
 318        if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 319                goto next;
 320
 321        /*
 322         * This task already has access to memory reserves and is being killed.
 323         * Don't allow any other task to have access to the reserves unless
 324         * the task has MMF_OOM_SKIP because chances that it would release
 325         * any memory is quite low.
 326         */
 327        if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 328                if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 329                        goto next;
 330                goto abort;
 331        }
 332
 333        /*
 334         * If task is allocating a lot of memory and has been marked to be
 335         * killed first if it triggers an oom, then select it.
 336         */
 337        if (oom_task_origin(task)) {
 338                points = ULONG_MAX;
 339                goto select;
 340        }
 341
 342        points = oom_badness(task, oc->totalpages);
 343        if (!points || points < oc->chosen_points)
 344                goto next;
 345
 346select:
 347        if (oc->chosen)
 348                put_task_struct(oc->chosen);
 349        get_task_struct(task);
 350        oc->chosen = task;
 351        oc->chosen_points = points;
 352next:
 353        return 0;
 354abort:
 355        if (oc->chosen)
 356                put_task_struct(oc->chosen);
 357        oc->chosen = (void *)-1UL;
 358        return 1;
 359}
 360
 361/*
 362 * Simple selection loop. We choose the process with the highest number of
 363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 364 */
 365static void select_bad_process(struct oom_control *oc)
 366{
 367        if (is_memcg_oom(oc))
 368                mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 369        else {
 370                struct task_struct *p;
 371
 372                rcu_read_lock();
 373                for_each_process(p)
 374                        if (oom_evaluate_task(p, oc))
 375                                break;
 376                rcu_read_unlock();
 377        }
 378}
 379
 380static int dump_task(struct task_struct *p, void *arg)
 381{
 382        struct oom_control *oc = arg;
 383        struct task_struct *task;
 384
 385        if (oom_unkillable_task(p))
 386                return 0;
 387
 388        /* p may not have freeable memory in nodemask */
 389        if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 390                return 0;
 391
 392        task = find_lock_task_mm(p);
 393        if (!task) {
 394                /*
 395                 * This is a kthread or all of p's threads have already
 396                 * detached their mm's.  There's no need to report
 397                 * them; they can't be oom killed anyway.
 398                 */
 399                return 0;
 400        }
 401
 402        pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 403                task->pid, from_kuid(&init_user_ns, task_uid(task)),
 404                task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 405                mm_pgtables_bytes(task->mm),
 406                get_mm_counter(task->mm, MM_SWAPENTS),
 407                task->signal->oom_score_adj, task->comm);
 408        task_unlock(task);
 409
 410        return 0;
 411}
 412
 413/**
 414 * dump_tasks - dump current memory state of all system tasks
 415 * @oc: pointer to struct oom_control
 416 *
 417 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 419 * are not shown.
 420 * State information includes task's pid, uid, tgid, vm size, rss,
 421 * pgtables_bytes, swapents, oom_score_adj value, and name.
 422 */
 423static void dump_tasks(struct oom_control *oc)
 424{
 425        pr_info("Tasks state (memory values in pages):\n");
 426        pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 427
 428        if (is_memcg_oom(oc))
 429                mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 430        else {
 431                struct task_struct *p;
 432
 433                rcu_read_lock();
 434                for_each_process(p)
 435                        dump_task(p, oc);
 436                rcu_read_unlock();
 437        }
 438}
 439
 440static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 441{
 442        /* one line summary of the oom killer context. */
 443        pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 444                        oom_constraint_text[oc->constraint],
 445                        nodemask_pr_args(oc->nodemask));
 446        cpuset_print_current_mems_allowed();
 447        mem_cgroup_print_oom_context(oc->memcg, victim);
 448        pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 449                from_kuid(&init_user_ns, task_uid(victim)));
 450}
 451
 452static void dump_header(struct oom_control *oc, struct task_struct *p)
 453{
 454        pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 455                current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 456                        current->signal->oom_score_adj);
 457        if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 458                pr_warn("COMPACTION is disabled!!!\n");
 459
 460        dump_stack();
 461        if (is_memcg_oom(oc))
 462                mem_cgroup_print_oom_meminfo(oc->memcg);
 463        else {
 464                show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 465                if (is_dump_unreclaim_slabs())
 466                        dump_unreclaimable_slab();
 467        }
 468        if (sysctl_oom_dump_tasks)
 469                dump_tasks(oc);
 470        if (p)
 471                dump_oom_summary(oc, p);
 472}
 473
 474/*
 475 * Number of OOM victims in flight
 476 */
 477static atomic_t oom_victims = ATOMIC_INIT(0);
 478static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 479
 480static bool oom_killer_disabled __read_mostly;
 481
 482#define K(x) ((x) << (PAGE_SHIFT-10))
 483
 484/*
 485 * task->mm can be NULL if the task is the exited group leader.  So to
 486 * determine whether the task is using a particular mm, we examine all the
 487 * task's threads: if one of those is using this mm then this task was also
 488 * using it.
 489 */
 490bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 491{
 492        struct task_struct *t;
 493
 494        for_each_thread(p, t) {
 495                struct mm_struct *t_mm = READ_ONCE(t->mm);
 496                if (t_mm)
 497                        return t_mm == mm;
 498        }
 499        return false;
 500}
 501
 502#ifdef CONFIG_MMU
 503/*
 504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 505 * victim (if that is possible) to help the OOM killer to move on.
 506 */
 507static struct task_struct *oom_reaper_th;
 508static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 509static struct task_struct *oom_reaper_list;
 510static DEFINE_SPINLOCK(oom_reaper_lock);
 511
 512bool __oom_reap_task_mm(struct mm_struct *mm)
 513{
 514        struct vm_area_struct *vma;
 515        bool ret = true;
 516
 517        /*
 518         * Tell all users of get_user/copy_from_user etc... that the content
 519         * is no longer stable. No barriers really needed because unmapping
 520         * should imply barriers already and the reader would hit a page fault
 521         * if it stumbled over a reaped memory.
 522         */
 523        set_bit(MMF_UNSTABLE, &mm->flags);
 524
 525        for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 526                if (!can_madv_lru_vma(vma))
 527                        continue;
 528
 529                /*
 530                 * Only anonymous pages have a good chance to be dropped
 531                 * without additional steps which we cannot afford as we
 532                 * are OOM already.
 533                 *
 534                 * We do not even care about fs backed pages because all
 535                 * which are reclaimable have already been reclaimed and
 536                 * we do not want to block exit_mmap by keeping mm ref
 537                 * count elevated without a good reason.
 538                 */
 539                if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 540                        struct mmu_notifier_range range;
 541                        struct mmu_gather tlb;
 542
 543                        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 544                                                vma, mm, vma->vm_start,
 545                                                vma->vm_end);
 546                        tlb_gather_mmu(&tlb, mm, range.start, range.end);
 547                        if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 548                                tlb_finish_mmu(&tlb, range.start, range.end);
 549                                ret = false;
 550                                continue;
 551                        }
 552                        unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 553                        mmu_notifier_invalidate_range_end(&range);
 554                        tlb_finish_mmu(&tlb, range.start, range.end);
 555                }
 556        }
 557
 558        return ret;
 559}
 560
 561/*
 562 * Reaps the address space of the give task.
 563 *
 564 * Returns true on success and false if none or part of the address space
 565 * has been reclaimed and the caller should retry later.
 566 */
 567static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 568{
 569        bool ret = true;
 570
 571        if (!down_read_trylock(&mm->mmap_sem)) {
 572                trace_skip_task_reaping(tsk->pid);
 573                return false;
 574        }
 575
 576        /*
 577         * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 578         * work on the mm anymore. The check for MMF_OOM_SKIP must run
 579         * under mmap_sem for reading because it serializes against the
 580         * down_write();up_write() cycle in exit_mmap().
 581         */
 582        if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 583                trace_skip_task_reaping(tsk->pid);
 584                goto out_unlock;
 585        }
 586
 587        trace_start_task_reaping(tsk->pid);
 588
 589        /* failed to reap part of the address space. Try again later */
 590        ret = __oom_reap_task_mm(mm);
 591        if (!ret)
 592                goto out_finish;
 593
 594        pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 595                        task_pid_nr(tsk), tsk->comm,
 596                        K(get_mm_counter(mm, MM_ANONPAGES)),
 597                        K(get_mm_counter(mm, MM_FILEPAGES)),
 598                        K(get_mm_counter(mm, MM_SHMEMPAGES)));
 599out_finish:
 600        trace_finish_task_reaping(tsk->pid);
 601out_unlock:
 602        up_read(&mm->mmap_sem);
 603
 604        return ret;
 605}
 606
 607#define MAX_OOM_REAP_RETRIES 10
 608static void oom_reap_task(struct task_struct *tsk)
 609{
 610        int attempts = 0;
 611        struct mm_struct *mm = tsk->signal->oom_mm;
 612
 613        /* Retry the down_read_trylock(mmap_sem) a few times */
 614        while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 615                schedule_timeout_idle(HZ/10);
 616
 617        if (attempts <= MAX_OOM_REAP_RETRIES ||
 618            test_bit(MMF_OOM_SKIP, &mm->flags))
 619                goto done;
 620
 621        pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 622                task_pid_nr(tsk), tsk->comm);
 623        debug_show_all_locks();
 624
 625done:
 626        tsk->oom_reaper_list = NULL;
 627
 628        /*
 629         * Hide this mm from OOM killer because it has been either reaped or
 630         * somebody can't call up_write(mmap_sem).
 631         */
 632        set_bit(MMF_OOM_SKIP, &mm->flags);
 633
 634        /* Drop a reference taken by wake_oom_reaper */
 635        put_task_struct(tsk);
 636}
 637
 638static int oom_reaper(void *unused)
 639{
 640        while (true) {
 641                struct task_struct *tsk = NULL;
 642
 643                wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 644                spin_lock(&oom_reaper_lock);
 645                if (oom_reaper_list != NULL) {
 646                        tsk = oom_reaper_list;
 647                        oom_reaper_list = tsk->oom_reaper_list;
 648                }
 649                spin_unlock(&oom_reaper_lock);
 650
 651                if (tsk)
 652                        oom_reap_task(tsk);
 653        }
 654
 655        return 0;
 656}
 657
 658static void wake_oom_reaper(struct task_struct *tsk)
 659{
 660        /* mm is already queued? */
 661        if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 662                return;
 663
 664        get_task_struct(tsk);
 665
 666        spin_lock(&oom_reaper_lock);
 667        tsk->oom_reaper_list = oom_reaper_list;
 668        oom_reaper_list = tsk;
 669        spin_unlock(&oom_reaper_lock);
 670        trace_wake_reaper(tsk->pid);
 671        wake_up(&oom_reaper_wait);
 672}
 673
 674static int __init oom_init(void)
 675{
 676        oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 677        return 0;
 678}
 679subsys_initcall(oom_init)
 680#else
 681static inline void wake_oom_reaper(struct task_struct *tsk)
 682{
 683}
 684#endif /* CONFIG_MMU */
 685
 686/**
 687 * mark_oom_victim - mark the given task as OOM victim
 688 * @tsk: task to mark
 689 *
 690 * Has to be called with oom_lock held and never after
 691 * oom has been disabled already.
 692 *
 693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 694 * under task_lock or operate on the current).
 695 */
 696static void mark_oom_victim(struct task_struct *tsk)
 697{
 698        struct mm_struct *mm = tsk->mm;
 699
 700        WARN_ON(oom_killer_disabled);
 701        /* OOM killer might race with memcg OOM */
 702        if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 703                return;
 704
 705        /* oom_mm is bound to the signal struct life time. */
 706        if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 707                mmgrab(tsk->signal->oom_mm);
 708                set_bit(MMF_OOM_VICTIM, &mm->flags);
 709        }
 710
 711        /*
 712         * Make sure that the task is woken up from uninterruptible sleep
 713         * if it is frozen because OOM killer wouldn't be able to free
 714         * any memory and livelock. freezing_slow_path will tell the freezer
 715         * that TIF_MEMDIE tasks should be ignored.
 716         */
 717        __thaw_task(tsk);
 718        atomic_inc(&oom_victims);
 719        trace_mark_victim(tsk->pid);
 720}
 721
 722/**
 723 * exit_oom_victim - note the exit of an OOM victim
 724 */
 725void exit_oom_victim(void)
 726{
 727        clear_thread_flag(TIF_MEMDIE);
 728
 729        if (!atomic_dec_return(&oom_victims))
 730                wake_up_all(&oom_victims_wait);
 731}
 732
 733/**
 734 * oom_killer_enable - enable OOM killer
 735 */
 736void oom_killer_enable(void)
 737{
 738        oom_killer_disabled = false;
 739        pr_info("OOM killer enabled.\n");
 740}
 741
 742/**
 743 * oom_killer_disable - disable OOM killer
 744 * @timeout: maximum timeout to wait for oom victims in jiffies
 745 *
 746 * Forces all page allocations to fail rather than trigger OOM killer.
 747 * Will block and wait until all OOM victims are killed or the given
 748 * timeout expires.
 749 *
 750 * The function cannot be called when there are runnable user tasks because
 751 * the userspace would see unexpected allocation failures as a result. Any
 752 * new usage of this function should be consulted with MM people.
 753 *
 754 * Returns true if successful and false if the OOM killer cannot be
 755 * disabled.
 756 */
 757bool oom_killer_disable(signed long timeout)
 758{
 759        signed long ret;
 760
 761        /*
 762         * Make sure to not race with an ongoing OOM killer. Check that the
 763         * current is not killed (possibly due to sharing the victim's memory).
 764         */
 765        if (mutex_lock_killable(&oom_lock))
 766                return false;
 767        oom_killer_disabled = true;
 768        mutex_unlock(&oom_lock);
 769
 770        ret = wait_event_interruptible_timeout(oom_victims_wait,
 771                        !atomic_read(&oom_victims), timeout);
 772        if (ret <= 0) {
 773                oom_killer_enable();
 774                return false;
 775        }
 776        pr_info("OOM killer disabled.\n");
 777
 778        return true;
 779}
 780
 781static inline bool __task_will_free_mem(struct task_struct *task)
 782{
 783        struct signal_struct *sig = task->signal;
 784
 785        /*
 786         * A coredumping process may sleep for an extended period in exit_mm(),
 787         * so the oom killer cannot assume that the process will promptly exit
 788         * and release memory.
 789         */
 790        if (sig->flags & SIGNAL_GROUP_COREDUMP)
 791                return false;
 792
 793        if (sig->flags & SIGNAL_GROUP_EXIT)
 794                return true;
 795
 796        if (thread_group_empty(task) && (task->flags & PF_EXITING))
 797                return true;
 798
 799        return false;
 800}
 801
 802/*
 803 * Checks whether the given task is dying or exiting and likely to
 804 * release its address space. This means that all threads and processes
 805 * sharing the same mm have to be killed or exiting.
 806 * Caller has to make sure that task->mm is stable (hold task_lock or
 807 * it operates on the current).
 808 */
 809static bool task_will_free_mem(struct task_struct *task)
 810{
 811        struct mm_struct *mm = task->mm;
 812        struct task_struct *p;
 813        bool ret = true;
 814
 815        /*
 816         * Skip tasks without mm because it might have passed its exit_mm and
 817         * exit_oom_victim. oom_reaper could have rescued that but do not rely
 818         * on that for now. We can consider find_lock_task_mm in future.
 819         */
 820        if (!mm)
 821                return false;
 822
 823        if (!__task_will_free_mem(task))
 824                return false;
 825
 826        /*
 827         * This task has already been drained by the oom reaper so there are
 828         * only small chances it will free some more
 829         */
 830        if (test_bit(MMF_OOM_SKIP, &mm->flags))
 831                return false;
 832
 833        if (atomic_read(&mm->mm_users) <= 1)
 834                return true;
 835
 836        /*
 837         * Make sure that all tasks which share the mm with the given tasks
 838         * are dying as well to make sure that a) nobody pins its mm and
 839         * b) the task is also reapable by the oom reaper.
 840         */
 841        rcu_read_lock();
 842        for_each_process(p) {
 843                if (!process_shares_mm(p, mm))
 844                        continue;
 845                if (same_thread_group(task, p))
 846                        continue;
 847                ret = __task_will_free_mem(p);
 848                if (!ret)
 849                        break;
 850        }
 851        rcu_read_unlock();
 852
 853        return ret;
 854}
 855
 856static void __oom_kill_process(struct task_struct *victim, const char *message)
 857{
 858        struct task_struct *p;
 859        struct mm_struct *mm;
 860        bool can_oom_reap = true;
 861
 862        p = find_lock_task_mm(victim);
 863        if (!p) {
 864                put_task_struct(victim);
 865                return;
 866        } else if (victim != p) {
 867                get_task_struct(p);
 868                put_task_struct(victim);
 869                victim = p;
 870        }
 871
 872        /* Get a reference to safely compare mm after task_unlock(victim) */
 873        mm = victim->mm;
 874        mmgrab(mm);
 875
 876        /* Raise event before sending signal: task reaper must see this */
 877        count_vm_event(OOM_KILL);
 878        memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 879
 880        /*
 881         * We should send SIGKILL before granting access to memory reserves
 882         * in order to prevent the OOM victim from depleting the memory
 883         * reserves from the user space under its control.
 884         */
 885        do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 886        mark_oom_victim(victim);
 887        pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 888                message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 889                K(get_mm_counter(mm, MM_ANONPAGES)),
 890                K(get_mm_counter(mm, MM_FILEPAGES)),
 891                K(get_mm_counter(mm, MM_SHMEMPAGES)),
 892                from_kuid(&init_user_ns, task_uid(victim)),
 893                mm_pgtables_bytes(mm), victim->signal->oom_score_adj);
 894        task_unlock(victim);
 895
 896        /*
 897         * Kill all user processes sharing victim->mm in other thread groups, if
 898         * any.  They don't get access to memory reserves, though, to avoid
 899         * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 900         * oom killed thread cannot exit because it requires the semaphore and
 901         * its contended by another thread trying to allocate memory itself.
 902         * That thread will now get access to memory reserves since it has a
 903         * pending fatal signal.
 904         */
 905        rcu_read_lock();
 906        for_each_process(p) {
 907                if (!process_shares_mm(p, mm))
 908                        continue;
 909                if (same_thread_group(p, victim))
 910                        continue;
 911                if (is_global_init(p)) {
 912                        can_oom_reap = false;
 913                        set_bit(MMF_OOM_SKIP, &mm->flags);
 914                        pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 915                                        task_pid_nr(victim), victim->comm,
 916                                        task_pid_nr(p), p->comm);
 917                        continue;
 918                }
 919                /*
 920                 * No use_mm() user needs to read from the userspace so we are
 921                 * ok to reap it.
 922                 */
 923                if (unlikely(p->flags & PF_KTHREAD))
 924                        continue;
 925                do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 926        }
 927        rcu_read_unlock();
 928
 929        if (can_oom_reap)
 930                wake_oom_reaper(victim);
 931
 932        mmdrop(mm);
 933        put_task_struct(victim);
 934}
 935#undef K
 936
 937/*
 938 * Kill provided task unless it's secured by setting
 939 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 940 */
 941static int oom_kill_memcg_member(struct task_struct *task, void *message)
 942{
 943        if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 944            !is_global_init(task)) {
 945                get_task_struct(task);
 946                __oom_kill_process(task, message);
 947        }
 948        return 0;
 949}
 950
 951static void oom_kill_process(struct oom_control *oc, const char *message)
 952{
 953        struct task_struct *victim = oc->chosen;
 954        struct mem_cgroup *oom_group;
 955        static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 956                                              DEFAULT_RATELIMIT_BURST);
 957
 958        /*
 959         * If the task is already exiting, don't alarm the sysadmin or kill
 960         * its children or threads, just give it access to memory reserves
 961         * so it can die quickly
 962         */
 963        task_lock(victim);
 964        if (task_will_free_mem(victim)) {
 965                mark_oom_victim(victim);
 966                wake_oom_reaper(victim);
 967                task_unlock(victim);
 968                put_task_struct(victim);
 969                return;
 970        }
 971        task_unlock(victim);
 972
 973        if (__ratelimit(&oom_rs))
 974                dump_header(oc, victim);
 975
 976        /*
 977         * Do we need to kill the entire memory cgroup?
 978         * Or even one of the ancestor memory cgroups?
 979         * Check this out before killing the victim task.
 980         */
 981        oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 982
 983        __oom_kill_process(victim, message);
 984
 985        /*
 986         * If necessary, kill all tasks in the selected memory cgroup.
 987         */
 988        if (oom_group) {
 989                mem_cgroup_print_oom_group(oom_group);
 990                mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 991                                      (void*)message);
 992                mem_cgroup_put(oom_group);
 993        }
 994}
 995
 996/*
 997 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 998 */
 999static void check_panic_on_oom(struct oom_control *oc)
1000{
1001        if (likely(!sysctl_panic_on_oom))
1002                return;
1003        if (sysctl_panic_on_oom != 2) {
1004                /*
1005                 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1006                 * does not panic for cpuset, mempolicy, or memcg allocation
1007                 * failures.
1008                 */
1009                if (oc->constraint != CONSTRAINT_NONE)
1010                        return;
1011        }
1012        /* Do not panic for oom kills triggered by sysrq */
1013        if (is_sysrq_oom(oc))
1014                return;
1015        dump_header(oc, NULL);
1016        panic("Out of memory: %s panic_on_oom is enabled\n",
1017                sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1018}
1019
1020static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1021
1022int register_oom_notifier(struct notifier_block *nb)
1023{
1024        return blocking_notifier_chain_register(&oom_notify_list, nb);
1025}
1026EXPORT_SYMBOL_GPL(register_oom_notifier);
1027
1028int unregister_oom_notifier(struct notifier_block *nb)
1029{
1030        return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1031}
1032EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1033
1034/**
1035 * out_of_memory - kill the "best" process when we run out of memory
1036 * @oc: pointer to struct oom_control
1037 *
1038 * If we run out of memory, we have the choice between either
1039 * killing a random task (bad), letting the system crash (worse)
1040 * OR try to be smart about which process to kill. Note that we
1041 * don't have to be perfect here, we just have to be good.
1042 */
1043bool out_of_memory(struct oom_control *oc)
1044{
1045        unsigned long freed = 0;
1046
1047        if (oom_killer_disabled)
1048                return false;
1049
1050        if (!is_memcg_oom(oc)) {
1051                blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1052                if (freed > 0)
1053                        /* Got some memory back in the last second. */
1054                        return true;
1055        }
1056
1057        /*
1058         * If current has a pending SIGKILL or is exiting, then automatically
1059         * select it.  The goal is to allow it to allocate so that it may
1060         * quickly exit and free its memory.
1061         */
1062        if (task_will_free_mem(current)) {
1063                mark_oom_victim(current);
1064                wake_oom_reaper(current);
1065                return true;
1066        }
1067
1068        /*
1069         * The OOM killer does not compensate for IO-less reclaim.
1070         * pagefault_out_of_memory lost its gfp context so we have to
1071         * make sure exclude 0 mask - all other users should have at least
1072         * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1073         * invoke the OOM killer even if it is a GFP_NOFS allocation.
1074         */
1075        if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1076                return true;
1077
1078        /*
1079         * Check if there were limitations on the allocation (only relevant for
1080         * NUMA and memcg) that may require different handling.
1081         */
1082        oc->constraint = constrained_alloc(oc);
1083        if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1084                oc->nodemask = NULL;
1085        check_panic_on_oom(oc);
1086
1087        if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1088            current->mm && !oom_unkillable_task(current) &&
1089            oom_cpuset_eligible(current, oc) &&
1090            current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1091                get_task_struct(current);
1092                oc->chosen = current;
1093                oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1094                return true;
1095        }
1096
1097        select_bad_process(oc);
1098        /* Found nothing?!?! */
1099        if (!oc->chosen) {
1100                dump_header(oc, NULL);
1101                pr_warn("Out of memory and no killable processes...\n");
1102                /*
1103                 * If we got here due to an actual allocation at the
1104                 * system level, we cannot survive this and will enter
1105                 * an endless loop in the allocator. Bail out now.
1106                 */
1107                if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1108                        panic("System is deadlocked on memory\n");
1109        }
1110        if (oc->chosen && oc->chosen != (void *)-1UL)
1111                oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1112                                 "Memory cgroup out of memory");
1113        return !!oc->chosen;
1114}
1115
1116/*
1117 * The pagefault handler calls here because it is out of memory, so kill a
1118 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1119 * killing is already in progress so do nothing.
1120 */
1121void pagefault_out_of_memory(void)
1122{
1123        struct oom_control oc = {
1124                .zonelist = NULL,
1125                .nodemask = NULL,
1126                .memcg = NULL,
1127                .gfp_mask = 0,
1128                .order = 0,
1129        };
1130
1131        if (mem_cgroup_oom_synchronize(true))
1132                return;
1133
1134        if (!mutex_trylock(&oom_lock))
1135                return;
1136        out_of_memory(&oc);
1137        mutex_unlock(&oom_lock);
1138}
1139