linux/security/selinux/ss/services.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *           James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *      Support for enhanced MLS infrastructure.
  11 *      Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *      Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/mutex.h>
  50#include <linux/vmalloc.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68
  69/* Policy capability names */
  70const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  71        "network_peer_controls",
  72        "open_perms",
  73        "extended_socket_class",
  74        "always_check_network",
  75        "cgroup_seclabel",
  76        "nnp_nosuid_transition"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83        rwlock_init(&selinux_ss.policy_rwlock);
  84        mutex_init(&selinux_ss.status_lock);
  85        *ss = &selinux_ss;
  86}
  87
  88/* Forward declaration. */
  89static int context_struct_to_string(struct policydb *policydb,
  90                                    struct context *context,
  91                                    char **scontext,
  92                                    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95                                      struct context *scontext,
  96                                      struct context *tcontext,
  97                                      u16 tclass,
  98                                      struct av_decision *avd,
  99                                      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102                               struct security_class_mapping *map,
 103                               struct selinux_map *out_map)
 104{
 105        u16 i, j;
 106        unsigned k;
 107        bool print_unknown_handle = false;
 108
 109        /* Find number of classes in the input mapping */
 110        if (!map)
 111                return -EINVAL;
 112        i = 0;
 113        while (map[i].name)
 114                i++;
 115
 116        /* Allocate space for the class records, plus one for class zero */
 117        out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118        if (!out_map->mapping)
 119                return -ENOMEM;
 120
 121        /* Store the raw class and permission values */
 122        j = 0;
 123        while (map[j].name) {
 124                struct security_class_mapping *p_in = map + (j++);
 125                struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127                /* An empty class string skips ahead */
 128                if (!strcmp(p_in->name, "")) {
 129                        p_out->num_perms = 0;
 130                        continue;
 131                }
 132
 133                p_out->value = string_to_security_class(pol, p_in->name);
 134                if (!p_out->value) {
 135                        pr_info("SELinux:  Class %s not defined in policy.\n",
 136                               p_in->name);
 137                        if (pol->reject_unknown)
 138                                goto err;
 139                        p_out->num_perms = 0;
 140                        print_unknown_handle = true;
 141                        continue;
 142                }
 143
 144                k = 0;
 145                while (p_in->perms[k]) {
 146                        /* An empty permission string skips ahead */
 147                        if (!*p_in->perms[k]) {
 148                                k++;
 149                                continue;
 150                        }
 151                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152                                                            p_in->perms[k]);
 153                        if (!p_out->perms[k]) {
 154                                pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155                                       p_in->perms[k], p_in->name);
 156                                if (pol->reject_unknown)
 157                                        goto err;
 158                                print_unknown_handle = true;
 159                        }
 160
 161                        k++;
 162                }
 163                p_out->num_perms = k;
 164        }
 165
 166        if (print_unknown_handle)
 167                pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168                       pol->allow_unknown ? "allowed" : "denied");
 169
 170        out_map->size = i;
 171        return 0;
 172err:
 173        kfree(out_map->mapping);
 174        out_map->mapping = NULL;
 175        return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184        if (tclass < map->size)
 185                return map->mapping[tclass].value;
 186
 187        return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195        u16 i;
 196
 197        for (i = 1; i < map->size; i++) {
 198                if (map->mapping[i].value == pol_value)
 199                        return i;
 200        }
 201
 202        return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206                         u16 tclass, struct av_decision *avd,
 207                         int allow_unknown)
 208{
 209        if (tclass < map->size) {
 210                struct selinux_mapping *mapping = &map->mapping[tclass];
 211                unsigned int i, n = mapping->num_perms;
 212                u32 result;
 213
 214                for (i = 0, result = 0; i < n; i++) {
 215                        if (avd->allowed & mapping->perms[i])
 216                                result |= 1<<i;
 217                        if (allow_unknown && !mapping->perms[i])
 218                                result |= 1<<i;
 219                }
 220                avd->allowed = result;
 221
 222                for (i = 0, result = 0; i < n; i++)
 223                        if (avd->auditallow & mapping->perms[i])
 224                                result |= 1<<i;
 225                avd->auditallow = result;
 226
 227                for (i = 0, result = 0; i < n; i++) {
 228                        if (avd->auditdeny & mapping->perms[i])
 229                                result |= 1<<i;
 230                        if (!allow_unknown && !mapping->perms[i])
 231                                result |= 1<<i;
 232                }
 233                /*
 234                 * In case the kernel has a bug and requests a permission
 235                 * between num_perms and the maximum permission number, we
 236                 * should audit that denial
 237                 */
 238                for (; i < (sizeof(u32)*8); i++)
 239                        result |= 1<<i;
 240                avd->auditdeny = result;
 241        }
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246        struct policydb *p = &state->ss->policydb;
 247
 248        return p->mls_enabled;
 249}
 250
 251/*
 252 * Return the boolean value of a constraint expression
 253 * when it is applied to the specified source and target
 254 * security contexts.
 255 *
 256 * xcontext is a special beast...  It is used by the validatetrans rules
 257 * only.  For these rules, scontext is the context before the transition,
 258 * tcontext is the context after the transition, and xcontext is the context
 259 * of the process performing the transition.  All other callers of
 260 * constraint_expr_eval should pass in NULL for xcontext.
 261 */
 262static int constraint_expr_eval(struct policydb *policydb,
 263                                struct context *scontext,
 264                                struct context *tcontext,
 265                                struct context *xcontext,
 266                                struct constraint_expr *cexpr)
 267{
 268        u32 val1, val2;
 269        struct context *c;
 270        struct role_datum *r1, *r2;
 271        struct mls_level *l1, *l2;
 272        struct constraint_expr *e;
 273        int s[CEXPR_MAXDEPTH];
 274        int sp = -1;
 275
 276        for (e = cexpr; e; e = e->next) {
 277                switch (e->expr_type) {
 278                case CEXPR_NOT:
 279                        BUG_ON(sp < 0);
 280                        s[sp] = !s[sp];
 281                        break;
 282                case CEXPR_AND:
 283                        BUG_ON(sp < 1);
 284                        sp--;
 285                        s[sp] &= s[sp + 1];
 286                        break;
 287                case CEXPR_OR:
 288                        BUG_ON(sp < 1);
 289                        sp--;
 290                        s[sp] |= s[sp + 1];
 291                        break;
 292                case CEXPR_ATTR:
 293                        if (sp == (CEXPR_MAXDEPTH - 1))
 294                                return 0;
 295                        switch (e->attr) {
 296                        case CEXPR_USER:
 297                                val1 = scontext->user;
 298                                val2 = tcontext->user;
 299                                break;
 300                        case CEXPR_TYPE:
 301                                val1 = scontext->type;
 302                                val2 = tcontext->type;
 303                                break;
 304                        case CEXPR_ROLE:
 305                                val1 = scontext->role;
 306                                val2 = tcontext->role;
 307                                r1 = policydb->role_val_to_struct[val1 - 1];
 308                                r2 = policydb->role_val_to_struct[val2 - 1];
 309                                switch (e->op) {
 310                                case CEXPR_DOM:
 311                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 312                                                                  val2 - 1);
 313                                        continue;
 314                                case CEXPR_DOMBY:
 315                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 316                                                                  val1 - 1);
 317                                        continue;
 318                                case CEXPR_INCOMP:
 319                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 320                                                                    val2 - 1) &&
 321                                                   !ebitmap_get_bit(&r2->dominates,
 322                                                                    val1 - 1));
 323                                        continue;
 324                                default:
 325                                        break;
 326                                }
 327                                break;
 328                        case CEXPR_L1L2:
 329                                l1 = &(scontext->range.level[0]);
 330                                l2 = &(tcontext->range.level[0]);
 331                                goto mls_ops;
 332                        case CEXPR_L1H2:
 333                                l1 = &(scontext->range.level[0]);
 334                                l2 = &(tcontext->range.level[1]);
 335                                goto mls_ops;
 336                        case CEXPR_H1L2:
 337                                l1 = &(scontext->range.level[1]);
 338                                l2 = &(tcontext->range.level[0]);
 339                                goto mls_ops;
 340                        case CEXPR_H1H2:
 341                                l1 = &(scontext->range.level[1]);
 342                                l2 = &(tcontext->range.level[1]);
 343                                goto mls_ops;
 344                        case CEXPR_L1H1:
 345                                l1 = &(scontext->range.level[0]);
 346                                l2 = &(scontext->range.level[1]);
 347                                goto mls_ops;
 348                        case CEXPR_L2H2:
 349                                l1 = &(tcontext->range.level[0]);
 350                                l2 = &(tcontext->range.level[1]);
 351                                goto mls_ops;
 352mls_ops:
 353                        switch (e->op) {
 354                        case CEXPR_EQ:
 355                                s[++sp] = mls_level_eq(l1, l2);
 356                                continue;
 357                        case CEXPR_NEQ:
 358                                s[++sp] = !mls_level_eq(l1, l2);
 359                                continue;
 360                        case CEXPR_DOM:
 361                                s[++sp] = mls_level_dom(l1, l2);
 362                                continue;
 363                        case CEXPR_DOMBY:
 364                                s[++sp] = mls_level_dom(l2, l1);
 365                                continue;
 366                        case CEXPR_INCOMP:
 367                                s[++sp] = mls_level_incomp(l2, l1);
 368                                continue;
 369                        default:
 370                                BUG();
 371                                return 0;
 372                        }
 373                        break;
 374                        default:
 375                                BUG();
 376                                return 0;
 377                        }
 378
 379                        switch (e->op) {
 380                        case CEXPR_EQ:
 381                                s[++sp] = (val1 == val2);
 382                                break;
 383                        case CEXPR_NEQ:
 384                                s[++sp] = (val1 != val2);
 385                                break;
 386                        default:
 387                                BUG();
 388                                return 0;
 389                        }
 390                        break;
 391                case CEXPR_NAMES:
 392                        if (sp == (CEXPR_MAXDEPTH-1))
 393                                return 0;
 394                        c = scontext;
 395                        if (e->attr & CEXPR_TARGET)
 396                                c = tcontext;
 397                        else if (e->attr & CEXPR_XTARGET) {
 398                                c = xcontext;
 399                                if (!c) {
 400                                        BUG();
 401                                        return 0;
 402                                }
 403                        }
 404                        if (e->attr & CEXPR_USER)
 405                                val1 = c->user;
 406                        else if (e->attr & CEXPR_ROLE)
 407                                val1 = c->role;
 408                        else if (e->attr & CEXPR_TYPE)
 409                                val1 = c->type;
 410                        else {
 411                                BUG();
 412                                return 0;
 413                        }
 414
 415                        switch (e->op) {
 416                        case CEXPR_EQ:
 417                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 418                                break;
 419                        case CEXPR_NEQ:
 420                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 421                                break;
 422                        default:
 423                                BUG();
 424                                return 0;
 425                        }
 426                        break;
 427                default:
 428                        BUG();
 429                        return 0;
 430                }
 431        }
 432
 433        BUG_ON(sp != 0);
 434        return s[0];
 435}
 436
 437/*
 438 * security_dump_masked_av - dumps masked permissions during
 439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 440 */
 441static int dump_masked_av_helper(void *k, void *d, void *args)
 442{
 443        struct perm_datum *pdatum = d;
 444        char **permission_names = args;
 445
 446        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 447
 448        permission_names[pdatum->value - 1] = (char *)k;
 449
 450        return 0;
 451}
 452
 453static void security_dump_masked_av(struct policydb *policydb,
 454                                    struct context *scontext,
 455                                    struct context *tcontext,
 456                                    u16 tclass,
 457                                    u32 permissions,
 458                                    const char *reason)
 459{
 460        struct common_datum *common_dat;
 461        struct class_datum *tclass_dat;
 462        struct audit_buffer *ab;
 463        char *tclass_name;
 464        char *scontext_name = NULL;
 465        char *tcontext_name = NULL;
 466        char *permission_names[32];
 467        int index;
 468        u32 length;
 469        bool need_comma = false;
 470
 471        if (!permissions)
 472                return;
 473
 474        tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 475        tclass_dat = policydb->class_val_to_struct[tclass - 1];
 476        common_dat = tclass_dat->comdatum;
 477
 478        /* init permission_names */
 479        if (common_dat &&
 480            hashtab_map(common_dat->permissions.table,
 481                        dump_masked_av_helper, permission_names) < 0)
 482                goto out;
 483
 484        if (hashtab_map(tclass_dat->permissions.table,
 485                        dump_masked_av_helper, permission_names) < 0)
 486                goto out;
 487
 488        /* get scontext/tcontext in text form */
 489        if (context_struct_to_string(policydb, scontext,
 490                                     &scontext_name, &length) < 0)
 491                goto out;
 492
 493        if (context_struct_to_string(policydb, tcontext,
 494                                     &tcontext_name, &length) < 0)
 495                goto out;
 496
 497        /* audit a message */
 498        ab = audit_log_start(audit_context(),
 499                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 500        if (!ab)
 501                goto out;
 502
 503        audit_log_format(ab, "op=security_compute_av reason=%s "
 504                         "scontext=%s tcontext=%s tclass=%s perms=",
 505                         reason, scontext_name, tcontext_name, tclass_name);
 506
 507        for (index = 0; index < 32; index++) {
 508                u32 mask = (1 << index);
 509
 510                if ((mask & permissions) == 0)
 511                        continue;
 512
 513                audit_log_format(ab, "%s%s",
 514                                 need_comma ? "," : "",
 515                                 permission_names[index]
 516                                 ? permission_names[index] : "????");
 517                need_comma = true;
 518        }
 519        audit_log_end(ab);
 520out:
 521        /* release scontext/tcontext */
 522        kfree(tcontext_name);
 523        kfree(scontext_name);
 524
 525        return;
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533                                     struct context *scontext,
 534                                     struct context *tcontext,
 535                                     u16 tclass,
 536                                     struct av_decision *avd)
 537{
 538        struct context lo_scontext;
 539        struct context lo_tcontext, *tcontextp = tcontext;
 540        struct av_decision lo_avd;
 541        struct type_datum *source;
 542        struct type_datum *target;
 543        u32 masked = 0;
 544
 545        source = policydb->type_val_to_struct[scontext->type - 1];
 546        BUG_ON(!source);
 547
 548        if (!source->bounds)
 549                return;
 550
 551        target = policydb->type_val_to_struct[tcontext->type - 1];
 552        BUG_ON(!target);
 553
 554        memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557        lo_scontext.type = source->bounds;
 558
 559        if (target->bounds) {
 560                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561                lo_tcontext.type = target->bounds;
 562                tcontextp = &lo_tcontext;
 563        }
 564
 565        context_struct_compute_av(policydb, &lo_scontext,
 566                                  tcontextp,
 567                                  tclass,
 568                                  &lo_avd,
 569                                  NULL);
 570
 571        masked = ~lo_avd.allowed & avd->allowed;
 572
 573        if (likely(!masked))
 574                return;         /* no masked permission */
 575
 576        /* mask violated permissions */
 577        avd->allowed &= ~masked;
 578
 579        /* audit masked permissions */
 580        security_dump_masked_av(policydb, scontext, tcontext,
 581                                tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589                struct extended_perms *xperms,
 590                struct avtab_node *node)
 591{
 592        unsigned int i;
 593
 594        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595                /* if one or more driver has all permissions allowed */
 596                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599                /* if allowing permissions within a driver */
 600                security_xperm_set(xperms->drivers.p,
 601                                        node->datum.u.xperms->driver);
 602        }
 603
 604        /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 605        if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 606                xperms->len = 1;
 607}
 608
 609/*
 610 * Compute access vectors and extended permissions based on a context
 611 * structure pair for the permissions in a particular class.
 612 */
 613static void context_struct_compute_av(struct policydb *policydb,
 614                                      struct context *scontext,
 615                                      struct context *tcontext,
 616                                      u16 tclass,
 617                                      struct av_decision *avd,
 618                                      struct extended_perms *xperms)
 619{
 620        struct constraint_node *constraint;
 621        struct role_allow *ra;
 622        struct avtab_key avkey;
 623        struct avtab_node *node;
 624        struct class_datum *tclass_datum;
 625        struct ebitmap *sattr, *tattr;
 626        struct ebitmap_node *snode, *tnode;
 627        unsigned int i, j;
 628
 629        avd->allowed = 0;
 630        avd->auditallow = 0;
 631        avd->auditdeny = 0xffffffff;
 632        if (xperms) {
 633                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 634                xperms->len = 0;
 635        }
 636
 637        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 638                if (printk_ratelimit())
 639                        pr_warn("SELinux:  Invalid class %hu\n", tclass);
 640                return;
 641        }
 642
 643        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 644
 645        /*
 646         * If a specific type enforcement rule was defined for
 647         * this permission check, then use it.
 648         */
 649        avkey.target_class = tclass;
 650        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 651        sattr = &policydb->type_attr_map_array[scontext->type - 1];
 652        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 653        ebitmap_for_each_positive_bit(sattr, snode, i) {
 654                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 655                        avkey.source_type = i + 1;
 656                        avkey.target_type = j + 1;
 657                        for (node = avtab_search_node(&policydb->te_avtab,
 658                                                      &avkey);
 659                             node;
 660                             node = avtab_search_node_next(node, avkey.specified)) {
 661                                if (node->key.specified == AVTAB_ALLOWED)
 662                                        avd->allowed |= node->datum.u.data;
 663                                else if (node->key.specified == AVTAB_AUDITALLOW)
 664                                        avd->auditallow |= node->datum.u.data;
 665                                else if (node->key.specified == AVTAB_AUDITDENY)
 666                                        avd->auditdeny &= node->datum.u.data;
 667                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 668                                        services_compute_xperms_drivers(xperms, node);
 669                        }
 670
 671                        /* Check conditional av table for additional permissions */
 672                        cond_compute_av(&policydb->te_cond_avtab, &avkey,
 673                                        avd, xperms);
 674
 675                }
 676        }
 677
 678        /*
 679         * Remove any permissions prohibited by a constraint (this includes
 680         * the MLS policy).
 681         */
 682        constraint = tclass_datum->constraints;
 683        while (constraint) {
 684                if ((constraint->permissions & (avd->allowed)) &&
 685                    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 686                                          constraint->expr)) {
 687                        avd->allowed &= ~(constraint->permissions);
 688                }
 689                constraint = constraint->next;
 690        }
 691
 692        /*
 693         * If checking process transition permission and the
 694         * role is changing, then check the (current_role, new_role)
 695         * pair.
 696         */
 697        if (tclass == policydb->process_class &&
 698            (avd->allowed & policydb->process_trans_perms) &&
 699            scontext->role != tcontext->role) {
 700                for (ra = policydb->role_allow; ra; ra = ra->next) {
 701                        if (scontext->role == ra->role &&
 702                            tcontext->role == ra->new_role)
 703                                break;
 704                }
 705                if (!ra)
 706                        avd->allowed &= ~policydb->process_trans_perms;
 707        }
 708
 709        /*
 710         * If the given source and target types have boundary
 711         * constraint, lazy checks have to mask any violated
 712         * permission and notice it to userspace via audit.
 713         */
 714        type_attribute_bounds_av(policydb, scontext, tcontext,
 715                                 tclass, avd);
 716}
 717
 718static int security_validtrans_handle_fail(struct selinux_state *state,
 719                                           struct context *ocontext,
 720                                           struct context *ncontext,
 721                                           struct context *tcontext,
 722                                           u16 tclass)
 723{
 724        struct policydb *p = &state->ss->policydb;
 725        char *o = NULL, *n = NULL, *t = NULL;
 726        u32 olen, nlen, tlen;
 727
 728        if (context_struct_to_string(p, ocontext, &o, &olen))
 729                goto out;
 730        if (context_struct_to_string(p, ncontext, &n, &nlen))
 731                goto out;
 732        if (context_struct_to_string(p, tcontext, &t, &tlen))
 733                goto out;
 734        audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735                  "op=security_validate_transition seresult=denied"
 736                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737                  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739        kfree(o);
 740        kfree(n);
 741        kfree(t);
 742
 743        if (!enforcing_enabled(state))
 744                return 0;
 745        return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749                                          u32 oldsid, u32 newsid, u32 tasksid,
 750                                          u16 orig_tclass, bool user)
 751{
 752        struct policydb *policydb;
 753        struct sidtab *sidtab;
 754        struct context *ocontext;
 755        struct context *ncontext;
 756        struct context *tcontext;
 757        struct class_datum *tclass_datum;
 758        struct constraint_node *constraint;
 759        u16 tclass;
 760        int rc = 0;
 761
 762
 763        if (!state->initialized)
 764                return 0;
 765
 766        read_lock(&state->ss->policy_rwlock);
 767
 768        policydb = &state->ss->policydb;
 769        sidtab = state->ss->sidtab;
 770
 771        if (!user)
 772                tclass = unmap_class(&state->ss->map, orig_tclass);
 773        else
 774                tclass = orig_tclass;
 775
 776        if (!tclass || tclass > policydb->p_classes.nprim) {
 777                rc = -EINVAL;
 778                goto out;
 779        }
 780        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782        ocontext = sidtab_search(sidtab, oldsid);
 783        if (!ocontext) {
 784                pr_err("SELinux: %s:  unrecognized SID %d\n",
 785                        __func__, oldsid);
 786                rc = -EINVAL;
 787                goto out;
 788        }
 789
 790        ncontext = sidtab_search(sidtab, newsid);
 791        if (!ncontext) {
 792                pr_err("SELinux: %s:  unrecognized SID %d\n",
 793                        __func__, newsid);
 794                rc = -EINVAL;
 795                goto out;
 796        }
 797
 798        tcontext = sidtab_search(sidtab, tasksid);
 799        if (!tcontext) {
 800                pr_err("SELinux: %s:  unrecognized SID %d\n",
 801                        __func__, tasksid);
 802                rc = -EINVAL;
 803                goto out;
 804        }
 805
 806        constraint = tclass_datum->validatetrans;
 807        while (constraint) {
 808                if (!constraint_expr_eval(policydb, ocontext, ncontext,
 809                                          tcontext, constraint->expr)) {
 810                        if (user)
 811                                rc = -EPERM;
 812                        else
 813                                rc = security_validtrans_handle_fail(state,
 814                                                                     ocontext,
 815                                                                     ncontext,
 816                                                                     tcontext,
 817                                                                     tclass);
 818                        goto out;
 819                }
 820                constraint = constraint->next;
 821        }
 822
 823out:
 824        read_unlock(&state->ss->policy_rwlock);
 825        return rc;
 826}
 827
 828int security_validate_transition_user(struct selinux_state *state,
 829                                      u32 oldsid, u32 newsid, u32 tasksid,
 830                                      u16 tclass)
 831{
 832        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 833                                              tclass, true);
 834}
 835
 836int security_validate_transition(struct selinux_state *state,
 837                                 u32 oldsid, u32 newsid, u32 tasksid,
 838                                 u16 orig_tclass)
 839{
 840        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 841                                              orig_tclass, false);
 842}
 843
 844/*
 845 * security_bounded_transition - check whether the given
 846 * transition is directed to bounded, or not.
 847 * It returns 0, if @newsid is bounded by @oldsid.
 848 * Otherwise, it returns error code.
 849 *
 850 * @oldsid : current security identifier
 851 * @newsid : destinated security identifier
 852 */
 853int security_bounded_transition(struct selinux_state *state,
 854                                u32 old_sid, u32 new_sid)
 855{
 856        struct policydb *policydb;
 857        struct sidtab *sidtab;
 858        struct context *old_context, *new_context;
 859        struct type_datum *type;
 860        int index;
 861        int rc;
 862
 863        if (!state->initialized)
 864                return 0;
 865
 866        read_lock(&state->ss->policy_rwlock);
 867
 868        policydb = &state->ss->policydb;
 869        sidtab = state->ss->sidtab;
 870
 871        rc = -EINVAL;
 872        old_context = sidtab_search(sidtab, old_sid);
 873        if (!old_context) {
 874                pr_err("SELinux: %s: unrecognized SID %u\n",
 875                       __func__, old_sid);
 876                goto out;
 877        }
 878
 879        rc = -EINVAL;
 880        new_context = sidtab_search(sidtab, new_sid);
 881        if (!new_context) {
 882                pr_err("SELinux: %s: unrecognized SID %u\n",
 883                       __func__, new_sid);
 884                goto out;
 885        }
 886
 887        rc = 0;
 888        /* type/domain unchanged */
 889        if (old_context->type == new_context->type)
 890                goto out;
 891
 892        index = new_context->type;
 893        while (true) {
 894                type = policydb->type_val_to_struct[index - 1];
 895                BUG_ON(!type);
 896
 897                /* not bounded anymore */
 898                rc = -EPERM;
 899                if (!type->bounds)
 900                        break;
 901
 902                /* @newsid is bounded by @oldsid */
 903                rc = 0;
 904                if (type->bounds == old_context->type)
 905                        break;
 906
 907                index = type->bounds;
 908        }
 909
 910        if (rc) {
 911                char *old_name = NULL;
 912                char *new_name = NULL;
 913                u32 length;
 914
 915                if (!context_struct_to_string(policydb, old_context,
 916                                              &old_name, &length) &&
 917                    !context_struct_to_string(policydb, new_context,
 918                                              &new_name, &length)) {
 919                        audit_log(audit_context(),
 920                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 921                                  "op=security_bounded_transition "
 922                                  "seresult=denied "
 923                                  "oldcontext=%s newcontext=%s",
 924                                  old_name, new_name);
 925                }
 926                kfree(new_name);
 927                kfree(old_name);
 928        }
 929out:
 930        read_unlock(&state->ss->policy_rwlock);
 931
 932        return rc;
 933}
 934
 935static void avd_init(struct selinux_state *state, struct av_decision *avd)
 936{
 937        avd->allowed = 0;
 938        avd->auditallow = 0;
 939        avd->auditdeny = 0xffffffff;
 940        avd->seqno = state->ss->latest_granting;
 941        avd->flags = 0;
 942}
 943
 944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 945                                        struct avtab_node *node)
 946{
 947        unsigned int i;
 948
 949        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 950                if (xpermd->driver != node->datum.u.xperms->driver)
 951                        return;
 952        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 953                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 954                                        xpermd->driver))
 955                        return;
 956        } else {
 957                BUG();
 958        }
 959
 960        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 961                xpermd->used |= XPERMS_ALLOWED;
 962                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963                        memset(xpermd->allowed->p, 0xff,
 964                                        sizeof(xpermd->allowed->p));
 965                }
 966                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 968                                xpermd->allowed->p[i] |=
 969                                        node->datum.u.xperms->perms.p[i];
 970                }
 971        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 972                xpermd->used |= XPERMS_AUDITALLOW;
 973                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974                        memset(xpermd->auditallow->p, 0xff,
 975                                        sizeof(xpermd->auditallow->p));
 976                }
 977                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 979                                xpermd->auditallow->p[i] |=
 980                                        node->datum.u.xperms->perms.p[i];
 981                }
 982        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 983                xpermd->used |= XPERMS_DONTAUDIT;
 984                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 985                        memset(xpermd->dontaudit->p, 0xff,
 986                                        sizeof(xpermd->dontaudit->p));
 987                }
 988                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 989                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 990                                xpermd->dontaudit->p[i] |=
 991                                        node->datum.u.xperms->perms.p[i];
 992                }
 993        } else {
 994                BUG();
 995        }
 996}
 997
 998void security_compute_xperms_decision(struct selinux_state *state,
 999                                      u32 ssid,
1000                                      u32 tsid,
1001                                      u16 orig_tclass,
1002                                      u8 driver,
1003                                      struct extended_perms_decision *xpermd)
1004{
1005        struct policydb *policydb;
1006        struct sidtab *sidtab;
1007        u16 tclass;
1008        struct context *scontext, *tcontext;
1009        struct avtab_key avkey;
1010        struct avtab_node *node;
1011        struct ebitmap *sattr, *tattr;
1012        struct ebitmap_node *snode, *tnode;
1013        unsigned int i, j;
1014
1015        xpermd->driver = driver;
1016        xpermd->used = 0;
1017        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021        read_lock(&state->ss->policy_rwlock);
1022        if (!state->initialized)
1023                goto allow;
1024
1025        policydb = &state->ss->policydb;
1026        sidtab = state->ss->sidtab;
1027
1028        scontext = sidtab_search(sidtab, ssid);
1029        if (!scontext) {
1030                pr_err("SELinux: %s:  unrecognized SID %d\n",
1031                       __func__, ssid);
1032                goto out;
1033        }
1034
1035        tcontext = sidtab_search(sidtab, tsid);
1036        if (!tcontext) {
1037                pr_err("SELinux: %s:  unrecognized SID %d\n",
1038                       __func__, tsid);
1039                goto out;
1040        }
1041
1042        tclass = unmap_class(&state->ss->map, orig_tclass);
1043        if (unlikely(orig_tclass && !tclass)) {
1044                if (policydb->allow_unknown)
1045                        goto allow;
1046                goto out;
1047        }
1048
1049
1050        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052                goto out;
1053        }
1054
1055        avkey.target_class = tclass;
1056        avkey.specified = AVTAB_XPERMS;
1057        sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059        ebitmap_for_each_positive_bit(sattr, snode, i) {
1060                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061                        avkey.source_type = i + 1;
1062                        avkey.target_type = j + 1;
1063                        for (node = avtab_search_node(&policydb->te_avtab,
1064                                                      &avkey);
1065                             node;
1066                             node = avtab_search_node_next(node, avkey.specified))
1067                                services_compute_xperms_decision(xpermd, node);
1068
1069                        cond_compute_xperms(&policydb->te_cond_avtab,
1070                                                &avkey, xpermd);
1071                }
1072        }
1073out:
1074        read_unlock(&state->ss->policy_rwlock);
1075        return;
1076allow:
1077        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078        goto out;
1079}
1080
1081/**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
1092void security_compute_av(struct selinux_state *state,
1093                         u32 ssid,
1094                         u32 tsid,
1095                         u16 orig_tclass,
1096                         struct av_decision *avd,
1097                         struct extended_perms *xperms)
1098{
1099        struct policydb *policydb;
1100        struct sidtab *sidtab;
1101        u16 tclass;
1102        struct context *scontext = NULL, *tcontext = NULL;
1103
1104        read_lock(&state->ss->policy_rwlock);
1105        avd_init(state, avd);
1106        xperms->len = 0;
1107        if (!state->initialized)
1108                goto allow;
1109
1110        policydb = &state->ss->policydb;
1111        sidtab = state->ss->sidtab;
1112
1113        scontext = sidtab_search(sidtab, ssid);
1114        if (!scontext) {
1115                pr_err("SELinux: %s:  unrecognized SID %d\n",
1116                       __func__, ssid);
1117                goto out;
1118        }
1119
1120        /* permissive domain? */
1121        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122                avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124        tcontext = sidtab_search(sidtab, tsid);
1125        if (!tcontext) {
1126                pr_err("SELinux: %s:  unrecognized SID %d\n",
1127                       __func__, tsid);
1128                goto out;
1129        }
1130
1131        tclass = unmap_class(&state->ss->map, orig_tclass);
1132        if (unlikely(orig_tclass && !tclass)) {
1133                if (policydb->allow_unknown)
1134                        goto allow;
1135                goto out;
1136        }
1137        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138                                  xperms);
1139        map_decision(&state->ss->map, orig_tclass, avd,
1140                     policydb->allow_unknown);
1141out:
1142        read_unlock(&state->ss->policy_rwlock);
1143        return;
1144allow:
1145        avd->allowed = 0xffffffff;
1146        goto out;
1147}
1148
1149void security_compute_av_user(struct selinux_state *state,
1150                              u32 ssid,
1151                              u32 tsid,
1152                              u16 tclass,
1153                              struct av_decision *avd)
1154{
1155        struct policydb *policydb;
1156        struct sidtab *sidtab;
1157        struct context *scontext = NULL, *tcontext = NULL;
1158
1159        read_lock(&state->ss->policy_rwlock);
1160        avd_init(state, avd);
1161        if (!state->initialized)
1162                goto allow;
1163
1164        policydb = &state->ss->policydb;
1165        sidtab = state->ss->sidtab;
1166
1167        scontext = sidtab_search(sidtab, ssid);
1168        if (!scontext) {
1169                pr_err("SELinux: %s:  unrecognized SID %d\n",
1170                       __func__, ssid);
1171                goto out;
1172        }
1173
1174        /* permissive domain? */
1175        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176                avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178        tcontext = sidtab_search(sidtab, tsid);
1179        if (!tcontext) {
1180                pr_err("SELinux: %s:  unrecognized SID %d\n",
1181                       __func__, tsid);
1182                goto out;
1183        }
1184
1185        if (unlikely(!tclass)) {
1186                if (policydb->allow_unknown)
1187                        goto allow;
1188                goto out;
1189        }
1190
1191        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192                                  NULL);
1193 out:
1194        read_unlock(&state->ss->policy_rwlock);
1195        return;
1196allow:
1197        avd->allowed = 0xffffffff;
1198        goto out;
1199}
1200
1201/*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size.  Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
1208static int context_struct_to_string(struct policydb *p,
1209                                    struct context *context,
1210                                    char **scontext, u32 *scontext_len)
1211{
1212        char *scontextp;
1213
1214        if (scontext)
1215                *scontext = NULL;
1216        *scontext_len = 0;
1217
1218        if (context->len) {
1219                *scontext_len = context->len;
1220                if (scontext) {
1221                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1222                        if (!(*scontext))
1223                                return -ENOMEM;
1224                }
1225                return 0;
1226        }
1227
1228        /* Compute the size of the context. */
1229        *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230        *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231        *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232        *scontext_len += mls_compute_context_len(p, context);
1233
1234        if (!scontext)
1235                return 0;
1236
1237        /* Allocate space for the context; caller must free this space. */
1238        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239        if (!scontextp)
1240                return -ENOMEM;
1241        *scontext = scontextp;
1242
1243        /*
1244         * Copy the user name, role name and type name into the context.
1245         */
1246        scontextp += sprintf(scontextp, "%s:%s:%s",
1247                sym_name(p, SYM_USERS, context->user - 1),
1248                sym_name(p, SYM_ROLES, context->role - 1),
1249                sym_name(p, SYM_TYPES, context->type - 1));
1250
1251        mls_sid_to_context(p, context, &scontextp);
1252
1253        *scontextp = 0;
1254
1255        return 0;
1256}
1257
1258#include "initial_sid_to_string.h"
1259
1260const char *security_get_initial_sid_context(u32 sid)
1261{
1262        if (unlikely(sid > SECINITSID_NUM))
1263                return NULL;
1264        return initial_sid_to_string[sid];
1265}
1266
1267static int security_sid_to_context_core(struct selinux_state *state,
1268                                        u32 sid, char **scontext,
1269                                        u32 *scontext_len, int force,
1270                                        int only_invalid)
1271{
1272        struct policydb *policydb;
1273        struct sidtab *sidtab;
1274        struct context *context;
1275        int rc = 0;
1276
1277        if (scontext)
1278                *scontext = NULL;
1279        *scontext_len  = 0;
1280
1281        if (!state->initialized) {
1282                if (sid <= SECINITSID_NUM) {
1283                        char *scontextp;
1284
1285                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1286                        if (!scontext)
1287                                goto out;
1288                        scontextp = kmemdup(initial_sid_to_string[sid],
1289                                            *scontext_len, GFP_ATOMIC);
1290                        if (!scontextp) {
1291                                rc = -ENOMEM;
1292                                goto out;
1293                        }
1294                        *scontext = scontextp;
1295                        goto out;
1296                }
1297                pr_err("SELinux: %s:  called before initial "
1298                       "load_policy on unknown SID %d\n", __func__, sid);
1299                rc = -EINVAL;
1300                goto out;
1301        }
1302        read_lock(&state->ss->policy_rwlock);
1303        policydb = &state->ss->policydb;
1304        sidtab = state->ss->sidtab;
1305        if (force)
1306                context = sidtab_search_force(sidtab, sid);
1307        else
1308                context = sidtab_search(sidtab, sid);
1309        if (!context) {
1310                pr_err("SELinux: %s:  unrecognized SID %d\n",
1311                        __func__, sid);
1312                rc = -EINVAL;
1313                goto out_unlock;
1314        }
1315        if (only_invalid && !context->len)
1316                rc = 0;
1317        else
1318                rc = context_struct_to_string(policydb, context, scontext,
1319                                              scontext_len);
1320out_unlock:
1321        read_unlock(&state->ss->policy_rwlock);
1322out:
1323        return rc;
1324
1325}
1326
1327/**
1328 * security_sid_to_context - Obtain a context for a given SID.
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1332 *
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size.  Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1336 */
1337int security_sid_to_context(struct selinux_state *state,
1338                            u32 sid, char **scontext, u32 *scontext_len)
1339{
1340        return security_sid_to_context_core(state, sid, scontext,
1341                                            scontext_len, 0, 0);
1342}
1343
1344int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345                                  char **scontext, u32 *scontext_len)
1346{
1347        return security_sid_to_context_core(state, sid, scontext,
1348                                            scontext_len, 1, 0);
1349}
1350
1351/**
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1353 *                                 is invalid.
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1357 *
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy.  Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1363 */
1364int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365                                  char **scontext, u32 *scontext_len)
1366{
1367        return security_sid_to_context_core(state, sid, scontext,
1368                                            scontext_len, 1, 1);
1369}
1370
1371/*
1372 * Caveat:  Mutates scontext.
1373 */
1374static int string_to_context_struct(struct policydb *pol,
1375                                    struct sidtab *sidtabp,
1376                                    char *scontext,
1377                                    struct context *ctx,
1378                                    u32 def_sid)
1379{
1380        struct role_datum *role;
1381        struct type_datum *typdatum;
1382        struct user_datum *usrdatum;
1383        char *scontextp, *p, oldc;
1384        int rc = 0;
1385
1386        context_init(ctx);
1387
1388        /* Parse the security context. */
1389
1390        rc = -EINVAL;
1391        scontextp = (char *) scontext;
1392
1393        /* Extract the user. */
1394        p = scontextp;
1395        while (*p && *p != ':')
1396                p++;
1397
1398        if (*p == 0)
1399                goto out;
1400
1401        *p++ = 0;
1402
1403        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404        if (!usrdatum)
1405                goto out;
1406
1407        ctx->user = usrdatum->value;
1408
1409        /* Extract role. */
1410        scontextp = p;
1411        while (*p && *p != ':')
1412                p++;
1413
1414        if (*p == 0)
1415                goto out;
1416
1417        *p++ = 0;
1418
1419        role = hashtab_search(pol->p_roles.table, scontextp);
1420        if (!role)
1421                goto out;
1422        ctx->role = role->value;
1423
1424        /* Extract type. */
1425        scontextp = p;
1426        while (*p && *p != ':')
1427                p++;
1428        oldc = *p;
1429        *p++ = 0;
1430
1431        typdatum = hashtab_search(pol->p_types.table, scontextp);
1432        if (!typdatum || typdatum->attribute)
1433                goto out;
1434
1435        ctx->type = typdatum->value;
1436
1437        rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438        if (rc)
1439                goto out;
1440
1441        /* Check the validity of the new context. */
1442        rc = -EINVAL;
1443        if (!policydb_context_isvalid(pol, ctx))
1444                goto out;
1445        rc = 0;
1446out:
1447        if (rc)
1448                context_destroy(ctx);
1449        return rc;
1450}
1451
1452static int security_context_to_sid_core(struct selinux_state *state,
1453                                        const char *scontext, u32 scontext_len,
1454                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455                                        int force)
1456{
1457        struct policydb *policydb;
1458        struct sidtab *sidtab;
1459        char *scontext2, *str = NULL;
1460        struct context context;
1461        int rc = 0;
1462
1463        /* An empty security context is never valid. */
1464        if (!scontext_len)
1465                return -EINVAL;
1466
1467        /* Copy the string to allow changes and ensure a NUL terminator */
1468        scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469        if (!scontext2)
1470                return -ENOMEM;
1471
1472        if (!state->initialized) {
1473                int i;
1474
1475                for (i = 1; i < SECINITSID_NUM; i++) {
1476                        if (!strcmp(initial_sid_to_string[i], scontext2)) {
1477                                *sid = i;
1478                                goto out;
1479                        }
1480                }
1481                *sid = SECINITSID_KERNEL;
1482                goto out;
1483        }
1484        *sid = SECSID_NULL;
1485
1486        if (force) {
1487                /* Save another copy for storing in uninterpreted form */
1488                rc = -ENOMEM;
1489                str = kstrdup(scontext2, gfp_flags);
1490                if (!str)
1491                        goto out;
1492        }
1493        read_lock(&state->ss->policy_rwlock);
1494        policydb = &state->ss->policydb;
1495        sidtab = state->ss->sidtab;
1496        rc = string_to_context_struct(policydb, sidtab, scontext2,
1497                                      &context, def_sid);
1498        if (rc == -EINVAL && force) {
1499                context.str = str;
1500                context.len = strlen(str) + 1;
1501                str = NULL;
1502        } else if (rc)
1503                goto out_unlock;
1504        rc = sidtab_context_to_sid(sidtab, &context, sid);
1505        context_destroy(&context);
1506out_unlock:
1507        read_unlock(&state->ss->policy_rwlock);
1508out:
1509        kfree(scontext2);
1510        kfree(str);
1511        return rc;
1512}
1513
1514/**
1515 * security_context_to_sid - Obtain a SID for a given security context.
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1520 *
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1525 */
1526int security_context_to_sid(struct selinux_state *state,
1527                            const char *scontext, u32 scontext_len, u32 *sid,
1528                            gfp_t gfp)
1529{
1530        return security_context_to_sid_core(state, scontext, scontext_len,
1531                                            sid, SECSID_NULL, gfp, 0);
1532}
1533
1534int security_context_str_to_sid(struct selinux_state *state,
1535                                const char *scontext, u32 *sid, gfp_t gfp)
1536{
1537        return security_context_to_sid(state, scontext, strlen(scontext),
1538                                       sid, gfp);
1539}
1540
1541/**
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1544 *
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1549 *
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1558 */
1559int security_context_to_sid_default(struct selinux_state *state,
1560                                    const char *scontext, u32 scontext_len,
1561                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562{
1563        return security_context_to_sid_core(state, scontext, scontext_len,
1564                                            sid, def_sid, gfp_flags, 1);
1565}
1566
1567int security_context_to_sid_force(struct selinux_state *state,
1568                                  const char *scontext, u32 scontext_len,
1569                                  u32 *sid)
1570{
1571        return security_context_to_sid_core(state, scontext, scontext_len,
1572                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1573}
1574
1575static int compute_sid_handle_invalid_context(
1576        struct selinux_state *state,
1577        struct context *scontext,
1578        struct context *tcontext,
1579        u16 tclass,
1580        struct context *newcontext)
1581{
1582        struct policydb *policydb = &state->ss->policydb;
1583        char *s = NULL, *t = NULL, *n = NULL;
1584        u32 slen, tlen, nlen;
1585        struct audit_buffer *ab;
1586
1587        if (context_struct_to_string(policydb, scontext, &s, &slen))
1588                goto out;
1589        if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590                goto out;
1591        if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592                goto out;
1593        ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594        audit_log_format(ab,
1595                         "op=security_compute_sid invalid_context=");
1596        /* no need to record the NUL with untrusted strings */
1597        audit_log_n_untrustedstring(ab, n, nlen - 1);
1598        audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599                         s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600        audit_log_end(ab);
1601out:
1602        kfree(s);
1603        kfree(t);
1604        kfree(n);
1605        if (!enforcing_enabled(state))
1606                return 0;
1607        return -EACCES;
1608}
1609
1610static void filename_compute_type(struct policydb *policydb,
1611                                  struct context *newcontext,
1612                                  u32 stype, u32 ttype, u16 tclass,
1613                                  const char *objname)
1614{
1615        struct filename_trans ft;
1616        struct filename_trans_datum *otype;
1617
1618        /*
1619         * Most filename trans rules are going to live in specific directories
1620         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621         * if the ttype does not contain any rules.
1622         */
1623        if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624                return;
1625
1626        ft.stype = stype;
1627        ft.ttype = ttype;
1628        ft.tclass = tclass;
1629        ft.name = objname;
1630
1631        otype = hashtab_search(policydb->filename_trans, &ft);
1632        if (otype)
1633                newcontext->type = otype->otype;
1634}
1635
1636static int security_compute_sid(struct selinux_state *state,
1637                                u32 ssid,
1638                                u32 tsid,
1639                                u16 orig_tclass,
1640                                u32 specified,
1641                                const char *objname,
1642                                u32 *out_sid,
1643                                bool kern)
1644{
1645        struct policydb *policydb;
1646        struct sidtab *sidtab;
1647        struct class_datum *cladatum = NULL;
1648        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649        struct role_trans *roletr = NULL;
1650        struct avtab_key avkey;
1651        struct avtab_datum *avdatum;
1652        struct avtab_node *node;
1653        u16 tclass;
1654        int rc = 0;
1655        bool sock;
1656
1657        if (!state->initialized) {
1658                switch (orig_tclass) {
1659                case SECCLASS_PROCESS: /* kernel value */
1660                        *out_sid = ssid;
1661                        break;
1662                default:
1663                        *out_sid = tsid;
1664                        break;
1665                }
1666                goto out;
1667        }
1668
1669        context_init(&newcontext);
1670
1671        read_lock(&state->ss->policy_rwlock);
1672
1673        if (kern) {
1674                tclass = unmap_class(&state->ss->map, orig_tclass);
1675                sock = security_is_socket_class(orig_tclass);
1676        } else {
1677                tclass = orig_tclass;
1678                sock = security_is_socket_class(map_class(&state->ss->map,
1679                                                          tclass));
1680        }
1681
1682        policydb = &state->ss->policydb;
1683        sidtab = state->ss->sidtab;
1684
1685        scontext = sidtab_search(sidtab, ssid);
1686        if (!scontext) {
1687                pr_err("SELinux: %s:  unrecognized SID %d\n",
1688                       __func__, ssid);
1689                rc = -EINVAL;
1690                goto out_unlock;
1691        }
1692        tcontext = sidtab_search(sidtab, tsid);
1693        if (!tcontext) {
1694                pr_err("SELinux: %s:  unrecognized SID %d\n",
1695                       __func__, tsid);
1696                rc = -EINVAL;
1697                goto out_unlock;
1698        }
1699
1700        if (tclass && tclass <= policydb->p_classes.nprim)
1701                cladatum = policydb->class_val_to_struct[tclass - 1];
1702
1703        /* Set the user identity. */
1704        switch (specified) {
1705        case AVTAB_TRANSITION:
1706        case AVTAB_CHANGE:
1707                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708                        newcontext.user = tcontext->user;
1709                } else {
1710                        /* notice this gets both DEFAULT_SOURCE and unset */
1711                        /* Use the process user identity. */
1712                        newcontext.user = scontext->user;
1713                }
1714                break;
1715        case AVTAB_MEMBER:
1716                /* Use the related object owner. */
1717                newcontext.user = tcontext->user;
1718                break;
1719        }
1720
1721        /* Set the role to default values. */
1722        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723                newcontext.role = scontext->role;
1724        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725                newcontext.role = tcontext->role;
1726        } else {
1727                if ((tclass == policydb->process_class) || (sock == true))
1728                        newcontext.role = scontext->role;
1729                else
1730                        newcontext.role = OBJECT_R_VAL;
1731        }
1732
1733        /* Set the type to default values. */
1734        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735                newcontext.type = scontext->type;
1736        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737                newcontext.type = tcontext->type;
1738        } else {
1739                if ((tclass == policydb->process_class) || (sock == true)) {
1740                        /* Use the type of process. */
1741                        newcontext.type = scontext->type;
1742                } else {
1743                        /* Use the type of the related object. */
1744                        newcontext.type = tcontext->type;
1745                }
1746        }
1747
1748        /* Look for a type transition/member/change rule. */
1749        avkey.source_type = scontext->type;
1750        avkey.target_type = tcontext->type;
1751        avkey.target_class = tclass;
1752        avkey.specified = specified;
1753        avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754
1755        /* If no permanent rule, also check for enabled conditional rules */
1756        if (!avdatum) {
1757                node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758                for (; node; node = avtab_search_node_next(node, specified)) {
1759                        if (node->key.specified & AVTAB_ENABLED) {
1760                                avdatum = &node->datum;
1761                                break;
1762                        }
1763                }
1764        }
1765
1766        if (avdatum) {
1767                /* Use the type from the type transition/member/change rule. */
1768                newcontext.type = avdatum->u.data;
1769        }
1770
1771        /* if we have a objname this is a file trans check so check those rules */
1772        if (objname)
1773                filename_compute_type(policydb, &newcontext, scontext->type,
1774                                      tcontext->type, tclass, objname);
1775
1776        /* Check for class-specific changes. */
1777        if (specified & AVTAB_TRANSITION) {
1778                /* Look for a role transition rule. */
1779                for (roletr = policydb->role_tr; roletr;
1780                     roletr = roletr->next) {
1781                        if ((roletr->role == scontext->role) &&
1782                            (roletr->type == tcontext->type) &&
1783                            (roletr->tclass == tclass)) {
1784                                /* Use the role transition rule. */
1785                                newcontext.role = roletr->new_role;
1786                                break;
1787                        }
1788                }
1789        }
1790
1791        /* Set the MLS attributes.
1792           This is done last because it may allocate memory. */
1793        rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794                             &newcontext, sock);
1795        if (rc)
1796                goto out_unlock;
1797
1798        /* Check the validity of the context. */
1799        if (!policydb_context_isvalid(policydb, &newcontext)) {
1800                rc = compute_sid_handle_invalid_context(state, scontext,
1801                                                        tcontext,
1802                                                        tclass,
1803                                                        &newcontext);
1804                if (rc)
1805                        goto out_unlock;
1806        }
1807        /* Obtain the sid for the context. */
1808        rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1809out_unlock:
1810        read_unlock(&state->ss->policy_rwlock);
1811        context_destroy(&newcontext);
1812out:
1813        return rc;
1814}
1815
1816/**
1817 * security_transition_sid - Compute the SID for a new subject/object.
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1822 *
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1828 */
1829int security_transition_sid(struct selinux_state *state,
1830                            u32 ssid, u32 tsid, u16 tclass,
1831                            const struct qstr *qstr, u32 *out_sid)
1832{
1833        return security_compute_sid(state, ssid, tsid, tclass,
1834                                    AVTAB_TRANSITION,
1835                                    qstr ? qstr->name : NULL, out_sid, true);
1836}
1837
1838int security_transition_sid_user(struct selinux_state *state,
1839                                 u32 ssid, u32 tsid, u16 tclass,
1840                                 const char *objname, u32 *out_sid)
1841{
1842        return security_compute_sid(state, ssid, tsid, tclass,
1843                                    AVTAB_TRANSITION,
1844                                    objname, out_sid, false);
1845}
1846
1847/**
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1853 *
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1859 */
1860int security_member_sid(struct selinux_state *state,
1861                        u32 ssid,
1862                        u32 tsid,
1863                        u16 tclass,
1864                        u32 *out_sid)
1865{
1866        return security_compute_sid(state, ssid, tsid, tclass,
1867                                    AVTAB_MEMBER, NULL,
1868                                    out_sid, false);
1869}
1870
1871/**
1872 * security_change_sid - Compute the SID for object relabeling.
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1877 *
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1883 */
1884int security_change_sid(struct selinux_state *state,
1885                        u32 ssid,
1886                        u32 tsid,
1887                        u16 tclass,
1888                        u32 *out_sid)
1889{
1890        return security_compute_sid(state,
1891                                    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892                                    out_sid, false);
1893}
1894
1895static inline int convert_context_handle_invalid_context(
1896        struct selinux_state *state,
1897        struct context *context)
1898{
1899        struct policydb *policydb = &state->ss->policydb;
1900        char *s;
1901        u32 len;
1902
1903        if (enforcing_enabled(state))
1904                return -EINVAL;
1905
1906        if (!context_struct_to_string(policydb, context, &s, &len)) {
1907                pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908                        s);
1909                kfree(s);
1910        }
1911        return 0;
1912}
1913
1914struct convert_context_args {
1915        struct selinux_state *state;
1916        struct policydb *oldp;
1917        struct policydb *newp;
1918};
1919
1920/*
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'.  Verify that the context is valid
1926 * under the new policy.
1927 */
1928static int convert_context(struct context *oldc, struct context *newc, void *p)
1929{
1930        struct convert_context_args *args;
1931        struct ocontext *oc;
1932        struct role_datum *role;
1933        struct type_datum *typdatum;
1934        struct user_datum *usrdatum;
1935        char *s;
1936        u32 len;
1937        int rc;
1938
1939        args = p;
1940
1941        if (oldc->str) {
1942                s = kstrdup(oldc->str, GFP_KERNEL);
1943                if (!s)
1944                        return -ENOMEM;
1945
1946                rc = string_to_context_struct(args->newp, NULL, s,
1947                                              newc, SECSID_NULL);
1948                if (rc == -EINVAL) {
1949                        /*
1950                         * Retain string representation for later mapping.
1951                         *
1952                         * IMPORTANT: We need to copy the contents of oldc->str
1953                         * back into s again because string_to_context_struct()
1954                         * may have garbled it.
1955                         */
1956                        memcpy(s, oldc->str, oldc->len);
1957                        context_init(newc);
1958                        newc->str = s;
1959                        newc->len = oldc->len;
1960                        return 0;
1961                }
1962                kfree(s);
1963                if (rc) {
1964                        /* Other error condition, e.g. ENOMEM. */
1965                        pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1966                               oldc->str, -rc);
1967                        return rc;
1968                }
1969                pr_info("SELinux:  Context %s became valid (mapped).\n",
1970                        oldc->str);
1971                return 0;
1972        }
1973
1974        context_init(newc);
1975
1976        /* Convert the user. */
1977        rc = -EINVAL;
1978        usrdatum = hashtab_search(args->newp->p_users.table,
1979                                  sym_name(args->oldp,
1980                                           SYM_USERS, oldc->user - 1));
1981        if (!usrdatum)
1982                goto bad;
1983        newc->user = usrdatum->value;
1984
1985        /* Convert the role. */
1986        rc = -EINVAL;
1987        role = hashtab_search(args->newp->p_roles.table,
1988                              sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1989        if (!role)
1990                goto bad;
1991        newc->role = role->value;
1992
1993        /* Convert the type. */
1994        rc = -EINVAL;
1995        typdatum = hashtab_search(args->newp->p_types.table,
1996                                  sym_name(args->oldp,
1997                                           SYM_TYPES, oldc->type - 1));
1998        if (!typdatum)
1999                goto bad;
2000        newc->type = typdatum->value;
2001
2002        /* Convert the MLS fields if dealing with MLS policies */
2003        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004                rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2005                if (rc)
2006                        goto bad;
2007        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2008                /*
2009                 * Switching between non-MLS and MLS policy:
2010                 * ensure that the MLS fields of the context for all
2011                 * existing entries in the sidtab are filled in with a
2012                 * suitable default value, likely taken from one of the
2013                 * initial SIDs.
2014                 */
2015                oc = args->newp->ocontexts[OCON_ISID];
2016                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2017                        oc = oc->next;
2018                rc = -EINVAL;
2019                if (!oc) {
2020                        pr_err("SELinux:  unable to look up"
2021                                " the initial SIDs list\n");
2022                        goto bad;
2023                }
2024                rc = mls_range_set(newc, &oc->context[0].range);
2025                if (rc)
2026                        goto bad;
2027        }
2028
2029        /* Check the validity of the new context. */
2030        if (!policydb_context_isvalid(args->newp, newc)) {
2031                rc = convert_context_handle_invalid_context(args->state, oldc);
2032                if (rc)
2033                        goto bad;
2034        }
2035
2036        return 0;
2037bad:
2038        /* Map old representation to string and save it. */
2039        rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2040        if (rc)
2041                return rc;
2042        context_destroy(newc);
2043        newc->str = s;
2044        newc->len = len;
2045        pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2046                newc->str);
2047        return 0;
2048}
2049
2050static void security_load_policycaps(struct selinux_state *state)
2051{
2052        struct policydb *p = &state->ss->policydb;
2053        unsigned int i;
2054        struct ebitmap_node *node;
2055
2056        for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057                state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2058
2059        for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060                pr_info("SELinux:  policy capability %s=%d\n",
2061                        selinux_policycap_names[i],
2062                        ebitmap_get_bit(&p->policycaps, i));
2063
2064        ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065                if (i >= ARRAY_SIZE(selinux_policycap_names))
2066                        pr_info("SELinux:  unknown policy capability %u\n",
2067                                i);
2068        }
2069}
2070
2071static int security_preserve_bools(struct selinux_state *state,
2072                                   struct policydb *newpolicydb);
2073
2074/**
2075 * security_load_policy - Load a security policy configuration.
2076 * @data: binary policy data
2077 * @len: length of data in bytes
2078 *
2079 * Load a new set of security policy configuration data,
2080 * validate it and convert the SID table as necessary.
2081 * This function will flush the access vector cache after
2082 * loading the new policy.
2083 */
2084int security_load_policy(struct selinux_state *state, void *data, size_t len)
2085{
2086        struct policydb *policydb;
2087        struct sidtab *oldsidtab, *newsidtab;
2088        struct policydb *oldpolicydb, *newpolicydb;
2089        struct selinux_mapping *oldmapping;
2090        struct selinux_map newmap;
2091        struct sidtab_convert_params convert_params;
2092        struct convert_context_args args;
2093        u32 seqno;
2094        int rc = 0;
2095        struct policy_file file = { data, len }, *fp = &file;
2096
2097        oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2098        if (!oldpolicydb) {
2099                rc = -ENOMEM;
2100                goto out;
2101        }
2102        newpolicydb = oldpolicydb + 1;
2103
2104        policydb = &state->ss->policydb;
2105
2106        newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2107        if (!newsidtab) {
2108                rc = -ENOMEM;
2109                goto out;
2110        }
2111
2112        if (!state->initialized) {
2113                rc = policydb_read(policydb, fp);
2114                if (rc) {
2115                        kfree(newsidtab);
2116                        goto out;
2117                }
2118
2119                policydb->len = len;
2120                rc = selinux_set_mapping(policydb, secclass_map,
2121                                         &state->ss->map);
2122                if (rc) {
2123                        kfree(newsidtab);
2124                        policydb_destroy(policydb);
2125                        goto out;
2126                }
2127
2128                rc = policydb_load_isids(policydb, newsidtab);
2129                if (rc) {
2130                        kfree(newsidtab);
2131                        policydb_destroy(policydb);
2132                        goto out;
2133                }
2134
2135                state->ss->sidtab = newsidtab;
2136                security_load_policycaps(state);
2137                state->initialized = 1;
2138                seqno = ++state->ss->latest_granting;
2139                selinux_complete_init();
2140                avc_ss_reset(state->avc, seqno);
2141                selnl_notify_policyload(seqno);
2142                selinux_status_update_policyload(state, seqno);
2143                selinux_netlbl_cache_invalidate();
2144                selinux_xfrm_notify_policyload();
2145                goto out;
2146        }
2147
2148        rc = policydb_read(newpolicydb, fp);
2149        if (rc) {
2150                kfree(newsidtab);
2151                goto out;
2152        }
2153
2154        newpolicydb->len = len;
2155        /* If switching between different policy types, log MLS status */
2156        if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157                pr_info("SELinux: Disabling MLS support...\n");
2158        else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159                pr_info("SELinux: Enabling MLS support...\n");
2160
2161        rc = policydb_load_isids(newpolicydb, newsidtab);
2162        if (rc) {
2163                pr_err("SELinux:  unable to load the initial SIDs\n");
2164                policydb_destroy(newpolicydb);
2165                kfree(newsidtab);
2166                goto out;
2167        }
2168
2169        rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2170        if (rc)
2171                goto err;
2172
2173        rc = security_preserve_bools(state, newpolicydb);
2174        if (rc) {
2175                pr_err("SELinux:  unable to preserve booleans\n");
2176                goto err;
2177        }
2178
2179        oldsidtab = state->ss->sidtab;
2180
2181        /*
2182         * Convert the internal representations of contexts
2183         * in the new SID table.
2184         */
2185        args.state = state;
2186        args.oldp = policydb;
2187        args.newp = newpolicydb;
2188
2189        convert_params.func = convert_context;
2190        convert_params.args = &args;
2191        convert_params.target = newsidtab;
2192
2193        rc = sidtab_convert(oldsidtab, &convert_params);
2194        if (rc) {
2195                pr_err("SELinux:  unable to convert the internal"
2196                        " representation of contexts in the new SID"
2197                        " table\n");
2198                goto err;
2199        }
2200
2201        /* Save the old policydb and SID table to free later. */
2202        memcpy(oldpolicydb, policydb, sizeof(*policydb));
2203
2204        /* Install the new policydb and SID table. */
2205        write_lock_irq(&state->ss->policy_rwlock);
2206        memcpy(policydb, newpolicydb, sizeof(*policydb));
2207        state->ss->sidtab = newsidtab;
2208        security_load_policycaps(state);
2209        oldmapping = state->ss->map.mapping;
2210        state->ss->map.mapping = newmap.mapping;
2211        state->ss->map.size = newmap.size;
2212        seqno = ++state->ss->latest_granting;
2213        write_unlock_irq(&state->ss->policy_rwlock);
2214
2215        /* Free the old policydb and SID table. */
2216        policydb_destroy(oldpolicydb);
2217        sidtab_destroy(oldsidtab);
2218        kfree(oldsidtab);
2219        kfree(oldmapping);
2220
2221        avc_ss_reset(state->avc, seqno);
2222        selnl_notify_policyload(seqno);
2223        selinux_status_update_policyload(state, seqno);
2224        selinux_netlbl_cache_invalidate();
2225        selinux_xfrm_notify_policyload();
2226
2227        rc = 0;
2228        goto out;
2229
2230err:
2231        kfree(newmap.mapping);
2232        sidtab_destroy(newsidtab);
2233        kfree(newsidtab);
2234        policydb_destroy(newpolicydb);
2235
2236out:
2237        kfree(oldpolicydb);
2238        return rc;
2239}
2240
2241size_t security_policydb_len(struct selinux_state *state)
2242{
2243        struct policydb *p = &state->ss->policydb;
2244        size_t len;
2245
2246        read_lock(&state->ss->policy_rwlock);
2247        len = p->len;
2248        read_unlock(&state->ss->policy_rwlock);
2249
2250        return len;
2251}
2252
2253/**
2254 * security_port_sid - Obtain the SID for a port.
2255 * @protocol: protocol number
2256 * @port: port number
2257 * @out_sid: security identifier
2258 */
2259int security_port_sid(struct selinux_state *state,
2260                      u8 protocol, u16 port, u32 *out_sid)
2261{
2262        struct policydb *policydb;
2263        struct sidtab *sidtab;
2264        struct ocontext *c;
2265        int rc = 0;
2266
2267        read_lock(&state->ss->policy_rwlock);
2268
2269        policydb = &state->ss->policydb;
2270        sidtab = state->ss->sidtab;
2271
2272        c = policydb->ocontexts[OCON_PORT];
2273        while (c) {
2274                if (c->u.port.protocol == protocol &&
2275                    c->u.port.low_port <= port &&
2276                    c->u.port.high_port >= port)
2277                        break;
2278                c = c->next;
2279        }
2280
2281        if (c) {
2282                if (!c->sid[0]) {
2283                        rc = sidtab_context_to_sid(sidtab,
2284                                                   &c->context[0],
2285                                                   &c->sid[0]);
2286                        if (rc)
2287                                goto out;
2288                }
2289                *out_sid = c->sid[0];
2290        } else {
2291                *out_sid = SECINITSID_PORT;
2292        }
2293
2294out:
2295        read_unlock(&state->ss->policy_rwlock);
2296        return rc;
2297}
2298
2299/**
2300 * security_pkey_sid - Obtain the SID for a pkey.
2301 * @subnet_prefix: Subnet Prefix
2302 * @pkey_num: pkey number
2303 * @out_sid: security identifier
2304 */
2305int security_ib_pkey_sid(struct selinux_state *state,
2306                         u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2307{
2308        struct policydb *policydb;
2309        struct sidtab *sidtab;
2310        struct ocontext *c;
2311        int rc = 0;
2312
2313        read_lock(&state->ss->policy_rwlock);
2314
2315        policydb = &state->ss->policydb;
2316        sidtab = state->ss->sidtab;
2317
2318        c = policydb->ocontexts[OCON_IBPKEY];
2319        while (c) {
2320                if (c->u.ibpkey.low_pkey <= pkey_num &&
2321                    c->u.ibpkey.high_pkey >= pkey_num &&
2322                    c->u.ibpkey.subnet_prefix == subnet_prefix)
2323                        break;
2324
2325                c = c->next;
2326        }
2327
2328        if (c) {
2329                if (!c->sid[0]) {
2330                        rc = sidtab_context_to_sid(sidtab,
2331                                                   &c->context[0],
2332                                                   &c->sid[0]);
2333                        if (rc)
2334                                goto out;
2335                }
2336                *out_sid = c->sid[0];
2337        } else
2338                *out_sid = SECINITSID_UNLABELED;
2339
2340out:
2341        read_unlock(&state->ss->policy_rwlock);
2342        return rc;
2343}
2344
2345/**
2346 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2347 * @dev_name: device name
2348 * @port: port number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_endport_sid(struct selinux_state *state,
2352                            const char *dev_name, u8 port_num, u32 *out_sid)
2353{
2354        struct policydb *policydb;
2355        struct sidtab *sidtab;
2356        struct ocontext *c;
2357        int rc = 0;
2358
2359        read_lock(&state->ss->policy_rwlock);
2360
2361        policydb = &state->ss->policydb;
2362        sidtab = state->ss->sidtab;
2363
2364        c = policydb->ocontexts[OCON_IBENDPORT];
2365        while (c) {
2366                if (c->u.ibendport.port == port_num &&
2367                    !strncmp(c->u.ibendport.dev_name,
2368                             dev_name,
2369                             IB_DEVICE_NAME_MAX))
2370                        break;
2371
2372                c = c->next;
2373        }
2374
2375        if (c) {
2376                if (!c->sid[0]) {
2377                        rc = sidtab_context_to_sid(sidtab,
2378                                                   &c->context[0],
2379                                                   &c->sid[0]);
2380                        if (rc)
2381                                goto out;
2382                }
2383                *out_sid = c->sid[0];
2384        } else
2385                *out_sid = SECINITSID_UNLABELED;
2386
2387out:
2388        read_unlock(&state->ss->policy_rwlock);
2389        return rc;
2390}
2391
2392/**
2393 * security_netif_sid - Obtain the SID for a network interface.
2394 * @name: interface name
2395 * @if_sid: interface SID
2396 */
2397int security_netif_sid(struct selinux_state *state,
2398                       char *name, u32 *if_sid)
2399{
2400        struct policydb *policydb;
2401        struct sidtab *sidtab;
2402        int rc = 0;
2403        struct ocontext *c;
2404
2405        read_lock(&state->ss->policy_rwlock);
2406
2407        policydb = &state->ss->policydb;
2408        sidtab = state->ss->sidtab;
2409
2410        c = policydb->ocontexts[OCON_NETIF];
2411        while (c) {
2412                if (strcmp(name, c->u.name) == 0)
2413                        break;
2414                c = c->next;
2415        }
2416
2417        if (c) {
2418                if (!c->sid[0] || !c->sid[1]) {
2419                        rc = sidtab_context_to_sid(sidtab,
2420                                                  &c->context[0],
2421                                                  &c->sid[0]);
2422                        if (rc)
2423                                goto out;
2424                        rc = sidtab_context_to_sid(sidtab,
2425                                                   &c->context[1],
2426                                                   &c->sid[1]);
2427                        if (rc)
2428                                goto out;
2429                }
2430                *if_sid = c->sid[0];
2431        } else
2432                *if_sid = SECINITSID_NETIF;
2433
2434out:
2435        read_unlock(&state->ss->policy_rwlock);
2436        return rc;
2437}
2438
2439static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2440{
2441        int i, fail = 0;
2442
2443        for (i = 0; i < 4; i++)
2444                if (addr[i] != (input[i] & mask[i])) {
2445                        fail = 1;
2446                        break;
2447                }
2448
2449        return !fail;
2450}
2451
2452/**
2453 * security_node_sid - Obtain the SID for a node (host).
2454 * @domain: communication domain aka address family
2455 * @addrp: address
2456 * @addrlen: address length in bytes
2457 * @out_sid: security identifier
2458 */
2459int security_node_sid(struct selinux_state *state,
2460                      u16 domain,
2461                      void *addrp,
2462                      u32 addrlen,
2463                      u32 *out_sid)
2464{
2465        struct policydb *policydb;
2466        struct sidtab *sidtab;
2467        int rc;
2468        struct ocontext *c;
2469
2470        read_lock(&state->ss->policy_rwlock);
2471
2472        policydb = &state->ss->policydb;
2473        sidtab = state->ss->sidtab;
2474
2475        switch (domain) {
2476        case AF_INET: {
2477                u32 addr;
2478
2479                rc = -EINVAL;
2480                if (addrlen != sizeof(u32))
2481                        goto out;
2482
2483                addr = *((u32 *)addrp);
2484
2485                c = policydb->ocontexts[OCON_NODE];
2486                while (c) {
2487                        if (c->u.node.addr == (addr & c->u.node.mask))
2488                                break;
2489                        c = c->next;
2490                }
2491                break;
2492        }
2493
2494        case AF_INET6:
2495                rc = -EINVAL;
2496                if (addrlen != sizeof(u64) * 2)
2497                        goto out;
2498                c = policydb->ocontexts[OCON_NODE6];
2499                while (c) {
2500                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2501                                                c->u.node6.mask))
2502                                break;
2503                        c = c->next;
2504                }
2505                break;
2506
2507        default:
2508                rc = 0;
2509                *out_sid = SECINITSID_NODE;
2510                goto out;
2511        }
2512
2513        if (c) {
2514                if (!c->sid[0]) {
2515                        rc = sidtab_context_to_sid(sidtab,
2516                                                   &c->context[0],
2517                                                   &c->sid[0]);
2518                        if (rc)
2519                                goto out;
2520                }
2521                *out_sid = c->sid[0];
2522        } else {
2523                *out_sid = SECINITSID_NODE;
2524        }
2525
2526        rc = 0;
2527out:
2528        read_unlock(&state->ss->policy_rwlock);
2529        return rc;
2530}
2531
2532#define SIDS_NEL 25
2533
2534/**
2535 * security_get_user_sids - Obtain reachable SIDs for a user.
2536 * @fromsid: starting SID
2537 * @username: username
2538 * @sids: array of reachable SIDs for user
2539 * @nel: number of elements in @sids
2540 *
2541 * Generate the set of SIDs for legal security contexts
2542 * for a given user that can be reached by @fromsid.
2543 * Set *@sids to point to a dynamically allocated
2544 * array containing the set of SIDs.  Set *@nel to the
2545 * number of elements in the array.
2546 */
2547
2548int security_get_user_sids(struct selinux_state *state,
2549                           u32 fromsid,
2550                           char *username,
2551                           u32 **sids,
2552                           u32 *nel)
2553{
2554        struct policydb *policydb;
2555        struct sidtab *sidtab;
2556        struct context *fromcon, usercon;
2557        u32 *mysids = NULL, *mysids2, sid;
2558        u32 mynel = 0, maxnel = SIDS_NEL;
2559        struct user_datum *user;
2560        struct role_datum *role;
2561        struct ebitmap_node *rnode, *tnode;
2562        int rc = 0, i, j;
2563
2564        *sids = NULL;
2565        *nel = 0;
2566
2567        if (!state->initialized)
2568                goto out;
2569
2570        read_lock(&state->ss->policy_rwlock);
2571
2572        policydb = &state->ss->policydb;
2573        sidtab = state->ss->sidtab;
2574
2575        context_init(&usercon);
2576
2577        rc = -EINVAL;
2578        fromcon = sidtab_search(sidtab, fromsid);
2579        if (!fromcon)
2580                goto out_unlock;
2581
2582        rc = -EINVAL;
2583        user = hashtab_search(policydb->p_users.table, username);
2584        if (!user)
2585                goto out_unlock;
2586
2587        usercon.user = user->value;
2588
2589        rc = -ENOMEM;
2590        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2591        if (!mysids)
2592                goto out_unlock;
2593
2594        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595                role = policydb->role_val_to_struct[i];
2596                usercon.role = i + 1;
2597                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598                        usercon.type = j + 1;
2599
2600                        if (mls_setup_user_range(policydb, fromcon, user,
2601                                                 &usercon))
2602                                continue;
2603
2604                        rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2605                        if (rc)
2606                                goto out_unlock;
2607                        if (mynel < maxnel) {
2608                                mysids[mynel++] = sid;
2609                        } else {
2610                                rc = -ENOMEM;
2611                                maxnel += SIDS_NEL;
2612                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2613                                if (!mysids2)
2614                                        goto out_unlock;
2615                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2616                                kfree(mysids);
2617                                mysids = mysids2;
2618                                mysids[mynel++] = sid;
2619                        }
2620                }
2621        }
2622        rc = 0;
2623out_unlock:
2624        read_unlock(&state->ss->policy_rwlock);
2625        if (rc || !mynel) {
2626                kfree(mysids);
2627                goto out;
2628        }
2629
2630        rc = -ENOMEM;
2631        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2632        if (!mysids2) {
2633                kfree(mysids);
2634                goto out;
2635        }
2636        for (i = 0, j = 0; i < mynel; i++) {
2637                struct av_decision dummy_avd;
2638                rc = avc_has_perm_noaudit(state,
2639                                          fromsid, mysids[i],
2640                                          SECCLASS_PROCESS, /* kernel value */
2641                                          PROCESS__TRANSITION, AVC_STRICT,
2642                                          &dummy_avd);
2643                if (!rc)
2644                        mysids2[j++] = mysids[i];
2645                cond_resched();
2646        }
2647        rc = 0;
2648        kfree(mysids);
2649        *sids = mysids2;
2650        *nel = j;
2651out:
2652        return rc;
2653}
2654
2655/**
2656 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657 * @fstype: filesystem type
2658 * @path: path from root of mount
2659 * @sclass: file security class
2660 * @sid: SID for path
2661 *
2662 * Obtain a SID to use for a file in a filesystem that
2663 * cannot support xattr or use a fixed labeling behavior like
2664 * transition SIDs or task SIDs.
2665 *
2666 * The caller must acquire the policy_rwlock before calling this function.
2667 */
2668static inline int __security_genfs_sid(struct selinux_state *state,
2669                                       const char *fstype,
2670                                       char *path,
2671                                       u16 orig_sclass,
2672                                       u32 *sid)
2673{
2674        struct policydb *policydb = &state->ss->policydb;
2675        struct sidtab *sidtab = state->ss->sidtab;
2676        int len;
2677        u16 sclass;
2678        struct genfs *genfs;
2679        struct ocontext *c;
2680        int rc, cmp = 0;
2681
2682        while (path[0] == '/' && path[1] == '/')
2683                path++;
2684
2685        sclass = unmap_class(&state->ss->map, orig_sclass);
2686        *sid = SECINITSID_UNLABELED;
2687
2688        for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689                cmp = strcmp(fstype, genfs->fstype);
2690                if (cmp <= 0)
2691                        break;
2692        }
2693
2694        rc = -ENOENT;
2695        if (!genfs || cmp)
2696                goto out;
2697
2698        for (c = genfs->head; c; c = c->next) {
2699                len = strlen(c->u.name);
2700                if ((!c->v.sclass || sclass == c->v.sclass) &&
2701                    (strncmp(c->u.name, path, len) == 0))
2702                        break;
2703        }
2704
2705        rc = -ENOENT;
2706        if (!c)
2707                goto out;
2708
2709        if (!c->sid[0]) {
2710                rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2711                if (rc)
2712                        goto out;
2713        }
2714
2715        *sid = c->sid[0];
2716        rc = 0;
2717out:
2718        return rc;
2719}
2720
2721/**
2722 * security_genfs_sid - Obtain a SID for a file in a filesystem
2723 * @fstype: filesystem type
2724 * @path: path from root of mount
2725 * @sclass: file security class
2726 * @sid: SID for path
2727 *
2728 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2729 * it afterward.
2730 */
2731int security_genfs_sid(struct selinux_state *state,
2732                       const char *fstype,
2733                       char *path,
2734                       u16 orig_sclass,
2735                       u32 *sid)
2736{
2737        int retval;
2738
2739        read_lock(&state->ss->policy_rwlock);
2740        retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741        read_unlock(&state->ss->policy_rwlock);
2742        return retval;
2743}
2744
2745/**
2746 * security_fs_use - Determine how to handle labeling for a filesystem.
2747 * @sb: superblock in question
2748 */
2749int security_fs_use(struct selinux_state *state, struct super_block *sb)
2750{
2751        struct policydb *policydb;
2752        struct sidtab *sidtab;
2753        int rc = 0;
2754        struct ocontext *c;
2755        struct superblock_security_struct *sbsec = sb->s_security;
2756        const char *fstype = sb->s_type->name;
2757
2758        read_lock(&state->ss->policy_rwlock);
2759
2760        policydb = &state->ss->policydb;
2761        sidtab = state->ss->sidtab;
2762
2763        c = policydb->ocontexts[OCON_FSUSE];
2764        while (c) {
2765                if (strcmp(fstype, c->u.name) == 0)
2766                        break;
2767                c = c->next;
2768        }
2769
2770        if (c) {
2771                sbsec->behavior = c->v.behavior;
2772                if (!c->sid[0]) {
2773                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2774                                                   &c->sid[0]);
2775                        if (rc)
2776                                goto out;
2777                }
2778                sbsec->sid = c->sid[0];
2779        } else {
2780                rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2781                                          &sbsec->sid);
2782                if (rc) {
2783                        sbsec->behavior = SECURITY_FS_USE_NONE;
2784                        rc = 0;
2785                } else {
2786                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2787                }
2788        }
2789
2790out:
2791        read_unlock(&state->ss->policy_rwlock);
2792        return rc;
2793}
2794
2795int security_get_bools(struct selinux_state *state,
2796                       int *len, char ***names, int **values)
2797{
2798        struct policydb *policydb;
2799        int i, rc;
2800
2801        if (!state->initialized) {
2802                *len = 0;
2803                *names = NULL;
2804                *values = NULL;
2805                return 0;
2806        }
2807
2808        read_lock(&state->ss->policy_rwlock);
2809
2810        policydb = &state->ss->policydb;
2811
2812        *names = NULL;
2813        *values = NULL;
2814
2815        rc = 0;
2816        *len = policydb->p_bools.nprim;
2817        if (!*len)
2818                goto out;
2819
2820        rc = -ENOMEM;
2821        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2822        if (!*names)
2823                goto err;
2824
2825        rc = -ENOMEM;
2826        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2827        if (!*values)
2828                goto err;
2829
2830        for (i = 0; i < *len; i++) {
2831                (*values)[i] = policydb->bool_val_to_struct[i]->state;
2832
2833                rc = -ENOMEM;
2834                (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2835                                      GFP_ATOMIC);
2836                if (!(*names)[i])
2837                        goto err;
2838        }
2839        rc = 0;
2840out:
2841        read_unlock(&state->ss->policy_rwlock);
2842        return rc;
2843err:
2844        if (*names) {
2845                for (i = 0; i < *len; i++)
2846                        kfree((*names)[i]);
2847        }
2848        kfree(*values);
2849        goto out;
2850}
2851
2852
2853int security_set_bools(struct selinux_state *state, int len, int *values)
2854{
2855        struct policydb *policydb;
2856        int i, rc;
2857        int lenp, seqno = 0;
2858        struct cond_node *cur;
2859
2860        write_lock_irq(&state->ss->policy_rwlock);
2861
2862        policydb = &state->ss->policydb;
2863
2864        rc = -EFAULT;
2865        lenp = policydb->p_bools.nprim;
2866        if (len != lenp)
2867                goto out;
2868
2869        for (i = 0; i < len; i++) {
2870                if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2871                        audit_log(audit_context(), GFP_ATOMIC,
2872                                AUDIT_MAC_CONFIG_CHANGE,
2873                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2874                                sym_name(policydb, SYM_BOOLS, i),
2875                                !!values[i],
2876                                policydb->bool_val_to_struct[i]->state,
2877                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878                                audit_get_sessionid(current));
2879                }
2880                if (values[i])
2881                        policydb->bool_val_to_struct[i]->state = 1;
2882                else
2883                        policydb->bool_val_to_struct[i]->state = 0;
2884        }
2885
2886        for (cur = policydb->cond_list; cur; cur = cur->next) {
2887                rc = evaluate_cond_node(policydb, cur);
2888                if (rc)
2889                        goto out;
2890        }
2891
2892        seqno = ++state->ss->latest_granting;
2893        rc = 0;
2894out:
2895        write_unlock_irq(&state->ss->policy_rwlock);
2896        if (!rc) {
2897                avc_ss_reset(state->avc, seqno);
2898                selnl_notify_policyload(seqno);
2899                selinux_status_update_policyload(state, seqno);
2900                selinux_xfrm_notify_policyload();
2901        }
2902        return rc;
2903}
2904
2905int security_get_bool_value(struct selinux_state *state,
2906                            int index)
2907{
2908        struct policydb *policydb;
2909        int rc;
2910        int len;
2911
2912        read_lock(&state->ss->policy_rwlock);
2913
2914        policydb = &state->ss->policydb;
2915
2916        rc = -EFAULT;
2917        len = policydb->p_bools.nprim;
2918        if (index >= len)
2919                goto out;
2920
2921        rc = policydb->bool_val_to_struct[index]->state;
2922out:
2923        read_unlock(&state->ss->policy_rwlock);
2924        return rc;
2925}
2926
2927static int security_preserve_bools(struct selinux_state *state,
2928                                   struct policydb *policydb)
2929{
2930        int rc, nbools = 0, *bvalues = NULL, i;
2931        char **bnames = NULL;
2932        struct cond_bool_datum *booldatum;
2933        struct cond_node *cur;
2934
2935        rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2936        if (rc)
2937                goto out;
2938        for (i = 0; i < nbools; i++) {
2939                booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2940                if (booldatum)
2941                        booldatum->state = bvalues[i];
2942        }
2943        for (cur = policydb->cond_list; cur; cur = cur->next) {
2944                rc = evaluate_cond_node(policydb, cur);
2945                if (rc)
2946                        goto out;
2947        }
2948
2949out:
2950        if (bnames) {
2951                for (i = 0; i < nbools; i++)
2952                        kfree(bnames[i]);
2953        }
2954        kfree(bnames);
2955        kfree(bvalues);
2956        return rc;
2957}
2958
2959/*
2960 * security_sid_mls_copy() - computes a new sid based on the given
2961 * sid and the mls portion of mls_sid.
2962 */
2963int security_sid_mls_copy(struct selinux_state *state,
2964                          u32 sid, u32 mls_sid, u32 *new_sid)
2965{
2966        struct policydb *policydb = &state->ss->policydb;
2967        struct sidtab *sidtab = state->ss->sidtab;
2968        struct context *context1;
2969        struct context *context2;
2970        struct context newcon;
2971        char *s;
2972        u32 len;
2973        int rc;
2974
2975        rc = 0;
2976        if (!state->initialized || !policydb->mls_enabled) {
2977                *new_sid = sid;
2978                goto out;
2979        }
2980
2981        context_init(&newcon);
2982
2983        read_lock(&state->ss->policy_rwlock);
2984
2985        rc = -EINVAL;
2986        context1 = sidtab_search(sidtab, sid);
2987        if (!context1) {
2988                pr_err("SELinux: %s:  unrecognized SID %d\n",
2989                        __func__, sid);
2990                goto out_unlock;
2991        }
2992
2993        rc = -EINVAL;
2994        context2 = sidtab_search(sidtab, mls_sid);
2995        if (!context2) {
2996                pr_err("SELinux: %s:  unrecognized SID %d\n",
2997                        __func__, mls_sid);
2998                goto out_unlock;
2999        }
3000
3001        newcon.user = context1->user;
3002        newcon.role = context1->role;
3003        newcon.type = context1->type;
3004        rc = mls_context_cpy(&newcon, context2);
3005        if (rc)
3006                goto out_unlock;
3007
3008        /* Check the validity of the new context. */
3009        if (!policydb_context_isvalid(policydb, &newcon)) {
3010                rc = convert_context_handle_invalid_context(state, &newcon);
3011                if (rc) {
3012                        if (!context_struct_to_string(policydb, &newcon, &s,
3013                                                      &len)) {
3014                                struct audit_buffer *ab;
3015
3016                                ab = audit_log_start(audit_context(),
3017                                                     GFP_ATOMIC,
3018                                                     AUDIT_SELINUX_ERR);
3019                                audit_log_format(ab,
3020                                                 "op=security_sid_mls_copy invalid_context=");
3021                                /* don't record NUL with untrusted strings */
3022                                audit_log_n_untrustedstring(ab, s, len - 1);
3023                                audit_log_end(ab);
3024                                kfree(s);
3025                        }
3026                        goto out_unlock;
3027                }
3028        }
3029
3030        rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3031out_unlock:
3032        read_unlock(&state->ss->policy_rwlock);
3033        context_destroy(&newcon);
3034out:
3035        return rc;
3036}
3037
3038/**
3039 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3040 * @nlbl_sid: NetLabel SID
3041 * @nlbl_type: NetLabel labeling protocol type
3042 * @xfrm_sid: XFRM SID
3043 *
3044 * Description:
3045 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046 * resolved into a single SID it is returned via @peer_sid and the function
3047 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3048 * returns a negative value.  A table summarizing the behavior is below:
3049 *
3050 *                                 | function return |      @sid
3051 *   ------------------------------+-----------------+-----------------
3052 *   no peer labels                |        0        |    SECSID_NULL
3053 *   single peer label             |        0        |    <peer_label>
3054 *   multiple, consistent labels   |        0        |    <peer_label>
3055 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3056 *
3057 */
3058int security_net_peersid_resolve(struct selinux_state *state,
3059                                 u32 nlbl_sid, u32 nlbl_type,
3060                                 u32 xfrm_sid,
3061                                 u32 *peer_sid)
3062{
3063        struct policydb *policydb = &state->ss->policydb;
3064        struct sidtab *sidtab = state->ss->sidtab;
3065        int rc;
3066        struct context *nlbl_ctx;
3067        struct context *xfrm_ctx;
3068
3069        *peer_sid = SECSID_NULL;
3070
3071        /* handle the common (which also happens to be the set of easy) cases
3072         * right away, these two if statements catch everything involving a
3073         * single or absent peer SID/label */
3074        if (xfrm_sid == SECSID_NULL) {
3075                *peer_sid = nlbl_sid;
3076                return 0;
3077        }
3078        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3080         * is present */
3081        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082                *peer_sid = xfrm_sid;
3083                return 0;
3084        }
3085
3086        /*
3087         * We don't need to check initialized here since the only way both
3088         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089         * security server was initialized and state->initialized was true.
3090         */
3091        if (!policydb->mls_enabled)
3092                return 0;
3093
3094        read_lock(&state->ss->policy_rwlock);
3095
3096        rc = -EINVAL;
3097        nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3098        if (!nlbl_ctx) {
3099                pr_err("SELinux: %s:  unrecognized SID %d\n",
3100                       __func__, nlbl_sid);
3101                goto out;
3102        }
3103        rc = -EINVAL;
3104        xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3105        if (!xfrm_ctx) {
3106                pr_err("SELinux: %s:  unrecognized SID %d\n",
3107                       __func__, xfrm_sid);
3108                goto out;
3109        }
3110        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3111        if (rc)
3112                goto out;
3113
3114        /* at present NetLabel SIDs/labels really only carry MLS
3115         * information so if the MLS portion of the NetLabel SID
3116         * matches the MLS portion of the labeled XFRM SID/label
3117         * then pass along the XFRM SID as it is the most
3118         * expressive */
3119        *peer_sid = xfrm_sid;
3120out:
3121        read_unlock(&state->ss->policy_rwlock);
3122        return rc;
3123}
3124
3125static int get_classes_callback(void *k, void *d, void *args)
3126{
3127        struct class_datum *datum = d;
3128        char *name = k, **classes = args;
3129        int value = datum->value - 1;
3130
3131        classes[value] = kstrdup(name, GFP_ATOMIC);
3132        if (!classes[value])
3133                return -ENOMEM;
3134
3135        return 0;
3136}
3137
3138int security_get_classes(struct selinux_state *state,
3139                         char ***classes, int *nclasses)
3140{
3141        struct policydb *policydb = &state->ss->policydb;
3142        int rc;
3143
3144        if (!state->initialized) {
3145                *nclasses = 0;
3146                *classes = NULL;
3147                return 0;
3148        }
3149
3150        read_lock(&state->ss->policy_rwlock);
3151
3152        rc = -ENOMEM;
3153        *nclasses = policydb->p_classes.nprim;
3154        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3155        if (!*classes)
3156                goto out;
3157
3158        rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3159                        *classes);
3160        if (rc) {
3161                int i;
3162                for (i = 0; i < *nclasses; i++)
3163                        kfree((*classes)[i]);
3164                kfree(*classes);
3165        }
3166
3167out:
3168        read_unlock(&state->ss->policy_rwlock);
3169        return rc;
3170}
3171
3172static int get_permissions_callback(void *k, void *d, void *args)
3173{
3174        struct perm_datum *datum = d;
3175        char *name = k, **perms = args;
3176        int value = datum->value - 1;
3177
3178        perms[value] = kstrdup(name, GFP_ATOMIC);
3179        if (!perms[value])
3180                return -ENOMEM;
3181
3182        return 0;
3183}
3184
3185int security_get_permissions(struct selinux_state *state,
3186                             char *class, char ***perms, int *nperms)
3187{
3188        struct policydb *policydb = &state->ss->policydb;
3189        int rc, i;
3190        struct class_datum *match;
3191
3192        read_lock(&state->ss->policy_rwlock);
3193
3194        rc = -EINVAL;
3195        match = hashtab_search(policydb->p_classes.table, class);
3196        if (!match) {
3197                pr_err("SELinux: %s:  unrecognized class %s\n",
3198                        __func__, class);
3199                goto out;
3200        }
3201
3202        rc = -ENOMEM;
3203        *nperms = match->permissions.nprim;
3204        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3205        if (!*perms)
3206                goto out;
3207
3208        if (match->comdatum) {
3209                rc = hashtab_map(match->comdatum->permissions.table,
3210                                get_permissions_callback, *perms);
3211                if (rc)
3212                        goto err;
3213        }
3214
3215        rc = hashtab_map(match->permissions.table, get_permissions_callback,
3216                        *perms);
3217        if (rc)
3218                goto err;
3219
3220out:
3221        read_unlock(&state->ss->policy_rwlock);
3222        return rc;
3223
3224err:
3225        read_unlock(&state->ss->policy_rwlock);
3226        for (i = 0; i < *nperms; i++)
3227                kfree((*perms)[i]);
3228        kfree(*perms);
3229        return rc;
3230}
3231
3232int security_get_reject_unknown(struct selinux_state *state)
3233{
3234        return state->ss->policydb.reject_unknown;
3235}
3236
3237int security_get_allow_unknown(struct selinux_state *state)
3238{
3239        return state->ss->policydb.allow_unknown;
3240}
3241
3242/**
3243 * security_policycap_supported - Check for a specific policy capability
3244 * @req_cap: capability
3245 *
3246 * Description:
3247 * This function queries the currently loaded policy to see if it supports the
3248 * capability specified by @req_cap.  Returns true (1) if the capability is
3249 * supported, false (0) if it isn't supported.
3250 *
3251 */
3252int security_policycap_supported(struct selinux_state *state,
3253                                 unsigned int req_cap)
3254{
3255        struct policydb *policydb = &state->ss->policydb;
3256        int rc;
3257
3258        read_lock(&state->ss->policy_rwlock);
3259        rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260        read_unlock(&state->ss->policy_rwlock);
3261
3262        return rc;
3263}
3264
3265struct selinux_audit_rule {
3266        u32 au_seqno;
3267        struct context au_ctxt;
3268};
3269
3270void selinux_audit_rule_free(void *vrule)
3271{
3272        struct selinux_audit_rule *rule = vrule;
3273
3274        if (rule) {
3275                context_destroy(&rule->au_ctxt);
3276                kfree(rule);
3277        }
3278}
3279
3280int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3281{
3282        struct selinux_state *state = &selinux_state;
3283        struct policydb *policydb = &state->ss->policydb;
3284        struct selinux_audit_rule *tmprule;
3285        struct role_datum *roledatum;
3286        struct type_datum *typedatum;
3287        struct user_datum *userdatum;
3288        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3289        int rc = 0;
3290
3291        *rule = NULL;
3292
3293        if (!state->initialized)
3294                return -EOPNOTSUPP;
3295
3296        switch (field) {
3297        case AUDIT_SUBJ_USER:
3298        case AUDIT_SUBJ_ROLE:
3299        case AUDIT_SUBJ_TYPE:
3300        case AUDIT_OBJ_USER:
3301        case AUDIT_OBJ_ROLE:
3302        case AUDIT_OBJ_TYPE:
3303                /* only 'equals' and 'not equals' fit user, role, and type */
3304                if (op != Audit_equal && op != Audit_not_equal)
3305                        return -EINVAL;
3306                break;
3307        case AUDIT_SUBJ_SEN:
3308        case AUDIT_SUBJ_CLR:
3309        case AUDIT_OBJ_LEV_LOW:
3310        case AUDIT_OBJ_LEV_HIGH:
3311                /* we do not allow a range, indicated by the presence of '-' */
3312                if (strchr(rulestr, '-'))
3313                        return -EINVAL;
3314                break;
3315        default:
3316                /* only the above fields are valid */
3317                return -EINVAL;
3318        }
3319
3320        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3321        if (!tmprule)
3322                return -ENOMEM;
3323
3324        context_init(&tmprule->au_ctxt);
3325
3326        read_lock(&state->ss->policy_rwlock);
3327
3328        tmprule->au_seqno = state->ss->latest_granting;
3329
3330        switch (field) {
3331        case AUDIT_SUBJ_USER:
3332        case AUDIT_OBJ_USER:
3333                rc = -EINVAL;
3334                userdatum = hashtab_search(policydb->p_users.table, rulestr);
3335                if (!userdatum)
3336                        goto out;
3337                tmprule->au_ctxt.user = userdatum->value;
3338                break;
3339        case AUDIT_SUBJ_ROLE:
3340        case AUDIT_OBJ_ROLE:
3341                rc = -EINVAL;
3342                roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3343                if (!roledatum)
3344                        goto out;
3345                tmprule->au_ctxt.role = roledatum->value;
3346                break;
3347        case AUDIT_SUBJ_TYPE:
3348        case AUDIT_OBJ_TYPE:
3349                rc = -EINVAL;
3350                typedatum = hashtab_search(policydb->p_types.table, rulestr);
3351                if (!typedatum)
3352                        goto out;
3353                tmprule->au_ctxt.type = typedatum->value;
3354                break;
3355        case AUDIT_SUBJ_SEN:
3356        case AUDIT_SUBJ_CLR:
3357        case AUDIT_OBJ_LEV_LOW:
3358        case AUDIT_OBJ_LEV_HIGH:
3359                rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3360                                     GFP_ATOMIC);
3361                if (rc)
3362                        goto out;
3363                break;
3364        }
3365        rc = 0;
3366out:
3367        read_unlock(&state->ss->policy_rwlock);
3368
3369        if (rc) {
3370                selinux_audit_rule_free(tmprule);
3371                tmprule = NULL;
3372        }
3373
3374        *rule = tmprule;
3375
3376        return rc;
3377}
3378
3379/* Check to see if the rule contains any selinux fields */
3380int selinux_audit_rule_known(struct audit_krule *rule)
3381{
3382        int i;
3383
3384        for (i = 0; i < rule->field_count; i++) {
3385                struct audit_field *f = &rule->fields[i];
3386                switch (f->type) {
3387                case AUDIT_SUBJ_USER:
3388                case AUDIT_SUBJ_ROLE:
3389                case AUDIT_SUBJ_TYPE:
3390                case AUDIT_SUBJ_SEN:
3391                case AUDIT_SUBJ_CLR:
3392                case AUDIT_OBJ_USER:
3393                case AUDIT_OBJ_ROLE:
3394                case AUDIT_OBJ_TYPE:
3395                case AUDIT_OBJ_LEV_LOW:
3396                case AUDIT_OBJ_LEV_HIGH:
3397                        return 1;
3398                }
3399        }
3400
3401        return 0;
3402}
3403
3404int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3405{
3406        struct selinux_state *state = &selinux_state;
3407        struct context *ctxt;
3408        struct mls_level *level;
3409        struct selinux_audit_rule *rule = vrule;
3410        int match = 0;
3411
3412        if (unlikely(!rule)) {
3413                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3414                return -ENOENT;
3415        }
3416
3417        read_lock(&state->ss->policy_rwlock);
3418
3419        if (rule->au_seqno < state->ss->latest_granting) {
3420                match = -ESTALE;
3421                goto out;
3422        }
3423
3424        ctxt = sidtab_search(state->ss->sidtab, sid);
3425        if (unlikely(!ctxt)) {
3426                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3427                          sid);
3428                match = -ENOENT;
3429                goto out;
3430        }
3431
3432        /* a field/op pair that is not caught here will simply fall through
3433           without a match */
3434        switch (field) {
3435        case AUDIT_SUBJ_USER:
3436        case AUDIT_OBJ_USER:
3437                switch (op) {
3438                case Audit_equal:
3439                        match = (ctxt->user == rule->au_ctxt.user);
3440                        break;
3441                case Audit_not_equal:
3442                        match = (ctxt->user != rule->au_ctxt.user);
3443                        break;
3444                }
3445                break;
3446        case AUDIT_SUBJ_ROLE:
3447        case AUDIT_OBJ_ROLE:
3448                switch (op) {
3449                case Audit_equal:
3450                        match = (ctxt->role == rule->au_ctxt.role);
3451                        break;
3452                case Audit_not_equal:
3453                        match = (ctxt->role != rule->au_ctxt.role);
3454                        break;
3455                }
3456                break;
3457        case AUDIT_SUBJ_TYPE:
3458        case AUDIT_OBJ_TYPE:
3459                switch (op) {
3460                case Audit_equal:
3461                        match = (ctxt->type == rule->au_ctxt.type);
3462                        break;
3463                case Audit_not_equal:
3464                        match = (ctxt->type != rule->au_ctxt.type);
3465                        break;
3466                }
3467                break;
3468        case AUDIT_SUBJ_SEN:
3469        case AUDIT_SUBJ_CLR:
3470        case AUDIT_OBJ_LEV_LOW:
3471        case AUDIT_OBJ_LEV_HIGH:
3472                level = ((field == AUDIT_SUBJ_SEN ||
3473                          field == AUDIT_OBJ_LEV_LOW) ?
3474                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3475                switch (op) {
3476                case Audit_equal:
3477                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3478                                             level);
3479                        break;
3480                case Audit_not_equal:
3481                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3482                                              level);
3483                        break;
3484                case Audit_lt:
3485                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3486                                               level) &&
3487                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3488                                               level));
3489                        break;
3490                case Audit_le:
3491                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3492                                              level);
3493                        break;
3494                case Audit_gt:
3495                        match = (mls_level_dom(level,
3496                                              &rule->au_ctxt.range.level[0]) &&
3497                                 !mls_level_eq(level,
3498                                               &rule->au_ctxt.range.level[0]));
3499                        break;
3500                case Audit_ge:
3501                        match = mls_level_dom(level,
3502                                              &rule->au_ctxt.range.level[0]);
3503                        break;
3504                }
3505        }
3506
3507out:
3508        read_unlock(&state->ss->policy_rwlock);
3509        return match;
3510}
3511
3512static int (*aurule_callback)(void) = audit_update_lsm_rules;
3513
3514static int aurule_avc_callback(u32 event)
3515{
3516        int err = 0;
3517
3518        if (event == AVC_CALLBACK_RESET && aurule_callback)
3519                err = aurule_callback();
3520        return err;
3521}
3522
3523static int __init aurule_init(void)
3524{
3525        int err;
3526
3527        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3528        if (err)
3529                panic("avc_add_callback() failed, error %d\n", err);
3530
3531        return err;
3532}
3533__initcall(aurule_init);
3534
3535#ifdef CONFIG_NETLABEL
3536/**
3537 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538 * @secattr: the NetLabel packet security attributes
3539 * @sid: the SELinux SID
3540 *
3541 * Description:
3542 * Attempt to cache the context in @ctx, which was derived from the packet in
3543 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3544 * already been initialized.
3545 *
3546 */
3547static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3548                                      u32 sid)
3549{
3550        u32 *sid_cache;
3551
3552        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553        if (sid_cache == NULL)
3554                return;
3555        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556        if (secattr->cache == NULL) {
3557                kfree(sid_cache);
3558                return;
3559        }
3560
3561        *sid_cache = sid;
3562        secattr->cache->free = kfree;
3563        secattr->cache->data = sid_cache;
3564        secattr->flags |= NETLBL_SECATTR_CACHE;
3565}
3566
3567/**
3568 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3569 * @secattr: the NetLabel packet security attributes
3570 * @sid: the SELinux SID
3571 *
3572 * Description:
3573 * Convert the given NetLabel security attributes in @secattr into a
3574 * SELinux SID.  If the @secattr field does not contain a full SELinux
3575 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3576 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578 * conversion for future lookups.  Returns zero on success, negative values on
3579 * failure.
3580 *
3581 */
3582int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583                                   struct netlbl_lsm_secattr *secattr,
3584                                   u32 *sid)
3585{
3586        struct policydb *policydb = &state->ss->policydb;
3587        struct sidtab *sidtab = state->ss->sidtab;
3588        int rc;
3589        struct context *ctx;
3590        struct context ctx_new;
3591
3592        if (!state->initialized) {
3593                *sid = SECSID_NULL;
3594                return 0;
3595        }
3596
3597        read_lock(&state->ss->policy_rwlock);
3598
3599        if (secattr->flags & NETLBL_SECATTR_CACHE)
3600                *sid = *(u32 *)secattr->cache->data;
3601        else if (secattr->flags & NETLBL_SECATTR_SECID)
3602                *sid = secattr->attr.secid;
3603        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3604                rc = -EIDRM;
3605                ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3606                if (ctx == NULL)
3607                        goto out;
3608
3609                context_init(&ctx_new);
3610                ctx_new.user = ctx->user;
3611                ctx_new.role = ctx->role;
3612                ctx_new.type = ctx->type;
3613                mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615                        rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3616                        if (rc)
3617                                goto out;
3618                }
3619                rc = -EIDRM;
3620                if (!mls_context_isvalid(policydb, &ctx_new))
3621                        goto out_free;
3622
3623                rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3624                if (rc)
3625                        goto out_free;
3626
3627                security_netlbl_cache_add(secattr, *sid);
3628
3629                ebitmap_destroy(&ctx_new.range.level[0].cat);
3630        } else
3631                *sid = SECSID_NULL;
3632
3633        read_unlock(&state->ss->policy_rwlock);
3634        return 0;
3635out_free:
3636        ebitmap_destroy(&ctx_new.range.level[0].cat);
3637out:
3638        read_unlock(&state->ss->policy_rwlock);
3639        return rc;
3640}
3641
3642/**
3643 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3644 * @sid: the SELinux SID
3645 * @secattr: the NetLabel packet security attributes
3646 *
3647 * Description:
3648 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649 * Returns zero on success, negative values on failure.
3650 *
3651 */
3652int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653                                   u32 sid, struct netlbl_lsm_secattr *secattr)
3654{
3655        struct policydb *policydb = &state->ss->policydb;
3656        int rc;
3657        struct context *ctx;
3658
3659        if (!state->initialized)
3660                return 0;
3661
3662        read_lock(&state->ss->policy_rwlock);
3663
3664        rc = -ENOENT;
3665        ctx = sidtab_search(state->ss->sidtab, sid);
3666        if (ctx == NULL)
3667                goto out;
3668
3669        rc = -ENOMEM;
3670        secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3671                                  GFP_ATOMIC);
3672        if (secattr->domain == NULL)
3673                goto out;
3674
3675        secattr->attr.secid = sid;
3676        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677        mls_export_netlbl_lvl(policydb, ctx, secattr);
3678        rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3679out:
3680        read_unlock(&state->ss->policy_rwlock);
3681        return rc;
3682}
3683#endif /* CONFIG_NETLABEL */
3684
3685/**
3686 * security_read_policy - read the policy.
3687 * @data: binary policy data
3688 * @len: length of data in bytes
3689 *
3690 */
3691int security_read_policy(struct selinux_state *state,
3692                         void **data, size_t *len)
3693{
3694        struct policydb *policydb = &state->ss->policydb;
3695        int rc;
3696        struct policy_file fp;
3697
3698        if (!state->initialized)
3699                return -EINVAL;
3700
3701        *len = security_policydb_len(state);
3702
3703        *data = vmalloc_user(*len);
3704        if (!*data)
3705                return -ENOMEM;
3706
3707        fp.data = *data;
3708        fp.len = *len;
3709
3710        read_lock(&state->ss->policy_rwlock);
3711        rc = policydb_write(policydb, &fp);
3712        read_unlock(&state->ss->policy_rwlock);
3713
3714        if (rc)
3715                return rc;
3716
3717        *len = (unsigned long)fp.data - (unsigned long)*data;
3718        return 0;
3719
3720}
3721