linux/virt/kvm/arm/vgic/vgic-its.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * GICv3 ITS emulation
   4 *
   5 * Copyright (C) 2015,2016 ARM Ltd.
   6 * Author: Andre Przywara <andre.przywara@arm.com>
   7 */
   8
   9#include <linux/cpu.h>
  10#include <linux/kvm.h>
  11#include <linux/kvm_host.h>
  12#include <linux/interrupt.h>
  13#include <linux/list.h>
  14#include <linux/uaccess.h>
  15#include <linux/list_sort.h>
  16
  17#include <linux/irqchip/arm-gic-v3.h>
  18
  19#include <asm/kvm_emulate.h>
  20#include <asm/kvm_arm.h>
  21#include <asm/kvm_mmu.h>
  22
  23#include "vgic.h"
  24#include "vgic-mmio.h"
  25
  26static int vgic_its_save_tables_v0(struct vgic_its *its);
  27static int vgic_its_restore_tables_v0(struct vgic_its *its);
  28static int vgic_its_commit_v0(struct vgic_its *its);
  29static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
  30                             struct kvm_vcpu *filter_vcpu, bool needs_inv);
  31
  32/*
  33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
  34 * If this LPI is already mapped on another ITS, we increase its refcount
  35 * and return a pointer to the existing structure.
  36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
  37 * This function returns a pointer to the _unlocked_ structure.
  38 */
  39static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
  40                                     struct kvm_vcpu *vcpu)
  41{
  42        struct vgic_dist *dist = &kvm->arch.vgic;
  43        struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
  44        unsigned long flags;
  45        int ret;
  46
  47        /* In this case there is no put, since we keep the reference. */
  48        if (irq)
  49                return irq;
  50
  51        irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
  52        if (!irq)
  53                return ERR_PTR(-ENOMEM);
  54
  55        INIT_LIST_HEAD(&irq->lpi_list);
  56        INIT_LIST_HEAD(&irq->ap_list);
  57        raw_spin_lock_init(&irq->irq_lock);
  58
  59        irq->config = VGIC_CONFIG_EDGE;
  60        kref_init(&irq->refcount);
  61        irq->intid = intid;
  62        irq->target_vcpu = vcpu;
  63        irq->group = 1;
  64
  65        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
  66
  67        /*
  68         * There could be a race with another vgic_add_lpi(), so we need to
  69         * check that we don't add a second list entry with the same LPI.
  70         */
  71        list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
  72                if (oldirq->intid != intid)
  73                        continue;
  74
  75                /* Someone was faster with adding this LPI, lets use that. */
  76                kfree(irq);
  77                irq = oldirq;
  78
  79                /*
  80                 * This increases the refcount, the caller is expected to
  81                 * call vgic_put_irq() on the returned pointer once it's
  82                 * finished with the IRQ.
  83                 */
  84                vgic_get_irq_kref(irq);
  85
  86                goto out_unlock;
  87        }
  88
  89        list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
  90        dist->lpi_list_count++;
  91
  92out_unlock:
  93        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
  94
  95        /*
  96         * We "cache" the configuration table entries in our struct vgic_irq's.
  97         * However we only have those structs for mapped IRQs, so we read in
  98         * the respective config data from memory here upon mapping the LPI.
  99         */
 100        ret = update_lpi_config(kvm, irq, NULL, false);
 101        if (ret)
 102                return ERR_PTR(ret);
 103
 104        ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
 105        if (ret)
 106                return ERR_PTR(ret);
 107
 108        return irq;
 109}
 110
 111struct its_device {
 112        struct list_head dev_list;
 113
 114        /* the head for the list of ITTEs */
 115        struct list_head itt_head;
 116        u32 num_eventid_bits;
 117        gpa_t itt_addr;
 118        u32 device_id;
 119};
 120
 121#define COLLECTION_NOT_MAPPED ((u32)~0)
 122
 123struct its_collection {
 124        struct list_head coll_list;
 125
 126        u32 collection_id;
 127        u32 target_addr;
 128};
 129
 130#define its_is_collection_mapped(coll) ((coll) && \
 131                                ((coll)->target_addr != COLLECTION_NOT_MAPPED))
 132
 133struct its_ite {
 134        struct list_head ite_list;
 135
 136        struct vgic_irq *irq;
 137        struct its_collection *collection;
 138        u32 event_id;
 139};
 140
 141struct vgic_translation_cache_entry {
 142        struct list_head        entry;
 143        phys_addr_t             db;
 144        u32                     devid;
 145        u32                     eventid;
 146        struct vgic_irq         *irq;
 147};
 148
 149/**
 150 * struct vgic_its_abi - ITS abi ops and settings
 151 * @cte_esz: collection table entry size
 152 * @dte_esz: device table entry size
 153 * @ite_esz: interrupt translation table entry size
 154 * @save tables: save the ITS tables into guest RAM
 155 * @restore_tables: restore the ITS internal structs from tables
 156 *  stored in guest RAM
 157 * @commit: initialize the registers which expose the ABI settings,
 158 *  especially the entry sizes
 159 */
 160struct vgic_its_abi {
 161        int cte_esz;
 162        int dte_esz;
 163        int ite_esz;
 164        int (*save_tables)(struct vgic_its *its);
 165        int (*restore_tables)(struct vgic_its *its);
 166        int (*commit)(struct vgic_its *its);
 167};
 168
 169#define ABI_0_ESZ       8
 170#define ESZ_MAX         ABI_0_ESZ
 171
 172static const struct vgic_its_abi its_table_abi_versions[] = {
 173        [0] = {
 174         .cte_esz = ABI_0_ESZ,
 175         .dte_esz = ABI_0_ESZ,
 176         .ite_esz = ABI_0_ESZ,
 177         .save_tables = vgic_its_save_tables_v0,
 178         .restore_tables = vgic_its_restore_tables_v0,
 179         .commit = vgic_its_commit_v0,
 180        },
 181};
 182
 183#define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
 184
 185inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
 186{
 187        return &its_table_abi_versions[its->abi_rev];
 188}
 189
 190static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
 191{
 192        const struct vgic_its_abi *abi;
 193
 194        its->abi_rev = rev;
 195        abi = vgic_its_get_abi(its);
 196        return abi->commit(its);
 197}
 198
 199/*
 200 * Find and returns a device in the device table for an ITS.
 201 * Must be called with the its_lock mutex held.
 202 */
 203static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
 204{
 205        struct its_device *device;
 206
 207        list_for_each_entry(device, &its->device_list, dev_list)
 208                if (device_id == device->device_id)
 209                        return device;
 210
 211        return NULL;
 212}
 213
 214/*
 215 * Find and returns an interrupt translation table entry (ITTE) for a given
 216 * Device ID/Event ID pair on an ITS.
 217 * Must be called with the its_lock mutex held.
 218 */
 219static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
 220                                  u32 event_id)
 221{
 222        struct its_device *device;
 223        struct its_ite *ite;
 224
 225        device = find_its_device(its, device_id);
 226        if (device == NULL)
 227                return NULL;
 228
 229        list_for_each_entry(ite, &device->itt_head, ite_list)
 230                if (ite->event_id == event_id)
 231                        return ite;
 232
 233        return NULL;
 234}
 235
 236/* To be used as an iterator this macro misses the enclosing parentheses */
 237#define for_each_lpi_its(dev, ite, its) \
 238        list_for_each_entry(dev, &(its)->device_list, dev_list) \
 239                list_for_each_entry(ite, &(dev)->itt_head, ite_list)
 240
 241#define GIC_LPI_OFFSET 8192
 242
 243#define VITS_TYPER_IDBITS 16
 244#define VITS_TYPER_DEVBITS 16
 245#define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
 246#define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
 247
 248/*
 249 * Finds and returns a collection in the ITS collection table.
 250 * Must be called with the its_lock mutex held.
 251 */
 252static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
 253{
 254        struct its_collection *collection;
 255
 256        list_for_each_entry(collection, &its->collection_list, coll_list) {
 257                if (coll_id == collection->collection_id)
 258                        return collection;
 259        }
 260
 261        return NULL;
 262}
 263
 264#define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
 265#define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
 266
 267/*
 268 * Reads the configuration data for a given LPI from guest memory and
 269 * updates the fields in struct vgic_irq.
 270 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 271 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 272 */
 273static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
 274                             struct kvm_vcpu *filter_vcpu, bool needs_inv)
 275{
 276        u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
 277        u8 prop;
 278        int ret;
 279        unsigned long flags;
 280
 281        ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
 282                                  &prop, 1);
 283
 284        if (ret)
 285                return ret;
 286
 287        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 288
 289        if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
 290                irq->priority = LPI_PROP_PRIORITY(prop);
 291                irq->enabled = LPI_PROP_ENABLE_BIT(prop);
 292
 293                if (!irq->hw) {
 294                        vgic_queue_irq_unlock(kvm, irq, flags);
 295                        return 0;
 296                }
 297        }
 298
 299        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 300
 301        if (irq->hw)
 302                return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
 303
 304        return 0;
 305}
 306
 307/*
 308 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 309 * enumerate those LPIs without holding any lock.
 310 * Returns their number and puts the kmalloc'ed array into intid_ptr.
 311 */
 312int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
 313{
 314        struct vgic_dist *dist = &kvm->arch.vgic;
 315        struct vgic_irq *irq;
 316        unsigned long flags;
 317        u32 *intids;
 318        int irq_count, i = 0;
 319
 320        /*
 321         * There is an obvious race between allocating the array and LPIs
 322         * being mapped/unmapped. If we ended up here as a result of a
 323         * command, we're safe (locks are held, preventing another
 324         * command). If coming from another path (such as enabling LPIs),
 325         * we must be careful not to overrun the array.
 326         */
 327        irq_count = READ_ONCE(dist->lpi_list_count);
 328        intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
 329        if (!intids)
 330                return -ENOMEM;
 331
 332        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 333        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 334                if (i == irq_count)
 335                        break;
 336                /* We don't need to "get" the IRQ, as we hold the list lock. */
 337                if (vcpu && irq->target_vcpu != vcpu)
 338                        continue;
 339                intids[i++] = irq->intid;
 340        }
 341        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 342
 343        *intid_ptr = intids;
 344        return i;
 345}
 346
 347static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
 348{
 349        int ret = 0;
 350        unsigned long flags;
 351
 352        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 353        irq->target_vcpu = vcpu;
 354        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 355
 356        if (irq->hw) {
 357                struct its_vlpi_map map;
 358
 359                ret = its_get_vlpi(irq->host_irq, &map);
 360                if (ret)
 361                        return ret;
 362
 363                map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 364
 365                ret = its_map_vlpi(irq->host_irq, &map);
 366        }
 367
 368        return ret;
 369}
 370
 371/*
 372 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 373 * is targeting) to the VGIC's view, which deals with target VCPUs.
 374 * Needs to be called whenever either the collection for a LPIs has
 375 * changed or the collection itself got retargeted.
 376 */
 377static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
 378{
 379        struct kvm_vcpu *vcpu;
 380
 381        if (!its_is_collection_mapped(ite->collection))
 382                return;
 383
 384        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 385        update_affinity(ite->irq, vcpu);
 386}
 387
 388/*
 389 * Updates the target VCPU for every LPI targeting this collection.
 390 * Must be called with the its_lock mutex held.
 391 */
 392static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
 393                                       struct its_collection *coll)
 394{
 395        struct its_device *device;
 396        struct its_ite *ite;
 397
 398        for_each_lpi_its(device, ite, its) {
 399                if (!ite->collection || coll != ite->collection)
 400                        continue;
 401
 402                update_affinity_ite(kvm, ite);
 403        }
 404}
 405
 406static u32 max_lpis_propbaser(u64 propbaser)
 407{
 408        int nr_idbits = (propbaser & 0x1f) + 1;
 409
 410        return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
 411}
 412
 413/*
 414 * Sync the pending table pending bit of LPIs targeting @vcpu
 415 * with our own data structures. This relies on the LPI being
 416 * mapped before.
 417 */
 418static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
 419{
 420        gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 421        struct vgic_irq *irq;
 422        int last_byte_offset = -1;
 423        int ret = 0;
 424        u32 *intids;
 425        int nr_irqs, i;
 426        unsigned long flags;
 427        u8 pendmask;
 428
 429        nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
 430        if (nr_irqs < 0)
 431                return nr_irqs;
 432
 433        for (i = 0; i < nr_irqs; i++) {
 434                int byte_offset, bit_nr;
 435
 436                byte_offset = intids[i] / BITS_PER_BYTE;
 437                bit_nr = intids[i] % BITS_PER_BYTE;
 438
 439                /*
 440                 * For contiguously allocated LPIs chances are we just read
 441                 * this very same byte in the last iteration. Reuse that.
 442                 */
 443                if (byte_offset != last_byte_offset) {
 444                        ret = kvm_read_guest_lock(vcpu->kvm,
 445                                                  pendbase + byte_offset,
 446                                                  &pendmask, 1);
 447                        if (ret) {
 448                                kfree(intids);
 449                                return ret;
 450                        }
 451                        last_byte_offset = byte_offset;
 452                }
 453
 454                irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
 455                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 456                irq->pending_latch = pendmask & (1U << bit_nr);
 457                vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 458                vgic_put_irq(vcpu->kvm, irq);
 459        }
 460
 461        kfree(intids);
 462
 463        return ret;
 464}
 465
 466static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
 467                                              struct vgic_its *its,
 468                                              gpa_t addr, unsigned int len)
 469{
 470        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
 471        u64 reg = GITS_TYPER_PLPIS;
 472
 473        /*
 474         * We use linear CPU numbers for redistributor addressing,
 475         * so GITS_TYPER.PTA is 0.
 476         * Also we force all PROPBASER registers to be the same, so
 477         * CommonLPIAff is 0 as well.
 478         * To avoid memory waste in the guest, we keep the number of IDBits and
 479         * DevBits low - as least for the time being.
 480         */
 481        reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
 482        reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
 483        reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
 484
 485        return extract_bytes(reg, addr & 7, len);
 486}
 487
 488static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
 489                                             struct vgic_its *its,
 490                                             gpa_t addr, unsigned int len)
 491{
 492        u32 val;
 493
 494        val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
 495        val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
 496        return val;
 497}
 498
 499static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
 500                                            struct vgic_its *its,
 501                                            gpa_t addr, unsigned int len,
 502                                            unsigned long val)
 503{
 504        u32 rev = GITS_IIDR_REV(val);
 505
 506        if (rev >= NR_ITS_ABIS)
 507                return -EINVAL;
 508        return vgic_its_set_abi(its, rev);
 509}
 510
 511static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
 512                                               struct vgic_its *its,
 513                                               gpa_t addr, unsigned int len)
 514{
 515        switch (addr & 0xffff) {
 516        case GITS_PIDR0:
 517                return 0x92;    /* part number, bits[7:0] */
 518        case GITS_PIDR1:
 519                return 0xb4;    /* part number, bits[11:8] */
 520        case GITS_PIDR2:
 521                return GIC_PIDR2_ARCH_GICv3 | 0x0b;
 522        case GITS_PIDR4:
 523                return 0x40;    /* This is a 64K software visible page */
 524        /* The following are the ID registers for (any) GIC. */
 525        case GITS_CIDR0:
 526                return 0x0d;
 527        case GITS_CIDR1:
 528                return 0xf0;
 529        case GITS_CIDR2:
 530                return 0x05;
 531        case GITS_CIDR3:
 532                return 0xb1;
 533        }
 534
 535        return 0;
 536}
 537
 538static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
 539                                               phys_addr_t db,
 540                                               u32 devid, u32 eventid)
 541{
 542        struct vgic_translation_cache_entry *cte;
 543
 544        list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
 545                /*
 546                 * If we hit a NULL entry, there is nothing after this
 547                 * point.
 548                 */
 549                if (!cte->irq)
 550                        break;
 551
 552                if (cte->db != db || cte->devid != devid ||
 553                    cte->eventid != eventid)
 554                        continue;
 555
 556                /*
 557                 * Move this entry to the head, as it is the most
 558                 * recently used.
 559                 */
 560                if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
 561                        list_move(&cte->entry, &dist->lpi_translation_cache);
 562
 563                return cte->irq;
 564        }
 565
 566        return NULL;
 567}
 568
 569static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
 570                                             u32 devid, u32 eventid)
 571{
 572        struct vgic_dist *dist = &kvm->arch.vgic;
 573        struct vgic_irq *irq;
 574        unsigned long flags;
 575
 576        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 577        irq = __vgic_its_check_cache(dist, db, devid, eventid);
 578        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 579
 580        return irq;
 581}
 582
 583static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
 584                                       u32 devid, u32 eventid,
 585                                       struct vgic_irq *irq)
 586{
 587        struct vgic_dist *dist = &kvm->arch.vgic;
 588        struct vgic_translation_cache_entry *cte;
 589        unsigned long flags;
 590        phys_addr_t db;
 591
 592        /* Do not cache a directly injected interrupt */
 593        if (irq->hw)
 594                return;
 595
 596        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 597
 598        if (unlikely(list_empty(&dist->lpi_translation_cache)))
 599                goto out;
 600
 601        /*
 602         * We could have raced with another CPU caching the same
 603         * translation behind our back, so let's check it is not in
 604         * already
 605         */
 606        db = its->vgic_its_base + GITS_TRANSLATER;
 607        if (__vgic_its_check_cache(dist, db, devid, eventid))
 608                goto out;
 609
 610        /* Always reuse the last entry (LRU policy) */
 611        cte = list_last_entry(&dist->lpi_translation_cache,
 612                              typeof(*cte), entry);
 613
 614        /*
 615         * Caching the translation implies having an extra reference
 616         * to the interrupt, so drop the potential reference on what
 617         * was in the cache, and increment it on the new interrupt.
 618         */
 619        if (cte->irq)
 620                __vgic_put_lpi_locked(kvm, cte->irq);
 621
 622        vgic_get_irq_kref(irq);
 623
 624        cte->db         = db;
 625        cte->devid      = devid;
 626        cte->eventid    = eventid;
 627        cte->irq        = irq;
 628
 629        /* Move the new translation to the head of the list */
 630        list_move(&cte->entry, &dist->lpi_translation_cache);
 631
 632out:
 633        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 634}
 635
 636void vgic_its_invalidate_cache(struct kvm *kvm)
 637{
 638        struct vgic_dist *dist = &kvm->arch.vgic;
 639        struct vgic_translation_cache_entry *cte;
 640        unsigned long flags;
 641
 642        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 643
 644        list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
 645                /*
 646                 * If we hit a NULL entry, there is nothing after this
 647                 * point.
 648                 */
 649                if (!cte->irq)
 650                        break;
 651
 652                __vgic_put_lpi_locked(kvm, cte->irq);
 653                cte->irq = NULL;
 654        }
 655
 656        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 657}
 658
 659int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
 660                         u32 devid, u32 eventid, struct vgic_irq **irq)
 661{
 662        struct kvm_vcpu *vcpu;
 663        struct its_ite *ite;
 664
 665        if (!its->enabled)
 666                return -EBUSY;
 667
 668        ite = find_ite(its, devid, eventid);
 669        if (!ite || !its_is_collection_mapped(ite->collection))
 670                return E_ITS_INT_UNMAPPED_INTERRUPT;
 671
 672        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 673        if (!vcpu)
 674                return E_ITS_INT_UNMAPPED_INTERRUPT;
 675
 676        if (!vcpu->arch.vgic_cpu.lpis_enabled)
 677                return -EBUSY;
 678
 679        vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
 680
 681        *irq = ite->irq;
 682        return 0;
 683}
 684
 685struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
 686{
 687        u64 address;
 688        struct kvm_io_device *kvm_io_dev;
 689        struct vgic_io_device *iodev;
 690
 691        if (!vgic_has_its(kvm))
 692                return ERR_PTR(-ENODEV);
 693
 694        if (!(msi->flags & KVM_MSI_VALID_DEVID))
 695                return ERR_PTR(-EINVAL);
 696
 697        address = (u64)msi->address_hi << 32 | msi->address_lo;
 698
 699        kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
 700        if (!kvm_io_dev)
 701                return ERR_PTR(-EINVAL);
 702
 703        if (kvm_io_dev->ops != &kvm_io_gic_ops)
 704                return ERR_PTR(-EINVAL);
 705
 706        iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
 707        if (iodev->iodev_type != IODEV_ITS)
 708                return ERR_PTR(-EINVAL);
 709
 710        return iodev->its;
 711}
 712
 713/*
 714 * Find the target VCPU and the LPI number for a given devid/eventid pair
 715 * and make this IRQ pending, possibly injecting it.
 716 * Must be called with the its_lock mutex held.
 717 * Returns 0 on success, a positive error value for any ITS mapping
 718 * related errors and negative error values for generic errors.
 719 */
 720static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
 721                                u32 devid, u32 eventid)
 722{
 723        struct vgic_irq *irq = NULL;
 724        unsigned long flags;
 725        int err;
 726
 727        err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
 728        if (err)
 729                return err;
 730
 731        if (irq->hw)
 732                return irq_set_irqchip_state(irq->host_irq,
 733                                             IRQCHIP_STATE_PENDING, true);
 734
 735        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 736        irq->pending_latch = true;
 737        vgic_queue_irq_unlock(kvm, irq, flags);
 738
 739        return 0;
 740}
 741
 742int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
 743{
 744        struct vgic_irq *irq;
 745        unsigned long flags;
 746        phys_addr_t db;
 747
 748        db = (u64)msi->address_hi << 32 | msi->address_lo;
 749        irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
 750
 751        if (!irq)
 752                return -1;
 753
 754        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 755        irq->pending_latch = true;
 756        vgic_queue_irq_unlock(kvm, irq, flags);
 757
 758        return 0;
 759}
 760
 761/*
 762 * Queries the KVM IO bus framework to get the ITS pointer from the given
 763 * doorbell address.
 764 * We then call vgic_its_trigger_msi() with the decoded data.
 765 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
 766 */
 767int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
 768{
 769        struct vgic_its *its;
 770        int ret;
 771
 772        if (!vgic_its_inject_cached_translation(kvm, msi))
 773                return 1;
 774
 775        its = vgic_msi_to_its(kvm, msi);
 776        if (IS_ERR(its))
 777                return PTR_ERR(its);
 778
 779        mutex_lock(&its->its_lock);
 780        ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
 781        mutex_unlock(&its->its_lock);
 782
 783        if (ret < 0)
 784                return ret;
 785
 786        /*
 787         * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
 788         * if the guest has blocked the MSI. So we map any LPI mapping
 789         * related error to that.
 790         */
 791        if (ret)
 792                return 0;
 793        else
 794                return 1;
 795}
 796
 797/* Requires the its_lock to be held. */
 798static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
 799{
 800        list_del(&ite->ite_list);
 801
 802        /* This put matches the get in vgic_add_lpi. */
 803        if (ite->irq) {
 804                if (ite->irq->hw)
 805                        WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
 806
 807                vgic_put_irq(kvm, ite->irq);
 808        }
 809
 810        kfree(ite);
 811}
 812
 813static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
 814{
 815        return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
 816}
 817
 818#define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
 819#define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
 820#define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
 821#define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
 822#define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
 823#define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
 824#define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
 825#define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
 826#define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
 827
 828/*
 829 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 830 * Must be called with the its_lock mutex held.
 831 */
 832static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
 833                                       u64 *its_cmd)
 834{
 835        u32 device_id = its_cmd_get_deviceid(its_cmd);
 836        u32 event_id = its_cmd_get_id(its_cmd);
 837        struct its_ite *ite;
 838
 839
 840        ite = find_ite(its, device_id, event_id);
 841        if (ite && ite->collection) {
 842                /*
 843                 * Though the spec talks about removing the pending state, we
 844                 * don't bother here since we clear the ITTE anyway and the
 845                 * pending state is a property of the ITTE struct.
 846                 */
 847                vgic_its_invalidate_cache(kvm);
 848
 849                its_free_ite(kvm, ite);
 850                return 0;
 851        }
 852
 853        return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
 854}
 855
 856/*
 857 * The MOVI command moves an ITTE to a different collection.
 858 * Must be called with the its_lock mutex held.
 859 */
 860static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
 861                                    u64 *its_cmd)
 862{
 863        u32 device_id = its_cmd_get_deviceid(its_cmd);
 864        u32 event_id = its_cmd_get_id(its_cmd);
 865        u32 coll_id = its_cmd_get_collection(its_cmd);
 866        struct kvm_vcpu *vcpu;
 867        struct its_ite *ite;
 868        struct its_collection *collection;
 869
 870        ite = find_ite(its, device_id, event_id);
 871        if (!ite)
 872                return E_ITS_MOVI_UNMAPPED_INTERRUPT;
 873
 874        if (!its_is_collection_mapped(ite->collection))
 875                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 876
 877        collection = find_collection(its, coll_id);
 878        if (!its_is_collection_mapped(collection))
 879                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 880
 881        ite->collection = collection;
 882        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 883
 884        vgic_its_invalidate_cache(kvm);
 885
 886        return update_affinity(ite->irq, vcpu);
 887}
 888
 889/*
 890 * Check whether an ID can be stored into the corresponding guest table.
 891 * For a direct table this is pretty easy, but gets a bit nasty for
 892 * indirect tables. We check whether the resulting guest physical address
 893 * is actually valid (covered by a memslot and guest accessible).
 894 * For this we have to read the respective first level entry.
 895 */
 896static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
 897                              gpa_t *eaddr)
 898{
 899        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
 900        u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
 901        phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
 902        int esz = GITS_BASER_ENTRY_SIZE(baser);
 903        int index, idx;
 904        gfn_t gfn;
 905        bool ret;
 906
 907        switch (type) {
 908        case GITS_BASER_TYPE_DEVICE:
 909                if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
 910                        return false;
 911                break;
 912        case GITS_BASER_TYPE_COLLECTION:
 913                /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
 914                if (id >= BIT_ULL(16))
 915                        return false;
 916                break;
 917        default:
 918                return false;
 919        }
 920
 921        if (!(baser & GITS_BASER_INDIRECT)) {
 922                phys_addr_t addr;
 923
 924                if (id >= (l1_tbl_size / esz))
 925                        return false;
 926
 927                addr = base + id * esz;
 928                gfn = addr >> PAGE_SHIFT;
 929
 930                if (eaddr)
 931                        *eaddr = addr;
 932
 933                goto out;
 934        }
 935
 936        /* calculate and check the index into the 1st level */
 937        index = id / (SZ_64K / esz);
 938        if (index >= (l1_tbl_size / sizeof(u64)))
 939                return false;
 940
 941        /* Each 1st level entry is represented by a 64-bit value. */
 942        if (kvm_read_guest_lock(its->dev->kvm,
 943                           base + index * sizeof(indirect_ptr),
 944                           &indirect_ptr, sizeof(indirect_ptr)))
 945                return false;
 946
 947        indirect_ptr = le64_to_cpu(indirect_ptr);
 948
 949        /* check the valid bit of the first level entry */
 950        if (!(indirect_ptr & BIT_ULL(63)))
 951                return false;
 952
 953        /* Mask the guest physical address and calculate the frame number. */
 954        indirect_ptr &= GENMASK_ULL(51, 16);
 955
 956        /* Find the address of the actual entry */
 957        index = id % (SZ_64K / esz);
 958        indirect_ptr += index * esz;
 959        gfn = indirect_ptr >> PAGE_SHIFT;
 960
 961        if (eaddr)
 962                *eaddr = indirect_ptr;
 963
 964out:
 965        idx = srcu_read_lock(&its->dev->kvm->srcu);
 966        ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
 967        srcu_read_unlock(&its->dev->kvm->srcu, idx);
 968        return ret;
 969}
 970
 971static int vgic_its_alloc_collection(struct vgic_its *its,
 972                                     struct its_collection **colp,
 973                                     u32 coll_id)
 974{
 975        struct its_collection *collection;
 976
 977        if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
 978                return E_ITS_MAPC_COLLECTION_OOR;
 979
 980        collection = kzalloc(sizeof(*collection), GFP_KERNEL);
 981        if (!collection)
 982                return -ENOMEM;
 983
 984        collection->collection_id = coll_id;
 985        collection->target_addr = COLLECTION_NOT_MAPPED;
 986
 987        list_add_tail(&collection->coll_list, &its->collection_list);
 988        *colp = collection;
 989
 990        return 0;
 991}
 992
 993static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
 994{
 995        struct its_collection *collection;
 996        struct its_device *device;
 997        struct its_ite *ite;
 998
 999        /*
1000         * Clearing the mapping for that collection ID removes the
1001         * entry from the list. If there wasn't any before, we can
1002         * go home early.
1003         */
1004        collection = find_collection(its, coll_id);
1005        if (!collection)
1006                return;
1007
1008        for_each_lpi_its(device, ite, its)
1009                if (ite->collection &&
1010                    ite->collection->collection_id == coll_id)
1011                        ite->collection = NULL;
1012
1013        list_del(&collection->coll_list);
1014        kfree(collection);
1015}
1016
1017/* Must be called with its_lock mutex held */
1018static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1019                                          struct its_collection *collection,
1020                                          u32 event_id)
1021{
1022        struct its_ite *ite;
1023
1024        ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1025        if (!ite)
1026                return ERR_PTR(-ENOMEM);
1027
1028        ite->event_id   = event_id;
1029        ite->collection = collection;
1030
1031        list_add_tail(&ite->ite_list, &device->itt_head);
1032        return ite;
1033}
1034
1035/*
1036 * The MAPTI and MAPI commands map LPIs to ITTEs.
1037 * Must be called with its_lock mutex held.
1038 */
1039static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1040                                    u64 *its_cmd)
1041{
1042        u32 device_id = its_cmd_get_deviceid(its_cmd);
1043        u32 event_id = its_cmd_get_id(its_cmd);
1044        u32 coll_id = its_cmd_get_collection(its_cmd);
1045        struct its_ite *ite;
1046        struct kvm_vcpu *vcpu = NULL;
1047        struct its_device *device;
1048        struct its_collection *collection, *new_coll = NULL;
1049        struct vgic_irq *irq;
1050        int lpi_nr;
1051
1052        device = find_its_device(its, device_id);
1053        if (!device)
1054                return E_ITS_MAPTI_UNMAPPED_DEVICE;
1055
1056        if (event_id >= BIT_ULL(device->num_eventid_bits))
1057                return E_ITS_MAPTI_ID_OOR;
1058
1059        if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1060                lpi_nr = its_cmd_get_physical_id(its_cmd);
1061        else
1062                lpi_nr = event_id;
1063        if (lpi_nr < GIC_LPI_OFFSET ||
1064            lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1065                return E_ITS_MAPTI_PHYSICALID_OOR;
1066
1067        /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1068        if (find_ite(its, device_id, event_id))
1069                return 0;
1070
1071        collection = find_collection(its, coll_id);
1072        if (!collection) {
1073                int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1074                if (ret)
1075                        return ret;
1076                new_coll = collection;
1077        }
1078
1079        ite = vgic_its_alloc_ite(device, collection, event_id);
1080        if (IS_ERR(ite)) {
1081                if (new_coll)
1082                        vgic_its_free_collection(its, coll_id);
1083                return PTR_ERR(ite);
1084        }
1085
1086        if (its_is_collection_mapped(collection))
1087                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1088
1089        irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1090        if (IS_ERR(irq)) {
1091                if (new_coll)
1092                        vgic_its_free_collection(its, coll_id);
1093                its_free_ite(kvm, ite);
1094                return PTR_ERR(irq);
1095        }
1096        ite->irq = irq;
1097
1098        return 0;
1099}
1100
1101/* Requires the its_lock to be held. */
1102static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1103{
1104        struct its_ite *ite, *temp;
1105
1106        /*
1107         * The spec says that unmapping a device with still valid
1108         * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1109         * since we cannot leave the memory unreferenced.
1110         */
1111        list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1112                its_free_ite(kvm, ite);
1113
1114        vgic_its_invalidate_cache(kvm);
1115
1116        list_del(&device->dev_list);
1117        kfree(device);
1118}
1119
1120/* its lock must be held */
1121static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1122{
1123        struct its_device *cur, *temp;
1124
1125        list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1126                vgic_its_free_device(kvm, cur);
1127}
1128
1129/* its lock must be held */
1130static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1131{
1132        struct its_collection *cur, *temp;
1133
1134        list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1135                vgic_its_free_collection(its, cur->collection_id);
1136}
1137
1138/* Must be called with its_lock mutex held */
1139static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1140                                                u32 device_id, gpa_t itt_addr,
1141                                                u8 num_eventid_bits)
1142{
1143        struct its_device *device;
1144
1145        device = kzalloc(sizeof(*device), GFP_KERNEL);
1146        if (!device)
1147                return ERR_PTR(-ENOMEM);
1148
1149        device->device_id = device_id;
1150        device->itt_addr = itt_addr;
1151        device->num_eventid_bits = num_eventid_bits;
1152        INIT_LIST_HEAD(&device->itt_head);
1153
1154        list_add_tail(&device->dev_list, &its->device_list);
1155        return device;
1156}
1157
1158/*
1159 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1160 * Must be called with the its_lock mutex held.
1161 */
1162static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1163                                    u64 *its_cmd)
1164{
1165        u32 device_id = its_cmd_get_deviceid(its_cmd);
1166        bool valid = its_cmd_get_validbit(its_cmd);
1167        u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1168        gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1169        struct its_device *device;
1170
1171        if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1172                return E_ITS_MAPD_DEVICE_OOR;
1173
1174        if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1175                return E_ITS_MAPD_ITTSIZE_OOR;
1176
1177        device = find_its_device(its, device_id);
1178
1179        /*
1180         * The spec says that calling MAPD on an already mapped device
1181         * invalidates all cached data for this device. We implement this
1182         * by removing the mapping and re-establishing it.
1183         */
1184        if (device)
1185                vgic_its_free_device(kvm, device);
1186
1187        /*
1188         * The spec does not say whether unmapping a not-mapped device
1189         * is an error, so we are done in any case.
1190         */
1191        if (!valid)
1192                return 0;
1193
1194        device = vgic_its_alloc_device(its, device_id, itt_addr,
1195                                       num_eventid_bits);
1196
1197        return PTR_ERR_OR_ZERO(device);
1198}
1199
1200/*
1201 * The MAPC command maps collection IDs to redistributors.
1202 * Must be called with the its_lock mutex held.
1203 */
1204static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1205                                    u64 *its_cmd)
1206{
1207        u16 coll_id;
1208        u32 target_addr;
1209        struct its_collection *collection;
1210        bool valid;
1211
1212        valid = its_cmd_get_validbit(its_cmd);
1213        coll_id = its_cmd_get_collection(its_cmd);
1214        target_addr = its_cmd_get_target_addr(its_cmd);
1215
1216        if (target_addr >= atomic_read(&kvm->online_vcpus))
1217                return E_ITS_MAPC_PROCNUM_OOR;
1218
1219        if (!valid) {
1220                vgic_its_free_collection(its, coll_id);
1221                vgic_its_invalidate_cache(kvm);
1222        } else {
1223                collection = find_collection(its, coll_id);
1224
1225                if (!collection) {
1226                        int ret;
1227
1228                        ret = vgic_its_alloc_collection(its, &collection,
1229                                                        coll_id);
1230                        if (ret)
1231                                return ret;
1232                        collection->target_addr = target_addr;
1233                } else {
1234                        collection->target_addr = target_addr;
1235                        update_affinity_collection(kvm, its, collection);
1236                }
1237        }
1238
1239        return 0;
1240}
1241
1242/*
1243 * The CLEAR command removes the pending state for a particular LPI.
1244 * Must be called with the its_lock mutex held.
1245 */
1246static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1247                                     u64 *its_cmd)
1248{
1249        u32 device_id = its_cmd_get_deviceid(its_cmd);
1250        u32 event_id = its_cmd_get_id(its_cmd);
1251        struct its_ite *ite;
1252
1253
1254        ite = find_ite(its, device_id, event_id);
1255        if (!ite)
1256                return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1257
1258        ite->irq->pending_latch = false;
1259
1260        if (ite->irq->hw)
1261                return irq_set_irqchip_state(ite->irq->host_irq,
1262                                             IRQCHIP_STATE_PENDING, false);
1263
1264        return 0;
1265}
1266
1267/*
1268 * The INV command syncs the configuration bits from the memory table.
1269 * Must be called with the its_lock mutex held.
1270 */
1271static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1272                                   u64 *its_cmd)
1273{
1274        u32 device_id = its_cmd_get_deviceid(its_cmd);
1275        u32 event_id = its_cmd_get_id(its_cmd);
1276        struct its_ite *ite;
1277
1278
1279        ite = find_ite(its, device_id, event_id);
1280        if (!ite)
1281                return E_ITS_INV_UNMAPPED_INTERRUPT;
1282
1283        return update_lpi_config(kvm, ite->irq, NULL, true);
1284}
1285
1286/*
1287 * The INVALL command requests flushing of all IRQ data in this collection.
1288 * Find the VCPU mapped to that collection, then iterate over the VM's list
1289 * of mapped LPIs and update the configuration for each IRQ which targets
1290 * the specified vcpu. The configuration will be read from the in-memory
1291 * configuration table.
1292 * Must be called with the its_lock mutex held.
1293 */
1294static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1295                                      u64 *its_cmd)
1296{
1297        u32 coll_id = its_cmd_get_collection(its_cmd);
1298        struct its_collection *collection;
1299        struct kvm_vcpu *vcpu;
1300        struct vgic_irq *irq;
1301        u32 *intids;
1302        int irq_count, i;
1303
1304        collection = find_collection(its, coll_id);
1305        if (!its_is_collection_mapped(collection))
1306                return E_ITS_INVALL_UNMAPPED_COLLECTION;
1307
1308        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1309
1310        irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1311        if (irq_count < 0)
1312                return irq_count;
1313
1314        for (i = 0; i < irq_count; i++) {
1315                irq = vgic_get_irq(kvm, NULL, intids[i]);
1316                if (!irq)
1317                        continue;
1318                update_lpi_config(kvm, irq, vcpu, false);
1319                vgic_put_irq(kvm, irq);
1320        }
1321
1322        kfree(intids);
1323
1324        if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1325                its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1326
1327        return 0;
1328}
1329
1330/*
1331 * The MOVALL command moves the pending state of all IRQs targeting one
1332 * redistributor to another. We don't hold the pending state in the VCPUs,
1333 * but in the IRQs instead, so there is really not much to do for us here.
1334 * However the spec says that no IRQ must target the old redistributor
1335 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1336 * This command affects all LPIs in the system that target that redistributor.
1337 */
1338static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1339                                      u64 *its_cmd)
1340{
1341        u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1342        u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1343        struct kvm_vcpu *vcpu1, *vcpu2;
1344        struct vgic_irq *irq;
1345        u32 *intids;
1346        int irq_count, i;
1347
1348        if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1349            target2_addr >= atomic_read(&kvm->online_vcpus))
1350                return E_ITS_MOVALL_PROCNUM_OOR;
1351
1352        if (target1_addr == target2_addr)
1353                return 0;
1354
1355        vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1356        vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1357
1358        irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1359        if (irq_count < 0)
1360                return irq_count;
1361
1362        for (i = 0; i < irq_count; i++) {
1363                irq = vgic_get_irq(kvm, NULL, intids[i]);
1364
1365                update_affinity(irq, vcpu2);
1366
1367                vgic_put_irq(kvm, irq);
1368        }
1369
1370        vgic_its_invalidate_cache(kvm);
1371
1372        kfree(intids);
1373        return 0;
1374}
1375
1376/*
1377 * The INT command injects the LPI associated with that DevID/EvID pair.
1378 * Must be called with the its_lock mutex held.
1379 */
1380static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1381                                   u64 *its_cmd)
1382{
1383        u32 msi_data = its_cmd_get_id(its_cmd);
1384        u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1385
1386        return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1387}
1388
1389/*
1390 * This function is called with the its_cmd lock held, but the ITS data
1391 * structure lock dropped.
1392 */
1393static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1394                                   u64 *its_cmd)
1395{
1396        int ret = -ENODEV;
1397
1398        mutex_lock(&its->its_lock);
1399        switch (its_cmd_get_command(its_cmd)) {
1400        case GITS_CMD_MAPD:
1401                ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1402                break;
1403        case GITS_CMD_MAPC:
1404                ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1405                break;
1406        case GITS_CMD_MAPI:
1407                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1408                break;
1409        case GITS_CMD_MAPTI:
1410                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1411                break;
1412        case GITS_CMD_MOVI:
1413                ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1414                break;
1415        case GITS_CMD_DISCARD:
1416                ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1417                break;
1418        case GITS_CMD_CLEAR:
1419                ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1420                break;
1421        case GITS_CMD_MOVALL:
1422                ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1423                break;
1424        case GITS_CMD_INT:
1425                ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1426                break;
1427        case GITS_CMD_INV:
1428                ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1429                break;
1430        case GITS_CMD_INVALL:
1431                ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1432                break;
1433        case GITS_CMD_SYNC:
1434                /* we ignore this command: we are in sync all of the time */
1435                ret = 0;
1436                break;
1437        }
1438        mutex_unlock(&its->its_lock);
1439
1440        return ret;
1441}
1442
1443static u64 vgic_sanitise_its_baser(u64 reg)
1444{
1445        reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1446                                  GITS_BASER_SHAREABILITY_SHIFT,
1447                                  vgic_sanitise_shareability);
1448        reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1449                                  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1450                                  vgic_sanitise_inner_cacheability);
1451        reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1452                                  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1453                                  vgic_sanitise_outer_cacheability);
1454
1455        /* We support only one (ITS) page size: 64K */
1456        reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1457
1458        return reg;
1459}
1460
1461static u64 vgic_sanitise_its_cbaser(u64 reg)
1462{
1463        reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1464                                  GITS_CBASER_SHAREABILITY_SHIFT,
1465                                  vgic_sanitise_shareability);
1466        reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1467                                  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1468                                  vgic_sanitise_inner_cacheability);
1469        reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1470                                  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1471                                  vgic_sanitise_outer_cacheability);
1472
1473        /* Sanitise the physical address to be 64k aligned. */
1474        reg &= ~GENMASK_ULL(15, 12);
1475
1476        return reg;
1477}
1478
1479static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1480                                               struct vgic_its *its,
1481                                               gpa_t addr, unsigned int len)
1482{
1483        return extract_bytes(its->cbaser, addr & 7, len);
1484}
1485
1486static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1487                                       gpa_t addr, unsigned int len,
1488                                       unsigned long val)
1489{
1490        /* When GITS_CTLR.Enable is 1, this register is RO. */
1491        if (its->enabled)
1492                return;
1493
1494        mutex_lock(&its->cmd_lock);
1495        its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1496        its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1497        its->creadr = 0;
1498        /*
1499         * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1500         * it to CREADR to make sure we start with an empty command buffer.
1501         */
1502        its->cwriter = its->creadr;
1503        mutex_unlock(&its->cmd_lock);
1504}
1505
1506#define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1507#define ITS_CMD_SIZE                    32
1508#define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1509
1510/* Must be called with the cmd_lock held. */
1511static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1512{
1513        gpa_t cbaser;
1514        u64 cmd_buf[4];
1515
1516        /* Commands are only processed when the ITS is enabled. */
1517        if (!its->enabled)
1518                return;
1519
1520        cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1521
1522        while (its->cwriter != its->creadr) {
1523                int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1524                                              cmd_buf, ITS_CMD_SIZE);
1525                /*
1526                 * If kvm_read_guest() fails, this could be due to the guest
1527                 * programming a bogus value in CBASER or something else going
1528                 * wrong from which we cannot easily recover.
1529                 * According to section 6.3.2 in the GICv3 spec we can just
1530                 * ignore that command then.
1531                 */
1532                if (!ret)
1533                        vgic_its_handle_command(kvm, its, cmd_buf);
1534
1535                its->creadr += ITS_CMD_SIZE;
1536                if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1537                        its->creadr = 0;
1538        }
1539}
1540
1541/*
1542 * By writing to CWRITER the guest announces new commands to be processed.
1543 * To avoid any races in the first place, we take the its_cmd lock, which
1544 * protects our ring buffer variables, so that there is only one user
1545 * per ITS handling commands at a given time.
1546 */
1547static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1548                                        gpa_t addr, unsigned int len,
1549                                        unsigned long val)
1550{
1551        u64 reg;
1552
1553        if (!its)
1554                return;
1555
1556        mutex_lock(&its->cmd_lock);
1557
1558        reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1559        reg = ITS_CMD_OFFSET(reg);
1560        if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1561                mutex_unlock(&its->cmd_lock);
1562                return;
1563        }
1564        its->cwriter = reg;
1565
1566        vgic_its_process_commands(kvm, its);
1567
1568        mutex_unlock(&its->cmd_lock);
1569}
1570
1571static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1572                                                struct vgic_its *its,
1573                                                gpa_t addr, unsigned int len)
1574{
1575        return extract_bytes(its->cwriter, addr & 0x7, len);
1576}
1577
1578static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1579                                               struct vgic_its *its,
1580                                               gpa_t addr, unsigned int len)
1581{
1582        return extract_bytes(its->creadr, addr & 0x7, len);
1583}
1584
1585static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1586                                              struct vgic_its *its,
1587                                              gpa_t addr, unsigned int len,
1588                                              unsigned long val)
1589{
1590        u32 cmd_offset;
1591        int ret = 0;
1592
1593        mutex_lock(&its->cmd_lock);
1594
1595        if (its->enabled) {
1596                ret = -EBUSY;
1597                goto out;
1598        }
1599
1600        cmd_offset = ITS_CMD_OFFSET(val);
1601        if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1602                ret = -EINVAL;
1603                goto out;
1604        }
1605
1606        its->creadr = cmd_offset;
1607out:
1608        mutex_unlock(&its->cmd_lock);
1609        return ret;
1610}
1611
1612#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1613static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1614                                              struct vgic_its *its,
1615                                              gpa_t addr, unsigned int len)
1616{
1617        u64 reg;
1618
1619        switch (BASER_INDEX(addr)) {
1620        case 0:
1621                reg = its->baser_device_table;
1622                break;
1623        case 1:
1624                reg = its->baser_coll_table;
1625                break;
1626        default:
1627                reg = 0;
1628                break;
1629        }
1630
1631        return extract_bytes(reg, addr & 7, len);
1632}
1633
1634#define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1635static void vgic_mmio_write_its_baser(struct kvm *kvm,
1636                                      struct vgic_its *its,
1637                                      gpa_t addr, unsigned int len,
1638                                      unsigned long val)
1639{
1640        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1641        u64 entry_size, table_type;
1642        u64 reg, *regptr, clearbits = 0;
1643
1644        /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1645        if (its->enabled)
1646                return;
1647
1648        switch (BASER_INDEX(addr)) {
1649        case 0:
1650                regptr = &its->baser_device_table;
1651                entry_size = abi->dte_esz;
1652                table_type = GITS_BASER_TYPE_DEVICE;
1653                break;
1654        case 1:
1655                regptr = &its->baser_coll_table;
1656                entry_size = abi->cte_esz;
1657                table_type = GITS_BASER_TYPE_COLLECTION;
1658                clearbits = GITS_BASER_INDIRECT;
1659                break;
1660        default:
1661                return;
1662        }
1663
1664        reg = update_64bit_reg(*regptr, addr & 7, len, val);
1665        reg &= ~GITS_BASER_RO_MASK;
1666        reg &= ~clearbits;
1667
1668        reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1669        reg |= table_type << GITS_BASER_TYPE_SHIFT;
1670        reg = vgic_sanitise_its_baser(reg);
1671
1672        *regptr = reg;
1673
1674        if (!(reg & GITS_BASER_VALID)) {
1675                /* Take the its_lock to prevent a race with a save/restore */
1676                mutex_lock(&its->its_lock);
1677                switch (table_type) {
1678                case GITS_BASER_TYPE_DEVICE:
1679                        vgic_its_free_device_list(kvm, its);
1680                        break;
1681                case GITS_BASER_TYPE_COLLECTION:
1682                        vgic_its_free_collection_list(kvm, its);
1683                        break;
1684                }
1685                mutex_unlock(&its->its_lock);
1686        }
1687}
1688
1689static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1690                                             struct vgic_its *its,
1691                                             gpa_t addr, unsigned int len)
1692{
1693        u32 reg = 0;
1694
1695        mutex_lock(&its->cmd_lock);
1696        if (its->creadr == its->cwriter)
1697                reg |= GITS_CTLR_QUIESCENT;
1698        if (its->enabled)
1699                reg |= GITS_CTLR_ENABLE;
1700        mutex_unlock(&its->cmd_lock);
1701
1702        return reg;
1703}
1704
1705static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1706                                     gpa_t addr, unsigned int len,
1707                                     unsigned long val)
1708{
1709        mutex_lock(&its->cmd_lock);
1710
1711        /*
1712         * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1713         * device/collection BASER are invalid
1714         */
1715        if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1716                (!(its->baser_device_table & GITS_BASER_VALID) ||
1717                 !(its->baser_coll_table & GITS_BASER_VALID) ||
1718                 !(its->cbaser & GITS_CBASER_VALID)))
1719                goto out;
1720
1721        its->enabled = !!(val & GITS_CTLR_ENABLE);
1722        if (!its->enabled)
1723                vgic_its_invalidate_cache(kvm);
1724
1725        /*
1726         * Try to process any pending commands. This function bails out early
1727         * if the ITS is disabled or no commands have been queued.
1728         */
1729        vgic_its_process_commands(kvm, its);
1730
1731out:
1732        mutex_unlock(&its->cmd_lock);
1733}
1734
1735#define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1736{                                                               \
1737        .reg_offset = off,                                      \
1738        .len = length,                                          \
1739        .access_flags = acc,                                    \
1740        .its_read = rd,                                         \
1741        .its_write = wr,                                        \
1742}
1743
1744#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1745{                                                               \
1746        .reg_offset = off,                                      \
1747        .len = length,                                          \
1748        .access_flags = acc,                                    \
1749        .its_read = rd,                                         \
1750        .its_write = wr,                                        \
1751        .uaccess_its_write = uwr,                               \
1752}
1753
1754static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1755                              gpa_t addr, unsigned int len, unsigned long val)
1756{
1757        /* Ignore */
1758}
1759
1760static struct vgic_register_region its_registers[] = {
1761        REGISTER_ITS_DESC(GITS_CTLR,
1762                vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1763                VGIC_ACCESS_32bit),
1764        REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1765                vgic_mmio_read_its_iidr, its_mmio_write_wi,
1766                vgic_mmio_uaccess_write_its_iidr, 4,
1767                VGIC_ACCESS_32bit),
1768        REGISTER_ITS_DESC(GITS_TYPER,
1769                vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1770                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1771        REGISTER_ITS_DESC(GITS_CBASER,
1772                vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1773                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1774        REGISTER_ITS_DESC(GITS_CWRITER,
1775                vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1776                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1777        REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1778                vgic_mmio_read_its_creadr, its_mmio_write_wi,
1779                vgic_mmio_uaccess_write_its_creadr, 8,
1780                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1781        REGISTER_ITS_DESC(GITS_BASER,
1782                vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1783                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1784        REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1785                vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1786                VGIC_ACCESS_32bit),
1787};
1788
1789/* This is called on setting the LPI enable bit in the redistributor. */
1790void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1791{
1792        if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1793                its_sync_lpi_pending_table(vcpu);
1794}
1795
1796static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1797                                   u64 addr)
1798{
1799        struct vgic_io_device *iodev = &its->iodev;
1800        int ret;
1801
1802        mutex_lock(&kvm->slots_lock);
1803        if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1804                ret = -EBUSY;
1805                goto out;
1806        }
1807
1808        its->vgic_its_base = addr;
1809        iodev->regions = its_registers;
1810        iodev->nr_regions = ARRAY_SIZE(its_registers);
1811        kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1812
1813        iodev->base_addr = its->vgic_its_base;
1814        iodev->iodev_type = IODEV_ITS;
1815        iodev->its = its;
1816        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1817                                      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1818out:
1819        mutex_unlock(&kvm->slots_lock);
1820
1821        return ret;
1822}
1823
1824/* Default is 16 cached LPIs per vcpu */
1825#define LPI_DEFAULT_PCPU_CACHE_SIZE     16
1826
1827void vgic_lpi_translation_cache_init(struct kvm *kvm)
1828{
1829        struct vgic_dist *dist = &kvm->arch.vgic;
1830        unsigned int sz;
1831        int i;
1832
1833        if (!list_empty(&dist->lpi_translation_cache))
1834                return;
1835
1836        sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1837
1838        for (i = 0; i < sz; i++) {
1839                struct vgic_translation_cache_entry *cte;
1840
1841                /* An allocation failure is not fatal */
1842                cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1843                if (WARN_ON(!cte))
1844                        break;
1845
1846                INIT_LIST_HEAD(&cte->entry);
1847                list_add(&cte->entry, &dist->lpi_translation_cache);
1848        }
1849}
1850
1851void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1852{
1853        struct vgic_dist *dist = &kvm->arch.vgic;
1854        struct vgic_translation_cache_entry *cte, *tmp;
1855
1856        vgic_its_invalidate_cache(kvm);
1857
1858        list_for_each_entry_safe(cte, tmp,
1859                                 &dist->lpi_translation_cache, entry) {
1860                list_del(&cte->entry);
1861                kfree(cte);
1862        }
1863}
1864
1865#define INITIAL_BASER_VALUE                                               \
1866        (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1867         GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1868         GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1869         GITS_BASER_PAGE_SIZE_64K)
1870
1871#define INITIAL_PROPBASER_VALUE                                           \
1872        (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1873         GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1874         GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1875
1876static int vgic_its_create(struct kvm_device *dev, u32 type)
1877{
1878        struct vgic_its *its;
1879
1880        if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1881                return -ENODEV;
1882
1883        its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1884        if (!its)
1885                return -ENOMEM;
1886
1887        if (vgic_initialized(dev->kvm)) {
1888                int ret = vgic_v4_init(dev->kvm);
1889                if (ret < 0) {
1890                        kfree(its);
1891                        return ret;
1892                }
1893
1894                vgic_lpi_translation_cache_init(dev->kvm);
1895        }
1896
1897        mutex_init(&its->its_lock);
1898        mutex_init(&its->cmd_lock);
1899
1900        its->vgic_its_base = VGIC_ADDR_UNDEF;
1901
1902        INIT_LIST_HEAD(&its->device_list);
1903        INIT_LIST_HEAD(&its->collection_list);
1904
1905        dev->kvm->arch.vgic.msis_require_devid = true;
1906        dev->kvm->arch.vgic.has_its = true;
1907        its->enabled = false;
1908        its->dev = dev;
1909
1910        its->baser_device_table = INITIAL_BASER_VALUE                   |
1911                ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1912        its->baser_coll_table = INITIAL_BASER_VALUE |
1913                ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1914        dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1915
1916        dev->private = its;
1917
1918        return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1919}
1920
1921static void vgic_its_destroy(struct kvm_device *kvm_dev)
1922{
1923        struct kvm *kvm = kvm_dev->kvm;
1924        struct vgic_its *its = kvm_dev->private;
1925
1926        mutex_lock(&its->its_lock);
1927
1928        vgic_its_free_device_list(kvm, its);
1929        vgic_its_free_collection_list(kvm, its);
1930
1931        mutex_unlock(&its->its_lock);
1932        kfree(its);
1933        kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1934}
1935
1936static int vgic_its_has_attr_regs(struct kvm_device *dev,
1937                                  struct kvm_device_attr *attr)
1938{
1939        const struct vgic_register_region *region;
1940        gpa_t offset = attr->attr;
1941        int align;
1942
1943        align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1944
1945        if (offset & align)
1946                return -EINVAL;
1947
1948        region = vgic_find_mmio_region(its_registers,
1949                                       ARRAY_SIZE(its_registers),
1950                                       offset);
1951        if (!region)
1952                return -ENXIO;
1953
1954        return 0;
1955}
1956
1957static int vgic_its_attr_regs_access(struct kvm_device *dev,
1958                                     struct kvm_device_attr *attr,
1959                                     u64 *reg, bool is_write)
1960{
1961        const struct vgic_register_region *region;
1962        struct vgic_its *its;
1963        gpa_t addr, offset;
1964        unsigned int len;
1965        int align, ret = 0;
1966
1967        its = dev->private;
1968        offset = attr->attr;
1969
1970        /*
1971         * Although the spec supports upper/lower 32-bit accesses to
1972         * 64-bit ITS registers, the userspace ABI requires 64-bit
1973         * accesses to all 64-bit wide registers. We therefore only
1974         * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1975         * registers
1976         */
1977        if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1978                align = 0x3;
1979        else
1980                align = 0x7;
1981
1982        if (offset & align)
1983                return -EINVAL;
1984
1985        mutex_lock(&dev->kvm->lock);
1986
1987        if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1988                ret = -ENXIO;
1989                goto out;
1990        }
1991
1992        region = vgic_find_mmio_region(its_registers,
1993                                       ARRAY_SIZE(its_registers),
1994                                       offset);
1995        if (!region) {
1996                ret = -ENXIO;
1997                goto out;
1998        }
1999
2000        if (!lock_all_vcpus(dev->kvm)) {
2001                ret = -EBUSY;
2002                goto out;
2003        }
2004
2005        addr = its->vgic_its_base + offset;
2006
2007        len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2008
2009        if (is_write) {
2010                if (region->uaccess_its_write)
2011                        ret = region->uaccess_its_write(dev->kvm, its, addr,
2012                                                        len, *reg);
2013                else
2014                        region->its_write(dev->kvm, its, addr, len, *reg);
2015        } else {
2016                *reg = region->its_read(dev->kvm, its, addr, len);
2017        }
2018        unlock_all_vcpus(dev->kvm);
2019out:
2020        mutex_unlock(&dev->kvm->lock);
2021        return ret;
2022}
2023
2024static u32 compute_next_devid_offset(struct list_head *h,
2025                                     struct its_device *dev)
2026{
2027        struct its_device *next;
2028        u32 next_offset;
2029
2030        if (list_is_last(&dev->dev_list, h))
2031                return 0;
2032        next = list_next_entry(dev, dev_list);
2033        next_offset = next->device_id - dev->device_id;
2034
2035        return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2036}
2037
2038static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2039{
2040        struct its_ite *next;
2041        u32 next_offset;
2042
2043        if (list_is_last(&ite->ite_list, h))
2044                return 0;
2045        next = list_next_entry(ite, ite_list);
2046        next_offset = next->event_id - ite->event_id;
2047
2048        return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2049}
2050
2051/**
2052 * entry_fn_t - Callback called on a table entry restore path
2053 * @its: its handle
2054 * @id: id of the entry
2055 * @entry: pointer to the entry
2056 * @opaque: pointer to an opaque data
2057 *
2058 * Return: < 0 on error, 0 if last element was identified, id offset to next
2059 * element otherwise
2060 */
2061typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2062                          void *opaque);
2063
2064/**
2065 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2066 * to each entry
2067 *
2068 * @its: its handle
2069 * @base: base gpa of the table
2070 * @size: size of the table in bytes
2071 * @esz: entry size in bytes
2072 * @start_id: the ID of the first entry in the table
2073 * (non zero for 2d level tables)
2074 * @fn: function to apply on each entry
2075 *
2076 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2077 * (the last element may not be found on second level tables)
2078 */
2079static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2080                          int start_id, entry_fn_t fn, void *opaque)
2081{
2082        struct kvm *kvm = its->dev->kvm;
2083        unsigned long len = size;
2084        int id = start_id;
2085        gpa_t gpa = base;
2086        char entry[ESZ_MAX];
2087        int ret;
2088
2089        memset(entry, 0, esz);
2090
2091        while (len > 0) {
2092                int next_offset;
2093                size_t byte_offset;
2094
2095                ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2096                if (ret)
2097                        return ret;
2098
2099                next_offset = fn(its, id, entry, opaque);
2100                if (next_offset <= 0)
2101                        return next_offset;
2102
2103                byte_offset = next_offset * esz;
2104                id += next_offset;
2105                gpa += byte_offset;
2106                len -= byte_offset;
2107        }
2108        return 1;
2109}
2110
2111/**
2112 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2113 */
2114static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2115                              struct its_ite *ite, gpa_t gpa, int ite_esz)
2116{
2117        struct kvm *kvm = its->dev->kvm;
2118        u32 next_offset;
2119        u64 val;
2120
2121        next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2122        val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2123               ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2124                ite->collection->collection_id;
2125        val = cpu_to_le64(val);
2126        return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2127}
2128
2129/**
2130 * vgic_its_restore_ite - restore an interrupt translation entry
2131 * @event_id: id used for indexing
2132 * @ptr: pointer to the ITE entry
2133 * @opaque: pointer to the its_device
2134 */
2135static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2136                                void *ptr, void *opaque)
2137{
2138        struct its_device *dev = (struct its_device *)opaque;
2139        struct its_collection *collection;
2140        struct kvm *kvm = its->dev->kvm;
2141        struct kvm_vcpu *vcpu = NULL;
2142        u64 val;
2143        u64 *p = (u64 *)ptr;
2144        struct vgic_irq *irq;
2145        u32 coll_id, lpi_id;
2146        struct its_ite *ite;
2147        u32 offset;
2148
2149        val = *p;
2150
2151        val = le64_to_cpu(val);
2152
2153        coll_id = val & KVM_ITS_ITE_ICID_MASK;
2154        lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2155
2156        if (!lpi_id)
2157                return 1; /* invalid entry, no choice but to scan next entry */
2158
2159        if (lpi_id < VGIC_MIN_LPI)
2160                return -EINVAL;
2161
2162        offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2163        if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2164                return -EINVAL;
2165
2166        collection = find_collection(its, coll_id);
2167        if (!collection)
2168                return -EINVAL;
2169
2170        ite = vgic_its_alloc_ite(dev, collection, event_id);
2171        if (IS_ERR(ite))
2172                return PTR_ERR(ite);
2173
2174        if (its_is_collection_mapped(collection))
2175                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2176
2177        irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2178        if (IS_ERR(irq))
2179                return PTR_ERR(irq);
2180        ite->irq = irq;
2181
2182        return offset;
2183}
2184
2185static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2186                            struct list_head *b)
2187{
2188        struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2189        struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2190
2191        if (itea->event_id < iteb->event_id)
2192                return -1;
2193        else
2194                return 1;
2195}
2196
2197static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2198{
2199        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2200        gpa_t base = device->itt_addr;
2201        struct its_ite *ite;
2202        int ret;
2203        int ite_esz = abi->ite_esz;
2204
2205        list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2206
2207        list_for_each_entry(ite, &device->itt_head, ite_list) {
2208                gpa_t gpa = base + ite->event_id * ite_esz;
2209
2210                /*
2211                 * If an LPI carries the HW bit, this means that this
2212                 * interrupt is controlled by GICv4, and we do not
2213                 * have direct access to that state. Let's simply fail
2214                 * the save operation...
2215                 */
2216                if (ite->irq->hw)
2217                        return -EACCES;
2218
2219                ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2220                if (ret)
2221                        return ret;
2222        }
2223        return 0;
2224}
2225
2226/**
2227 * vgic_its_restore_itt - restore the ITT of a device
2228 *
2229 * @its: its handle
2230 * @dev: device handle
2231 *
2232 * Return 0 on success, < 0 on error
2233 */
2234static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2235{
2236        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2237        gpa_t base = dev->itt_addr;
2238        int ret;
2239        int ite_esz = abi->ite_esz;
2240        size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2241
2242        ret = scan_its_table(its, base, max_size, ite_esz, 0,
2243                             vgic_its_restore_ite, dev);
2244
2245        /* scan_its_table returns +1 if all ITEs are invalid */
2246        if (ret > 0)
2247                ret = 0;
2248
2249        return ret;
2250}
2251
2252/**
2253 * vgic_its_save_dte - Save a device table entry at a given GPA
2254 *
2255 * @its: ITS handle
2256 * @dev: ITS device
2257 * @ptr: GPA
2258 */
2259static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2260                             gpa_t ptr, int dte_esz)
2261{
2262        struct kvm *kvm = its->dev->kvm;
2263        u64 val, itt_addr_field;
2264        u32 next_offset;
2265
2266        itt_addr_field = dev->itt_addr >> 8;
2267        next_offset = compute_next_devid_offset(&its->device_list, dev);
2268        val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2269               ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2270               (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2271                (dev->num_eventid_bits - 1));
2272        val = cpu_to_le64(val);
2273        return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2274}
2275
2276/**
2277 * vgic_its_restore_dte - restore a device table entry
2278 *
2279 * @its: its handle
2280 * @id: device id the DTE corresponds to
2281 * @ptr: kernel VA where the 8 byte DTE is located
2282 * @opaque: unused
2283 *
2284 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2285 * next dte otherwise
2286 */
2287static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2288                                void *ptr, void *opaque)
2289{
2290        struct its_device *dev;
2291        gpa_t itt_addr;
2292        u8 num_eventid_bits;
2293        u64 entry = *(u64 *)ptr;
2294        bool valid;
2295        u32 offset;
2296        int ret;
2297
2298        entry = le64_to_cpu(entry);
2299
2300        valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2301        num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2302        itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2303                        >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2304
2305        if (!valid)
2306                return 1;
2307
2308        /* dte entry is valid */
2309        offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2310
2311        dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2312        if (IS_ERR(dev))
2313                return PTR_ERR(dev);
2314
2315        ret = vgic_its_restore_itt(its, dev);
2316        if (ret) {
2317                vgic_its_free_device(its->dev->kvm, dev);
2318                return ret;
2319        }
2320
2321        return offset;
2322}
2323
2324static int vgic_its_device_cmp(void *priv, struct list_head *a,
2325                               struct list_head *b)
2326{
2327        struct its_device *deva = container_of(a, struct its_device, dev_list);
2328        struct its_device *devb = container_of(b, struct its_device, dev_list);
2329
2330        if (deva->device_id < devb->device_id)
2331                return -1;
2332        else
2333                return 1;
2334}
2335
2336/**
2337 * vgic_its_save_device_tables - Save the device table and all ITT
2338 * into guest RAM
2339 *
2340 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2341 * returns the GPA of the device entry
2342 */
2343static int vgic_its_save_device_tables(struct vgic_its *its)
2344{
2345        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2346        u64 baser = its->baser_device_table;
2347        struct its_device *dev;
2348        int dte_esz = abi->dte_esz;
2349
2350        if (!(baser & GITS_BASER_VALID))
2351                return 0;
2352
2353        list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2354
2355        list_for_each_entry(dev, &its->device_list, dev_list) {
2356                int ret;
2357                gpa_t eaddr;
2358
2359                if (!vgic_its_check_id(its, baser,
2360                                       dev->device_id, &eaddr))
2361                        return -EINVAL;
2362
2363                ret = vgic_its_save_itt(its, dev);
2364                if (ret)
2365                        return ret;
2366
2367                ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2368                if (ret)
2369                        return ret;
2370        }
2371        return 0;
2372}
2373
2374/**
2375 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2376 *
2377 * @its: its handle
2378 * @id: index of the entry in the L1 table
2379 * @addr: kernel VA
2380 * @opaque: unused
2381 *
2382 * L1 table entries are scanned by steps of 1 entry
2383 * Return < 0 if error, 0 if last dte was found when scanning the L2
2384 * table, +1 otherwise (meaning next L1 entry must be scanned)
2385 */
2386static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2387                         void *opaque)
2388{
2389        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2390        int l2_start_id = id * (SZ_64K / abi->dte_esz);
2391        u64 entry = *(u64 *)addr;
2392        int dte_esz = abi->dte_esz;
2393        gpa_t gpa;
2394        int ret;
2395
2396        entry = le64_to_cpu(entry);
2397
2398        if (!(entry & KVM_ITS_L1E_VALID_MASK))
2399                return 1;
2400
2401        gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2402
2403        ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2404                             l2_start_id, vgic_its_restore_dte, NULL);
2405
2406        return ret;
2407}
2408
2409/**
2410 * vgic_its_restore_device_tables - Restore the device table and all ITT
2411 * from guest RAM to internal data structs
2412 */
2413static int vgic_its_restore_device_tables(struct vgic_its *its)
2414{
2415        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2416        u64 baser = its->baser_device_table;
2417        int l1_esz, ret;
2418        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2419        gpa_t l1_gpa;
2420
2421        if (!(baser & GITS_BASER_VALID))
2422                return 0;
2423
2424        l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2425
2426        if (baser & GITS_BASER_INDIRECT) {
2427                l1_esz = GITS_LVL1_ENTRY_SIZE;
2428                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2429                                     handle_l1_dte, NULL);
2430        } else {
2431                l1_esz = abi->dte_esz;
2432                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2433                                     vgic_its_restore_dte, NULL);
2434        }
2435
2436        /* scan_its_table returns +1 if all entries are invalid */
2437        if (ret > 0)
2438                ret = 0;
2439
2440        return ret;
2441}
2442
2443static int vgic_its_save_cte(struct vgic_its *its,
2444                             struct its_collection *collection,
2445                             gpa_t gpa, int esz)
2446{
2447        u64 val;
2448
2449        val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2450               ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2451               collection->collection_id);
2452        val = cpu_to_le64(val);
2453        return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2454}
2455
2456static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2457{
2458        struct its_collection *collection;
2459        struct kvm *kvm = its->dev->kvm;
2460        u32 target_addr, coll_id;
2461        u64 val;
2462        int ret;
2463
2464        BUG_ON(esz > sizeof(val));
2465        ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2466        if (ret)
2467                return ret;
2468        val = le64_to_cpu(val);
2469        if (!(val & KVM_ITS_CTE_VALID_MASK))
2470                return 0;
2471
2472        target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2473        coll_id = val & KVM_ITS_CTE_ICID_MASK;
2474
2475        if (target_addr >= atomic_read(&kvm->online_vcpus))
2476                return -EINVAL;
2477
2478        collection = find_collection(its, coll_id);
2479        if (collection)
2480                return -EEXIST;
2481        ret = vgic_its_alloc_collection(its, &collection, coll_id);
2482        if (ret)
2483                return ret;
2484        collection->target_addr = target_addr;
2485        return 1;
2486}
2487
2488/**
2489 * vgic_its_save_collection_table - Save the collection table into
2490 * guest RAM
2491 */
2492static int vgic_its_save_collection_table(struct vgic_its *its)
2493{
2494        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2495        u64 baser = its->baser_coll_table;
2496        gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2497        struct its_collection *collection;
2498        u64 val;
2499        size_t max_size, filled = 0;
2500        int ret, cte_esz = abi->cte_esz;
2501
2502        if (!(baser & GITS_BASER_VALID))
2503                return 0;
2504
2505        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2506
2507        list_for_each_entry(collection, &its->collection_list, coll_list) {
2508                ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2509                if (ret)
2510                        return ret;
2511                gpa += cte_esz;
2512                filled += cte_esz;
2513        }
2514
2515        if (filled == max_size)
2516                return 0;
2517
2518        /*
2519         * table is not fully filled, add a last dummy element
2520         * with valid bit unset
2521         */
2522        val = 0;
2523        BUG_ON(cte_esz > sizeof(val));
2524        ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2525        return ret;
2526}
2527
2528/**
2529 * vgic_its_restore_collection_table - reads the collection table
2530 * in guest memory and restores the ITS internal state. Requires the
2531 * BASER registers to be restored before.
2532 */
2533static int vgic_its_restore_collection_table(struct vgic_its *its)
2534{
2535        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2536        u64 baser = its->baser_coll_table;
2537        int cte_esz = abi->cte_esz;
2538        size_t max_size, read = 0;
2539        gpa_t gpa;
2540        int ret;
2541
2542        if (!(baser & GITS_BASER_VALID))
2543                return 0;
2544
2545        gpa = GITS_BASER_ADDR_48_to_52(baser);
2546
2547        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2548
2549        while (read < max_size) {
2550                ret = vgic_its_restore_cte(its, gpa, cte_esz);
2551                if (ret <= 0)
2552                        break;
2553                gpa += cte_esz;
2554                read += cte_esz;
2555        }
2556
2557        if (ret > 0)
2558                return 0;
2559
2560        return ret;
2561}
2562
2563/**
2564 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2565 * according to v0 ABI
2566 */
2567static int vgic_its_save_tables_v0(struct vgic_its *its)
2568{
2569        int ret;
2570
2571        ret = vgic_its_save_device_tables(its);
2572        if (ret)
2573                return ret;
2574
2575        return vgic_its_save_collection_table(its);
2576}
2577
2578/**
2579 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2580 * to internal data structs according to V0 ABI
2581 *
2582 */
2583static int vgic_its_restore_tables_v0(struct vgic_its *its)
2584{
2585        int ret;
2586
2587        ret = vgic_its_restore_collection_table(its);
2588        if (ret)
2589                return ret;
2590
2591        return vgic_its_restore_device_tables(its);
2592}
2593
2594static int vgic_its_commit_v0(struct vgic_its *its)
2595{
2596        const struct vgic_its_abi *abi;
2597
2598        abi = vgic_its_get_abi(its);
2599        its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2600        its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2601
2602        its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2603                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2604
2605        its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2606                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2607        return 0;
2608}
2609
2610static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2611{
2612        /* We need to keep the ABI specific field values */
2613        its->baser_coll_table &= ~GITS_BASER_VALID;
2614        its->baser_device_table &= ~GITS_BASER_VALID;
2615        its->cbaser = 0;
2616        its->creadr = 0;
2617        its->cwriter = 0;
2618        its->enabled = 0;
2619        vgic_its_free_device_list(kvm, its);
2620        vgic_its_free_collection_list(kvm, its);
2621}
2622
2623static int vgic_its_has_attr(struct kvm_device *dev,
2624                             struct kvm_device_attr *attr)
2625{
2626        switch (attr->group) {
2627        case KVM_DEV_ARM_VGIC_GRP_ADDR:
2628                switch (attr->attr) {
2629                case KVM_VGIC_ITS_ADDR_TYPE:
2630                        return 0;
2631                }
2632                break;
2633        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2634                switch (attr->attr) {
2635                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2636                        return 0;
2637                case KVM_DEV_ARM_ITS_CTRL_RESET:
2638                        return 0;
2639                case KVM_DEV_ARM_ITS_SAVE_TABLES:
2640                        return 0;
2641                case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2642                        return 0;
2643                }
2644                break;
2645        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2646                return vgic_its_has_attr_regs(dev, attr);
2647        }
2648        return -ENXIO;
2649}
2650
2651static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2652{
2653        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2654        int ret = 0;
2655
2656        if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2657                return 0;
2658
2659        mutex_lock(&kvm->lock);
2660        mutex_lock(&its->its_lock);
2661
2662        if (!lock_all_vcpus(kvm)) {
2663                mutex_unlock(&its->its_lock);
2664                mutex_unlock(&kvm->lock);
2665                return -EBUSY;
2666        }
2667
2668        switch (attr) {
2669        case KVM_DEV_ARM_ITS_CTRL_RESET:
2670                vgic_its_reset(kvm, its);
2671                break;
2672        case KVM_DEV_ARM_ITS_SAVE_TABLES:
2673                ret = abi->save_tables(its);
2674                break;
2675        case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2676                ret = abi->restore_tables(its);
2677                break;
2678        }
2679
2680        unlock_all_vcpus(kvm);
2681        mutex_unlock(&its->its_lock);
2682        mutex_unlock(&kvm->lock);
2683        return ret;
2684}
2685
2686static int vgic_its_set_attr(struct kvm_device *dev,
2687                             struct kvm_device_attr *attr)
2688{
2689        struct vgic_its *its = dev->private;
2690        int ret;
2691
2692        switch (attr->group) {
2693        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2694                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2695                unsigned long type = (unsigned long)attr->attr;
2696                u64 addr;
2697
2698                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2699                        return -ENODEV;
2700
2701                if (copy_from_user(&addr, uaddr, sizeof(addr)))
2702                        return -EFAULT;
2703
2704                ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2705                                        addr, SZ_64K);
2706                if (ret)
2707                        return ret;
2708
2709                return vgic_register_its_iodev(dev->kvm, its, addr);
2710        }
2711        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2712                return vgic_its_ctrl(dev->kvm, its, attr->attr);
2713        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2714                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2715                u64 reg;
2716
2717                if (get_user(reg, uaddr))
2718                        return -EFAULT;
2719
2720                return vgic_its_attr_regs_access(dev, attr, &reg, true);
2721        }
2722        }
2723        return -ENXIO;
2724}
2725
2726static int vgic_its_get_attr(struct kvm_device *dev,
2727                             struct kvm_device_attr *attr)
2728{
2729        switch (attr->group) {
2730        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2731                struct vgic_its *its = dev->private;
2732                u64 addr = its->vgic_its_base;
2733                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2734                unsigned long type = (unsigned long)attr->attr;
2735
2736                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2737                        return -ENODEV;
2738
2739                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2740                        return -EFAULT;
2741                break;
2742        }
2743        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2744                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2745                u64 reg;
2746                int ret;
2747
2748                ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2749                if (ret)
2750                        return ret;
2751                return put_user(reg, uaddr);
2752        }
2753        default:
2754                return -ENXIO;
2755        }
2756
2757        return 0;
2758}
2759
2760static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2761        .name = "kvm-arm-vgic-its",
2762        .create = vgic_its_create,
2763        .destroy = vgic_its_destroy,
2764        .set_attr = vgic_its_set_attr,
2765        .get_attr = vgic_its_get_attr,
2766        .has_attr = vgic_its_has_attr,
2767};
2768
2769int kvm_vgic_register_its_device(void)
2770{
2771        return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2772                                       KVM_DEV_TYPE_ARM_VGIC_ITS);
2773}
2774