linux/arch/arm64/include/asm/memory.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Based on arch/arm/include/asm/memory.h
   4 *
   5 * Copyright (C) 2000-2002 Russell King
   6 * Copyright (C) 2012 ARM Ltd.
   7 *
   8 * Note: this file should not be included by non-asm/.h files
   9 */
  10#ifndef __ASM_MEMORY_H
  11#define __ASM_MEMORY_H
  12
  13#include <linux/const.h>
  14#include <linux/sizes.h>
  15#include <asm/page-def.h>
  16
  17/*
  18 * Size of the PCI I/O space. This must remain a power of two so that
  19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
  20 */
  21#define PCI_IO_SIZE             SZ_16M
  22
  23/*
  24 * VMEMMAP_SIZE - allows the whole linear region to be covered by
  25 *                a struct page array
  26 *
  27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
  28 * needs to cover the memory region from the beginning of the 52-bit
  29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
  30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
  31 * of the VMEMMAP where 52-bit support is not available in hardware.
  32 */
  33#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \
  34                        >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT))
  35
  36/*
  37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
  38 *               start of the TTBR1 address space.
  39 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
  40 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
  41 * VA_BITS - the maximum number of bits for virtual addresses.
  42 */
  43#define VA_BITS                 (CONFIG_ARM64_VA_BITS)
  44#define _PAGE_OFFSET(va)        (-(UL(1) << (va)))
  45#define PAGE_OFFSET             (_PAGE_OFFSET(VA_BITS))
  46#define KIMAGE_VADDR            (MODULES_END)
  47#define BPF_JIT_REGION_START    (KASAN_SHADOW_END)
  48#define BPF_JIT_REGION_SIZE     (SZ_128M)
  49#define BPF_JIT_REGION_END      (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
  50#define MODULES_END             (MODULES_VADDR + MODULES_VSIZE)
  51#define MODULES_VADDR           (BPF_JIT_REGION_END)
  52#define MODULES_VSIZE           (SZ_128M)
  53#define VMEMMAP_START           (-VMEMMAP_SIZE - SZ_2M)
  54#define VMEMMAP_END             (VMEMMAP_START + VMEMMAP_SIZE)
  55#define PCI_IO_END              (VMEMMAP_START - SZ_2M)
  56#define PCI_IO_START            (PCI_IO_END - PCI_IO_SIZE)
  57#define FIXADDR_TOP             (PCI_IO_START - SZ_2M)
  58
  59#if VA_BITS > 48
  60#define VA_BITS_MIN             (48)
  61#else
  62#define VA_BITS_MIN             (VA_BITS)
  63#endif
  64
  65#define _PAGE_END(va)           (-(UL(1) << ((va) - 1)))
  66
  67#define KERNEL_START            _text
  68#define KERNEL_END              _end
  69
  70/*
  71 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
  72 * address space for the shadow region respectively. They can bloat the stack
  73 * significantly, so double the (minimum) stack size when they are in use.
  74 */
  75#ifdef CONFIG_KASAN
  76#define KASAN_SHADOW_OFFSET     _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
  77#define KASAN_SHADOW_END        ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
  78                                        + KASAN_SHADOW_OFFSET)
  79#define KASAN_THREAD_SHIFT      1
  80#else
  81#define KASAN_THREAD_SHIFT      0
  82#define KASAN_SHADOW_END        (_PAGE_END(VA_BITS_MIN))
  83#endif /* CONFIG_KASAN */
  84
  85#define MIN_THREAD_SHIFT        (14 + KASAN_THREAD_SHIFT)
  86
  87/*
  88 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
  89 * stacks are a multiple of page size.
  90 */
  91#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
  92#define THREAD_SHIFT            PAGE_SHIFT
  93#else
  94#define THREAD_SHIFT            MIN_THREAD_SHIFT
  95#endif
  96
  97#if THREAD_SHIFT >= PAGE_SHIFT
  98#define THREAD_SIZE_ORDER       (THREAD_SHIFT - PAGE_SHIFT)
  99#endif
 100
 101#define THREAD_SIZE             (UL(1) << THREAD_SHIFT)
 102
 103/*
 104 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
 105 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
 106 * assembly.
 107 */
 108#ifdef CONFIG_VMAP_STACK
 109#define THREAD_ALIGN            (2 * THREAD_SIZE)
 110#else
 111#define THREAD_ALIGN            THREAD_SIZE
 112#endif
 113
 114#define IRQ_STACK_SIZE          THREAD_SIZE
 115
 116#define OVERFLOW_STACK_SIZE     SZ_4K
 117
 118/*
 119 * Alignment of kernel segments (e.g. .text, .data).
 120 *
 121 *  4 KB granule:  16 level 3 entries, with contiguous bit
 122 * 16 KB granule:   4 level 3 entries, without contiguous bit
 123 * 64 KB granule:   1 level 3 entry
 124 */
 125#define SEGMENT_ALIGN           SZ_64K
 126
 127/*
 128 * Memory types available.
 129 *
 130 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
 131 *            the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
 132 *            that protection_map[] only contains MT_NORMAL attributes.
 133 */
 134#define MT_NORMAL               0
 135#define MT_NORMAL_TAGGED        1
 136#define MT_NORMAL_NC            2
 137#define MT_NORMAL_WT            3
 138#define MT_DEVICE_nGnRnE        4
 139#define MT_DEVICE_nGnRE         5
 140#define MT_DEVICE_GRE           6
 141
 142/*
 143 * Memory types for Stage-2 translation
 144 */
 145#define MT_S2_NORMAL            0xf
 146#define MT_S2_DEVICE_nGnRE      0x1
 147
 148/*
 149 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
 150 * Stage-2 enforces Normal-WB and Device-nGnRE
 151 */
 152#define MT_S2_FWB_NORMAL        6
 153#define MT_S2_FWB_DEVICE_nGnRE  1
 154
 155#ifdef CONFIG_ARM64_4K_PAGES
 156#define IOREMAP_MAX_ORDER       (PUD_SHIFT)
 157#else
 158#define IOREMAP_MAX_ORDER       (PMD_SHIFT)
 159#endif
 160
 161#ifndef __ASSEMBLY__
 162
 163#include <linux/bitops.h>
 164#include <linux/compiler.h>
 165#include <linux/mmdebug.h>
 166#include <linux/types.h>
 167#include <asm/bug.h>
 168
 169extern u64                      vabits_actual;
 170#define PAGE_END                (_PAGE_END(vabits_actual))
 171
 172extern s64                      memstart_addr;
 173/* PHYS_OFFSET - the physical address of the start of memory. */
 174#define PHYS_OFFSET             ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
 175
 176/* the virtual base of the kernel image */
 177extern u64                      kimage_vaddr;
 178
 179/* the offset between the kernel virtual and physical mappings */
 180extern u64                      kimage_voffset;
 181
 182static inline unsigned long kaslr_offset(void)
 183{
 184        return kimage_vaddr - KIMAGE_VADDR;
 185}
 186
 187/*
 188 * Allow all memory at the discovery stage. We will clip it later.
 189 */
 190#define MIN_MEMBLOCK_ADDR       0
 191#define MAX_MEMBLOCK_ADDR       U64_MAX
 192
 193/*
 194 * PFNs are used to describe any physical page; this means
 195 * PFN 0 == physical address 0.
 196 *
 197 * This is the PFN of the first RAM page in the kernel
 198 * direct-mapped view.  We assume this is the first page
 199 * of RAM in the mem_map as well.
 200 */
 201#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
 202
 203/*
 204 * When dealing with data aborts, watchpoints, or instruction traps we may end
 205 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
 206 * pass on to access_ok(), for instance.
 207 */
 208#define __untagged_addr(addr)   \
 209        ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
 210
 211#define untagged_addr(addr)     ({                                      \
 212        u64 __addr = (__force u64)(addr);                                       \
 213        __addr &= __untagged_addr(__addr);                              \
 214        (__force __typeof__(addr))__addr;                               \
 215})
 216
 217#ifdef CONFIG_KASAN_SW_TAGS
 218#define __tag_shifted(tag)      ((u64)(tag) << 56)
 219#define __tag_reset(addr)       __untagged_addr(addr)
 220#define __tag_get(addr)         (__u8)((u64)(addr) >> 56)
 221#else
 222#define __tag_shifted(tag)      0UL
 223#define __tag_reset(addr)       (addr)
 224#define __tag_get(addr)         0
 225#endif /* CONFIG_KASAN_SW_TAGS */
 226
 227static inline const void *__tag_set(const void *addr, u8 tag)
 228{
 229        u64 __addr = (u64)addr & ~__tag_shifted(0xff);
 230        return (const void *)(__addr | __tag_shifted(tag));
 231}
 232
 233/*
 234 * Physical vs virtual RAM address space conversion.  These are
 235 * private definitions which should NOT be used outside memory.h
 236 * files.  Use virt_to_phys/phys_to_virt/__pa/__va instead.
 237 */
 238
 239
 240/*
 241 * The linear kernel range starts at the bottom of the virtual address
 242 * space. Testing the top bit for the start of the region is a
 243 * sufficient check and avoids having to worry about the tag.
 244 */
 245#define __is_lm_address(addr)   (!(((u64)addr) & BIT(vabits_actual - 1)))
 246
 247#define __lm_to_phys(addr)      (((addr) & ~PAGE_OFFSET) + PHYS_OFFSET)
 248#define __kimg_to_phys(addr)    ((addr) - kimage_voffset)
 249
 250#define __virt_to_phys_nodebug(x) ({                                    \
 251        phys_addr_t __x = (phys_addr_t)(__tag_reset(x));                \
 252        __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
 253})
 254
 255#define __pa_symbol_nodebug(x)  __kimg_to_phys((phys_addr_t)(x))
 256
 257#ifdef CONFIG_DEBUG_VIRTUAL
 258extern phys_addr_t __virt_to_phys(unsigned long x);
 259extern phys_addr_t __phys_addr_symbol(unsigned long x);
 260#else
 261#define __virt_to_phys(x)       __virt_to_phys_nodebug(x)
 262#define __phys_addr_symbol(x)   __pa_symbol_nodebug(x)
 263#endif /* CONFIG_DEBUG_VIRTUAL */
 264
 265#define __phys_to_virt(x)       ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
 266#define __phys_to_kimg(x)       ((unsigned long)((x) + kimage_voffset))
 267
 268/*
 269 * Convert a page to/from a physical address
 270 */
 271#define page_to_phys(page)      (__pfn_to_phys(page_to_pfn(page)))
 272#define phys_to_page(phys)      (pfn_to_page(__phys_to_pfn(phys)))
 273
 274/*
 275 * Note: Drivers should NOT use these.  They are the wrong
 276 * translation for translating DMA addresses.  Use the driver
 277 * DMA support - see dma-mapping.h.
 278 */
 279#define virt_to_phys virt_to_phys
 280static inline phys_addr_t virt_to_phys(const volatile void *x)
 281{
 282        return __virt_to_phys((unsigned long)(x));
 283}
 284
 285#define phys_to_virt phys_to_virt
 286static inline void *phys_to_virt(phys_addr_t x)
 287{
 288        return (void *)(__phys_to_virt(x));
 289}
 290
 291/*
 292 * Drivers should NOT use these either.
 293 */
 294#define __pa(x)                 __virt_to_phys((unsigned long)(x))
 295#define __pa_symbol(x)          __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
 296#define __pa_nodebug(x)         __virt_to_phys_nodebug((unsigned long)(x))
 297#define __va(x)                 ((void *)__phys_to_virt((phys_addr_t)(x)))
 298#define pfn_to_kaddr(pfn)       __va((pfn) << PAGE_SHIFT)
 299#define virt_to_pfn(x)          __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
 300#define sym_to_pfn(x)           __phys_to_pfn(__pa_symbol(x))
 301
 302/*
 303 *  virt_to_page(x)     convert a _valid_ virtual address to struct page *
 304 *  virt_addr_valid(x)  indicates whether a virtual address is valid
 305 */
 306#define ARCH_PFN_OFFSET         ((unsigned long)PHYS_PFN_OFFSET)
 307
 308#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
 309#define virt_to_page(x)         pfn_to_page(virt_to_pfn(x))
 310#else
 311#define page_to_virt(x) ({                                              \
 312        __typeof__(x) __page = x;                                       \
 313        u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
 314        u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE);                 \
 315        (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
 316})
 317
 318#define virt_to_page(x) ({                                              \
 319        u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE;    \
 320        u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page));     \
 321        (struct page *)__addr;                                          \
 322})
 323#endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */
 324
 325#define virt_addr_valid(addr)   ({                                      \
 326        __typeof__(addr) __addr = addr;                                 \
 327        __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr));      \
 328})
 329
 330void dump_mem_limit(void);
 331#endif /* !ASSEMBLY */
 332
 333/*
 334 * Given that the GIC architecture permits ITS implementations that can only be
 335 * configured with a LPI table address once, GICv3 systems with many CPUs may
 336 * end up reserving a lot of different regions after a kexec for their LPI
 337 * tables (one per CPU), as we are forced to reuse the same memory after kexec
 338 * (and thus reserve it persistently with EFI beforehand)
 339 */
 340#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
 341# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
 342#endif
 343
 344#include <asm-generic/memory_model.h>
 345
 346#endif /* __ASM_MEMORY_H */
 347