linux/arch/arm64/kernel/module-plts.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
   4 */
   5
   6#include <linux/elf.h>
   7#include <linux/ftrace.h>
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/sort.h>
  11
  12static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
  13                                            enum aarch64_insn_register reg)
  14{
  15        u32 adrp, add;
  16
  17        adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
  18        add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
  19                                           AARCH64_INSN_VARIANT_64BIT,
  20                                           AARCH64_INSN_ADSB_ADD);
  21
  22        return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
  23}
  24
  25struct plt_entry get_plt_entry(u64 dst, void *pc)
  26{
  27        struct plt_entry plt;
  28        static u32 br;
  29
  30        if (!br)
  31                br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
  32                                                 AARCH64_INSN_BRANCH_NOLINK);
  33
  34        plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
  35        plt.br = cpu_to_le32(br);
  36
  37        return plt;
  38}
  39
  40bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
  41{
  42        u64 p, q;
  43
  44        /*
  45         * Check whether both entries refer to the same target:
  46         * do the cheapest checks first.
  47         * If the 'add' or 'br' opcodes are different, then the target
  48         * cannot be the same.
  49         */
  50        if (a->add != b->add || a->br != b->br)
  51                return false;
  52
  53        p = ALIGN_DOWN((u64)a, SZ_4K);
  54        q = ALIGN_DOWN((u64)b, SZ_4K);
  55
  56        /*
  57         * If the 'adrp' opcodes are the same then we just need to check
  58         * that they refer to the same 4k region.
  59         */
  60        if (a->adrp == b->adrp && p == q)
  61                return true;
  62
  63        return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
  64               (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
  65}
  66
  67static bool in_init(const struct module *mod, void *loc)
  68{
  69        return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
  70}
  71
  72u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
  73                          void *loc, const Elf64_Rela *rela,
  74                          Elf64_Sym *sym)
  75{
  76        struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
  77                                                          &mod->arch.init;
  78        struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
  79        int i = pltsec->plt_num_entries;
  80        int j = i - 1;
  81        u64 val = sym->st_value + rela->r_addend;
  82
  83        if (is_forbidden_offset_for_adrp(&plt[i].adrp))
  84                i++;
  85
  86        plt[i] = get_plt_entry(val, &plt[i]);
  87
  88        /*
  89         * Check if the entry we just created is a duplicate. Given that the
  90         * relocations are sorted, this will be the last entry we allocated.
  91         * (if one exists).
  92         */
  93        if (j >= 0 && plt_entries_equal(plt + i, plt + j))
  94                return (u64)&plt[j];
  95
  96        pltsec->plt_num_entries += i - j;
  97        if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
  98                return 0;
  99
 100        return (u64)&plt[i];
 101}
 102
 103#ifdef CONFIG_ARM64_ERRATUM_843419
 104u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
 105                                void *loc, u64 val)
 106{
 107        struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
 108                                                          &mod->arch.init;
 109        struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
 110        int i = pltsec->plt_num_entries++;
 111        u32 br;
 112        int rd;
 113
 114        if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
 115                return 0;
 116
 117        if (is_forbidden_offset_for_adrp(&plt[i].adrp))
 118                i = pltsec->plt_num_entries++;
 119
 120        /* get the destination register of the ADRP instruction */
 121        rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
 122                                          le32_to_cpup((__le32 *)loc));
 123
 124        br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
 125                                         AARCH64_INSN_BRANCH_NOLINK);
 126
 127        plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
 128        plt[i].br = cpu_to_le32(br);
 129
 130        return (u64)&plt[i];
 131}
 132#endif
 133
 134#define cmp_3way(a,b)   ((a) < (b) ? -1 : (a) > (b))
 135
 136static int cmp_rela(const void *a, const void *b)
 137{
 138        const Elf64_Rela *x = a, *y = b;
 139        int i;
 140
 141        /* sort by type, symbol index and addend */
 142        i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
 143        if (i == 0)
 144                i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
 145        if (i == 0)
 146                i = cmp_3way(x->r_addend, y->r_addend);
 147        return i;
 148}
 149
 150static bool duplicate_rel(const Elf64_Rela *rela, int num)
 151{
 152        /*
 153         * Entries are sorted by type, symbol index and addend. That means
 154         * that, if a duplicate entry exists, it must be in the preceding
 155         * slot.
 156         */
 157        return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
 158}
 159
 160static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
 161                               Elf64_Word dstidx, Elf_Shdr *dstsec)
 162{
 163        unsigned int ret = 0;
 164        Elf64_Sym *s;
 165        int i;
 166
 167        for (i = 0; i < num; i++) {
 168                u64 min_align;
 169
 170                switch (ELF64_R_TYPE(rela[i].r_info)) {
 171                case R_AARCH64_JUMP26:
 172                case R_AARCH64_CALL26:
 173                        if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 174                                break;
 175
 176                        /*
 177                         * We only have to consider branch targets that resolve
 178                         * to symbols that are defined in a different section.
 179                         * This is not simply a heuristic, it is a fundamental
 180                         * limitation, since there is no guaranteed way to emit
 181                         * PLT entries sufficiently close to the branch if the
 182                         * section size exceeds the range of a branch
 183                         * instruction. So ignore relocations against defined
 184                         * symbols if they live in the same section as the
 185                         * relocation target.
 186                         */
 187                        s = syms + ELF64_R_SYM(rela[i].r_info);
 188                        if (s->st_shndx == dstidx)
 189                                break;
 190
 191                        /*
 192                         * Jump relocations with non-zero addends against
 193                         * undefined symbols are supported by the ELF spec, but
 194                         * do not occur in practice (e.g., 'jump n bytes past
 195                         * the entry point of undefined function symbol f').
 196                         * So we need to support them, but there is no need to
 197                         * take them into consideration when trying to optimize
 198                         * this code. So let's only check for duplicates when
 199                         * the addend is zero: this allows us to record the PLT
 200                         * entry address in the symbol table itself, rather than
 201                         * having to search the list for duplicates each time we
 202                         * emit one.
 203                         */
 204                        if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
 205                                ret++;
 206                        break;
 207                case R_AARCH64_ADR_PREL_PG_HI21_NC:
 208                case R_AARCH64_ADR_PREL_PG_HI21:
 209                        if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
 210                            !cpus_have_const_cap(ARM64_WORKAROUND_843419))
 211                                break;
 212
 213                        /*
 214                         * Determine the minimal safe alignment for this ADRP
 215                         * instruction: the section alignment at which it is
 216                         * guaranteed not to appear at a vulnerable offset.
 217                         *
 218                         * This comes down to finding the least significant zero
 219                         * bit in bits [11:3] of the section offset, and
 220                         * increasing the section's alignment so that the
 221                         * resulting address of this instruction is guaranteed
 222                         * to equal the offset in that particular bit (as well
 223                         * as all less signficant bits). This ensures that the
 224                         * address modulo 4 KB != 0xfff8 or 0xfffc (which would
 225                         * have all ones in bits [11:3])
 226                         */
 227                        min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
 228
 229                        /*
 230                         * Allocate veneer space for each ADRP that may appear
 231                         * at a vulnerable offset nonetheless. At relocation
 232                         * time, some of these will remain unused since some
 233                         * ADRP instructions can be patched to ADR instructions
 234                         * instead.
 235                         */
 236                        if (min_align > SZ_4K)
 237                                ret++;
 238                        else
 239                                dstsec->sh_addralign = max(dstsec->sh_addralign,
 240                                                           min_align);
 241                        break;
 242                }
 243        }
 244
 245        if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
 246            cpus_have_const_cap(ARM64_WORKAROUND_843419))
 247                /*
 248                 * Add some slack so we can skip PLT slots that may trigger
 249                 * the erratum due to the placement of the ADRP instruction.
 250                 */
 251                ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
 252
 253        return ret;
 254}
 255
 256static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
 257                                  Elf64_Word dstidx)
 258{
 259
 260        Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
 261
 262        if (s->st_shndx == dstidx)
 263                return false;
 264
 265        return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
 266               ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
 267}
 268
 269/* Group branch PLT relas at the front end of the array. */
 270static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
 271                                      int numrels, Elf64_Word dstidx)
 272{
 273        int i = 0, j = numrels - 1;
 274
 275        if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 276                return 0;
 277
 278        while (i < j) {
 279                if (branch_rela_needs_plt(syms, &rela[i], dstidx))
 280                        i++;
 281                else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
 282                        swap(rela[i], rela[j]);
 283                else
 284                        j--;
 285        }
 286
 287        return i;
 288}
 289
 290int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 291                              char *secstrings, struct module *mod)
 292{
 293        unsigned long core_plts = 0;
 294        unsigned long init_plts = 0;
 295        Elf64_Sym *syms = NULL;
 296        Elf_Shdr *pltsec, *tramp = NULL;
 297        int i;
 298
 299        /*
 300         * Find the empty .plt section so we can expand it to store the PLT
 301         * entries. Record the symtab address as well.
 302         */
 303        for (i = 0; i < ehdr->e_shnum; i++) {
 304                if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
 305                        mod->arch.core.plt_shndx = i;
 306                else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
 307                        mod->arch.init.plt_shndx = i;
 308                else if (!strcmp(secstrings + sechdrs[i].sh_name,
 309                                 ".text.ftrace_trampoline"))
 310                        tramp = sechdrs + i;
 311                else if (sechdrs[i].sh_type == SHT_SYMTAB)
 312                        syms = (Elf64_Sym *)sechdrs[i].sh_addr;
 313        }
 314
 315        if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
 316                pr_err("%s: module PLT section(s) missing\n", mod->name);
 317                return -ENOEXEC;
 318        }
 319        if (!syms) {
 320                pr_err("%s: module symtab section missing\n", mod->name);
 321                return -ENOEXEC;
 322        }
 323
 324        for (i = 0; i < ehdr->e_shnum; i++) {
 325                Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
 326                int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
 327                Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
 328
 329                if (sechdrs[i].sh_type != SHT_RELA)
 330                        continue;
 331
 332                /* ignore relocations that operate on non-exec sections */
 333                if (!(dstsec->sh_flags & SHF_EXECINSTR))
 334                        continue;
 335
 336                /*
 337                 * sort branch relocations requiring a PLT by type, symbol index
 338                 * and addend
 339                 */
 340                nents = partition_branch_plt_relas(syms, rels, numrels,
 341                                                   sechdrs[i].sh_info);
 342                if (nents)
 343                        sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
 344
 345                if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
 346                        core_plts += count_plts(syms, rels, numrels,
 347                                                sechdrs[i].sh_info, dstsec);
 348                else
 349                        init_plts += count_plts(syms, rels, numrels,
 350                                                sechdrs[i].sh_info, dstsec);
 351        }
 352
 353        pltsec = sechdrs + mod->arch.core.plt_shndx;
 354        pltsec->sh_type = SHT_NOBITS;
 355        pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
 356        pltsec->sh_addralign = L1_CACHE_BYTES;
 357        pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
 358        mod->arch.core.plt_num_entries = 0;
 359        mod->arch.core.plt_max_entries = core_plts;
 360
 361        pltsec = sechdrs + mod->arch.init.plt_shndx;
 362        pltsec->sh_type = SHT_NOBITS;
 363        pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
 364        pltsec->sh_addralign = L1_CACHE_BYTES;
 365        pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
 366        mod->arch.init.plt_num_entries = 0;
 367        mod->arch.init.plt_max_entries = init_plts;
 368
 369        if (tramp) {
 370                tramp->sh_type = SHT_NOBITS;
 371                tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
 372                tramp->sh_addralign = __alignof__(struct plt_entry);
 373                tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
 374        }
 375
 376        return 0;
 377}
 378