linux/arch/arm64/kernel/topology.c
<<
>>
Prefs
   1/*
   2 * arch/arm64/kernel/topology.c
   3 *
   4 * Copyright (C) 2011,2013,2014 Linaro Limited.
   5 *
   6 * Based on the arm32 version written by Vincent Guittot in turn based on
   7 * arch/sh/kernel/topology.c
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 */
  13
  14#include <linux/acpi.h>
  15#include <linux/arch_topology.h>
  16#include <linux/cacheinfo.h>
  17#include <linux/cpufreq.h>
  18#include <linux/init.h>
  19#include <linux/percpu.h>
  20
  21#include <asm/cpu.h>
  22#include <asm/cputype.h>
  23#include <asm/topology.h>
  24
  25void store_cpu_topology(unsigned int cpuid)
  26{
  27        struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
  28        u64 mpidr;
  29
  30        if (cpuid_topo->package_id != -1)
  31                goto topology_populated;
  32
  33        mpidr = read_cpuid_mpidr();
  34
  35        /* Uniprocessor systems can rely on default topology values */
  36        if (mpidr & MPIDR_UP_BITMASK)
  37                return;
  38
  39        /*
  40         * This would be the place to create cpu topology based on MPIDR.
  41         *
  42         * However, it cannot be trusted to depict the actual topology; some
  43         * pieces of the architecture enforce an artificial cap on Aff0 values
  44         * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
  45         * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
  46         * having absolutely no relationship to the actual underlying system
  47         * topology, and cannot be reasonably used as core / package ID.
  48         *
  49         * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
  50         * we still wouldn't be able to obtain a sane core ID. This means we
  51         * need to entirely ignore MPIDR for any topology deduction.
  52         */
  53        cpuid_topo->thread_id  = -1;
  54        cpuid_topo->core_id    = cpuid;
  55        cpuid_topo->package_id = cpu_to_node(cpuid);
  56
  57        pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
  58                 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
  59                 cpuid_topo->thread_id, mpidr);
  60
  61topology_populated:
  62        update_siblings_masks(cpuid);
  63}
  64
  65#ifdef CONFIG_ACPI
  66static bool __init acpi_cpu_is_threaded(int cpu)
  67{
  68        int is_threaded = acpi_pptt_cpu_is_thread(cpu);
  69
  70        /*
  71         * if the PPTT doesn't have thread information, assume a homogeneous
  72         * machine and return the current CPU's thread state.
  73         */
  74        if (is_threaded < 0)
  75                is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
  76
  77        return !!is_threaded;
  78}
  79
  80/*
  81 * Propagate the topology information of the processor_topology_node tree to the
  82 * cpu_topology array.
  83 */
  84int __init parse_acpi_topology(void)
  85{
  86        int cpu, topology_id;
  87
  88        if (acpi_disabled)
  89                return 0;
  90
  91        for_each_possible_cpu(cpu) {
  92                int i, cache_id;
  93
  94                topology_id = find_acpi_cpu_topology(cpu, 0);
  95                if (topology_id < 0)
  96                        return topology_id;
  97
  98                if (acpi_cpu_is_threaded(cpu)) {
  99                        cpu_topology[cpu].thread_id = topology_id;
 100                        topology_id = find_acpi_cpu_topology(cpu, 1);
 101                        cpu_topology[cpu].core_id   = topology_id;
 102                } else {
 103                        cpu_topology[cpu].thread_id  = -1;
 104                        cpu_topology[cpu].core_id    = topology_id;
 105                }
 106                topology_id = find_acpi_cpu_topology_package(cpu);
 107                cpu_topology[cpu].package_id = topology_id;
 108
 109                i = acpi_find_last_cache_level(cpu);
 110
 111                if (i > 0) {
 112                        /*
 113                         * this is the only part of cpu_topology that has
 114                         * a direct relationship with the cache topology
 115                         */
 116                        cache_id = find_acpi_cpu_cache_topology(cpu, i);
 117                        if (cache_id > 0)
 118                                cpu_topology[cpu].llc_id = cache_id;
 119                }
 120        }
 121
 122        return 0;
 123}
 124#endif
 125
 126#ifdef CONFIG_ARM64_AMU_EXTN
 127
 128#undef pr_fmt
 129#define pr_fmt(fmt) "AMU: " fmt
 130
 131static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
 132static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
 133static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
 134static cpumask_var_t amu_fie_cpus;
 135
 136/* Initialize counter reference per-cpu variables for the current CPU */
 137void init_cpu_freq_invariance_counters(void)
 138{
 139        this_cpu_write(arch_core_cycles_prev,
 140                       read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
 141        this_cpu_write(arch_const_cycles_prev,
 142                       read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
 143}
 144
 145static int validate_cpu_freq_invariance_counters(int cpu)
 146{
 147        u64 max_freq_hz, ratio;
 148
 149        if (!cpu_has_amu_feat(cpu)) {
 150                pr_debug("CPU%d: counters are not supported.\n", cpu);
 151                return -EINVAL;
 152        }
 153
 154        if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
 155                     !per_cpu(arch_core_cycles_prev, cpu))) {
 156                pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
 157                return -EINVAL;
 158        }
 159
 160        /* Convert maximum frequency from KHz to Hz and validate */
 161        max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
 162        if (unlikely(!max_freq_hz)) {
 163                pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
 164                return -EINVAL;
 165        }
 166
 167        /*
 168         * Pre-compute the fixed ratio between the frequency of the constant
 169         * counter and the maximum frequency of the CPU.
 170         *
 171         *                            const_freq
 172         * arch_max_freq_scale =   ---------------- * SCHED_CAPACITY_SCALEĀ²
 173         *                         cpuinfo_max_freq
 174         *
 175         * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALEĀ²
 176         * in order to ensure a good resolution for arch_max_freq_scale for
 177         * very low arch timer frequencies (down to the KHz range which should
 178         * be unlikely).
 179         */
 180        ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
 181        ratio = div64_u64(ratio, max_freq_hz);
 182        if (!ratio) {
 183                WARN_ONCE(1, "System timer frequency too low.\n");
 184                return -EINVAL;
 185        }
 186
 187        per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
 188
 189        return 0;
 190}
 191
 192static inline bool
 193enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
 194{
 195        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 196
 197        if (!policy) {
 198                pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
 199                return false;
 200        }
 201
 202        if (cpumask_subset(policy->related_cpus, valid_cpus))
 203                cpumask_or(amu_fie_cpus, policy->related_cpus,
 204                           amu_fie_cpus);
 205
 206        cpufreq_cpu_put(policy);
 207
 208        return true;
 209}
 210
 211static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
 212#define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
 213
 214static int __init init_amu_fie(void)
 215{
 216        cpumask_var_t valid_cpus;
 217        bool have_policy = false;
 218        int ret = 0;
 219        int cpu;
 220
 221        if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
 222                return -ENOMEM;
 223
 224        if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
 225                ret = -ENOMEM;
 226                goto free_valid_mask;
 227        }
 228
 229        for_each_present_cpu(cpu) {
 230                if (validate_cpu_freq_invariance_counters(cpu))
 231                        continue;
 232                cpumask_set_cpu(cpu, valid_cpus);
 233                have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
 234        }
 235
 236        /*
 237         * If we are not restricted by cpufreq policies, we only enable
 238         * the use of the AMU feature for FIE if all CPUs support AMU.
 239         * Otherwise, enable_policy_freq_counters has already enabled
 240         * policy cpus.
 241         */
 242        if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
 243                cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
 244
 245        if (!cpumask_empty(amu_fie_cpus)) {
 246                pr_info("CPUs[%*pbl]: counters will be used for FIE.",
 247                        cpumask_pr_args(amu_fie_cpus));
 248                static_branch_enable(&amu_fie_key);
 249        }
 250
 251        /*
 252         * If the system is not fully invariant after AMU init, disable
 253         * partial use of counters for frequency invariance.
 254         */
 255        if (!topology_scale_freq_invariant())
 256                static_branch_disable(&amu_fie_key);
 257
 258free_valid_mask:
 259        free_cpumask_var(valid_cpus);
 260
 261        return ret;
 262}
 263late_initcall_sync(init_amu_fie);
 264
 265bool arch_freq_counters_available(const struct cpumask *cpus)
 266{
 267        return amu_freq_invariant() &&
 268               cpumask_subset(cpus, amu_fie_cpus);
 269}
 270
 271void topology_scale_freq_tick(void)
 272{
 273        u64 prev_core_cnt, prev_const_cnt;
 274        u64 core_cnt, const_cnt, scale;
 275        int cpu = smp_processor_id();
 276
 277        if (!amu_freq_invariant())
 278                return;
 279
 280        if (!cpumask_test_cpu(cpu, amu_fie_cpus))
 281                return;
 282
 283        const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
 284        core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
 285        prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
 286        prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
 287
 288        if (unlikely(core_cnt <= prev_core_cnt ||
 289                     const_cnt <= prev_const_cnt))
 290                goto store_and_exit;
 291
 292        /*
 293         *          /\core    arch_max_freq_scale
 294         * scale =  ------- * --------------------
 295         *          /\const   SCHED_CAPACITY_SCALE
 296         *
 297         * See validate_cpu_freq_invariance_counters() for details on
 298         * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
 299         */
 300        scale = core_cnt - prev_core_cnt;
 301        scale *= this_cpu_read(arch_max_freq_scale);
 302        scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
 303                          const_cnt - prev_const_cnt);
 304
 305        scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
 306        this_cpu_write(freq_scale, (unsigned long)scale);
 307
 308store_and_exit:
 309        this_cpu_write(arch_core_cycles_prev, core_cnt);
 310        this_cpu_write(arch_const_cycles_prev, const_cnt);
 311}
 312#endif /* CONFIG_ARM64_AMU_EXTN */
 313