linux/arch/powerpc/mm/book3s64/slb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * PowerPC64 SLB support.
   4 *
   5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
   6 * Based on earlier code written by:
   7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
   8 *    Copyright (c) 2001 Dave Engebretsen
   9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  10 */
  11
  12#include <asm/asm-prototypes.h>
  13#include <asm/mmu.h>
  14#include <asm/mmu_context.h>
  15#include <asm/paca.h>
  16#include <asm/ppc-opcode.h>
  17#include <asm/cputable.h>
  18#include <asm/cacheflush.h>
  19#include <asm/smp.h>
  20#include <linux/compiler.h>
  21#include <linux/context_tracking.h>
  22#include <linux/mm_types.h>
  23#include <linux/pgtable.h>
  24
  25#include <asm/udbg.h>
  26#include <asm/code-patching.h>
  27
  28#include "internal.h"
  29
  30
  31enum slb_index {
  32        LINEAR_INDEX    = 0, /* Kernel linear map  (0xc000000000000000) */
  33        KSTACK_INDEX    = 1, /* Kernel stack map */
  34};
  35
  36static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
  37
  38#define slb_esid_mask(ssize)    \
  39        (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
  40
  41static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
  42                                         enum slb_index index)
  43{
  44        return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
  45}
  46
  47static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
  48                                         unsigned long flags)
  49{
  50        return (vsid << slb_vsid_shift(ssize)) | flags |
  51                ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
  52}
  53
  54static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
  55                                         unsigned long flags)
  56{
  57        return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
  58}
  59
  60bool stress_slb_enabled __initdata;
  61
  62static int __init parse_stress_slb(char *p)
  63{
  64        stress_slb_enabled = true;
  65        return 0;
  66}
  67early_param("stress_slb", parse_stress_slb);
  68
  69__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
  70
  71static void assert_slb_presence(bool present, unsigned long ea)
  72{
  73#ifdef CONFIG_DEBUG_VM
  74        unsigned long tmp;
  75
  76        WARN_ON_ONCE(mfmsr() & MSR_EE);
  77
  78        if (!cpu_has_feature(CPU_FTR_ARCH_206))
  79                return;
  80
  81        /*
  82         * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
  83         * ignores all other bits from 0-27, so just clear them all.
  84         */
  85        ea &= ~((1UL << SID_SHIFT) - 1);
  86        asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
  87
  88        WARN_ON(present == (tmp == 0));
  89#endif
  90}
  91
  92static inline void slb_shadow_update(unsigned long ea, int ssize,
  93                                     unsigned long flags,
  94                                     enum slb_index index)
  95{
  96        struct slb_shadow *p = get_slb_shadow();
  97
  98        /*
  99         * Clear the ESID first so the entry is not valid while we are
 100         * updating it.  No write barriers are needed here, provided
 101         * we only update the current CPU's SLB shadow buffer.
 102         */
 103        WRITE_ONCE(p->save_area[index].esid, 0);
 104        WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
 105        WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
 106}
 107
 108static inline void slb_shadow_clear(enum slb_index index)
 109{
 110        WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
 111}
 112
 113static inline void create_shadowed_slbe(unsigned long ea, int ssize,
 114                                        unsigned long flags,
 115                                        enum slb_index index)
 116{
 117        /*
 118         * Updating the shadow buffer before writing the SLB ensures
 119         * we don't get a stale entry here if we get preempted by PHYP
 120         * between these two statements.
 121         */
 122        slb_shadow_update(ea, ssize, flags, index);
 123
 124        assert_slb_presence(false, ea);
 125        asm volatile("slbmte  %0,%1" :
 126                     : "r" (mk_vsid_data(ea, ssize, flags)),
 127                       "r" (mk_esid_data(ea, ssize, index))
 128                     : "memory" );
 129}
 130
 131/*
 132 * Insert bolted entries into SLB (which may not be empty, so don't clear
 133 * slb_cache_ptr).
 134 */
 135void __slb_restore_bolted_realmode(void)
 136{
 137        struct slb_shadow *p = get_slb_shadow();
 138        enum slb_index index;
 139
 140         /* No isync needed because realmode. */
 141        for (index = 0; index < SLB_NUM_BOLTED; index++) {
 142                asm volatile("slbmte  %0,%1" :
 143                     : "r" (be64_to_cpu(p->save_area[index].vsid)),
 144                       "r" (be64_to_cpu(p->save_area[index].esid)));
 145        }
 146
 147        assert_slb_presence(true, local_paca->kstack);
 148}
 149
 150/*
 151 * Insert the bolted entries into an empty SLB.
 152 */
 153void slb_restore_bolted_realmode(void)
 154{
 155        __slb_restore_bolted_realmode();
 156        get_paca()->slb_cache_ptr = 0;
 157
 158        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 159        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 160}
 161
 162/*
 163 * This flushes all SLB entries including 0, so it must be realmode.
 164 */
 165void slb_flush_all_realmode(void)
 166{
 167        asm volatile("slbmte %0,%0; slbia" : : "r" (0));
 168}
 169
 170static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
 171{
 172        struct slb_shadow *p = get_slb_shadow();
 173        unsigned long ksp_esid_data, ksp_vsid_data;
 174        u32 ih;
 175
 176        /*
 177         * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
 178         * information created with Class=0 entries, which we use for kernel
 179         * SLB entries (the SLB entries themselves are still invalidated).
 180         *
 181         * Older processors will ignore this optimisation. Over-invalidation
 182         * is fine because we never rely on lookaside information existing.
 183         */
 184        if (preserve_kernel_lookaside)
 185                ih = 1;
 186        else
 187                ih = 0;
 188
 189        ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
 190        ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
 191
 192        asm volatile(PPC_SLBIA(%0)"     \n"
 193                     "slbmte    %1, %2  \n"
 194                     :: "i" (ih),
 195                        "r" (ksp_vsid_data),
 196                        "r" (ksp_esid_data)
 197                     : "memory");
 198}
 199
 200/*
 201 * This flushes non-bolted entries, it can be run in virtual mode. Must
 202 * be called with interrupts disabled.
 203 */
 204void slb_flush_and_restore_bolted(void)
 205{
 206        BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
 207
 208        WARN_ON(!irqs_disabled());
 209
 210        /*
 211         * We can't take a PMU exception in the following code, so hard
 212         * disable interrupts.
 213         */
 214        hard_irq_disable();
 215
 216        isync();
 217        __slb_flush_and_restore_bolted(false);
 218        isync();
 219
 220        assert_slb_presence(true, get_paca()->kstack);
 221
 222        get_paca()->slb_cache_ptr = 0;
 223
 224        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 225        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 226}
 227
 228void slb_save_contents(struct slb_entry *slb_ptr)
 229{
 230        int i;
 231        unsigned long e, v;
 232
 233        /* Save slb_cache_ptr value. */
 234        get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
 235
 236        if (!slb_ptr)
 237                return;
 238
 239        for (i = 0; i < mmu_slb_size; i++) {
 240                asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
 241                asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
 242                slb_ptr->esid = e;
 243                slb_ptr->vsid = v;
 244                slb_ptr++;
 245        }
 246}
 247
 248void slb_dump_contents(struct slb_entry *slb_ptr)
 249{
 250        int i, n;
 251        unsigned long e, v;
 252        unsigned long llp;
 253
 254        if (!slb_ptr)
 255                return;
 256
 257        pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
 258        pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
 259
 260        for (i = 0; i < mmu_slb_size; i++) {
 261                e = slb_ptr->esid;
 262                v = slb_ptr->vsid;
 263                slb_ptr++;
 264
 265                if (!e && !v)
 266                        continue;
 267
 268                pr_err("%02d %016lx %016lx\n", i, e, v);
 269
 270                if (!(e & SLB_ESID_V)) {
 271                        pr_err("\n");
 272                        continue;
 273                }
 274                llp = v & SLB_VSID_LLP;
 275                if (v & SLB_VSID_B_1T) {
 276                        pr_err("  1T  ESID=%9lx  VSID=%13lx LLP:%3lx\n",
 277                               GET_ESID_1T(e),
 278                               (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
 279                } else {
 280                        pr_err(" 256M ESID=%9lx  VSID=%13lx LLP:%3lx\n",
 281                               GET_ESID(e),
 282                               (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
 283                }
 284        }
 285        pr_err("----------------------------------\n");
 286
 287        /* Dump slb cache entires as well. */
 288        pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
 289        pr_err("Valid SLB cache entries:\n");
 290        n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
 291        for (i = 0; i < n; i++)
 292                pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
 293        pr_err("Rest of SLB cache entries:\n");
 294        for (i = n; i < SLB_CACHE_ENTRIES; i++)
 295                pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
 296}
 297
 298void slb_vmalloc_update(void)
 299{
 300        /*
 301         * vmalloc is not bolted, so just have to flush non-bolted.
 302         */
 303        slb_flush_and_restore_bolted();
 304}
 305
 306static bool preload_hit(struct thread_info *ti, unsigned long esid)
 307{
 308        unsigned char i;
 309
 310        for (i = 0; i < ti->slb_preload_nr; i++) {
 311                unsigned char idx;
 312
 313                idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
 314                if (esid == ti->slb_preload_esid[idx])
 315                        return true;
 316        }
 317        return false;
 318}
 319
 320static bool preload_add(struct thread_info *ti, unsigned long ea)
 321{
 322        unsigned char idx;
 323        unsigned long esid;
 324
 325        if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 326                /* EAs are stored >> 28 so 256MB segments don't need clearing */
 327                if (ea & ESID_MASK_1T)
 328                        ea &= ESID_MASK_1T;
 329        }
 330
 331        esid = ea >> SID_SHIFT;
 332
 333        if (preload_hit(ti, esid))
 334                return false;
 335
 336        idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
 337        ti->slb_preload_esid[idx] = esid;
 338        if (ti->slb_preload_nr == SLB_PRELOAD_NR)
 339                ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
 340        else
 341                ti->slb_preload_nr++;
 342
 343        return true;
 344}
 345
 346static void preload_age(struct thread_info *ti)
 347{
 348        if (!ti->slb_preload_nr)
 349                return;
 350        ti->slb_preload_nr--;
 351        ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
 352}
 353
 354void slb_setup_new_exec(void)
 355{
 356        struct thread_info *ti = current_thread_info();
 357        struct mm_struct *mm = current->mm;
 358        unsigned long exec = 0x10000000;
 359
 360        WARN_ON(irqs_disabled());
 361
 362        /*
 363         * preload cache can only be used to determine whether a SLB
 364         * entry exists if it does not start to overflow.
 365         */
 366        if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
 367                return;
 368
 369        hard_irq_disable();
 370
 371        /*
 372         * We have no good place to clear the slb preload cache on exec,
 373         * flush_thread is about the earliest arch hook but that happens
 374         * after we switch to the mm and have aleady preloaded the SLBEs.
 375         *
 376         * For the most part that's probably okay to use entries from the
 377         * previous exec, they will age out if unused. It may turn out to
 378         * be an advantage to clear the cache before switching to it,
 379         * however.
 380         */
 381
 382        /*
 383         * preload some userspace segments into the SLB.
 384         * Almost all 32 and 64bit PowerPC executables are linked at
 385         * 0x10000000 so it makes sense to preload this segment.
 386         */
 387        if (!is_kernel_addr(exec)) {
 388                if (preload_add(ti, exec))
 389                        slb_allocate_user(mm, exec);
 390        }
 391
 392        /* Libraries and mmaps. */
 393        if (!is_kernel_addr(mm->mmap_base)) {
 394                if (preload_add(ti, mm->mmap_base))
 395                        slb_allocate_user(mm, mm->mmap_base);
 396        }
 397
 398        /* see switch_slb */
 399        asm volatile("isync" : : : "memory");
 400
 401        local_irq_enable();
 402}
 403
 404void preload_new_slb_context(unsigned long start, unsigned long sp)
 405{
 406        struct thread_info *ti = current_thread_info();
 407        struct mm_struct *mm = current->mm;
 408        unsigned long heap = mm->start_brk;
 409
 410        WARN_ON(irqs_disabled());
 411
 412        /* see above */
 413        if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
 414                return;
 415
 416        hard_irq_disable();
 417
 418        /* Userspace entry address. */
 419        if (!is_kernel_addr(start)) {
 420                if (preload_add(ti, start))
 421                        slb_allocate_user(mm, start);
 422        }
 423
 424        /* Top of stack, grows down. */
 425        if (!is_kernel_addr(sp)) {
 426                if (preload_add(ti, sp))
 427                        slb_allocate_user(mm, sp);
 428        }
 429
 430        /* Bottom of heap, grows up. */
 431        if (heap && !is_kernel_addr(heap)) {
 432                if (preload_add(ti, heap))
 433                        slb_allocate_user(mm, heap);
 434        }
 435
 436        /* see switch_slb */
 437        asm volatile("isync" : : : "memory");
 438
 439        local_irq_enable();
 440}
 441
 442static void slb_cache_slbie_kernel(unsigned int index)
 443{
 444        unsigned long slbie_data = get_paca()->slb_cache[index];
 445        unsigned long ksp = get_paca()->kstack;
 446
 447        slbie_data <<= SID_SHIFT;
 448        slbie_data |= 0xc000000000000000ULL;
 449        if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
 450                return;
 451        slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
 452
 453        asm volatile("slbie %0" : : "r" (slbie_data));
 454}
 455
 456static void slb_cache_slbie_user(unsigned int index)
 457{
 458        unsigned long slbie_data = get_paca()->slb_cache[index];
 459
 460        slbie_data <<= SID_SHIFT;
 461        slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
 462        slbie_data |= SLBIE_C; /* user slbs have C=1 */
 463
 464        asm volatile("slbie %0" : : "r" (slbie_data));
 465}
 466
 467/* Flush all user entries from the segment table of the current processor. */
 468void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
 469{
 470        struct thread_info *ti = task_thread_info(tsk);
 471        unsigned char i;
 472
 473        /*
 474         * We need interrupts hard-disabled here, not just soft-disabled,
 475         * so that a PMU interrupt can't occur, which might try to access
 476         * user memory (to get a stack trace) and possible cause an SLB miss
 477         * which would update the slb_cache/slb_cache_ptr fields in the PACA.
 478         */
 479        hard_irq_disable();
 480        isync();
 481        if (stress_slb()) {
 482                __slb_flush_and_restore_bolted(false);
 483                isync();
 484                get_paca()->slb_cache_ptr = 0;
 485                get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 486
 487        } else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 488                /*
 489                 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
 490                 * associated lookaside structures, which matches what
 491                 * switch_slb wants. So ARCH_300 does not use the slb
 492                 * cache.
 493                 */
 494                asm volatile(PPC_SLBIA(3));
 495
 496        } else {
 497                unsigned long offset = get_paca()->slb_cache_ptr;
 498
 499                if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
 500                    offset <= SLB_CACHE_ENTRIES) {
 501                        /*
 502                         * Could assert_slb_presence(true) here, but
 503                         * hypervisor or machine check could have come
 504                         * in and removed the entry at this point.
 505                         */
 506
 507                        for (i = 0; i < offset; i++)
 508                                slb_cache_slbie_user(i);
 509
 510                        /* Workaround POWER5 < DD2.1 issue */
 511                        if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
 512                                slb_cache_slbie_user(0);
 513
 514                } else {
 515                        /* Flush but retain kernel lookaside information */
 516                        __slb_flush_and_restore_bolted(true);
 517                        isync();
 518
 519                        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 520                }
 521
 522                get_paca()->slb_cache_ptr = 0;
 523        }
 524        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 525
 526        copy_mm_to_paca(mm);
 527
 528        /*
 529         * We gradually age out SLBs after a number of context switches to
 530         * reduce reload overhead of unused entries (like we do with FP/VEC
 531         * reload). Each time we wrap 256 switches, take an entry out of the
 532         * SLB preload cache.
 533         */
 534        tsk->thread.load_slb++;
 535        if (!tsk->thread.load_slb) {
 536                unsigned long pc = KSTK_EIP(tsk);
 537
 538                preload_age(ti);
 539                preload_add(ti, pc);
 540        }
 541
 542        for (i = 0; i < ti->slb_preload_nr; i++) {
 543                unsigned char idx;
 544                unsigned long ea;
 545
 546                idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
 547                ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
 548
 549                slb_allocate_user(mm, ea);
 550        }
 551
 552        /*
 553         * Synchronize slbmte preloads with possible subsequent user memory
 554         * address accesses by the kernel (user mode won't happen until
 555         * rfid, which is safe).
 556         */
 557        isync();
 558}
 559
 560void slb_set_size(u16 size)
 561{
 562        mmu_slb_size = size;
 563}
 564
 565void slb_initialize(void)
 566{
 567        unsigned long linear_llp, vmalloc_llp, io_llp;
 568        unsigned long lflags;
 569        static int slb_encoding_inited;
 570#ifdef CONFIG_SPARSEMEM_VMEMMAP
 571        unsigned long vmemmap_llp;
 572#endif
 573
 574        /* Prepare our SLB miss handler based on our page size */
 575        linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
 576        io_llp = mmu_psize_defs[mmu_io_psize].sllp;
 577        vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
 578        get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
 579#ifdef CONFIG_SPARSEMEM_VMEMMAP
 580        vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
 581#endif
 582        if (!slb_encoding_inited) {
 583                slb_encoding_inited = 1;
 584                pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
 585                pr_devel("SLB: io      LLP = %04lx\n", io_llp);
 586#ifdef CONFIG_SPARSEMEM_VMEMMAP
 587                pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
 588#endif
 589        }
 590
 591        get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
 592        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 593        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 594
 595        lflags = SLB_VSID_KERNEL | linear_llp;
 596
 597        /* Invalidate the entire SLB (even entry 0) & all the ERATS */
 598        asm volatile("isync":::"memory");
 599        asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
 600        asm volatile("isync; slbia; isync":::"memory");
 601        create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
 602
 603        /*
 604         * For the boot cpu, we're running on the stack in init_thread_union,
 605         * which is in the first segment of the linear mapping, and also
 606         * get_paca()->kstack hasn't been initialized yet.
 607         * For secondary cpus, we need to bolt the kernel stack entry now.
 608         */
 609        slb_shadow_clear(KSTACK_INDEX);
 610        if (raw_smp_processor_id() != boot_cpuid &&
 611            (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
 612                create_shadowed_slbe(get_paca()->kstack,
 613                                     mmu_kernel_ssize, lflags, KSTACK_INDEX);
 614
 615        asm volatile("isync":::"memory");
 616}
 617
 618static void slb_cache_update(unsigned long esid_data)
 619{
 620        int slb_cache_index;
 621
 622        if (cpu_has_feature(CPU_FTR_ARCH_300))
 623                return; /* ISAv3.0B and later does not use slb_cache */
 624
 625        if (stress_slb())
 626                return;
 627
 628        /*
 629         * Now update slb cache entries
 630         */
 631        slb_cache_index = local_paca->slb_cache_ptr;
 632        if (slb_cache_index < SLB_CACHE_ENTRIES) {
 633                /*
 634                 * We have space in slb cache for optimized switch_slb().
 635                 * Top 36 bits from esid_data as per ISA
 636                 */
 637                local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
 638                local_paca->slb_cache_ptr++;
 639        } else {
 640                /*
 641                 * Our cache is full and the current cache content strictly
 642                 * doesn't indicate the active SLB conents. Bump the ptr
 643                 * so that switch_slb() will ignore the cache.
 644                 */
 645                local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
 646        }
 647}
 648
 649static enum slb_index alloc_slb_index(bool kernel)
 650{
 651        enum slb_index index;
 652
 653        /*
 654         * The allocation bitmaps can become out of synch with the SLB
 655         * when the _switch code does slbie when bolting a new stack
 656         * segment and it must not be anywhere else in the SLB. This leaves
 657         * a kernel allocated entry that is unused in the SLB. With very
 658         * large systems or small segment sizes, the bitmaps could slowly
 659         * fill with these entries. They will eventually be cleared out
 660         * by the round robin allocator in that case, so it's probably not
 661         * worth accounting for.
 662         */
 663
 664        /*
 665         * SLBs beyond 32 entries are allocated with stab_rr only
 666         * POWER7/8/9 have 32 SLB entries, this could be expanded if a
 667         * future CPU has more.
 668         */
 669        if (local_paca->slb_used_bitmap != U32_MAX) {
 670                index = ffz(local_paca->slb_used_bitmap);
 671                local_paca->slb_used_bitmap |= 1U << index;
 672                if (kernel)
 673                        local_paca->slb_kern_bitmap |= 1U << index;
 674        } else {
 675                /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
 676                index = local_paca->stab_rr;
 677                if (index < (mmu_slb_size - 1))
 678                        index++;
 679                else
 680                        index = SLB_NUM_BOLTED;
 681                local_paca->stab_rr = index;
 682                if (index < 32) {
 683                        if (kernel)
 684                                local_paca->slb_kern_bitmap |= 1U << index;
 685                        else
 686                                local_paca->slb_kern_bitmap &= ~(1U << index);
 687                }
 688        }
 689        BUG_ON(index < SLB_NUM_BOLTED);
 690
 691        return index;
 692}
 693
 694static long slb_insert_entry(unsigned long ea, unsigned long context,
 695                                unsigned long flags, int ssize, bool kernel)
 696{
 697        unsigned long vsid;
 698        unsigned long vsid_data, esid_data;
 699        enum slb_index index;
 700
 701        vsid = get_vsid(context, ea, ssize);
 702        if (!vsid)
 703                return -EFAULT;
 704
 705        /*
 706         * There must not be a kernel SLB fault in alloc_slb_index or before
 707         * slbmte here or the allocation bitmaps could get out of whack with
 708         * the SLB.
 709         *
 710         * User SLB faults or preloads take this path which might get inlined
 711         * into the caller, so add compiler barriers here to ensure unsafe
 712         * memory accesses do not come between.
 713         */
 714        barrier();
 715
 716        index = alloc_slb_index(kernel);
 717
 718        vsid_data = __mk_vsid_data(vsid, ssize, flags);
 719        esid_data = mk_esid_data(ea, ssize, index);
 720
 721        /*
 722         * No need for an isync before or after this slbmte. The exception
 723         * we enter with and the rfid we exit with are context synchronizing.
 724         * User preloads should add isync afterwards in case the kernel
 725         * accesses user memory before it returns to userspace with rfid.
 726         */
 727        assert_slb_presence(false, ea);
 728        if (stress_slb()) {
 729                int slb_cache_index = local_paca->slb_cache_ptr;
 730
 731                /*
 732                 * stress_slb() does not use slb cache, repurpose as a
 733                 * cache of inserted (non-bolted) kernel SLB entries. All
 734                 * non-bolted kernel entries are flushed on any user fault,
 735                 * or if there are already 3 non-boled kernel entries.
 736                 */
 737                BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
 738                if (!kernel || slb_cache_index == 3) {
 739                        int i;
 740
 741                        for (i = 0; i < slb_cache_index; i++)
 742                                slb_cache_slbie_kernel(i);
 743                        slb_cache_index = 0;
 744                }
 745
 746                if (kernel)
 747                        local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
 748                local_paca->slb_cache_ptr = slb_cache_index;
 749        }
 750        asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
 751
 752        barrier();
 753
 754        if (!kernel)
 755                slb_cache_update(esid_data);
 756
 757        return 0;
 758}
 759
 760static long slb_allocate_kernel(unsigned long ea, unsigned long id)
 761{
 762        unsigned long context;
 763        unsigned long flags;
 764        int ssize;
 765
 766        if (id == LINEAR_MAP_REGION_ID) {
 767
 768                /* We only support upto H_MAX_PHYSMEM_BITS */
 769                if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
 770                        return -EFAULT;
 771
 772                flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
 773
 774#ifdef CONFIG_SPARSEMEM_VMEMMAP
 775        } else if (id == VMEMMAP_REGION_ID) {
 776
 777                if (ea >= H_VMEMMAP_END)
 778                        return -EFAULT;
 779
 780                flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
 781#endif
 782        } else if (id == VMALLOC_REGION_ID) {
 783
 784                if (ea >= H_VMALLOC_END)
 785                        return -EFAULT;
 786
 787                flags = local_paca->vmalloc_sllp;
 788
 789        } else if (id == IO_REGION_ID) {
 790
 791                if (ea >= H_KERN_IO_END)
 792                        return -EFAULT;
 793
 794                flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
 795
 796        } else {
 797                return -EFAULT;
 798        }
 799
 800        ssize = MMU_SEGSIZE_1T;
 801        if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
 802                ssize = MMU_SEGSIZE_256M;
 803
 804        context = get_kernel_context(ea);
 805
 806        return slb_insert_entry(ea, context, flags, ssize, true);
 807}
 808
 809static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
 810{
 811        unsigned long context;
 812        unsigned long flags;
 813        int bpsize;
 814        int ssize;
 815
 816        /*
 817         * consider this as bad access if we take a SLB miss
 818         * on an address above addr limit.
 819         */
 820        if (ea >= mm_ctx_slb_addr_limit(&mm->context))
 821                return -EFAULT;
 822
 823        context = get_user_context(&mm->context, ea);
 824        if (!context)
 825                return -EFAULT;
 826
 827        if (unlikely(ea >= H_PGTABLE_RANGE)) {
 828                WARN_ON(1);
 829                return -EFAULT;
 830        }
 831
 832        ssize = user_segment_size(ea);
 833
 834        bpsize = get_slice_psize(mm, ea);
 835        flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
 836
 837        return slb_insert_entry(ea, context, flags, ssize, false);
 838}
 839
 840long do_slb_fault(struct pt_regs *regs, unsigned long ea)
 841{
 842        unsigned long id = get_region_id(ea);
 843
 844        /* IRQs are not reconciled here, so can't check irqs_disabled */
 845        VM_WARN_ON(mfmsr() & MSR_EE);
 846
 847        if (unlikely(!(regs->msr & MSR_RI)))
 848                return -EINVAL;
 849
 850        /*
 851         * SLB kernel faults must be very careful not to touch anything
 852         * that is not bolted. E.g., PACA and global variables are okay,
 853         * mm->context stuff is not.
 854         *
 855         * SLB user faults can access all of kernel memory, but must be
 856         * careful not to touch things like IRQ state because it is not
 857         * "reconciled" here. The difficulty is that we must use
 858         * fast_exception_return to return from kernel SLB faults without
 859         * looking at possible non-bolted memory. We could test user vs
 860         * kernel faults in the interrupt handler asm and do a full fault,
 861         * reconcile, ret_from_except for user faults which would make them
 862         * first class kernel code. But for performance it's probably nicer
 863         * if they go via fast_exception_return too.
 864         */
 865        if (id >= LINEAR_MAP_REGION_ID) {
 866                long err;
 867#ifdef CONFIG_DEBUG_VM
 868                /* Catch recursive kernel SLB faults. */
 869                BUG_ON(local_paca->in_kernel_slb_handler);
 870                local_paca->in_kernel_slb_handler = 1;
 871#endif
 872                err = slb_allocate_kernel(ea, id);
 873#ifdef CONFIG_DEBUG_VM
 874                local_paca->in_kernel_slb_handler = 0;
 875#endif
 876                return err;
 877        } else {
 878                struct mm_struct *mm = current->mm;
 879                long err;
 880
 881                if (unlikely(!mm))
 882                        return -EFAULT;
 883
 884                err = slb_allocate_user(mm, ea);
 885                if (!err)
 886                        preload_add(current_thread_info(), ea);
 887
 888                return err;
 889        }
 890}
 891
 892void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
 893{
 894        if (err == -EFAULT) {
 895                if (user_mode(regs))
 896                        _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
 897                else
 898                        bad_page_fault(regs, ea, SIGSEGV);
 899        } else if (err == -EINVAL) {
 900                unrecoverable_exception(regs);
 901        } else {
 902                BUG();
 903        }
 904}
 905