linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
   7 */
   8#include <linux/console.h>
   9#include <linux/crash_dump.h>
  10#include <linux/dma-map-ops.h>
  11#include <linux/dmi.h>
  12#include <linux/efi.h>
  13#include <linux/init_ohci1394_dma.h>
  14#include <linux/initrd.h>
  15#include <linux/iscsi_ibft.h>
  16#include <linux/memblock.h>
  17#include <linux/pci.h>
  18#include <linux/root_dev.h>
  19#include <linux/sfi.h>
  20#include <linux/hugetlb.h>
  21#include <linux/tboot.h>
  22#include <linux/usb/xhci-dbgp.h>
  23#include <linux/static_call.h>
  24#include <linux/swiotlb.h>
  25
  26#include <uapi/linux/mount.h>
  27
  28#include <xen/xen.h>
  29
  30#include <asm/apic.h>
  31#include <asm/numa.h>
  32#include <asm/bios_ebda.h>
  33#include <asm/bugs.h>
  34#include <asm/cpu.h>
  35#include <asm/efi.h>
  36#include <asm/gart.h>
  37#include <asm/hypervisor.h>
  38#include <asm/io_apic.h>
  39#include <asm/kasan.h>
  40#include <asm/kaslr.h>
  41#include <asm/mce.h>
  42#include <asm/mtrr.h>
  43#include <asm/realmode.h>
  44#include <asm/olpc_ofw.h>
  45#include <asm/pci-direct.h>
  46#include <asm/prom.h>
  47#include <asm/proto.h>
  48#include <asm/unwind.h>
  49#include <asm/vsyscall.h>
  50#include <linux/vmalloc.h>
  51
  52/*
  53 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  54 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  55 *
  56 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  57 * represented by pfn_mapped[].
  58 */
  59unsigned long max_low_pfn_mapped;
  60unsigned long max_pfn_mapped;
  61
  62#ifdef CONFIG_DMI
  63RESERVE_BRK(dmi_alloc, 65536);
  64#endif
  65
  66
  67/*
  68 * Range of the BSS area. The size of the BSS area is determined
  69 * at link time, with RESERVE_BRK*() facility reserving additional
  70 * chunks.
  71 */
  72unsigned long _brk_start = (unsigned long)__brk_base;
  73unsigned long _brk_end   = (unsigned long)__brk_base;
  74
  75struct boot_params boot_params;
  76
  77/*
  78 * These are the four main kernel memory regions, we put them into
  79 * the resource tree so that kdump tools and other debugging tools
  80 * recover it:
  81 */
  82
  83static struct resource rodata_resource = {
  84        .name   = "Kernel rodata",
  85        .start  = 0,
  86        .end    = 0,
  87        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  88};
  89
  90static struct resource data_resource = {
  91        .name   = "Kernel data",
  92        .start  = 0,
  93        .end    = 0,
  94        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  95};
  96
  97static struct resource code_resource = {
  98        .name   = "Kernel code",
  99        .start  = 0,
 100        .end    = 0,
 101        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 102};
 103
 104static struct resource bss_resource = {
 105        .name   = "Kernel bss",
 106        .start  = 0,
 107        .end    = 0,
 108        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 109};
 110
 111
 112#ifdef CONFIG_X86_32
 113/* CPU data as detected by the assembly code in head_32.S */
 114struct cpuinfo_x86 new_cpu_data;
 115
 116/* Common CPU data for all CPUs */
 117struct cpuinfo_x86 boot_cpu_data __read_mostly;
 118EXPORT_SYMBOL(boot_cpu_data);
 119
 120unsigned int def_to_bigsmp;
 121
 122/* For MCA, but anyone else can use it if they want */
 123unsigned int machine_id;
 124unsigned int machine_submodel_id;
 125unsigned int BIOS_revision;
 126
 127struct apm_info apm_info;
 128EXPORT_SYMBOL(apm_info);
 129
 130#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 131        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 132struct ist_info ist_info;
 133EXPORT_SYMBOL(ist_info);
 134#else
 135struct ist_info ist_info;
 136#endif
 137
 138#else
 139struct cpuinfo_x86 boot_cpu_data __read_mostly;
 140EXPORT_SYMBOL(boot_cpu_data);
 141#endif
 142
 143
 144#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 145__visible unsigned long mmu_cr4_features __ro_after_init;
 146#else
 147__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 148#endif
 149
 150/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 151int bootloader_type, bootloader_version;
 152
 153/*
 154 * Setup options
 155 */
 156struct screen_info screen_info;
 157EXPORT_SYMBOL(screen_info);
 158struct edid_info edid_info;
 159EXPORT_SYMBOL_GPL(edid_info);
 160
 161extern int root_mountflags;
 162
 163unsigned long saved_video_mode;
 164
 165#define RAMDISK_IMAGE_START_MASK        0x07FF
 166#define RAMDISK_PROMPT_FLAG             0x8000
 167#define RAMDISK_LOAD_FLAG               0x4000
 168
 169static char __initdata command_line[COMMAND_LINE_SIZE];
 170#ifdef CONFIG_CMDLINE_BOOL
 171static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 172#endif
 173
 174#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 175struct edd edd;
 176#ifdef CONFIG_EDD_MODULE
 177EXPORT_SYMBOL(edd);
 178#endif
 179/**
 180 * copy_edd() - Copy the BIOS EDD information
 181 *              from boot_params into a safe place.
 182 *
 183 */
 184static inline void __init copy_edd(void)
 185{
 186     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 187            sizeof(edd.mbr_signature));
 188     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 189     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 190     edd.edd_info_nr = boot_params.eddbuf_entries;
 191}
 192#else
 193static inline void __init copy_edd(void)
 194{
 195}
 196#endif
 197
 198void * __init extend_brk(size_t size, size_t align)
 199{
 200        size_t mask = align - 1;
 201        void *ret;
 202
 203        BUG_ON(_brk_start == 0);
 204        BUG_ON(align & mask);
 205
 206        _brk_end = (_brk_end + mask) & ~mask;
 207        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 208
 209        ret = (void *)_brk_end;
 210        _brk_end += size;
 211
 212        memset(ret, 0, size);
 213
 214        return ret;
 215}
 216
 217#ifdef CONFIG_X86_32
 218static void __init cleanup_highmap(void)
 219{
 220}
 221#endif
 222
 223static void __init reserve_brk(void)
 224{
 225        if (_brk_end > _brk_start)
 226                memblock_reserve(__pa_symbol(_brk_start),
 227                                 _brk_end - _brk_start);
 228
 229        /* Mark brk area as locked down and no longer taking any
 230           new allocations */
 231        _brk_start = 0;
 232}
 233
 234u64 relocated_ramdisk;
 235
 236#ifdef CONFIG_BLK_DEV_INITRD
 237
 238static u64 __init get_ramdisk_image(void)
 239{
 240        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 241
 242        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 243
 244        if (ramdisk_image == 0)
 245                ramdisk_image = phys_initrd_start;
 246
 247        return ramdisk_image;
 248}
 249static u64 __init get_ramdisk_size(void)
 250{
 251        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 252
 253        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 254
 255        if (ramdisk_size == 0)
 256                ramdisk_size = phys_initrd_size;
 257
 258        return ramdisk_size;
 259}
 260
 261static void __init relocate_initrd(void)
 262{
 263        /* Assume only end is not page aligned */
 264        u64 ramdisk_image = get_ramdisk_image();
 265        u64 ramdisk_size  = get_ramdisk_size();
 266        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 267
 268        /* We need to move the initrd down into directly mapped mem */
 269        relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 270                                                      PFN_PHYS(max_pfn_mapped));
 271        if (!relocated_ramdisk)
 272                panic("Cannot find place for new RAMDISK of size %lld\n",
 273                      ramdisk_size);
 274
 275        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 276        initrd_end   = initrd_start + ramdisk_size;
 277        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 278               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 279
 280        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 281
 282        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 283                " [mem %#010llx-%#010llx]\n",
 284                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 285                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 286}
 287
 288static void __init early_reserve_initrd(void)
 289{
 290        /* Assume only end is not page aligned */
 291        u64 ramdisk_image = get_ramdisk_image();
 292        u64 ramdisk_size  = get_ramdisk_size();
 293        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 294
 295        if (!boot_params.hdr.type_of_loader ||
 296            !ramdisk_image || !ramdisk_size)
 297                return;         /* No initrd provided by bootloader */
 298
 299        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 300}
 301
 302static void __init reserve_initrd(void)
 303{
 304        /* Assume only end is not page aligned */
 305        u64 ramdisk_image = get_ramdisk_image();
 306        u64 ramdisk_size  = get_ramdisk_size();
 307        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 308
 309        if (!boot_params.hdr.type_of_loader ||
 310            !ramdisk_image || !ramdisk_size)
 311                return;         /* No initrd provided by bootloader */
 312
 313        initrd_start = 0;
 314
 315        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 316                        ramdisk_end - 1);
 317
 318        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 319                                PFN_DOWN(ramdisk_end))) {
 320                /* All are mapped, easy case */
 321                initrd_start = ramdisk_image + PAGE_OFFSET;
 322                initrd_end = initrd_start + ramdisk_size;
 323                return;
 324        }
 325
 326        relocate_initrd();
 327
 328        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 329}
 330
 331#else
 332static void __init early_reserve_initrd(void)
 333{
 334}
 335static void __init reserve_initrd(void)
 336{
 337}
 338#endif /* CONFIG_BLK_DEV_INITRD */
 339
 340static void __init parse_setup_data(void)
 341{
 342        struct setup_data *data;
 343        u64 pa_data, pa_next;
 344
 345        pa_data = boot_params.hdr.setup_data;
 346        while (pa_data) {
 347                u32 data_len, data_type;
 348
 349                data = early_memremap(pa_data, sizeof(*data));
 350                data_len = data->len + sizeof(struct setup_data);
 351                data_type = data->type;
 352                pa_next = data->next;
 353                early_memunmap(data, sizeof(*data));
 354
 355                switch (data_type) {
 356                case SETUP_E820_EXT:
 357                        e820__memory_setup_extended(pa_data, data_len);
 358                        break;
 359                case SETUP_DTB:
 360                        add_dtb(pa_data);
 361                        break;
 362                case SETUP_EFI:
 363                        parse_efi_setup(pa_data, data_len);
 364                        break;
 365                default:
 366                        break;
 367                }
 368                pa_data = pa_next;
 369        }
 370}
 371
 372static void __init memblock_x86_reserve_range_setup_data(void)
 373{
 374        struct setup_data *data;
 375        u64 pa_data;
 376
 377        pa_data = boot_params.hdr.setup_data;
 378        while (pa_data) {
 379                data = early_memremap(pa_data, sizeof(*data));
 380                memblock_reserve(pa_data, sizeof(*data) + data->len);
 381
 382                if (data->type == SETUP_INDIRECT &&
 383                    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 384                        memblock_reserve(((struct setup_indirect *)data->data)->addr,
 385                                         ((struct setup_indirect *)data->data)->len);
 386
 387                pa_data = data->next;
 388                early_memunmap(data, sizeof(*data));
 389        }
 390}
 391
 392/*
 393 * --------- Crashkernel reservation ------------------------------
 394 */
 395
 396#ifdef CONFIG_KEXEC_CORE
 397
 398/* 16M alignment for crash kernel regions */
 399#define CRASH_ALIGN             SZ_16M
 400
 401/*
 402 * Keep the crash kernel below this limit.
 403 *
 404 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 405 * due to mapping restrictions.
 406 *
 407 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 408 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 409 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 410 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 411 * no good way to detect the paging mode of the target kernel which will be
 412 * loaded for dumping.
 413 */
 414#ifdef CONFIG_X86_32
 415# define CRASH_ADDR_LOW_MAX     SZ_512M
 416# define CRASH_ADDR_HIGH_MAX    SZ_512M
 417#else
 418# define CRASH_ADDR_LOW_MAX     SZ_4G
 419# define CRASH_ADDR_HIGH_MAX    SZ_64T
 420#endif
 421
 422static int __init reserve_crashkernel_low(void)
 423{
 424#ifdef CONFIG_X86_64
 425        unsigned long long base, low_base = 0, low_size = 0;
 426        unsigned long low_mem_limit;
 427        int ret;
 428
 429        low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 430
 431        /* crashkernel=Y,low */
 432        ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 433        if (ret) {
 434                /*
 435                 * two parts from kernel/dma/swiotlb.c:
 436                 * -swiotlb size: user-specified with swiotlb= or default.
 437                 *
 438                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 439                 * to 8M for other buffers that may need to stay low too. Also
 440                 * make sure we allocate enough extra low memory so that we
 441                 * don't run out of DMA buffers for 32-bit devices.
 442                 */
 443                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 444        } else {
 445                /* passed with crashkernel=0,low ? */
 446                if (!low_size)
 447                        return 0;
 448        }
 449
 450        low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 451        if (!low_base) {
 452                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 453                       (unsigned long)(low_size >> 20));
 454                return -ENOMEM;
 455        }
 456
 457        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 458                (unsigned long)(low_size >> 20),
 459                (unsigned long)(low_base >> 20),
 460                (unsigned long)(low_mem_limit >> 20));
 461
 462        crashk_low_res.start = low_base;
 463        crashk_low_res.end   = low_base + low_size - 1;
 464        insert_resource(&iomem_resource, &crashk_low_res);
 465#endif
 466        return 0;
 467}
 468
 469static void __init reserve_crashkernel(void)
 470{
 471        unsigned long long crash_size, crash_base, total_mem;
 472        bool high = false;
 473        int ret;
 474
 475        total_mem = memblock_phys_mem_size();
 476
 477        /* crashkernel=XM */
 478        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 479        if (ret != 0 || crash_size <= 0) {
 480                /* crashkernel=X,high */
 481                ret = parse_crashkernel_high(boot_command_line, total_mem,
 482                                             &crash_size, &crash_base);
 483                if (ret != 0 || crash_size <= 0)
 484                        return;
 485                high = true;
 486        }
 487
 488        if (xen_pv_domain()) {
 489                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 490                return;
 491        }
 492
 493        /* 0 means: find the address automatically */
 494        if (!crash_base) {
 495                /*
 496                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 497                 * crashkernel=x,high reserves memory over 4G, also allocates
 498                 * 256M extra low memory for DMA buffers and swiotlb.
 499                 * But the extra memory is not required for all machines.
 500                 * So try low memory first and fall back to high memory
 501                 * unless "crashkernel=size[KMG],high" is specified.
 502                 */
 503                if (!high)
 504                        crash_base = memblock_phys_alloc_range(crash_size,
 505                                                CRASH_ALIGN, CRASH_ALIGN,
 506                                                CRASH_ADDR_LOW_MAX);
 507                if (!crash_base)
 508                        crash_base = memblock_phys_alloc_range(crash_size,
 509                                                CRASH_ALIGN, CRASH_ALIGN,
 510                                                CRASH_ADDR_HIGH_MAX);
 511                if (!crash_base) {
 512                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 513                        return;
 514                }
 515        } else {
 516                unsigned long long start;
 517
 518                start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 519                                                  crash_base + crash_size);
 520                if (start != crash_base) {
 521                        pr_info("crashkernel reservation failed - memory is in use.\n");
 522                        return;
 523                }
 524        }
 525
 526        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 527                memblock_free(crash_base, crash_size);
 528                return;
 529        }
 530
 531        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 532                (unsigned long)(crash_size >> 20),
 533                (unsigned long)(crash_base >> 20),
 534                (unsigned long)(total_mem >> 20));
 535
 536        crashk_res.start = crash_base;
 537        crashk_res.end   = crash_base + crash_size - 1;
 538        insert_resource(&iomem_resource, &crashk_res);
 539}
 540#else
 541static void __init reserve_crashkernel(void)
 542{
 543}
 544#endif
 545
 546static struct resource standard_io_resources[] = {
 547        { .name = "dma1", .start = 0x00, .end = 0x1f,
 548                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 549        { .name = "pic1", .start = 0x20, .end = 0x21,
 550                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 551        { .name = "timer0", .start = 0x40, .end = 0x43,
 552                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 553        { .name = "timer1", .start = 0x50, .end = 0x53,
 554                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 555        { .name = "keyboard", .start = 0x60, .end = 0x60,
 556                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 557        { .name = "keyboard", .start = 0x64, .end = 0x64,
 558                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 559        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 560                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 561        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 562                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 563        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 564                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 565        { .name = "fpu", .start = 0xf0, .end = 0xff,
 566                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 567};
 568
 569void __init reserve_standard_io_resources(void)
 570{
 571        int i;
 572
 573        /* request I/O space for devices used on all i[345]86 PCs */
 574        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 575                request_resource(&ioport_resource, &standard_io_resources[i]);
 576
 577}
 578
 579static __init void reserve_ibft_region(void)
 580{
 581        unsigned long addr, size = 0;
 582
 583        addr = find_ibft_region(&size);
 584
 585        if (size)
 586                memblock_reserve(addr, size);
 587}
 588
 589static bool __init snb_gfx_workaround_needed(void)
 590{
 591#ifdef CONFIG_PCI
 592        int i;
 593        u16 vendor, devid;
 594        static const __initconst u16 snb_ids[] = {
 595                0x0102,
 596                0x0112,
 597                0x0122,
 598                0x0106,
 599                0x0116,
 600                0x0126,
 601                0x010a,
 602        };
 603
 604        /* Assume no if something weird is going on with PCI */
 605        if (!early_pci_allowed())
 606                return false;
 607
 608        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 609        if (vendor != 0x8086)
 610                return false;
 611
 612        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 613        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 614                if (devid == snb_ids[i])
 615                        return true;
 616#endif
 617
 618        return false;
 619}
 620
 621/*
 622 * Sandy Bridge graphics has trouble with certain ranges, exclude
 623 * them from allocation.
 624 */
 625static void __init trim_snb_memory(void)
 626{
 627        static const __initconst unsigned long bad_pages[] = {
 628                0x20050000,
 629                0x20110000,
 630                0x20130000,
 631                0x20138000,
 632                0x40004000,
 633        };
 634        int i;
 635
 636        if (!snb_gfx_workaround_needed())
 637                return;
 638
 639        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 640
 641        /*
 642         * Reserve all memory below the 1 MB mark that has not
 643         * already been reserved.
 644         */
 645        memblock_reserve(0, 1<<20);
 646        
 647        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 648                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 649                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 650                               bad_pages[i]);
 651        }
 652}
 653
 654/*
 655 * Here we put platform-specific memory range workarounds, i.e.
 656 * memory known to be corrupt or otherwise in need to be reserved on
 657 * specific platforms.
 658 *
 659 * If this gets used more widely it could use a real dispatch mechanism.
 660 */
 661static void __init trim_platform_memory_ranges(void)
 662{
 663        trim_snb_memory();
 664}
 665
 666static void __init trim_bios_range(void)
 667{
 668        /*
 669         * A special case is the first 4Kb of memory;
 670         * This is a BIOS owned area, not kernel ram, but generally
 671         * not listed as such in the E820 table.
 672         *
 673         * This typically reserves additional memory (64KiB by default)
 674         * since some BIOSes are known to corrupt low memory.  See the
 675         * Kconfig help text for X86_RESERVE_LOW.
 676         */
 677        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 678
 679        /*
 680         * special case: Some BIOSes report the PC BIOS
 681         * area (640Kb -> 1Mb) as RAM even though it is not.
 682         * take them out.
 683         */
 684        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 685
 686        e820__update_table(e820_table);
 687}
 688
 689/* called before trim_bios_range() to spare extra sanitize */
 690static void __init e820_add_kernel_range(void)
 691{
 692        u64 start = __pa_symbol(_text);
 693        u64 size = __pa_symbol(_end) - start;
 694
 695        /*
 696         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 697         * attempt to fix it by adding the range. We may have a confused BIOS,
 698         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 699         * exclude kernel range. If we really are running on top non-RAM,
 700         * we will crash later anyways.
 701         */
 702        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 703                return;
 704
 705        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 706        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 707        e820__range_add(start, size, E820_TYPE_RAM);
 708}
 709
 710static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 711
 712static int __init parse_reservelow(char *p)
 713{
 714        unsigned long long size;
 715
 716        if (!p)
 717                return -EINVAL;
 718
 719        size = memparse(p, &p);
 720
 721        if (size < 4096)
 722                size = 4096;
 723
 724        if (size > 640*1024)
 725                size = 640*1024;
 726
 727        reserve_low = size;
 728
 729        return 0;
 730}
 731
 732early_param("reservelow", parse_reservelow);
 733
 734static void __init trim_low_memory_range(void)
 735{
 736        memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 737}
 738        
 739/*
 740 * Dump out kernel offset information on panic.
 741 */
 742static int
 743dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 744{
 745        if (kaslr_enabled()) {
 746                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 747                         kaslr_offset(),
 748                         __START_KERNEL,
 749                         __START_KERNEL_map,
 750                         MODULES_VADDR-1);
 751        } else {
 752                pr_emerg("Kernel Offset: disabled\n");
 753        }
 754
 755        return 0;
 756}
 757
 758/*
 759 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 760 * passed the efi memmap, systab, etc., so we should use these data structures
 761 * for initialization.  Note, the efi init code path is determined by the
 762 * global efi_enabled. This allows the same kernel image to be used on existing
 763 * systems (with a traditional BIOS) as well as on EFI systems.
 764 */
 765/*
 766 * setup_arch - architecture-specific boot-time initializations
 767 *
 768 * Note: On x86_64, fixmaps are ready for use even before this is called.
 769 */
 770
 771void __init setup_arch(char **cmdline_p)
 772{
 773        /*
 774         * Reserve the memory occupied by the kernel between _text and
 775         * __end_of_kernel_reserve symbols. Any kernel sections after the
 776         * __end_of_kernel_reserve symbol must be explicitly reserved with a
 777         * separate memblock_reserve() or they will be discarded.
 778         */
 779        memblock_reserve(__pa_symbol(_text),
 780                         (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 781
 782        /*
 783         * Make sure page 0 is always reserved because on systems with
 784         * L1TF its contents can be leaked to user processes.
 785         */
 786        memblock_reserve(0, PAGE_SIZE);
 787
 788        early_reserve_initrd();
 789
 790        /*
 791         * At this point everything still needed from the boot loader
 792         * or BIOS or kernel text should be early reserved or marked not
 793         * RAM in e820. All other memory is free game.
 794         */
 795
 796#ifdef CONFIG_X86_32
 797        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 798
 799        /*
 800         * copy kernel address range established so far and switch
 801         * to the proper swapper page table
 802         */
 803        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 804                        initial_page_table + KERNEL_PGD_BOUNDARY,
 805                        KERNEL_PGD_PTRS);
 806
 807        load_cr3(swapper_pg_dir);
 808        /*
 809         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 810         * a cr3 based tlb flush, so the following __flush_tlb_all()
 811         * will not flush anything because the CPU quirk which clears
 812         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 813         * load_cr3() above the TLB has been flushed already. The
 814         * quirk is invoked before subsequent calls to __flush_tlb_all()
 815         * so proper operation is guaranteed.
 816         */
 817        __flush_tlb_all();
 818#else
 819        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 820        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 821#endif
 822
 823        /*
 824         * If we have OLPC OFW, we might end up relocating the fixmap due to
 825         * reserve_top(), so do this before touching the ioremap area.
 826         */
 827        olpc_ofw_detect();
 828
 829        idt_setup_early_traps();
 830        early_cpu_init();
 831        arch_init_ideal_nops();
 832        jump_label_init();
 833        static_call_init();
 834        early_ioremap_init();
 835
 836        setup_olpc_ofw_pgd();
 837
 838        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 839        screen_info = boot_params.screen_info;
 840        edid_info = boot_params.edid_info;
 841#ifdef CONFIG_X86_32
 842        apm_info.bios = boot_params.apm_bios_info;
 843        ist_info = boot_params.ist_info;
 844#endif
 845        saved_video_mode = boot_params.hdr.vid_mode;
 846        bootloader_type = boot_params.hdr.type_of_loader;
 847        if ((bootloader_type >> 4) == 0xe) {
 848                bootloader_type &= 0xf;
 849                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 850        }
 851        bootloader_version  = bootloader_type & 0xf;
 852        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 853
 854#ifdef CONFIG_BLK_DEV_RAM
 855        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 856#endif
 857#ifdef CONFIG_EFI
 858        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 859                     EFI32_LOADER_SIGNATURE, 4)) {
 860                set_bit(EFI_BOOT, &efi.flags);
 861        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 862                     EFI64_LOADER_SIGNATURE, 4)) {
 863                set_bit(EFI_BOOT, &efi.flags);
 864                set_bit(EFI_64BIT, &efi.flags);
 865        }
 866#endif
 867
 868        x86_init.oem.arch_setup();
 869
 870        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 871        e820__memory_setup();
 872        parse_setup_data();
 873
 874        copy_edd();
 875
 876        if (!boot_params.hdr.root_flags)
 877                root_mountflags &= ~MS_RDONLY;
 878        init_mm.start_code = (unsigned long) _text;
 879        init_mm.end_code = (unsigned long) _etext;
 880        init_mm.end_data = (unsigned long) _edata;
 881        init_mm.brk = _brk_end;
 882
 883        code_resource.start = __pa_symbol(_text);
 884        code_resource.end = __pa_symbol(_etext)-1;
 885        rodata_resource.start = __pa_symbol(__start_rodata);
 886        rodata_resource.end = __pa_symbol(__end_rodata)-1;
 887        data_resource.start = __pa_symbol(_sdata);
 888        data_resource.end = __pa_symbol(_edata)-1;
 889        bss_resource.start = __pa_symbol(__bss_start);
 890        bss_resource.end = __pa_symbol(__bss_stop)-1;
 891
 892#ifdef CONFIG_CMDLINE_BOOL
 893#ifdef CONFIG_CMDLINE_OVERRIDE
 894        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 895#else
 896        if (builtin_cmdline[0]) {
 897                /* append boot loader cmdline to builtin */
 898                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 899                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 900                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 901        }
 902#endif
 903#endif
 904
 905        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 906        *cmdline_p = command_line;
 907
 908        /*
 909         * x86_configure_nx() is called before parse_early_param() to detect
 910         * whether hardware doesn't support NX (so that the early EHCI debug
 911         * console setup can safely call set_fixmap()). It may then be called
 912         * again from within noexec_setup() during parsing early parameters
 913         * to honor the respective command line option.
 914         */
 915        x86_configure_nx();
 916
 917        parse_early_param();
 918
 919        if (efi_enabled(EFI_BOOT))
 920                efi_memblock_x86_reserve_range();
 921#ifdef CONFIG_MEMORY_HOTPLUG
 922        /*
 923         * Memory used by the kernel cannot be hot-removed because Linux
 924         * cannot migrate the kernel pages. When memory hotplug is
 925         * enabled, we should prevent memblock from allocating memory
 926         * for the kernel.
 927         *
 928         * ACPI SRAT records all hotpluggable memory ranges. But before
 929         * SRAT is parsed, we don't know about it.
 930         *
 931         * The kernel image is loaded into memory at very early time. We
 932         * cannot prevent this anyway. So on NUMA system, we set any
 933         * node the kernel resides in as un-hotpluggable.
 934         *
 935         * Since on modern servers, one node could have double-digit
 936         * gigabytes memory, we can assume the memory around the kernel
 937         * image is also un-hotpluggable. So before SRAT is parsed, just
 938         * allocate memory near the kernel image to try the best to keep
 939         * the kernel away from hotpluggable memory.
 940         */
 941        if (movable_node_is_enabled())
 942                memblock_set_bottom_up(true);
 943#endif
 944
 945        x86_report_nx();
 946
 947        /* after early param, so could get panic from serial */
 948        memblock_x86_reserve_range_setup_data();
 949
 950        if (acpi_mps_check()) {
 951#ifdef CONFIG_X86_LOCAL_APIC
 952                disable_apic = 1;
 953#endif
 954                setup_clear_cpu_cap(X86_FEATURE_APIC);
 955        }
 956
 957        e820__reserve_setup_data();
 958        e820__finish_early_params();
 959
 960        if (efi_enabled(EFI_BOOT))
 961                efi_init();
 962
 963        dmi_setup();
 964
 965        /*
 966         * VMware detection requires dmi to be available, so this
 967         * needs to be done after dmi_setup(), for the boot CPU.
 968         */
 969        init_hypervisor_platform();
 970
 971        tsc_early_init();
 972        x86_init.resources.probe_roms();
 973
 974        /* after parse_early_param, so could debug it */
 975        insert_resource(&iomem_resource, &code_resource);
 976        insert_resource(&iomem_resource, &rodata_resource);
 977        insert_resource(&iomem_resource, &data_resource);
 978        insert_resource(&iomem_resource, &bss_resource);
 979
 980        e820_add_kernel_range();
 981        trim_bios_range();
 982#ifdef CONFIG_X86_32
 983        if (ppro_with_ram_bug()) {
 984                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 985                                  E820_TYPE_RESERVED);
 986                e820__update_table(e820_table);
 987                printk(KERN_INFO "fixed physical RAM map:\n");
 988                e820__print_table("bad_ppro");
 989        }
 990#else
 991        early_gart_iommu_check();
 992#endif
 993
 994        /*
 995         * partially used pages are not usable - thus
 996         * we are rounding upwards:
 997         */
 998        max_pfn = e820__end_of_ram_pfn();
 999
1000        /* update e820 for memory not covered by WB MTRRs */
1001        mtrr_bp_init();
1002        if (mtrr_trim_uncached_memory(max_pfn))
1003                max_pfn = e820__end_of_ram_pfn();
1004
1005        max_possible_pfn = max_pfn;
1006
1007        /*
1008         * This call is required when the CPU does not support PAT. If
1009         * mtrr_bp_init() invoked it already via pat_init() the call has no
1010         * effect.
1011         */
1012        init_cache_modes();
1013
1014        /*
1015         * Define random base addresses for memory sections after max_pfn is
1016         * defined and before each memory section base is used.
1017         */
1018        kernel_randomize_memory();
1019
1020#ifdef CONFIG_X86_32
1021        /* max_low_pfn get updated here */
1022        find_low_pfn_range();
1023#else
1024        check_x2apic();
1025
1026        /* How many end-of-memory variables you have, grandma! */
1027        /* need this before calling reserve_initrd */
1028        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1029                max_low_pfn = e820__end_of_low_ram_pfn();
1030        else
1031                max_low_pfn = max_pfn;
1032
1033        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1034#endif
1035
1036        /*
1037         * Find and reserve possible boot-time SMP configuration:
1038         */
1039        find_smp_config();
1040
1041        reserve_ibft_region();
1042
1043        early_alloc_pgt_buf();
1044
1045        /*
1046         * Need to conclude brk, before e820__memblock_setup()
1047         *  it could use memblock_find_in_range, could overlap with
1048         *  brk area.
1049         */
1050        reserve_brk();
1051
1052        cleanup_highmap();
1053
1054        memblock_set_current_limit(ISA_END_ADDRESS);
1055        e820__memblock_setup();
1056
1057        reserve_bios_regions();
1058
1059        efi_fake_memmap();
1060        efi_find_mirror();
1061        efi_esrt_init();
1062        efi_mokvar_table_init();
1063
1064        /*
1065         * The EFI specification says that boot service code won't be
1066         * called after ExitBootServices(). This is, in fact, a lie.
1067         */
1068        efi_reserve_boot_services();
1069
1070        /* preallocate 4k for mptable mpc */
1071        e820__memblock_alloc_reserved_mpc_new();
1072
1073#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1074        setup_bios_corruption_check();
1075#endif
1076
1077#ifdef CONFIG_X86_32
1078        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1079                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1080#endif
1081
1082        reserve_real_mode();
1083
1084        trim_platform_memory_ranges();
1085        trim_low_memory_range();
1086
1087        init_mem_mapping();
1088
1089        idt_setup_early_pf();
1090
1091        /*
1092         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1093         * with the current CR4 value.  This may not be necessary, but
1094         * auditing all the early-boot CR4 manipulation would be needed to
1095         * rule it out.
1096         *
1097         * Mask off features that don't work outside long mode (just
1098         * PCIDE for now).
1099         */
1100        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1101
1102        memblock_set_current_limit(get_max_mapped());
1103
1104        /*
1105         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1106         */
1107
1108#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1109        if (init_ohci1394_dma_early)
1110                init_ohci1394_dma_on_all_controllers();
1111#endif
1112        /* Allocate bigger log buffer */
1113        setup_log_buf(1);
1114
1115        if (efi_enabled(EFI_BOOT)) {
1116                switch (boot_params.secure_boot) {
1117                case efi_secureboot_mode_disabled:
1118                        pr_info("Secure boot disabled\n");
1119                        break;
1120                case efi_secureboot_mode_enabled:
1121                        pr_info("Secure boot enabled\n");
1122                        break;
1123                default:
1124                        pr_info("Secure boot could not be determined\n");
1125                        break;
1126                }
1127        }
1128
1129        reserve_initrd();
1130
1131        acpi_table_upgrade();
1132
1133        vsmp_init();
1134
1135        io_delay_init();
1136
1137        early_platform_quirks();
1138
1139        /*
1140         * Parse the ACPI tables for possible boot-time SMP configuration.
1141         */
1142        acpi_boot_table_init();
1143
1144        early_acpi_boot_init();
1145
1146        initmem_init();
1147        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1148
1149        if (boot_cpu_has(X86_FEATURE_GBPAGES))
1150                hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1151
1152        /*
1153         * Reserve memory for crash kernel after SRAT is parsed so that it
1154         * won't consume hotpluggable memory.
1155         */
1156        reserve_crashkernel();
1157
1158        memblock_find_dma_reserve();
1159
1160        if (!early_xdbc_setup_hardware())
1161                early_xdbc_register_console();
1162
1163        x86_init.paging.pagetable_init();
1164
1165        kasan_init();
1166
1167        /*
1168         * Sync back kernel address range.
1169         *
1170         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1171         * this call?
1172         */
1173        sync_initial_page_table();
1174
1175        tboot_probe();
1176
1177        map_vsyscall();
1178
1179        generic_apic_probe();
1180
1181        early_quirks();
1182
1183        /*
1184         * Read APIC and some other early information from ACPI tables.
1185         */
1186        acpi_boot_init();
1187        sfi_init();
1188        x86_dtb_init();
1189
1190        /*
1191         * get boot-time SMP configuration:
1192         */
1193        get_smp_config();
1194
1195        /*
1196         * Systems w/o ACPI and mptables might not have it mapped the local
1197         * APIC yet, but prefill_possible_map() might need to access it.
1198         */
1199        init_apic_mappings();
1200
1201        prefill_possible_map();
1202
1203        init_cpu_to_node();
1204        init_gi_nodes();
1205
1206        io_apic_init_mappings();
1207
1208        x86_init.hyper.guest_late_init();
1209
1210        e820__reserve_resources();
1211        e820__register_nosave_regions(max_pfn);
1212
1213        x86_init.resources.reserve_resources();
1214
1215        e820__setup_pci_gap();
1216
1217#ifdef CONFIG_VT
1218#if defined(CONFIG_VGA_CONSOLE)
1219        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1220                conswitchp = &vga_con;
1221#endif
1222#endif
1223        x86_init.oem.banner();
1224
1225        x86_init.timers.wallclock_init();
1226
1227        mcheck_init();
1228
1229        register_refined_jiffies(CLOCK_TICK_RATE);
1230
1231#ifdef CONFIG_EFI
1232        if (efi_enabled(EFI_BOOT))
1233                efi_apply_memmap_quirks();
1234#endif
1235
1236        unwind_init();
1237}
1238
1239#ifdef CONFIG_X86_32
1240
1241static struct resource video_ram_resource = {
1242        .name   = "Video RAM area",
1243        .start  = 0xa0000,
1244        .end    = 0xbffff,
1245        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1246};
1247
1248void __init i386_reserve_resources(void)
1249{
1250        request_resource(&iomem_resource, &video_ram_resource);
1251        reserve_standard_io_resources();
1252}
1253
1254#endif /* CONFIG_X86_32 */
1255
1256static struct notifier_block kernel_offset_notifier = {
1257        .notifier_call = dump_kernel_offset
1258};
1259
1260static int __init register_kernel_offset_dumper(void)
1261{
1262        atomic_notifier_chain_register(&panic_notifier_list,
1263                                        &kernel_offset_notifier);
1264        return 0;
1265}
1266__initcall(register_kernel_offset_dumper);
1267