linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/init.h>
   3
   4#include <linux/mm.h>
   5#include <linux/spinlock.h>
   6#include <linux/smp.h>
   7#include <linux/interrupt.h>
   8#include <linux/export.h>
   9#include <linux/cpu.h>
  10#include <linux/debugfs.h>
  11
  12#include <asm/tlbflush.h>
  13#include <asm/mmu_context.h>
  14#include <asm/nospec-branch.h>
  15#include <asm/cache.h>
  16#include <asm/apic.h>
  17
  18#include "mm_internal.h"
  19
  20#ifdef CONFIG_PARAVIRT
  21# define STATIC_NOPV
  22#else
  23# define STATIC_NOPV                    static
  24# define __flush_tlb_local              native_flush_tlb_local
  25# define __flush_tlb_global             native_flush_tlb_global
  26# define __flush_tlb_one_user(addr)     native_flush_tlb_one_user(addr)
  27# define __flush_tlb_others(msk, info)  native_flush_tlb_others(msk, info)
  28#endif
  29
  30/*
  31 *      TLB flushing, formerly SMP-only
  32 *              c/o Linus Torvalds.
  33 *
  34 *      These mean you can really definitely utterly forget about
  35 *      writing to user space from interrupts. (Its not allowed anyway).
  36 *
  37 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  38 *
  39 *      More scalable flush, from Andi Kleen
  40 *
  41 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  42 */
  43
  44/*
  45 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
  46 * stored in cpu_tlb_state.last_user_mm_ibpb.
  47 */
  48#define LAST_USER_MM_IBPB       0x1UL
  49
  50/*
  51 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  52 * to what is traditionally called ASID on the RISC processors.
  53 *
  54 * We don't use the traditional ASID implementation, where each process/mm gets
  55 * its own ASID and flush/restart when we run out of ASID space.
  56 *
  57 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  58 * that came by on this CPU, allowing cheaper switch_mm between processes on
  59 * this CPU.
  60 *
  61 * We end up with different spaces for different things. To avoid confusion we
  62 * use different names for each of them:
  63 *
  64 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  65 *         the canonical identifier for an mm
  66 *
  67 * kPCID - [1, TLB_NR_DYN_ASIDS]
  68 *         the value we write into the PCID part of CR3; corresponds to the
  69 *         ASID+1, because PCID 0 is special.
  70 *
  71 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  72 *         for KPTI each mm has two address spaces and thus needs two
  73 *         PCID values, but we can still do with a single ASID denomination
  74 *         for each mm. Corresponds to kPCID + 2048.
  75 *
  76 */
  77
  78/* There are 12 bits of space for ASIDS in CR3 */
  79#define CR3_HW_ASID_BITS                12
  80
  81/*
  82 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  83 * user/kernel switches
  84 */
  85#ifdef CONFIG_PAGE_TABLE_ISOLATION
  86# define PTI_CONSUMED_PCID_BITS 1
  87#else
  88# define PTI_CONSUMED_PCID_BITS 0
  89#endif
  90
  91#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
  92
  93/*
  94 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
  95 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
  96 * use by non-PCID-aware users.
  97 */
  98#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
  99
 100/*
 101 * Given @asid, compute kPCID
 102 */
 103static inline u16 kern_pcid(u16 asid)
 104{
 105        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 106
 107#ifdef CONFIG_PAGE_TABLE_ISOLATION
 108        /*
 109         * Make sure that the dynamic ASID space does not confict with the
 110         * bit we are using to switch between user and kernel ASIDs.
 111         */
 112        BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
 113
 114        /*
 115         * The ASID being passed in here should have respected the
 116         * MAX_ASID_AVAILABLE and thus never have the switch bit set.
 117         */
 118        VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
 119#endif
 120        /*
 121         * The dynamically-assigned ASIDs that get passed in are small
 122         * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
 123         * so do not bother to clear it.
 124         *
 125         * If PCID is on, ASID-aware code paths put the ASID+1 into the
 126         * PCID bits.  This serves two purposes.  It prevents a nasty
 127         * situation in which PCID-unaware code saves CR3, loads some other
 128         * value (with PCID == 0), and then restores CR3, thus corrupting
 129         * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 130         * that any bugs involving loading a PCID-enabled CR3 with
 131         * CR4.PCIDE off will trigger deterministically.
 132         */
 133        return asid + 1;
 134}
 135
 136/*
 137 * Given @asid, compute uPCID
 138 */
 139static inline u16 user_pcid(u16 asid)
 140{
 141        u16 ret = kern_pcid(asid);
 142#ifdef CONFIG_PAGE_TABLE_ISOLATION
 143        ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 144#endif
 145        return ret;
 146}
 147
 148static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 149{
 150        if (static_cpu_has(X86_FEATURE_PCID)) {
 151                return __sme_pa(pgd) | kern_pcid(asid);
 152        } else {
 153                VM_WARN_ON_ONCE(asid != 0);
 154                return __sme_pa(pgd);
 155        }
 156}
 157
 158static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 159{
 160        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 161        /*
 162         * Use boot_cpu_has() instead of this_cpu_has() as this function
 163         * might be called during early boot. This should work even after
 164         * boot because all CPU's the have same capabilities:
 165         */
 166        VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 167        return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 168}
 169
 170/*
 171 * We get here when we do something requiring a TLB invalidation
 172 * but could not go invalidate all of the contexts.  We do the
 173 * necessary invalidation by clearing out the 'ctx_id' which
 174 * forces a TLB flush when the context is loaded.
 175 */
 176static void clear_asid_other(void)
 177{
 178        u16 asid;
 179
 180        /*
 181         * This is only expected to be set if we have disabled
 182         * kernel _PAGE_GLOBAL pages.
 183         */
 184        if (!static_cpu_has(X86_FEATURE_PTI)) {
 185                WARN_ON_ONCE(1);
 186                return;
 187        }
 188
 189        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 190                /* Do not need to flush the current asid */
 191                if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 192                        continue;
 193                /*
 194                 * Make sure the next time we go to switch to
 195                 * this asid, we do a flush:
 196                 */
 197                this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 198        }
 199        this_cpu_write(cpu_tlbstate.invalidate_other, false);
 200}
 201
 202atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 203
 204
 205static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 206                            u16 *new_asid, bool *need_flush)
 207{
 208        u16 asid;
 209
 210        if (!static_cpu_has(X86_FEATURE_PCID)) {
 211                *new_asid = 0;
 212                *need_flush = true;
 213                return;
 214        }
 215
 216        if (this_cpu_read(cpu_tlbstate.invalidate_other))
 217                clear_asid_other();
 218
 219        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 220                if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 221                    next->context.ctx_id)
 222                        continue;
 223
 224                *new_asid = asid;
 225                *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 226                               next_tlb_gen);
 227                return;
 228        }
 229
 230        /*
 231         * We don't currently own an ASID slot on this CPU.
 232         * Allocate a slot.
 233         */
 234        *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 235        if (*new_asid >= TLB_NR_DYN_ASIDS) {
 236                *new_asid = 0;
 237                this_cpu_write(cpu_tlbstate.next_asid, 1);
 238        }
 239        *need_flush = true;
 240}
 241
 242/*
 243 * Given an ASID, flush the corresponding user ASID.  We can delay this
 244 * until the next time we switch to it.
 245 *
 246 * See SWITCH_TO_USER_CR3.
 247 */
 248static inline void invalidate_user_asid(u16 asid)
 249{
 250        /* There is no user ASID if address space separation is off */
 251        if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 252                return;
 253
 254        /*
 255         * We only have a single ASID if PCID is off and the CR3
 256         * write will have flushed it.
 257         */
 258        if (!cpu_feature_enabled(X86_FEATURE_PCID))
 259                return;
 260
 261        if (!static_cpu_has(X86_FEATURE_PTI))
 262                return;
 263
 264        __set_bit(kern_pcid(asid),
 265                  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 266}
 267
 268static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 269{
 270        unsigned long new_mm_cr3;
 271
 272        if (need_flush) {
 273                invalidate_user_asid(new_asid);
 274                new_mm_cr3 = build_cr3(pgdir, new_asid);
 275        } else {
 276                new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 277        }
 278
 279        /*
 280         * Caution: many callers of this function expect
 281         * that load_cr3() is serializing and orders TLB
 282         * fills with respect to the mm_cpumask writes.
 283         */
 284        write_cr3(new_mm_cr3);
 285}
 286
 287void leave_mm(int cpu)
 288{
 289        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 290
 291        /*
 292         * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 293         * If so, our callers still expect us to flush the TLB, but there
 294         * aren't any user TLB entries in init_mm to worry about.
 295         *
 296         * This needs to happen before any other sanity checks due to
 297         * intel_idle's shenanigans.
 298         */
 299        if (loaded_mm == &init_mm)
 300                return;
 301
 302        /* Warn if we're not lazy. */
 303        WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
 304
 305        switch_mm(NULL, &init_mm, NULL);
 306}
 307EXPORT_SYMBOL_GPL(leave_mm);
 308
 309void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 310               struct task_struct *tsk)
 311{
 312        unsigned long flags;
 313
 314        local_irq_save(flags);
 315        switch_mm_irqs_off(prev, next, tsk);
 316        local_irq_restore(flags);
 317}
 318
 319static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 320{
 321        unsigned long next_tif = task_thread_info(next)->flags;
 322        unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
 323
 324        return (unsigned long)next->mm | ibpb;
 325}
 326
 327static void cond_ibpb(struct task_struct *next)
 328{
 329        if (!next || !next->mm)
 330                return;
 331
 332        /*
 333         * Both, the conditional and the always IBPB mode use the mm
 334         * pointer to avoid the IBPB when switching between tasks of the
 335         * same process. Using the mm pointer instead of mm->context.ctx_id
 336         * opens a hypothetical hole vs. mm_struct reuse, which is more or
 337         * less impossible to control by an attacker. Aside of that it
 338         * would only affect the first schedule so the theoretically
 339         * exposed data is not really interesting.
 340         */
 341        if (static_branch_likely(&switch_mm_cond_ibpb)) {
 342                unsigned long prev_mm, next_mm;
 343
 344                /*
 345                 * This is a bit more complex than the always mode because
 346                 * it has to handle two cases:
 347                 *
 348                 * 1) Switch from a user space task (potential attacker)
 349                 *    which has TIF_SPEC_IB set to a user space task
 350                 *    (potential victim) which has TIF_SPEC_IB not set.
 351                 *
 352                 * 2) Switch from a user space task (potential attacker)
 353                 *    which has TIF_SPEC_IB not set to a user space task
 354                 *    (potential victim) which has TIF_SPEC_IB set.
 355                 *
 356                 * This could be done by unconditionally issuing IBPB when
 357                 * a task which has TIF_SPEC_IB set is either scheduled in
 358                 * or out. Though that results in two flushes when:
 359                 *
 360                 * - the same user space task is scheduled out and later
 361                 *   scheduled in again and only a kernel thread ran in
 362                 *   between.
 363                 *
 364                 * - a user space task belonging to the same process is
 365                 *   scheduled in after a kernel thread ran in between
 366                 *
 367                 * - a user space task belonging to the same process is
 368                 *   scheduled in immediately.
 369                 *
 370                 * Optimize this with reasonably small overhead for the
 371                 * above cases. Mangle the TIF_SPEC_IB bit into the mm
 372                 * pointer of the incoming task which is stored in
 373                 * cpu_tlbstate.last_user_mm_ibpb for comparison.
 374                 */
 375                next_mm = mm_mangle_tif_spec_ib(next);
 376                prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
 377
 378                /*
 379                 * Issue IBPB only if the mm's are different and one or
 380                 * both have the IBPB bit set.
 381                 */
 382                if (next_mm != prev_mm &&
 383                    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 384                        indirect_branch_prediction_barrier();
 385
 386                this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
 387        }
 388
 389        if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 390                /*
 391                 * Only flush when switching to a user space task with a
 392                 * different context than the user space task which ran
 393                 * last on this CPU.
 394                 */
 395                if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
 396                        indirect_branch_prediction_barrier();
 397                        this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
 398                }
 399        }
 400}
 401
 402#ifdef CONFIG_PERF_EVENTS
 403static inline void cr4_update_pce_mm(struct mm_struct *mm)
 404{
 405        if (static_branch_unlikely(&rdpmc_always_available_key) ||
 406            (!static_branch_unlikely(&rdpmc_never_available_key) &&
 407             atomic_read(&mm->context.perf_rdpmc_allowed)))
 408                cr4_set_bits_irqsoff(X86_CR4_PCE);
 409        else
 410                cr4_clear_bits_irqsoff(X86_CR4_PCE);
 411}
 412
 413void cr4_update_pce(void *ignored)
 414{
 415        cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
 416}
 417
 418#else
 419static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
 420#endif
 421
 422void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 423                        struct task_struct *tsk)
 424{
 425        struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 426        u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 427        bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
 428        unsigned cpu = smp_processor_id();
 429        u64 next_tlb_gen;
 430        bool need_flush;
 431        u16 new_asid;
 432
 433        /*
 434         * NB: The scheduler will call us with prev == next when switching
 435         * from lazy TLB mode to normal mode if active_mm isn't changing.
 436         * When this happens, we don't assume that CR3 (and hence
 437         * cpu_tlbstate.loaded_mm) matches next.
 438         *
 439         * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 440         */
 441
 442        /* We don't want flush_tlb_func_* to run concurrently with us. */
 443        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 444                WARN_ON_ONCE(!irqs_disabled());
 445
 446        /*
 447         * Verify that CR3 is what we think it is.  This will catch
 448         * hypothetical buggy code that directly switches to swapper_pg_dir
 449         * without going through leave_mm() / switch_mm_irqs_off() or that
 450         * does something like write_cr3(read_cr3_pa()).
 451         *
 452         * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 453         * isn't free.
 454         */
 455#ifdef CONFIG_DEBUG_VM
 456        if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 457                /*
 458                 * If we were to BUG here, we'd be very likely to kill
 459                 * the system so hard that we don't see the call trace.
 460                 * Try to recover instead by ignoring the error and doing
 461                 * a global flush to minimize the chance of corruption.
 462                 *
 463                 * (This is far from being a fully correct recovery.
 464                 *  Architecturally, the CPU could prefetch something
 465                 *  back into an incorrect ASID slot and leave it there
 466                 *  to cause trouble down the road.  It's better than
 467                 *  nothing, though.)
 468                 */
 469                __flush_tlb_all();
 470        }
 471#endif
 472        this_cpu_write(cpu_tlbstate.is_lazy, false);
 473
 474        /*
 475         * The membarrier system call requires a full memory barrier and
 476         * core serialization before returning to user-space, after
 477         * storing to rq->curr, when changing mm.  This is because
 478         * membarrier() sends IPIs to all CPUs that are in the target mm
 479         * to make them issue memory barriers.  However, if another CPU
 480         * switches to/from the target mm concurrently with
 481         * membarrier(), it can cause that CPU not to receive an IPI
 482         * when it really should issue a memory barrier.  Writing to CR3
 483         * provides that full memory barrier and core serializing
 484         * instruction.
 485         */
 486        if (real_prev == next) {
 487                VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 488                           next->context.ctx_id);
 489
 490                /*
 491                 * Even in lazy TLB mode, the CPU should stay set in the
 492                 * mm_cpumask. The TLB shootdown code can figure out from
 493                 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
 494                 */
 495                if (WARN_ON_ONCE(real_prev != &init_mm &&
 496                                 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 497                        cpumask_set_cpu(cpu, mm_cpumask(next));
 498
 499                /*
 500                 * If the CPU is not in lazy TLB mode, we are just switching
 501                 * from one thread in a process to another thread in the same
 502                 * process. No TLB flush required.
 503                 */
 504                if (!was_lazy)
 505                        return;
 506
 507                /*
 508                 * Read the tlb_gen to check whether a flush is needed.
 509                 * If the TLB is up to date, just use it.
 510                 * The barrier synchronizes with the tlb_gen increment in
 511                 * the TLB shootdown code.
 512                 */
 513                smp_mb();
 514                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 515                if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
 516                                next_tlb_gen)
 517                        return;
 518
 519                /*
 520                 * TLB contents went out of date while we were in lazy
 521                 * mode. Fall through to the TLB switching code below.
 522                 */
 523                new_asid = prev_asid;
 524                need_flush = true;
 525        } else {
 526                /*
 527                 * Avoid user/user BTB poisoning by flushing the branch
 528                 * predictor when switching between processes. This stops
 529                 * one process from doing Spectre-v2 attacks on another.
 530                 */
 531                cond_ibpb(tsk);
 532
 533                /*
 534                 * Stop remote flushes for the previous mm.
 535                 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
 536                 * but the bitmap manipulation can cause cache line contention.
 537                 */
 538                if (real_prev != &init_mm) {
 539                        VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
 540                                                mm_cpumask(real_prev)));
 541                        cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 542                }
 543
 544                /*
 545                 * Start remote flushes and then read tlb_gen.
 546                 */
 547                if (next != &init_mm)
 548                        cpumask_set_cpu(cpu, mm_cpumask(next));
 549                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 550
 551                choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 552
 553                /* Let nmi_uaccess_okay() know that we're changing CR3. */
 554                this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 555                barrier();
 556        }
 557
 558        if (need_flush) {
 559                this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 560                this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 561                load_new_mm_cr3(next->pgd, new_asid, true);
 562
 563                trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 564        } else {
 565                /* The new ASID is already up to date. */
 566                load_new_mm_cr3(next->pgd, new_asid, false);
 567
 568                trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
 569        }
 570
 571        /* Make sure we write CR3 before loaded_mm. */
 572        barrier();
 573
 574        this_cpu_write(cpu_tlbstate.loaded_mm, next);
 575        this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 576
 577        if (next != real_prev) {
 578                cr4_update_pce_mm(next);
 579                switch_ldt(real_prev, next);
 580        }
 581}
 582
 583/*
 584 * Please ignore the name of this function.  It should be called
 585 * switch_to_kernel_thread().
 586 *
 587 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 588 * kernel thread or other context without an mm.  Acceptable implementations
 589 * include doing nothing whatsoever, switching to init_mm, or various clever
 590 * lazy tricks to try to minimize TLB flushes.
 591 *
 592 * The scheduler reserves the right to call enter_lazy_tlb() several times
 593 * in a row.  It will notify us that we're going back to a real mm by
 594 * calling switch_mm_irqs_off().
 595 */
 596void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 597{
 598        if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 599                return;
 600
 601        this_cpu_write(cpu_tlbstate.is_lazy, true);
 602}
 603
 604/*
 605 * Call this when reinitializing a CPU.  It fixes the following potential
 606 * problems:
 607 *
 608 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 609 *   because the CPU was taken down and came back up with CR3's PCID
 610 *   bits clear.  CPU hotplug can do this.
 611 *
 612 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 613 *
 614 * - The CPU went so far out to lunch that it may have missed a TLB
 615 *   flush.
 616 */
 617void initialize_tlbstate_and_flush(void)
 618{
 619        int i;
 620        struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 621        u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 622        unsigned long cr3 = __read_cr3();
 623
 624        /* Assert that CR3 already references the right mm. */
 625        WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 626
 627        /*
 628         * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 629         * doesn't work like other CR4 bits because it can only be set from
 630         * long mode.)
 631         */
 632        WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 633                !(cr4_read_shadow() & X86_CR4_PCIDE));
 634
 635        /* Force ASID 0 and force a TLB flush. */
 636        write_cr3(build_cr3(mm->pgd, 0));
 637
 638        /* Reinitialize tlbstate. */
 639        this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
 640        this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 641        this_cpu_write(cpu_tlbstate.next_asid, 1);
 642        this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 643        this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 644
 645        for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 646                this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 647}
 648
 649/*
 650 * flush_tlb_func_common()'s memory ordering requirement is that any
 651 * TLB fills that happen after we flush the TLB are ordered after we
 652 * read active_mm's tlb_gen.  We don't need any explicit barriers
 653 * because all x86 flush operations are serializing and the
 654 * atomic64_read operation won't be reordered by the compiler.
 655 */
 656static void flush_tlb_func_common(const struct flush_tlb_info *f,
 657                                  bool local, enum tlb_flush_reason reason)
 658{
 659        /*
 660         * We have three different tlb_gen values in here.  They are:
 661         *
 662         * - mm_tlb_gen:     the latest generation.
 663         * - local_tlb_gen:  the generation that this CPU has already caught
 664         *                   up to.
 665         * - f->new_tlb_gen: the generation that the requester of the flush
 666         *                   wants us to catch up to.
 667         */
 668        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 669        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 670        u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 671        u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 672
 673        /* This code cannot presently handle being reentered. */
 674        VM_WARN_ON(!irqs_disabled());
 675
 676        if (unlikely(loaded_mm == &init_mm))
 677                return;
 678
 679        VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 680                   loaded_mm->context.ctx_id);
 681
 682        if (this_cpu_read(cpu_tlbstate.is_lazy)) {
 683                /*
 684                 * We're in lazy mode.  We need to at least flush our
 685                 * paging-structure cache to avoid speculatively reading
 686                 * garbage into our TLB.  Since switching to init_mm is barely
 687                 * slower than a minimal flush, just switch to init_mm.
 688                 *
 689                 * This should be rare, with native_flush_tlb_others skipping
 690                 * IPIs to lazy TLB mode CPUs.
 691                 */
 692                switch_mm_irqs_off(NULL, &init_mm, NULL);
 693                return;
 694        }
 695
 696        if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 697                /*
 698                 * There's nothing to do: we're already up to date.  This can
 699                 * happen if two concurrent flushes happen -- the first flush to
 700                 * be handled can catch us all the way up, leaving no work for
 701                 * the second flush.
 702                 */
 703                trace_tlb_flush(reason, 0);
 704                return;
 705        }
 706
 707        WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 708        WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 709
 710        /*
 711         * If we get to this point, we know that our TLB is out of date.
 712         * This does not strictly imply that we need to flush (it's
 713         * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 714         * going to need to flush in the very near future, so we might
 715         * as well get it over with.
 716         *
 717         * The only question is whether to do a full or partial flush.
 718         *
 719         * We do a partial flush if requested and two extra conditions
 720         * are met:
 721         *
 722         * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 723         *    we've always done all needed flushes to catch up to
 724         *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 725         *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 726         *    us up to date for tlb_gen 3 is the partial flush we're
 727         *    processing.
 728         *
 729         *    As an example of why this check is needed, suppose that there
 730         *    are two concurrent flushes.  The first is a full flush that
 731         *    changes context.tlb_gen from 1 to 2.  The second is a partial
 732         *    flush that changes context.tlb_gen from 2 to 3.  If they get
 733         *    processed on this CPU in reverse order, we'll see
 734         *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 735         *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 736         *    3, we'd be break the invariant: we'd update local_tlb_gen above
 737         *    1 without the full flush that's needed for tlb_gen 2.
 738         *
 739         * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
 740         *    Partial TLB flushes are not all that much cheaper than full TLB
 741         *    flushes, so it seems unlikely that it would be a performance win
 742         *    to do a partial flush if that won't bring our TLB fully up to
 743         *    date.  By doing a full flush instead, we can increase
 744         *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 745         *    avoid another flush in the very near future.
 746         */
 747        if (f->end != TLB_FLUSH_ALL &&
 748            f->new_tlb_gen == local_tlb_gen + 1 &&
 749            f->new_tlb_gen == mm_tlb_gen) {
 750                /* Partial flush */
 751                unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
 752                unsigned long addr = f->start;
 753
 754                while (addr < f->end) {
 755                        flush_tlb_one_user(addr);
 756                        addr += 1UL << f->stride_shift;
 757                }
 758                if (local)
 759                        count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 760                trace_tlb_flush(reason, nr_invalidate);
 761        } else {
 762                /* Full flush. */
 763                flush_tlb_local();
 764                if (local)
 765                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 766                trace_tlb_flush(reason, TLB_FLUSH_ALL);
 767        }
 768
 769        /* Both paths above update our state to mm_tlb_gen. */
 770        this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 771}
 772
 773static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
 774{
 775        const struct flush_tlb_info *f = info;
 776
 777        flush_tlb_func_common(f, true, reason);
 778}
 779
 780static void flush_tlb_func_remote(void *info)
 781{
 782        const struct flush_tlb_info *f = info;
 783
 784        inc_irq_stat(irq_tlb_count);
 785
 786        if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
 787                return;
 788
 789        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 790        flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 791}
 792
 793static bool tlb_is_not_lazy(int cpu, void *data)
 794{
 795        return !per_cpu(cpu_tlbstate.is_lazy, cpu);
 796}
 797
 798STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
 799                                         const struct flush_tlb_info *info)
 800{
 801        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 802        if (info->end == TLB_FLUSH_ALL)
 803                trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 804        else
 805                trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 806                                (info->end - info->start) >> PAGE_SHIFT);
 807
 808        /*
 809         * If no page tables were freed, we can skip sending IPIs to
 810         * CPUs in lazy TLB mode. They will flush the CPU themselves
 811         * at the next context switch.
 812         *
 813         * However, if page tables are getting freed, we need to send the
 814         * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
 815         * up on the new contents of what used to be page tables, while
 816         * doing a speculative memory access.
 817         */
 818        if (info->freed_tables)
 819                smp_call_function_many(cpumask, flush_tlb_func_remote,
 820                               (void *)info, 1);
 821        else
 822                on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
 823                                (void *)info, 1, cpumask);
 824}
 825
 826void flush_tlb_others(const struct cpumask *cpumask,
 827                      const struct flush_tlb_info *info)
 828{
 829        __flush_tlb_others(cpumask, info);
 830}
 831
 832/*
 833 * See Documentation/x86/tlb.rst for details.  We choose 33
 834 * because it is large enough to cover the vast majority (at
 835 * least 95%) of allocations, and is small enough that we are
 836 * confident it will not cause too much overhead.  Each single
 837 * flush is about 100 ns, so this caps the maximum overhead at
 838 * _about_ 3,000 ns.
 839 *
 840 * This is in units of pages.
 841 */
 842unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 843
 844static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
 845
 846#ifdef CONFIG_DEBUG_VM
 847static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
 848#endif
 849
 850static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
 851                        unsigned long start, unsigned long end,
 852                        unsigned int stride_shift, bool freed_tables,
 853                        u64 new_tlb_gen)
 854{
 855        struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
 856
 857#ifdef CONFIG_DEBUG_VM
 858        /*
 859         * Ensure that the following code is non-reentrant and flush_tlb_info
 860         * is not overwritten. This means no TLB flushing is initiated by
 861         * interrupt handlers and machine-check exception handlers.
 862         */
 863        BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
 864#endif
 865
 866        info->start             = start;
 867        info->end               = end;
 868        info->mm                = mm;
 869        info->stride_shift      = stride_shift;
 870        info->freed_tables      = freed_tables;
 871        info->new_tlb_gen       = new_tlb_gen;
 872
 873        return info;
 874}
 875
 876static inline void put_flush_tlb_info(void)
 877{
 878#ifdef CONFIG_DEBUG_VM
 879        /* Complete reentrency prevention checks */
 880        barrier();
 881        this_cpu_dec(flush_tlb_info_idx);
 882#endif
 883}
 884
 885void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 886                                unsigned long end, unsigned int stride_shift,
 887                                bool freed_tables)
 888{
 889        struct flush_tlb_info *info;
 890        u64 new_tlb_gen;
 891        int cpu;
 892
 893        cpu = get_cpu();
 894
 895        /* Should we flush just the requested range? */
 896        if ((end == TLB_FLUSH_ALL) ||
 897            ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
 898                start = 0;
 899                end = TLB_FLUSH_ALL;
 900        }
 901
 902        /* This is also a barrier that synchronizes with switch_mm(). */
 903        new_tlb_gen = inc_mm_tlb_gen(mm);
 904
 905        info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
 906                                  new_tlb_gen);
 907
 908        if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 909                lockdep_assert_irqs_enabled();
 910                local_irq_disable();
 911                flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
 912                local_irq_enable();
 913        }
 914
 915        if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
 916                flush_tlb_others(mm_cpumask(mm), info);
 917
 918        put_flush_tlb_info();
 919        put_cpu();
 920}
 921
 922
 923static void do_flush_tlb_all(void *info)
 924{
 925        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 926        __flush_tlb_all();
 927}
 928
 929void flush_tlb_all(void)
 930{
 931        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 932        on_each_cpu(do_flush_tlb_all, NULL, 1);
 933}
 934
 935static void do_kernel_range_flush(void *info)
 936{
 937        struct flush_tlb_info *f = info;
 938        unsigned long addr;
 939
 940        /* flush range by one by one 'invlpg' */
 941        for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
 942                flush_tlb_one_kernel(addr);
 943}
 944
 945void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 946{
 947        /* Balance as user space task's flush, a bit conservative */
 948        if (end == TLB_FLUSH_ALL ||
 949            (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
 950                on_each_cpu(do_flush_tlb_all, NULL, 1);
 951        } else {
 952                struct flush_tlb_info *info;
 953
 954                preempt_disable();
 955                info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
 956
 957                on_each_cpu(do_kernel_range_flush, info, 1);
 958
 959                put_flush_tlb_info();
 960                preempt_enable();
 961        }
 962}
 963
 964/*
 965 * This can be used from process context to figure out what the value of
 966 * CR3 is without needing to do a (slow) __read_cr3().
 967 *
 968 * It's intended to be used for code like KVM that sneakily changes CR3
 969 * and needs to restore it.  It needs to be used very carefully.
 970 */
 971unsigned long __get_current_cr3_fast(void)
 972{
 973        unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
 974                this_cpu_read(cpu_tlbstate.loaded_mm_asid));
 975
 976        /* For now, be very restrictive about when this can be called. */
 977        VM_WARN_ON(in_nmi() || preemptible());
 978
 979        VM_BUG_ON(cr3 != __read_cr3());
 980        return cr3;
 981}
 982EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
 983
 984/*
 985 * Flush one page in the kernel mapping
 986 */
 987void flush_tlb_one_kernel(unsigned long addr)
 988{
 989        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
 990
 991        /*
 992         * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
 993         * paravirt equivalent.  Even with PCID, this is sufficient: we only
 994         * use PCID if we also use global PTEs for the kernel mapping, and
 995         * INVLPG flushes global translations across all address spaces.
 996         *
 997         * If PTI is on, then the kernel is mapped with non-global PTEs, and
 998         * __flush_tlb_one_user() will flush the given address for the current
 999         * kernel address space and for its usermode counterpart, but it does
1000         * not flush it for other address spaces.
1001         */
1002        flush_tlb_one_user(addr);
1003
1004        if (!static_cpu_has(X86_FEATURE_PTI))
1005                return;
1006
1007        /*
1008         * See above.  We need to propagate the flush to all other address
1009         * spaces.  In principle, we only need to propagate it to kernelmode
1010         * address spaces, but the extra bookkeeping we would need is not
1011         * worth it.
1012         */
1013        this_cpu_write(cpu_tlbstate.invalidate_other, true);
1014}
1015
1016/*
1017 * Flush one page in the user mapping
1018 */
1019STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1020{
1021        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1022
1023        asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1024
1025        if (!static_cpu_has(X86_FEATURE_PTI))
1026                return;
1027
1028        /*
1029         * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1030         * Just use invalidate_user_asid() in case we are called early.
1031         */
1032        if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1033                invalidate_user_asid(loaded_mm_asid);
1034        else
1035                invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1036}
1037
1038void flush_tlb_one_user(unsigned long addr)
1039{
1040        __flush_tlb_one_user(addr);
1041}
1042
1043/*
1044 * Flush everything
1045 */
1046STATIC_NOPV void native_flush_tlb_global(void)
1047{
1048        unsigned long cr4, flags;
1049
1050        if (static_cpu_has(X86_FEATURE_INVPCID)) {
1051                /*
1052                 * Using INVPCID is considerably faster than a pair of writes
1053                 * to CR4 sandwiched inside an IRQ flag save/restore.
1054                 *
1055                 * Note, this works with CR4.PCIDE=0 or 1.
1056                 */
1057                invpcid_flush_all();
1058                return;
1059        }
1060
1061        /*
1062         * Read-modify-write to CR4 - protect it from preemption and
1063         * from interrupts. (Use the raw variant because this code can
1064         * be called from deep inside debugging code.)
1065         */
1066        raw_local_irq_save(flags);
1067
1068        cr4 = this_cpu_read(cpu_tlbstate.cr4);
1069        /* toggle PGE */
1070        native_write_cr4(cr4 ^ X86_CR4_PGE);
1071        /* write old PGE again and flush TLBs */
1072        native_write_cr4(cr4);
1073
1074        raw_local_irq_restore(flags);
1075}
1076
1077/*
1078 * Flush the entire current user mapping
1079 */
1080STATIC_NOPV void native_flush_tlb_local(void)
1081{
1082        /*
1083         * Preemption or interrupts must be disabled to protect the access
1084         * to the per CPU variable and to prevent being preempted between
1085         * read_cr3() and write_cr3().
1086         */
1087        WARN_ON_ONCE(preemptible());
1088
1089        invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1090
1091        /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1092        native_write_cr3(__native_read_cr3());
1093}
1094
1095void flush_tlb_local(void)
1096{
1097        __flush_tlb_local();
1098}
1099
1100/*
1101 * Flush everything
1102 */
1103void __flush_tlb_all(void)
1104{
1105        /*
1106         * This is to catch users with enabled preemption and the PGE feature
1107         * and don't trigger the warning in __native_flush_tlb().
1108         */
1109        VM_WARN_ON_ONCE(preemptible());
1110
1111        if (boot_cpu_has(X86_FEATURE_PGE)) {
1112                __flush_tlb_global();
1113        } else {
1114                /*
1115                 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1116                 */
1117                flush_tlb_local();
1118        }
1119}
1120EXPORT_SYMBOL_GPL(__flush_tlb_all);
1121
1122/*
1123 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1124 * This means that the 'struct flush_tlb_info' that describes which mappings to
1125 * flush is actually fixed. We therefore set a single fixed struct and use it in
1126 * arch_tlbbatch_flush().
1127 */
1128static const struct flush_tlb_info full_flush_tlb_info = {
1129        .mm = NULL,
1130        .start = 0,
1131        .end = TLB_FLUSH_ALL,
1132};
1133
1134void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1135{
1136        int cpu = get_cpu();
1137
1138        if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1139                lockdep_assert_irqs_enabled();
1140                local_irq_disable();
1141                flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1142                local_irq_enable();
1143        }
1144
1145        if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1146                flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1147
1148        cpumask_clear(&batch->cpumask);
1149
1150        put_cpu();
1151}
1152
1153/*
1154 * Blindly accessing user memory from NMI context can be dangerous
1155 * if we're in the middle of switching the current user task or
1156 * switching the loaded mm.  It can also be dangerous if we
1157 * interrupted some kernel code that was temporarily using a
1158 * different mm.
1159 */
1160bool nmi_uaccess_okay(void)
1161{
1162        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1163        struct mm_struct *current_mm = current->mm;
1164
1165        VM_WARN_ON_ONCE(!loaded_mm);
1166
1167        /*
1168         * The condition we want to check is
1169         * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1170         * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1171         * is supposed to be reasonably fast.
1172         *
1173         * Instead, we check the almost equivalent but somewhat conservative
1174         * condition below, and we rely on the fact that switch_mm_irqs_off()
1175         * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1176         */
1177        if (loaded_mm != current_mm)
1178                return false;
1179
1180        VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1181
1182        return true;
1183}
1184
1185static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1186                             size_t count, loff_t *ppos)
1187{
1188        char buf[32];
1189        unsigned int len;
1190
1191        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1192        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1193}
1194
1195static ssize_t tlbflush_write_file(struct file *file,
1196                 const char __user *user_buf, size_t count, loff_t *ppos)
1197{
1198        char buf[32];
1199        ssize_t len;
1200        int ceiling;
1201
1202        len = min(count, sizeof(buf) - 1);
1203        if (copy_from_user(buf, user_buf, len))
1204                return -EFAULT;
1205
1206        buf[len] = '\0';
1207        if (kstrtoint(buf, 0, &ceiling))
1208                return -EINVAL;
1209
1210        if (ceiling < 0)
1211                return -EINVAL;
1212
1213        tlb_single_page_flush_ceiling = ceiling;
1214        return count;
1215}
1216
1217static const struct file_operations fops_tlbflush = {
1218        .read = tlbflush_read_file,
1219        .write = tlbflush_write_file,
1220        .llseek = default_llseek,
1221};
1222
1223static int __init create_tlb_single_page_flush_ceiling(void)
1224{
1225        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1226                            arch_debugfs_dir, NULL, &fops_tlbflush);
1227        return 0;
1228}
1229late_initcall(create_tlb_single_page_flush_ceiling);
1230