linux/drivers/acpi/acpi_tad.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * ACPI Time and Alarm (TAD) Device Driver
   4 *
   5 * Copyright (C) 2018 Intel Corporation
   6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *
   8 * This driver is based on Section 9.18 of the ACPI 6.2 specification revision.
   9 *
  10 * It only supports the system wakeup capabilities of the TAD.
  11 *
  12 * Provided are sysfs attributes, available under the TAD platform device,
  13 * allowing user space to manage the AC and DC wakeup timers of the TAD:
  14 * set and read their values, set and check their expire timer wake policies,
  15 * check and clear their status and check the capabilities of the TAD reported
  16 * by AML.  The DC timer attributes are only present if the TAD supports a
  17 * separate DC alarm timer.
  18 *
  19 * The wakeup events handling and power management of the TAD is expected to
  20 * be taken care of by the ACPI PM domain attached to its platform device.
  21 */
  22
  23#include <linux/acpi.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/platform_device.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/suspend.h>
  29
  30MODULE_LICENSE("GPL v2");
  31MODULE_AUTHOR("Rafael J. Wysocki");
  32
  33/* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */
  34#define ACPI_TAD_AC_WAKE        BIT(0)
  35#define ACPI_TAD_DC_WAKE        BIT(1)
  36#define ACPI_TAD_RT             BIT(2)
  37#define ACPI_TAD_RT_IN_MS       BIT(3)
  38#define ACPI_TAD_S4_S5__GWS     BIT(4)
  39#define ACPI_TAD_AC_S4_WAKE     BIT(5)
  40#define ACPI_TAD_AC_S5_WAKE     BIT(6)
  41#define ACPI_TAD_DC_S4_WAKE     BIT(7)
  42#define ACPI_TAD_DC_S5_WAKE     BIT(8)
  43
  44/* ACPI TAD alarm timer selection */
  45#define ACPI_TAD_AC_TIMER       (u32)0
  46#define ACPI_TAD_DC_TIMER       (u32)1
  47
  48/* Special value for disabled timer or expired timer wake policy. */
  49#define ACPI_TAD_WAKE_DISABLED  (~(u32)0)
  50
  51struct acpi_tad_driver_data {
  52        u32 capabilities;
  53};
  54
  55struct acpi_tad_rt {
  56        u16 year;  /* 1900 - 9999 */
  57        u8 month;  /* 1 - 12 */
  58        u8 day;    /* 1 - 31 */
  59        u8 hour;   /* 0 - 23 */
  60        u8 minute; /* 0 - 59 */
  61        u8 second; /* 0 - 59 */
  62        u8 valid;  /* 0 (failed) or 1 (success) for reads, 0 for writes */
  63        u16 msec;  /* 1 - 1000 */
  64        s16 tz;    /* -1440 to 1440 or 2047 (unspecified) */
  65        u8 daylight;
  66        u8 padding[3]; /* must be 0 */
  67} __packed;
  68
  69static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt)
  70{
  71        acpi_handle handle = ACPI_HANDLE(dev);
  72        union acpi_object args[] = {
  73                { .type = ACPI_TYPE_BUFFER, },
  74        };
  75        struct acpi_object_list arg_list = {
  76                .pointer = args,
  77                .count = ARRAY_SIZE(args),
  78        };
  79        unsigned long long retval;
  80        acpi_status status;
  81
  82        if (rt->year < 1900 || rt->year > 9999 ||
  83            rt->month < 1 || rt->month > 12 ||
  84            rt->hour > 23 || rt->minute > 59 || rt->second > 59 ||
  85            rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) ||
  86            rt->daylight > 3)
  87                return -ERANGE;
  88
  89        args[0].buffer.pointer = (u8 *)rt;
  90        args[0].buffer.length = sizeof(*rt);
  91
  92        pm_runtime_get_sync(dev);
  93
  94        status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval);
  95
  96        pm_runtime_put_sync(dev);
  97
  98        if (ACPI_FAILURE(status) || retval)
  99                return -EIO;
 100
 101        return 0;
 102}
 103
 104static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt)
 105{
 106        acpi_handle handle = ACPI_HANDLE(dev);
 107        struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER };
 108        union acpi_object *out_obj;
 109        struct acpi_tad_rt *data;
 110        acpi_status status;
 111        int ret = -EIO;
 112
 113        pm_runtime_get_sync(dev);
 114
 115        status = acpi_evaluate_object(handle, "_GRT", NULL, &output);
 116
 117        pm_runtime_put_sync(dev);
 118
 119        if (ACPI_FAILURE(status))
 120                goto out_free;
 121
 122        out_obj = output.pointer;
 123        if (out_obj->type != ACPI_TYPE_BUFFER)
 124                goto out_free;
 125
 126        if (out_obj->buffer.length != sizeof(*rt))
 127                goto out_free;
 128
 129        data = (struct acpi_tad_rt *)(out_obj->buffer.pointer);
 130        if (!data->valid)
 131                goto out_free;
 132
 133        memcpy(rt, data, sizeof(*rt));
 134        ret = 0;
 135
 136out_free:
 137        ACPI_FREE(output.pointer);
 138        return ret;
 139}
 140
 141static char *acpi_tad_rt_next_field(char *s, int *val)
 142{
 143        char *p;
 144
 145        p = strchr(s, ':');
 146        if (!p)
 147                return NULL;
 148
 149        *p = '\0';
 150        if (kstrtoint(s, 10, val))
 151                return NULL;
 152
 153        return p + 1;
 154}
 155
 156static ssize_t time_store(struct device *dev, struct device_attribute *attr,
 157                          const char *buf, size_t count)
 158{
 159        struct acpi_tad_rt rt;
 160        char *str, *s;
 161        int val, ret = -ENODATA;
 162
 163        str = kmemdup_nul(buf, count, GFP_KERNEL);
 164        if (!str)
 165                return -ENOMEM;
 166
 167        s = acpi_tad_rt_next_field(str, &val);
 168        if (!s)
 169                goto out_free;
 170
 171        rt.year = val;
 172
 173        s = acpi_tad_rt_next_field(s, &val);
 174        if (!s)
 175                goto out_free;
 176
 177        rt.month = val;
 178
 179        s = acpi_tad_rt_next_field(s, &val);
 180        if (!s)
 181                goto out_free;
 182
 183        rt.day = val;
 184
 185        s = acpi_tad_rt_next_field(s, &val);
 186        if (!s)
 187                goto out_free;
 188
 189        rt.hour = val;
 190
 191        s = acpi_tad_rt_next_field(s, &val);
 192        if (!s)
 193                goto out_free;
 194
 195        rt.minute = val;
 196
 197        s = acpi_tad_rt_next_field(s, &val);
 198        if (!s)
 199                goto out_free;
 200
 201        rt.second = val;
 202
 203        s = acpi_tad_rt_next_field(s, &val);
 204        if (!s)
 205                goto out_free;
 206
 207        rt.tz = val;
 208
 209        if (kstrtoint(s, 10, &val))
 210                goto out_free;
 211
 212        rt.daylight = val;
 213
 214        rt.valid = 0;
 215        rt.msec = 0;
 216        memset(rt.padding, 0, 3);
 217
 218        ret = acpi_tad_set_real_time(dev, &rt);
 219
 220out_free:
 221        kfree(str);
 222        return ret ? ret : count;
 223}
 224
 225static ssize_t time_show(struct device *dev, struct device_attribute *attr,
 226                         char *buf)
 227{
 228        struct acpi_tad_rt rt;
 229        int ret;
 230
 231        ret = acpi_tad_get_real_time(dev, &rt);
 232        if (ret)
 233                return ret;
 234
 235        return sprintf(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n",
 236                       rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second,
 237                       rt.tz, rt.daylight);
 238}
 239
 240static DEVICE_ATTR(time, S_IRUSR | S_IWUSR, time_show, time_store);
 241
 242static struct attribute *acpi_tad_time_attrs[] = {
 243        &dev_attr_time.attr,
 244        NULL,
 245};
 246static const struct attribute_group acpi_tad_time_attr_group = {
 247        .attrs  = acpi_tad_time_attrs,
 248};
 249
 250static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id,
 251                             u32 value)
 252{
 253        acpi_handle handle = ACPI_HANDLE(dev);
 254        union acpi_object args[] = {
 255                { .type = ACPI_TYPE_INTEGER, },
 256                { .type = ACPI_TYPE_INTEGER, },
 257        };
 258        struct acpi_object_list arg_list = {
 259                .pointer = args,
 260                .count = ARRAY_SIZE(args),
 261        };
 262        unsigned long long retval;
 263        acpi_status status;
 264
 265        args[0].integer.value = timer_id;
 266        args[1].integer.value = value;
 267
 268        pm_runtime_get_sync(dev);
 269
 270        status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
 271
 272        pm_runtime_put_sync(dev);
 273
 274        if (ACPI_FAILURE(status) || retval)
 275                return -EIO;
 276
 277        return 0;
 278}
 279
 280static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method,
 281                               u32 timer_id, const char *specval)
 282{
 283        u32 value;
 284
 285        if (sysfs_streq(buf, specval)) {
 286                value = ACPI_TAD_WAKE_DISABLED;
 287        } else {
 288                int ret = kstrtou32(buf, 0, &value);
 289
 290                if (ret)
 291                        return ret;
 292
 293                if (value == ACPI_TAD_WAKE_DISABLED)
 294                        return -EINVAL;
 295        }
 296
 297        return acpi_tad_wake_set(dev, method, timer_id, value);
 298}
 299
 300static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method,
 301                                  u32 timer_id, const char *specval)
 302{
 303        acpi_handle handle = ACPI_HANDLE(dev);
 304        union acpi_object args[] = {
 305                { .type = ACPI_TYPE_INTEGER, },
 306        };
 307        struct acpi_object_list arg_list = {
 308                .pointer = args,
 309                .count = ARRAY_SIZE(args),
 310        };
 311        unsigned long long retval;
 312        acpi_status status;
 313
 314        args[0].integer.value = timer_id;
 315
 316        pm_runtime_get_sync(dev);
 317
 318        status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
 319
 320        pm_runtime_put_sync(dev);
 321
 322        if (ACPI_FAILURE(status))
 323                return -EIO;
 324
 325        if ((u32)retval == ACPI_TAD_WAKE_DISABLED)
 326                return sprintf(buf, "%s\n", specval);
 327
 328        return sprintf(buf, "%u\n", (u32)retval);
 329}
 330
 331static const char *alarm_specval = "disabled";
 332
 333static int acpi_tad_alarm_write(struct device *dev, const char *buf,
 334                                u32 timer_id)
 335{
 336        return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval);
 337}
 338
 339static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id)
 340{
 341        return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval);
 342}
 343
 344static const char *policy_specval = "never";
 345
 346static int acpi_tad_policy_write(struct device *dev, const char *buf,
 347                                 u32 timer_id)
 348{
 349        return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval);
 350}
 351
 352static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id)
 353{
 354        return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval);
 355}
 356
 357static int acpi_tad_clear_status(struct device *dev, u32 timer_id)
 358{
 359        acpi_handle handle = ACPI_HANDLE(dev);
 360        union acpi_object args[] = {
 361                { .type = ACPI_TYPE_INTEGER, },
 362        };
 363        struct acpi_object_list arg_list = {
 364                .pointer = args,
 365                .count = ARRAY_SIZE(args),
 366        };
 367        unsigned long long retval;
 368        acpi_status status;
 369
 370        args[0].integer.value = timer_id;
 371
 372        pm_runtime_get_sync(dev);
 373
 374        status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval);
 375
 376        pm_runtime_put_sync(dev);
 377
 378        if (ACPI_FAILURE(status) || retval)
 379                return -EIO;
 380
 381        return 0;
 382}
 383
 384static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id)
 385{
 386        int ret, value;
 387
 388        ret = kstrtoint(buf, 0, &value);
 389        if (ret)
 390                return ret;
 391
 392        if (value)
 393                return -EINVAL;
 394
 395        return acpi_tad_clear_status(dev, timer_id);
 396}
 397
 398static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id)
 399{
 400        acpi_handle handle = ACPI_HANDLE(dev);
 401        union acpi_object args[] = {
 402                { .type = ACPI_TYPE_INTEGER, },
 403        };
 404        struct acpi_object_list arg_list = {
 405                .pointer = args,
 406                .count = ARRAY_SIZE(args),
 407        };
 408        unsigned long long retval;
 409        acpi_status status;
 410
 411        args[0].integer.value = timer_id;
 412
 413        pm_runtime_get_sync(dev);
 414
 415        status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval);
 416
 417        pm_runtime_put_sync(dev);
 418
 419        if (ACPI_FAILURE(status))
 420                return -EIO;
 421
 422        return sprintf(buf, "0x%02X\n", (u32)retval);
 423}
 424
 425static ssize_t caps_show(struct device *dev, struct device_attribute *attr,
 426                         char *buf)
 427{
 428        struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
 429
 430        return sprintf(buf, "0x%02X\n", dd->capabilities);
 431}
 432
 433static DEVICE_ATTR_RO(caps);
 434
 435static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr,
 436                              const char *buf, size_t count)
 437{
 438        int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER);
 439
 440        return ret ? ret : count;
 441}
 442
 443static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr,
 444                             char *buf)
 445{
 446        return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER);
 447}
 448
 449static DEVICE_ATTR(ac_alarm, S_IRUSR | S_IWUSR, ac_alarm_show, ac_alarm_store);
 450
 451static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr,
 452                               const char *buf, size_t count)
 453{
 454        int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER);
 455
 456        return ret ? ret : count;
 457}
 458
 459static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr,
 460                              char *buf)
 461{
 462        return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER);
 463}
 464
 465static DEVICE_ATTR(ac_policy, S_IRUSR | S_IWUSR, ac_policy_show, ac_policy_store);
 466
 467static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr,
 468                               const char *buf, size_t count)
 469{
 470        int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER);
 471
 472        return ret ? ret : count;
 473}
 474
 475static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr,
 476                              char *buf)
 477{
 478        return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER);
 479}
 480
 481static DEVICE_ATTR(ac_status, S_IRUSR | S_IWUSR, ac_status_show, ac_status_store);
 482
 483static struct attribute *acpi_tad_attrs[] = {
 484        &dev_attr_caps.attr,
 485        &dev_attr_ac_alarm.attr,
 486        &dev_attr_ac_policy.attr,
 487        &dev_attr_ac_status.attr,
 488        NULL,
 489};
 490static const struct attribute_group acpi_tad_attr_group = {
 491        .attrs  = acpi_tad_attrs,
 492};
 493
 494static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr,
 495                              const char *buf, size_t count)
 496{
 497        int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER);
 498
 499        return ret ? ret : count;
 500}
 501
 502static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr,
 503                             char *buf)
 504{
 505        return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER);
 506}
 507
 508static DEVICE_ATTR(dc_alarm, S_IRUSR | S_IWUSR, dc_alarm_show, dc_alarm_store);
 509
 510static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr,
 511                               const char *buf, size_t count)
 512{
 513        int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER);
 514
 515        return ret ? ret : count;
 516}
 517
 518static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr,
 519                              char *buf)
 520{
 521        return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER);
 522}
 523
 524static DEVICE_ATTR(dc_policy, S_IRUSR | S_IWUSR, dc_policy_show, dc_policy_store);
 525
 526static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr,
 527                               const char *buf, size_t count)
 528{
 529        int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER);
 530
 531        return ret ? ret : count;
 532}
 533
 534static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr,
 535                              char *buf)
 536{
 537        return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER);
 538}
 539
 540static DEVICE_ATTR(dc_status, S_IRUSR | S_IWUSR, dc_status_show, dc_status_store);
 541
 542static struct attribute *acpi_tad_dc_attrs[] = {
 543        &dev_attr_dc_alarm.attr,
 544        &dev_attr_dc_policy.attr,
 545        &dev_attr_dc_status.attr,
 546        NULL,
 547};
 548static const struct attribute_group acpi_tad_dc_attr_group = {
 549        .attrs  = acpi_tad_dc_attrs,
 550};
 551
 552static int acpi_tad_disable_timer(struct device *dev, u32 timer_id)
 553{
 554        return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED);
 555}
 556
 557static int acpi_tad_remove(struct platform_device *pdev)
 558{
 559        struct device *dev = &pdev->dev;
 560        struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
 561
 562        device_init_wakeup(dev, false);
 563
 564        pm_runtime_get_sync(dev);
 565
 566        if (dd->capabilities & ACPI_TAD_DC_WAKE)
 567                sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group);
 568
 569        sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group);
 570
 571        acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER);
 572        acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER);
 573        if (dd->capabilities & ACPI_TAD_DC_WAKE) {
 574                acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER);
 575                acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER);
 576        }
 577
 578        pm_runtime_put_sync(dev);
 579        pm_runtime_disable(dev);
 580        return 0;
 581}
 582
 583static int acpi_tad_probe(struct platform_device *pdev)
 584{
 585        struct device *dev = &pdev->dev;
 586        acpi_handle handle = ACPI_HANDLE(dev);
 587        struct acpi_tad_driver_data *dd;
 588        acpi_status status;
 589        unsigned long long caps;
 590        int ret;
 591
 592        /*
 593         * Initialization failure messages are mostly about firmware issues, so
 594         * print them at the "info" level.
 595         */
 596        status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps);
 597        if (ACPI_FAILURE(status)) {
 598                dev_info(dev, "Unable to get capabilities\n");
 599                return -ENODEV;
 600        }
 601
 602        if (!(caps & ACPI_TAD_AC_WAKE)) {
 603                dev_info(dev, "Unsupported capabilities\n");
 604                return -ENODEV;
 605        }
 606
 607        if (!acpi_has_method(handle, "_PRW")) {
 608                dev_info(dev, "Missing _PRW\n");
 609                return -ENODEV;
 610        }
 611
 612        dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
 613        if (!dd)
 614                return -ENOMEM;
 615
 616        dd->capabilities = caps;
 617        dev_set_drvdata(dev, dd);
 618
 619        /*
 620         * Assume that the ACPI PM domain has been attached to the device and
 621         * simply enable system wakeup and runtime PM and put the device into
 622         * runtime suspend.  Everything else should be taken care of by the ACPI
 623         * PM domain callbacks.
 624         */
 625        device_init_wakeup(dev, true);
 626        dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
 627                                     DPM_FLAG_MAY_SKIP_RESUME);
 628        /*
 629         * The platform bus type layer tells the ACPI PM domain powers up the
 630         * device, so set the runtime PM status of it to "active".
 631         */
 632        pm_runtime_set_active(dev);
 633        pm_runtime_enable(dev);
 634        pm_runtime_suspend(dev);
 635
 636        ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group);
 637        if (ret)
 638                goto fail;
 639
 640        if (caps & ACPI_TAD_DC_WAKE) {
 641                ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group);
 642                if (ret)
 643                        goto fail;
 644        }
 645
 646        if (caps & ACPI_TAD_RT) {
 647                ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group);
 648                if (ret)
 649                        goto fail;
 650        }
 651
 652        return 0;
 653
 654fail:
 655        acpi_tad_remove(pdev);
 656        return ret;
 657}
 658
 659static const struct acpi_device_id acpi_tad_ids[] = {
 660        {"ACPI000E", 0},
 661        {}
 662};
 663
 664static struct platform_driver acpi_tad_driver = {
 665        .driver = {
 666                .name = "acpi-tad",
 667                .acpi_match_table = acpi_tad_ids,
 668        },
 669        .probe = acpi_tad_probe,
 670        .remove = acpi_tad_remove,
 671};
 672MODULE_DEVICE_TABLE(acpi, acpi_tad_ids);
 673
 674module_platform_driver(acpi_tad_driver);
 675