linux/drivers/char/random.c
<<
>>
Prefs
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are four exported interfaces; two for use within the kernel,
 105 * and two or use from userspace.
 106 *
 107 * Exported interfaces ---- userspace output
 108 * -----------------------------------------
 109 *
 110 * The userspace interfaces are two character devices /dev/random and
 111 * /dev/urandom.  /dev/random is suitable for use when very high
 112 * quality randomness is desired (for example, for key generation or
 113 * one-time pads), as it will only return a maximum of the number of
 114 * bits of randomness (as estimated by the random number generator)
 115 * contained in the entropy pool.
 116 *
 117 * The /dev/urandom device does not have this limit, and will return
 118 * as many bytes as are requested.  As more and more random bytes are
 119 * requested without giving time for the entropy pool to recharge,
 120 * this will result in random numbers that are merely cryptographically
 121 * strong.  For many applications, however, this is acceptable.
 122 *
 123 * Exported interfaces ---- kernel output
 124 * --------------------------------------
 125 *
 126 * The primary kernel interface is
 127 *
 128 *      void get_random_bytes(void *buf, int nbytes);
 129 *
 130 * This interface will return the requested number of random bytes,
 131 * and place it in the requested buffer.  This is equivalent to a
 132 * read from /dev/urandom.
 133 *
 134 * For less critical applications, there are the functions:
 135 *
 136 *      u32 get_random_u32()
 137 *      u64 get_random_u64()
 138 *      unsigned int get_random_int()
 139 *      unsigned long get_random_long()
 140 *
 141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 142 * and so do not deplete the entropy pool as much.  These are recommended
 143 * for most in-kernel operations *if the result is going to be stored in
 144 * the kernel*.
 145 *
 146 * Specifically, the get_random_int() family do not attempt to do
 147 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 148 * by snapshotting the VM), you can figure out previous get_random_int()
 149 * return values.  But if the value is stored in the kernel anyway,
 150 * this is not a problem.
 151 *
 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 153 * network cookies); given outputs 1..n, it's not feasible to predict
 154 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 155 * the kernel later; the get_random_int() engine is not reseeded as
 156 * often as the get_random_bytes() one.
 157 *
 158 * get_random_bytes() is needed for keys that need to stay secret after
 159 * they are erased from the kernel.  For example, any key that will
 160 * be wrapped and stored encrypted.  And session encryption keys: we'd
 161 * like to know that after the session is closed and the keys erased,
 162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 163 *
 164 * But for network ports/cookies, stack canaries, PRNG seeds, address
 165 * space layout randomization, session *authentication* keys, or other
 166 * applications where the sensitive data is stored in the kernel in
 167 * plaintext for as long as it's sensitive, the get_random_int() family
 168 * is just fine.
 169 *
 170 * Consider ASLR.  We want to keep the address space secret from an
 171 * outside attacker while the process is running, but once the address
 172 * space is torn down, it's of no use to an attacker any more.  And it's
 173 * stored in kernel data structures as long as it's alive, so worrying
 174 * about an attacker's ability to extrapolate it from the get_random_int()
 175 * CRNG is silly.
 176 *
 177 * Even some cryptographic keys are safe to generate with get_random_int().
 178 * In particular, keys for SipHash are generally fine.  Here, knowledge
 179 * of the key authorizes you to do something to a kernel object (inject
 180 * packets to a network connection, or flood a hash table), and the
 181 * key is stored with the object being protected.  Once it goes away,
 182 * we no longer care if anyone knows the key.
 183 *
 184 * prandom_u32()
 185 * -------------
 186 *
 187 * For even weaker applications, see the pseudorandom generator
 188 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 189 * numbers aren't security-critical at all, these are *far* cheaper.
 190 * Useful for self-tests, random error simulation, randomized backoffs,
 191 * and any other application where you trust that nobody is trying to
 192 * maliciously mess with you by guessing the "random" numbers.
 193 *
 194 * Exported interfaces ---- input
 195 * ==============================
 196 *
 197 * The current exported interfaces for gathering environmental noise
 198 * from the devices are:
 199 *
 200 *      void add_device_randomness(const void *buf, unsigned int size);
 201 *      void add_input_randomness(unsigned int type, unsigned int code,
 202 *                                unsigned int value);
 203 *      void add_interrupt_randomness(int irq, int irq_flags);
 204 *      void add_disk_randomness(struct gendisk *disk);
 205 *
 206 * add_device_randomness() is for adding data to the random pool that
 207 * is likely to differ between two devices (or possibly even per boot).
 208 * This would be things like MAC addresses or serial numbers, or the
 209 * read-out of the RTC. This does *not* add any actual entropy to the
 210 * pool, but it initializes the pool to different values for devices
 211 * that might otherwise be identical and have very little entropy
 212 * available to them (particularly common in the embedded world).
 213 *
 214 * add_input_randomness() uses the input layer interrupt timing, as well as
 215 * the event type information from the hardware.
 216 *
 217 * add_interrupt_randomness() uses the interrupt timing as random
 218 * inputs to the entropy pool. Using the cycle counters and the irq source
 219 * as inputs, it feeds the randomness roughly once a second.
 220 *
 221 * add_disk_randomness() uses what amounts to the seek time of block
 222 * layer request events, on a per-disk_devt basis, as input to the
 223 * entropy pool. Note that high-speed solid state drives with very low
 224 * seek times do not make for good sources of entropy, as their seek
 225 * times are usually fairly consistent.
 226 *
 227 * All of these routines try to estimate how many bits of randomness a
 228 * particular randomness source.  They do this by keeping track of the
 229 * first and second order deltas of the event timings.
 230 *
 231 * Ensuring unpredictability at system startup
 232 * ============================================
 233 *
 234 * When any operating system starts up, it will go through a sequence
 235 * of actions that are fairly predictable by an adversary, especially
 236 * if the start-up does not involve interaction with a human operator.
 237 * This reduces the actual number of bits of unpredictability in the
 238 * entropy pool below the value in entropy_count.  In order to
 239 * counteract this effect, it helps to carry information in the
 240 * entropy pool across shut-downs and start-ups.  To do this, put the
 241 * following lines an appropriate script which is run during the boot
 242 * sequence:
 243 *
 244 *      echo "Initializing random number generator..."
 245 *      random_seed=/var/run/random-seed
 246 *      # Carry a random seed from start-up to start-up
 247 *      # Load and then save the whole entropy pool
 248 *      if [ -f $random_seed ]; then
 249 *              cat $random_seed >/dev/urandom
 250 *      else
 251 *              touch $random_seed
 252 *      fi
 253 *      chmod 600 $random_seed
 254 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 255 *
 256 * and the following lines in an appropriate script which is run as
 257 * the system is shutdown:
 258 *
 259 *      # Carry a random seed from shut-down to start-up
 260 *      # Save the whole entropy pool
 261 *      echo "Saving random seed..."
 262 *      random_seed=/var/run/random-seed
 263 *      touch $random_seed
 264 *      chmod 600 $random_seed
 265 *      dd if=/dev/urandom of=$random_seed count=1 bs=512
 266 *
 267 * For example, on most modern systems using the System V init
 268 * scripts, such code fragments would be found in
 269 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 271 *
 272 * Effectively, these commands cause the contents of the entropy pool
 273 * to be saved at shut-down time and reloaded into the entropy pool at
 274 * start-up.  (The 'dd' in the addition to the bootup script is to
 275 * make sure that /etc/random-seed is different for every start-up,
 276 * even if the system crashes without executing rc.0.)  Even with
 277 * complete knowledge of the start-up activities, predicting the state
 278 * of the entropy pool requires knowledge of the previous history of
 279 * the system.
 280 *
 281 * Configuring the /dev/random driver under Linux
 282 * ==============================================
 283 *
 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 285 * the /dev/mem major number (#1).  So if your system does not have
 286 * /dev/random and /dev/urandom created already, they can be created
 287 * by using the commands:
 288 *
 289 *      mknod /dev/random c 1 8
 290 *      mknod /dev/urandom c 1 9
 291 *
 292 * Acknowledgements:
 293 * =================
 294 *
 295 * Ideas for constructing this random number generator were derived
 296 * from Pretty Good Privacy's random number generator, and from private
 297 * discussions with Phil Karn.  Colin Plumb provided a faster random
 298 * number generator, which speed up the mixing function of the entropy
 299 * pool, taken from PGPfone.  Dale Worley has also contributed many
 300 * useful ideas and suggestions to improve this driver.
 301 *
 302 * Any flaws in the design are solely my responsibility, and should
 303 * not be attributed to the Phil, Colin, or any of authors of PGP.
 304 *
 305 * Further background information on this topic may be obtained from
 306 * RFC 1750, "Randomness Recommendations for Security", by Donald
 307 * Eastlake, Steve Crocker, and Jeff Schiller.
 308 */
 309
 310#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 311
 312#include <linux/utsname.h>
 313#include <linux/module.h>
 314#include <linux/kernel.h>
 315#include <linux/major.h>
 316#include <linux/string.h>
 317#include <linux/fcntl.h>
 318#include <linux/slab.h>
 319#include <linux/random.h>
 320#include <linux/poll.h>
 321#include <linux/init.h>
 322#include <linux/fs.h>
 323#include <linux/genhd.h>
 324#include <linux/interrupt.h>
 325#include <linux/mm.h>
 326#include <linux/nodemask.h>
 327#include <linux/spinlock.h>
 328#include <linux/kthread.h>
 329#include <linux/percpu.h>
 330#include <linux/fips.h>
 331#include <linux/ptrace.h>
 332#include <linux/workqueue.h>
 333#include <linux/irq.h>
 334#include <linux/ratelimit.h>
 335#include <linux/syscalls.h>
 336#include <linux/completion.h>
 337#include <linux/uuid.h>
 338#include <crypto/chacha.h>
 339#include <crypto/sha.h>
 340
 341#include <asm/processor.h>
 342#include <linux/uaccess.h>
 343#include <asm/irq.h>
 344#include <asm/irq_regs.h>
 345#include <asm/io.h>
 346
 347#define CREATE_TRACE_POINTS
 348#include <trace/events/random.h>
 349
 350/* #define ADD_INTERRUPT_BENCH */
 351
 352/*
 353 * Configuration information
 354 */
 355#define INPUT_POOL_SHIFT        12
 356#define INPUT_POOL_WORDS        (1 << (INPUT_POOL_SHIFT-5))
 357#define OUTPUT_POOL_SHIFT       10
 358#define OUTPUT_POOL_WORDS       (1 << (OUTPUT_POOL_SHIFT-5))
 359#define EXTRACT_SIZE            10
 360
 361
 362#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 363
 364/*
 365 * To allow fractional bits to be tracked, the entropy_count field is
 366 * denominated in units of 1/8th bits.
 367 *
 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
 369 * credit_entropy_bits() needs to be 64 bits wide.
 370 */
 371#define ENTROPY_SHIFT 3
 372#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 373
 374/*
 375 * If the entropy count falls under this number of bits, then we
 376 * should wake up processes which are selecting or polling on write
 377 * access to /dev/random.
 378 */
 379static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 380
 381/*
 382 * Originally, we used a primitive polynomial of degree .poolwords
 383 * over GF(2).  The taps for various sizes are defined below.  They
 384 * were chosen to be evenly spaced except for the last tap, which is 1
 385 * to get the twisting happening as fast as possible.
 386 *
 387 * For the purposes of better mixing, we use the CRC-32 polynomial as
 388 * well to make a (modified) twisted Generalized Feedback Shift
 389 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 390 * generators.  ACM Transactions on Modeling and Computer Simulation
 391 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 392 * GFSR generators II.  ACM Transactions on Modeling and Computer
 393 * Simulation 4:254-266)
 394 *
 395 * Thanks to Colin Plumb for suggesting this.
 396 *
 397 * The mixing operation is much less sensitive than the output hash,
 398 * where we use SHA-1.  All that we want of mixing operation is that
 399 * it be a good non-cryptographic hash; i.e. it not produce collisions
 400 * when fed "random" data of the sort we expect to see.  As long as
 401 * the pool state differs for different inputs, we have preserved the
 402 * input entropy and done a good job.  The fact that an intelligent
 403 * attacker can construct inputs that will produce controlled
 404 * alterations to the pool's state is not important because we don't
 405 * consider such inputs to contribute any randomness.  The only
 406 * property we need with respect to them is that the attacker can't
 407 * increase his/her knowledge of the pool's state.  Since all
 408 * additions are reversible (knowing the final state and the input,
 409 * you can reconstruct the initial state), if an attacker has any
 410 * uncertainty about the initial state, he/she can only shuffle that
 411 * uncertainty about, but never cause any collisions (which would
 412 * decrease the uncertainty).
 413 *
 414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 415 * Videau in their paper, "The Linux Pseudorandom Number Generator
 416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 417 * paper, they point out that we are not using a true Twisted GFSR,
 418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 419 * is, with only three taps, instead of the six that we are using).
 420 * As a result, the resulting polynomial is neither primitive nor
 421 * irreducible, and hence does not have a maximal period over
 422 * GF(2**32).  They suggest a slight change to the generator
 423 * polynomial which improves the resulting TGFSR polynomial to be
 424 * irreducible, which we have made here.
 425 */
 426static const struct poolinfo {
 427        int poolbitshift, poolwords, poolbytes, poolfracbits;
 428#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
 429        int tap1, tap2, tap3, tap4, tap5;
 430} poolinfo_table[] = {
 431        /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 432        /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 433        { S(128),       104,    76,     51,     25,     1 },
 434};
 435
 436/*
 437 * Static global variables
 438 */
 439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 440static struct fasync_struct *fasync;
 441
 442static DEFINE_SPINLOCK(random_ready_list_lock);
 443static LIST_HEAD(random_ready_list);
 444
 445struct crng_state {
 446        __u32           state[16];
 447        unsigned long   init_time;
 448        spinlock_t      lock;
 449};
 450
 451static struct crng_state primary_crng = {
 452        .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 453};
 454
 455/*
 456 * crng_init =  0 --> Uninitialized
 457 *              1 --> Initialized
 458 *              2 --> Initialized from input_pool
 459 *
 460 * crng_init is protected by primary_crng->lock, and only increases
 461 * its value (from 0->1->2).
 462 */
 463static int crng_init = 0;
 464#define crng_ready() (likely(crng_init > 1))
 465static int crng_init_cnt = 0;
 466static unsigned long crng_global_init_time = 0;
 467#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
 468static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
 469static void _crng_backtrack_protect(struct crng_state *crng,
 470                                    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
 471static void process_random_ready_list(void);
 472static void _get_random_bytes(void *buf, int nbytes);
 473
 474static struct ratelimit_state unseeded_warning =
 475        RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 476static struct ratelimit_state urandom_warning =
 477        RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 478
 479static int ratelimit_disable __read_mostly;
 480
 481module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 482MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 483
 484/**********************************************************************
 485 *
 486 * OS independent entropy store.   Here are the functions which handle
 487 * storing entropy in an entropy pool.
 488 *
 489 **********************************************************************/
 490
 491struct entropy_store;
 492struct entropy_store {
 493        /* read-only data: */
 494        const struct poolinfo *poolinfo;
 495        __u32 *pool;
 496        const char *name;
 497
 498        /* read-write data: */
 499        spinlock_t lock;
 500        unsigned short add_ptr;
 501        unsigned short input_rotate;
 502        int entropy_count;
 503        unsigned int initialized:1;
 504        unsigned int last_data_init:1;
 505        __u8 last_data[EXTRACT_SIZE];
 506};
 507
 508static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 509                               size_t nbytes, int min, int rsvd);
 510static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 511                                size_t nbytes, int fips);
 512
 513static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 514static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 515
 516static struct entropy_store input_pool = {
 517        .poolinfo = &poolinfo_table[0],
 518        .name = "input",
 519        .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 520        .pool = input_pool_data
 521};
 522
 523static __u32 const twist_table[8] = {
 524        0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 525        0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 526
 527/*
 528 * This function adds bytes into the entropy "pool".  It does not
 529 * update the entropy estimate.  The caller should call
 530 * credit_entropy_bits if this is appropriate.
 531 *
 532 * The pool is stirred with a primitive polynomial of the appropriate
 533 * degree, and then twisted.  We twist by three bits at a time because
 534 * it's cheap to do so and helps slightly in the expected case where
 535 * the entropy is concentrated in the low-order bits.
 536 */
 537static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 538                            int nbytes)
 539{
 540        unsigned long i, tap1, tap2, tap3, tap4, tap5;
 541        int input_rotate;
 542        int wordmask = r->poolinfo->poolwords - 1;
 543        const char *bytes = in;
 544        __u32 w;
 545
 546        tap1 = r->poolinfo->tap1;
 547        tap2 = r->poolinfo->tap2;
 548        tap3 = r->poolinfo->tap3;
 549        tap4 = r->poolinfo->tap4;
 550        tap5 = r->poolinfo->tap5;
 551
 552        input_rotate = r->input_rotate;
 553        i = r->add_ptr;
 554
 555        /* mix one byte at a time to simplify size handling and churn faster */
 556        while (nbytes--) {
 557                w = rol32(*bytes++, input_rotate);
 558                i = (i - 1) & wordmask;
 559
 560                /* XOR in the various taps */
 561                w ^= r->pool[i];
 562                w ^= r->pool[(i + tap1) & wordmask];
 563                w ^= r->pool[(i + tap2) & wordmask];
 564                w ^= r->pool[(i + tap3) & wordmask];
 565                w ^= r->pool[(i + tap4) & wordmask];
 566                w ^= r->pool[(i + tap5) & wordmask];
 567
 568                /* Mix the result back in with a twist */
 569                r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 570
 571                /*
 572                 * Normally, we add 7 bits of rotation to the pool.
 573                 * At the beginning of the pool, add an extra 7 bits
 574                 * rotation, so that successive passes spread the
 575                 * input bits across the pool evenly.
 576                 */
 577                input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 578        }
 579
 580        r->input_rotate = input_rotate;
 581        r->add_ptr = i;
 582}
 583
 584static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 585                             int nbytes)
 586{
 587        trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 588        _mix_pool_bytes(r, in, nbytes);
 589}
 590
 591static void mix_pool_bytes(struct entropy_store *r, const void *in,
 592                           int nbytes)
 593{
 594        unsigned long flags;
 595
 596        trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 597        spin_lock_irqsave(&r->lock, flags);
 598        _mix_pool_bytes(r, in, nbytes);
 599        spin_unlock_irqrestore(&r->lock, flags);
 600}
 601
 602struct fast_pool {
 603        __u32           pool[4];
 604        unsigned long   last;
 605        unsigned short  reg_idx;
 606        unsigned char   count;
 607};
 608
 609/*
 610 * This is a fast mixing routine used by the interrupt randomness
 611 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 612 * locks that might be needed are taken by the caller.
 613 */
 614static void fast_mix(struct fast_pool *f)
 615{
 616        __u32 a = f->pool[0],   b = f->pool[1];
 617        __u32 c = f->pool[2],   d = f->pool[3];
 618
 619        a += b;                 c += d;
 620        b = rol32(b, 6);        d = rol32(d, 27);
 621        d ^= a;                 b ^= c;
 622
 623        a += b;                 c += d;
 624        b = rol32(b, 16);       d = rol32(d, 14);
 625        d ^= a;                 b ^= c;
 626
 627        a += b;                 c += d;
 628        b = rol32(b, 6);        d = rol32(d, 27);
 629        d ^= a;                 b ^= c;
 630
 631        a += b;                 c += d;
 632        b = rol32(b, 16);       d = rol32(d, 14);
 633        d ^= a;                 b ^= c;
 634
 635        f->pool[0] = a;  f->pool[1] = b;
 636        f->pool[2] = c;  f->pool[3] = d;
 637        f->count++;
 638}
 639
 640static void process_random_ready_list(void)
 641{
 642        unsigned long flags;
 643        struct random_ready_callback *rdy, *tmp;
 644
 645        spin_lock_irqsave(&random_ready_list_lock, flags);
 646        list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 647                struct module *owner = rdy->owner;
 648
 649                list_del_init(&rdy->list);
 650                rdy->func(rdy);
 651                module_put(owner);
 652        }
 653        spin_unlock_irqrestore(&random_ready_list_lock, flags);
 654}
 655
 656/*
 657 * Credit (or debit) the entropy store with n bits of entropy.
 658 * Use credit_entropy_bits_safe() if the value comes from userspace
 659 * or otherwise should be checked for extreme values.
 660 */
 661static void credit_entropy_bits(struct entropy_store *r, int nbits)
 662{
 663        int entropy_count, orig, has_initialized = 0;
 664        const int pool_size = r->poolinfo->poolfracbits;
 665        int nfrac = nbits << ENTROPY_SHIFT;
 666
 667        if (!nbits)
 668                return;
 669
 670retry:
 671        entropy_count = orig = READ_ONCE(r->entropy_count);
 672        if (nfrac < 0) {
 673                /* Debit */
 674                entropy_count += nfrac;
 675        } else {
 676                /*
 677                 * Credit: we have to account for the possibility of
 678                 * overwriting already present entropy.  Even in the
 679                 * ideal case of pure Shannon entropy, new contributions
 680                 * approach the full value asymptotically:
 681                 *
 682                 * entropy <- entropy + (pool_size - entropy) *
 683                 *      (1 - exp(-add_entropy/pool_size))
 684                 *
 685                 * For add_entropy <= pool_size/2 then
 686                 * (1 - exp(-add_entropy/pool_size)) >=
 687                 *    (add_entropy/pool_size)*0.7869...
 688                 * so we can approximate the exponential with
 689                 * 3/4*add_entropy/pool_size and still be on the
 690                 * safe side by adding at most pool_size/2 at a time.
 691                 *
 692                 * The use of pool_size-2 in the while statement is to
 693                 * prevent rounding artifacts from making the loop
 694                 * arbitrarily long; this limits the loop to log2(pool_size)*2
 695                 * turns no matter how large nbits is.
 696                 */
 697                int pnfrac = nfrac;
 698                const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 699                /* The +2 corresponds to the /4 in the denominator */
 700
 701                do {
 702                        unsigned int anfrac = min(pnfrac, pool_size/2);
 703                        unsigned int add =
 704                                ((pool_size - entropy_count)*anfrac*3) >> s;
 705
 706                        entropy_count += add;
 707                        pnfrac -= anfrac;
 708                } while (unlikely(entropy_count < pool_size-2 && pnfrac));
 709        }
 710
 711        if (WARN_ON(entropy_count < 0)) {
 712                pr_warn("negative entropy/overflow: pool %s count %d\n",
 713                        r->name, entropy_count);
 714                entropy_count = 0;
 715        } else if (entropy_count > pool_size)
 716                entropy_count = pool_size;
 717        if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 718                goto retry;
 719
 720        if (has_initialized) {
 721                r->initialized = 1;
 722                kill_fasync(&fasync, SIGIO, POLL_IN);
 723        }
 724
 725        trace_credit_entropy_bits(r->name, nbits,
 726                                  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
 727
 728        if (r == &input_pool) {
 729                int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 730
 731                if (crng_init < 2) {
 732                        if (entropy_bits < 128)
 733                                return;
 734                        crng_reseed(&primary_crng, r);
 735                        entropy_bits = ENTROPY_BITS(r);
 736                }
 737        }
 738}
 739
 740static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 741{
 742        const int nbits_max = r->poolinfo->poolwords * 32;
 743
 744        if (nbits < 0)
 745                return -EINVAL;
 746
 747        /* Cap the value to avoid overflows */
 748        nbits = min(nbits,  nbits_max);
 749
 750        credit_entropy_bits(r, nbits);
 751        return 0;
 752}
 753
 754/*********************************************************************
 755 *
 756 * CRNG using CHACHA20
 757 *
 758 *********************************************************************/
 759
 760#define CRNG_RESEED_INTERVAL (300*HZ)
 761
 762static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 763
 764#ifdef CONFIG_NUMA
 765/*
 766 * Hack to deal with crazy userspace progams when they are all trying
 767 * to access /dev/urandom in parallel.  The programs are almost
 768 * certainly doing something terribly wrong, but we'll work around
 769 * their brain damage.
 770 */
 771static struct crng_state **crng_node_pool __read_mostly;
 772#endif
 773
 774static void invalidate_batched_entropy(void);
 775static void numa_crng_init(void);
 776
 777static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
 778static int __init parse_trust_cpu(char *arg)
 779{
 780        return kstrtobool(arg, &trust_cpu);
 781}
 782early_param("random.trust_cpu", parse_trust_cpu);
 783
 784static bool crng_init_try_arch(struct crng_state *crng)
 785{
 786        int             i;
 787        bool            arch_init = true;
 788        unsigned long   rv;
 789
 790        for (i = 4; i < 16; i++) {
 791                if (!arch_get_random_seed_long(&rv) &&
 792                    !arch_get_random_long(&rv)) {
 793                        rv = random_get_entropy();
 794                        arch_init = false;
 795                }
 796                crng->state[i] ^= rv;
 797        }
 798
 799        return arch_init;
 800}
 801
 802static bool __init crng_init_try_arch_early(struct crng_state *crng)
 803{
 804        int             i;
 805        bool            arch_init = true;
 806        unsigned long   rv;
 807
 808        for (i = 4; i < 16; i++) {
 809                if (!arch_get_random_seed_long_early(&rv) &&
 810                    !arch_get_random_long_early(&rv)) {
 811                        rv = random_get_entropy();
 812                        arch_init = false;
 813                }
 814                crng->state[i] ^= rv;
 815        }
 816
 817        return arch_init;
 818}
 819
 820static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
 821{
 822        memcpy(&crng->state[0], "expand 32-byte k", 16);
 823        _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 824        crng_init_try_arch(crng);
 825        crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 826}
 827
 828static void __init crng_initialize_primary(struct crng_state *crng)
 829{
 830        memcpy(&crng->state[0], "expand 32-byte k", 16);
 831        _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
 832        if (crng_init_try_arch_early(crng) && trust_cpu) {
 833                invalidate_batched_entropy();
 834                numa_crng_init();
 835                crng_init = 2;
 836                pr_notice("crng done (trusting CPU's manufacturer)\n");
 837        }
 838        crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 839}
 840
 841#ifdef CONFIG_NUMA
 842static void do_numa_crng_init(struct work_struct *work)
 843{
 844        int i;
 845        struct crng_state *crng;
 846        struct crng_state **pool;
 847
 848        pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 849        for_each_online_node(i) {
 850                crng = kmalloc_node(sizeof(struct crng_state),
 851                                    GFP_KERNEL | __GFP_NOFAIL, i);
 852                spin_lock_init(&crng->lock);
 853                crng_initialize_secondary(crng);
 854                pool[i] = crng;
 855        }
 856        mb();
 857        if (cmpxchg(&crng_node_pool, NULL, pool)) {
 858                for_each_node(i)
 859                        kfree(pool[i]);
 860                kfree(pool);
 861        }
 862}
 863
 864static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 865
 866static void numa_crng_init(void)
 867{
 868        schedule_work(&numa_crng_init_work);
 869}
 870#else
 871static void numa_crng_init(void) {}
 872#endif
 873
 874/*
 875 * crng_fast_load() can be called by code in the interrupt service
 876 * path.  So we can't afford to dilly-dally.
 877 */
 878static int crng_fast_load(const char *cp, size_t len)
 879{
 880        unsigned long flags;
 881        char *p;
 882
 883        if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 884                return 0;
 885        if (crng_init != 0) {
 886                spin_unlock_irqrestore(&primary_crng.lock, flags);
 887                return 0;
 888        }
 889        p = (unsigned char *) &primary_crng.state[4];
 890        while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 891                p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
 892                cp++; crng_init_cnt++; len--;
 893        }
 894        spin_unlock_irqrestore(&primary_crng.lock, flags);
 895        if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 896                invalidate_batched_entropy();
 897                crng_init = 1;
 898                pr_notice("fast init done\n");
 899        }
 900        return 1;
 901}
 902
 903/*
 904 * crng_slow_load() is called by add_device_randomness, which has two
 905 * attributes.  (1) We can't trust the buffer passed to it is
 906 * guaranteed to be unpredictable (so it might not have any entropy at
 907 * all), and (2) it doesn't have the performance constraints of
 908 * crng_fast_load().
 909 *
 910 * So we do something more comprehensive which is guaranteed to touch
 911 * all of the primary_crng's state, and which uses a LFSR with a
 912 * period of 255 as part of the mixing algorithm.  Finally, we do
 913 * *not* advance crng_init_cnt since buffer we may get may be something
 914 * like a fixed DMI table (for example), which might very well be
 915 * unique to the machine, but is otherwise unvarying.
 916 */
 917static int crng_slow_load(const char *cp, size_t len)
 918{
 919        unsigned long           flags;
 920        static unsigned char    lfsr = 1;
 921        unsigned char           tmp;
 922        unsigned                i, max = CHACHA_KEY_SIZE;
 923        const char *            src_buf = cp;
 924        char *                  dest_buf = (char *) &primary_crng.state[4];
 925
 926        if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 927                return 0;
 928        if (crng_init != 0) {
 929                spin_unlock_irqrestore(&primary_crng.lock, flags);
 930                return 0;
 931        }
 932        if (len > max)
 933                max = len;
 934
 935        for (i = 0; i < max ; i++) {
 936                tmp = lfsr;
 937                lfsr >>= 1;
 938                if (tmp & 1)
 939                        lfsr ^= 0xE1;
 940                tmp = dest_buf[i % CHACHA_KEY_SIZE];
 941                dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 942                lfsr += (tmp << 3) | (tmp >> 5);
 943        }
 944        spin_unlock_irqrestore(&primary_crng.lock, flags);
 945        return 1;
 946}
 947
 948static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 949{
 950        unsigned long   flags;
 951        int             i, num;
 952        union {
 953                __u8    block[CHACHA_BLOCK_SIZE];
 954                __u32   key[8];
 955        } buf;
 956
 957        if (r) {
 958                num = extract_entropy(r, &buf, 32, 16, 0);
 959                if (num == 0)
 960                        return;
 961        } else {
 962                _extract_crng(&primary_crng, buf.block);
 963                _crng_backtrack_protect(&primary_crng, buf.block,
 964                                        CHACHA_KEY_SIZE);
 965        }
 966        spin_lock_irqsave(&crng->lock, flags);
 967        for (i = 0; i < 8; i++) {
 968                unsigned long   rv;
 969                if (!arch_get_random_seed_long(&rv) &&
 970                    !arch_get_random_long(&rv))
 971                        rv = random_get_entropy();
 972                crng->state[i+4] ^= buf.key[i] ^ rv;
 973        }
 974        memzero_explicit(&buf, sizeof(buf));
 975        crng->init_time = jiffies;
 976        spin_unlock_irqrestore(&crng->lock, flags);
 977        if (crng == &primary_crng && crng_init < 2) {
 978                invalidate_batched_entropy();
 979                numa_crng_init();
 980                crng_init = 2;
 981                process_random_ready_list();
 982                wake_up_interruptible(&crng_init_wait);
 983                kill_fasync(&fasync, SIGIO, POLL_IN);
 984                pr_notice("crng init done\n");
 985                if (unseeded_warning.missed) {
 986                        pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
 987                                  unseeded_warning.missed);
 988                        unseeded_warning.missed = 0;
 989                }
 990                if (urandom_warning.missed) {
 991                        pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 992                                  urandom_warning.missed);
 993                        urandom_warning.missed = 0;
 994                }
 995        }
 996}
 997
 998static void _extract_crng(struct crng_state *crng,
 999                          __u8 out[CHACHA_BLOCK_SIZE])
1000{
1001        unsigned long v, flags;
1002
1003        if (crng_ready() &&
1004            (time_after(crng_global_init_time, crng->init_time) ||
1005             time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1006                crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1007        spin_lock_irqsave(&crng->lock, flags);
1008        if (arch_get_random_long(&v))
1009                crng->state[14] ^= v;
1010        chacha20_block(&crng->state[0], out);
1011        if (crng->state[12] == 0)
1012                crng->state[13]++;
1013        spin_unlock_irqrestore(&crng->lock, flags);
1014}
1015
1016static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1017{
1018        struct crng_state *crng = NULL;
1019
1020#ifdef CONFIG_NUMA
1021        if (crng_node_pool)
1022                crng = crng_node_pool[numa_node_id()];
1023        if (crng == NULL)
1024#endif
1025                crng = &primary_crng;
1026        _extract_crng(crng, out);
1027}
1028
1029/*
1030 * Use the leftover bytes from the CRNG block output (if there is
1031 * enough) to mutate the CRNG key to provide backtracking protection.
1032 */
1033static void _crng_backtrack_protect(struct crng_state *crng,
1034                                    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1035{
1036        unsigned long   flags;
1037        __u32           *s, *d;
1038        int             i;
1039
1040        used = round_up(used, sizeof(__u32));
1041        if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1042                extract_crng(tmp);
1043                used = 0;
1044        }
1045        spin_lock_irqsave(&crng->lock, flags);
1046        s = (__u32 *) &tmp[used];
1047        d = &crng->state[4];
1048        for (i=0; i < 8; i++)
1049                *d++ ^= *s++;
1050        spin_unlock_irqrestore(&crng->lock, flags);
1051}
1052
1053static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1054{
1055        struct crng_state *crng = NULL;
1056
1057#ifdef CONFIG_NUMA
1058        if (crng_node_pool)
1059                crng = crng_node_pool[numa_node_id()];
1060        if (crng == NULL)
1061#endif
1062                crng = &primary_crng;
1063        _crng_backtrack_protect(crng, tmp, used);
1064}
1065
1066static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1067{
1068        ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1069        __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1070        int large_request = (nbytes > 256);
1071
1072        while (nbytes) {
1073                if (large_request && need_resched()) {
1074                        if (signal_pending(current)) {
1075                                if (ret == 0)
1076                                        ret = -ERESTARTSYS;
1077                                break;
1078                        }
1079                        schedule();
1080                }
1081
1082                extract_crng(tmp);
1083                i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1084                if (copy_to_user(buf, tmp, i)) {
1085                        ret = -EFAULT;
1086                        break;
1087                }
1088
1089                nbytes -= i;
1090                buf += i;
1091                ret += i;
1092        }
1093        crng_backtrack_protect(tmp, i);
1094
1095        /* Wipe data just written to memory */
1096        memzero_explicit(tmp, sizeof(tmp));
1097
1098        return ret;
1099}
1100
1101
1102/*********************************************************************
1103 *
1104 * Entropy input management
1105 *
1106 *********************************************************************/
1107
1108/* There is one of these per entropy source */
1109struct timer_rand_state {
1110        cycles_t last_time;
1111        long last_delta, last_delta2;
1112};
1113
1114#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1115
1116/*
1117 * Add device- or boot-specific data to the input pool to help
1118 * initialize it.
1119 *
1120 * None of this adds any entropy; it is meant to avoid the problem of
1121 * the entropy pool having similar initial state across largely
1122 * identical devices.
1123 */
1124void add_device_randomness(const void *buf, unsigned int size)
1125{
1126        unsigned long time = random_get_entropy() ^ jiffies;
1127        unsigned long flags;
1128
1129        if (!crng_ready() && size)
1130                crng_slow_load(buf, size);
1131
1132        trace_add_device_randomness(size, _RET_IP_);
1133        spin_lock_irqsave(&input_pool.lock, flags);
1134        _mix_pool_bytes(&input_pool, buf, size);
1135        _mix_pool_bytes(&input_pool, &time, sizeof(time));
1136        spin_unlock_irqrestore(&input_pool.lock, flags);
1137}
1138EXPORT_SYMBOL(add_device_randomness);
1139
1140static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1141
1142/*
1143 * This function adds entropy to the entropy "pool" by using timing
1144 * delays.  It uses the timer_rand_state structure to make an estimate
1145 * of how many bits of entropy this call has added to the pool.
1146 *
1147 * The number "num" is also added to the pool - it should somehow describe
1148 * the type of event which just happened.  This is currently 0-255 for
1149 * keyboard scan codes, and 256 upwards for interrupts.
1150 *
1151 */
1152static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1153{
1154        struct entropy_store    *r;
1155        struct {
1156                long jiffies;
1157                unsigned cycles;
1158                unsigned num;
1159        } sample;
1160        long delta, delta2, delta3;
1161
1162        sample.jiffies = jiffies;
1163        sample.cycles = random_get_entropy();
1164        sample.num = num;
1165        r = &input_pool;
1166        mix_pool_bytes(r, &sample, sizeof(sample));
1167
1168        /*
1169         * Calculate number of bits of randomness we probably added.
1170         * We take into account the first, second and third-order deltas
1171         * in order to make our estimate.
1172         */
1173        delta = sample.jiffies - READ_ONCE(state->last_time);
1174        WRITE_ONCE(state->last_time, sample.jiffies);
1175
1176        delta2 = delta - READ_ONCE(state->last_delta);
1177        WRITE_ONCE(state->last_delta, delta);
1178
1179        delta3 = delta2 - READ_ONCE(state->last_delta2);
1180        WRITE_ONCE(state->last_delta2, delta2);
1181
1182        if (delta < 0)
1183                delta = -delta;
1184        if (delta2 < 0)
1185                delta2 = -delta2;
1186        if (delta3 < 0)
1187                delta3 = -delta3;
1188        if (delta > delta2)
1189                delta = delta2;
1190        if (delta > delta3)
1191                delta = delta3;
1192
1193        /*
1194         * delta is now minimum absolute delta.
1195         * Round down by 1 bit on general principles,
1196         * and limit entropy estimate to 12 bits.
1197         */
1198        credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1199}
1200
1201void add_input_randomness(unsigned int type, unsigned int code,
1202                                 unsigned int value)
1203{
1204        static unsigned char last_value;
1205
1206        /* ignore autorepeat and the like */
1207        if (value == last_value)
1208                return;
1209
1210        last_value = value;
1211        add_timer_randomness(&input_timer_state,
1212                             (type << 4) ^ code ^ (code >> 4) ^ value);
1213        trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1214}
1215EXPORT_SYMBOL_GPL(add_input_randomness);
1216
1217static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1218
1219#ifdef ADD_INTERRUPT_BENCH
1220static unsigned long avg_cycles, avg_deviation;
1221
1222#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1223#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1224
1225static void add_interrupt_bench(cycles_t start)
1226{
1227        long delta = random_get_entropy() - start;
1228
1229        /* Use a weighted moving average */
1230        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1231        avg_cycles += delta;
1232        /* And average deviation */
1233        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1234        avg_deviation += delta;
1235}
1236#else
1237#define add_interrupt_bench(x)
1238#endif
1239
1240static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1241{
1242        __u32 *ptr = (__u32 *) regs;
1243        unsigned int idx;
1244
1245        if (regs == NULL)
1246                return 0;
1247        idx = READ_ONCE(f->reg_idx);
1248        if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1249                idx = 0;
1250        ptr += idx++;
1251        WRITE_ONCE(f->reg_idx, idx);
1252        return *ptr;
1253}
1254
1255void add_interrupt_randomness(int irq, int irq_flags)
1256{
1257        struct entropy_store    *r;
1258        struct fast_pool        *fast_pool = this_cpu_ptr(&irq_randomness);
1259        struct pt_regs          *regs = get_irq_regs();
1260        unsigned long           now = jiffies;
1261        cycles_t                cycles = random_get_entropy();
1262        __u32                   c_high, j_high;
1263        __u64                   ip;
1264        unsigned long           seed;
1265        int                     credit = 0;
1266
1267        if (cycles == 0)
1268                cycles = get_reg(fast_pool, regs);
1269        c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1270        j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1271        fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1272        fast_pool->pool[1] ^= now ^ c_high;
1273        ip = regs ? instruction_pointer(regs) : _RET_IP_;
1274        fast_pool->pool[2] ^= ip;
1275        fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1276                get_reg(fast_pool, regs);
1277
1278        fast_mix(fast_pool);
1279        add_interrupt_bench(cycles);
1280
1281        if (unlikely(crng_init == 0)) {
1282                if ((fast_pool->count >= 64) &&
1283                    crng_fast_load((char *) fast_pool->pool,
1284                                   sizeof(fast_pool->pool))) {
1285                        fast_pool->count = 0;
1286                        fast_pool->last = now;
1287                }
1288                return;
1289        }
1290
1291        if ((fast_pool->count < 64) &&
1292            !time_after(now, fast_pool->last + HZ))
1293                return;
1294
1295        r = &input_pool;
1296        if (!spin_trylock(&r->lock))
1297                return;
1298
1299        fast_pool->last = now;
1300        __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1301
1302        /*
1303         * If we have architectural seed generator, produce a seed and
1304         * add it to the pool.  For the sake of paranoia don't let the
1305         * architectural seed generator dominate the input from the
1306         * interrupt noise.
1307         */
1308        if (arch_get_random_seed_long(&seed)) {
1309                __mix_pool_bytes(r, &seed, sizeof(seed));
1310                credit = 1;
1311        }
1312        spin_unlock(&r->lock);
1313
1314        fast_pool->count = 0;
1315
1316        /* award one bit for the contents of the fast pool */
1317        credit_entropy_bits(r, credit + 1);
1318}
1319EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1320
1321#ifdef CONFIG_BLOCK
1322void add_disk_randomness(struct gendisk *disk)
1323{
1324        if (!disk || !disk->random)
1325                return;
1326        /* first major is 1, so we get >= 0x200 here */
1327        add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1328        trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1329}
1330EXPORT_SYMBOL_GPL(add_disk_randomness);
1331#endif
1332
1333/*********************************************************************
1334 *
1335 * Entropy extraction routines
1336 *
1337 *********************************************************************/
1338
1339/*
1340 * This function decides how many bytes to actually take from the
1341 * given pool, and also debits the entropy count accordingly.
1342 */
1343static size_t account(struct entropy_store *r, size_t nbytes, int min,
1344                      int reserved)
1345{
1346        int entropy_count, orig, have_bytes;
1347        size_t ibytes, nfrac;
1348
1349        BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1350
1351        /* Can we pull enough? */
1352retry:
1353        entropy_count = orig = READ_ONCE(r->entropy_count);
1354        ibytes = nbytes;
1355        /* never pull more than available */
1356        have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1357
1358        if ((have_bytes -= reserved) < 0)
1359                have_bytes = 0;
1360        ibytes = min_t(size_t, ibytes, have_bytes);
1361        if (ibytes < min)
1362                ibytes = 0;
1363
1364        if (WARN_ON(entropy_count < 0)) {
1365                pr_warn("negative entropy count: pool %s count %d\n",
1366                        r->name, entropy_count);
1367                entropy_count = 0;
1368        }
1369        nfrac = ibytes << (ENTROPY_SHIFT + 3);
1370        if ((size_t) entropy_count > nfrac)
1371                entropy_count -= nfrac;
1372        else
1373                entropy_count = 0;
1374
1375        if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1376                goto retry;
1377
1378        trace_debit_entropy(r->name, 8 * ibytes);
1379        if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1380                wake_up_interruptible(&random_write_wait);
1381                kill_fasync(&fasync, SIGIO, POLL_OUT);
1382        }
1383
1384        return ibytes;
1385}
1386
1387/*
1388 * This function does the actual extraction for extract_entropy and
1389 * extract_entropy_user.
1390 *
1391 * Note: we assume that .poolwords is a multiple of 16 words.
1392 */
1393static void extract_buf(struct entropy_store *r, __u8 *out)
1394{
1395        int i;
1396        union {
1397                __u32 w[5];
1398                unsigned long l[LONGS(20)];
1399        } hash;
1400        __u32 workspace[SHA1_WORKSPACE_WORDS];
1401        unsigned long flags;
1402
1403        /*
1404         * If we have an architectural hardware random number
1405         * generator, use it for SHA's initial vector
1406         */
1407        sha1_init(hash.w);
1408        for (i = 0; i < LONGS(20); i++) {
1409                unsigned long v;
1410                if (!arch_get_random_long(&v))
1411                        break;
1412                hash.l[i] = v;
1413        }
1414
1415        /* Generate a hash across the pool, 16 words (512 bits) at a time */
1416        spin_lock_irqsave(&r->lock, flags);
1417        for (i = 0; i < r->poolinfo->poolwords; i += 16)
1418                sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1419
1420        /*
1421         * We mix the hash back into the pool to prevent backtracking
1422         * attacks (where the attacker knows the state of the pool
1423         * plus the current outputs, and attempts to find previous
1424         * ouputs), unless the hash function can be inverted. By
1425         * mixing at least a SHA1 worth of hash data back, we make
1426         * brute-forcing the feedback as hard as brute-forcing the
1427         * hash.
1428         */
1429        __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1430        spin_unlock_irqrestore(&r->lock, flags);
1431
1432        memzero_explicit(workspace, sizeof(workspace));
1433
1434        /*
1435         * In case the hash function has some recognizable output
1436         * pattern, we fold it in half. Thus, we always feed back
1437         * twice as much data as we output.
1438         */
1439        hash.w[0] ^= hash.w[3];
1440        hash.w[1] ^= hash.w[4];
1441        hash.w[2] ^= rol32(hash.w[2], 16);
1442
1443        memcpy(out, &hash, EXTRACT_SIZE);
1444        memzero_explicit(&hash, sizeof(hash));
1445}
1446
1447static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1448                                size_t nbytes, int fips)
1449{
1450        ssize_t ret = 0, i;
1451        __u8 tmp[EXTRACT_SIZE];
1452        unsigned long flags;
1453
1454        while (nbytes) {
1455                extract_buf(r, tmp);
1456
1457                if (fips) {
1458                        spin_lock_irqsave(&r->lock, flags);
1459                        if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1460                                panic("Hardware RNG duplicated output!\n");
1461                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
1462                        spin_unlock_irqrestore(&r->lock, flags);
1463                }
1464                i = min_t(int, nbytes, EXTRACT_SIZE);
1465                memcpy(buf, tmp, i);
1466                nbytes -= i;
1467                buf += i;
1468                ret += i;
1469        }
1470
1471        /* Wipe data just returned from memory */
1472        memzero_explicit(tmp, sizeof(tmp));
1473
1474        return ret;
1475}
1476
1477/*
1478 * This function extracts randomness from the "entropy pool", and
1479 * returns it in a buffer.
1480 *
1481 * The min parameter specifies the minimum amount we can pull before
1482 * failing to avoid races that defeat catastrophic reseeding while the
1483 * reserved parameter indicates how much entropy we must leave in the
1484 * pool after each pull to avoid starving other readers.
1485 */
1486static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1487                                 size_t nbytes, int min, int reserved)
1488{
1489        __u8 tmp[EXTRACT_SIZE];
1490        unsigned long flags;
1491
1492        /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1493        if (fips_enabled) {
1494                spin_lock_irqsave(&r->lock, flags);
1495                if (!r->last_data_init) {
1496                        r->last_data_init = 1;
1497                        spin_unlock_irqrestore(&r->lock, flags);
1498                        trace_extract_entropy(r->name, EXTRACT_SIZE,
1499                                              ENTROPY_BITS(r), _RET_IP_);
1500                        extract_buf(r, tmp);
1501                        spin_lock_irqsave(&r->lock, flags);
1502                        memcpy(r->last_data, tmp, EXTRACT_SIZE);
1503                }
1504                spin_unlock_irqrestore(&r->lock, flags);
1505        }
1506
1507        trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1508        nbytes = account(r, nbytes, min, reserved);
1509
1510        return _extract_entropy(r, buf, nbytes, fips_enabled);
1511}
1512
1513#define warn_unseeded_randomness(previous) \
1514        _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1515
1516static void _warn_unseeded_randomness(const char *func_name, void *caller,
1517                                      void **previous)
1518{
1519#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1520        const bool print_once = false;
1521#else
1522        static bool print_once __read_mostly;
1523#endif
1524
1525        if (print_once ||
1526            crng_ready() ||
1527            (previous && (caller == READ_ONCE(*previous))))
1528                return;
1529        WRITE_ONCE(*previous, caller);
1530#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1531        print_once = true;
1532#endif
1533        if (__ratelimit(&unseeded_warning))
1534                printk_deferred(KERN_NOTICE "random: %s called from %pS "
1535                                "with crng_init=%d\n", func_name, caller,
1536                                crng_init);
1537}
1538
1539/*
1540 * This function is the exported kernel interface.  It returns some
1541 * number of good random numbers, suitable for key generation, seeding
1542 * TCP sequence numbers, etc.  It does not rely on the hardware random
1543 * number generator.  For random bytes direct from the hardware RNG
1544 * (when available), use get_random_bytes_arch(). In order to ensure
1545 * that the randomness provided by this function is okay, the function
1546 * wait_for_random_bytes() should be called and return 0 at least once
1547 * at any point prior.
1548 */
1549static void _get_random_bytes(void *buf, int nbytes)
1550{
1551        __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1552
1553        trace_get_random_bytes(nbytes, _RET_IP_);
1554
1555        while (nbytes >= CHACHA_BLOCK_SIZE) {
1556                extract_crng(buf);
1557                buf += CHACHA_BLOCK_SIZE;
1558                nbytes -= CHACHA_BLOCK_SIZE;
1559        }
1560
1561        if (nbytes > 0) {
1562                extract_crng(tmp);
1563                memcpy(buf, tmp, nbytes);
1564                crng_backtrack_protect(tmp, nbytes);
1565        } else
1566                crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1567        memzero_explicit(tmp, sizeof(tmp));
1568}
1569
1570void get_random_bytes(void *buf, int nbytes)
1571{
1572        static void *previous;
1573
1574        warn_unseeded_randomness(&previous);
1575        _get_random_bytes(buf, nbytes);
1576}
1577EXPORT_SYMBOL(get_random_bytes);
1578
1579
1580/*
1581 * Each time the timer fires, we expect that we got an unpredictable
1582 * jump in the cycle counter. Even if the timer is running on another
1583 * CPU, the timer activity will be touching the stack of the CPU that is
1584 * generating entropy..
1585 *
1586 * Note that we don't re-arm the timer in the timer itself - we are
1587 * happy to be scheduled away, since that just makes the load more
1588 * complex, but we do not want the timer to keep ticking unless the
1589 * entropy loop is running.
1590 *
1591 * So the re-arming always happens in the entropy loop itself.
1592 */
1593static void entropy_timer(struct timer_list *t)
1594{
1595        credit_entropy_bits(&input_pool, 1);
1596}
1597
1598/*
1599 * If we have an actual cycle counter, see if we can
1600 * generate enough entropy with timing noise
1601 */
1602static void try_to_generate_entropy(void)
1603{
1604        struct {
1605                unsigned long now;
1606                struct timer_list timer;
1607        } stack;
1608
1609        stack.now = random_get_entropy();
1610
1611        /* Slow counter - or none. Don't even bother */
1612        if (stack.now == random_get_entropy())
1613                return;
1614
1615        timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1616        while (!crng_ready()) {
1617                if (!timer_pending(&stack.timer))
1618                        mod_timer(&stack.timer, jiffies+1);
1619                mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1620                schedule();
1621                stack.now = random_get_entropy();
1622        }
1623
1624        del_timer_sync(&stack.timer);
1625        destroy_timer_on_stack(&stack.timer);
1626        mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1627}
1628
1629/*
1630 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1631 * cryptographically secure random numbers. This applies to: the /dev/urandom
1632 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1633 * family of functions. Using any of these functions without first calling
1634 * this function forfeits the guarantee of security.
1635 *
1636 * Returns: 0 if the urandom pool has been seeded.
1637 *          -ERESTARTSYS if the function was interrupted by a signal.
1638 */
1639int wait_for_random_bytes(void)
1640{
1641        if (likely(crng_ready()))
1642                return 0;
1643
1644        do {
1645                int ret;
1646                ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1647                if (ret)
1648                        return ret > 0 ? 0 : ret;
1649
1650                try_to_generate_entropy();
1651        } while (!crng_ready());
1652
1653        return 0;
1654}
1655EXPORT_SYMBOL(wait_for_random_bytes);
1656
1657/*
1658 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1659 * to supply cryptographically secure random numbers. This applies to: the
1660 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1661 * ,u64,int,long} family of functions.
1662 *
1663 * Returns: true if the urandom pool has been seeded.
1664 *          false if the urandom pool has not been seeded.
1665 */
1666bool rng_is_initialized(void)
1667{
1668        return crng_ready();
1669}
1670EXPORT_SYMBOL(rng_is_initialized);
1671
1672/*
1673 * Add a callback function that will be invoked when the nonblocking
1674 * pool is initialised.
1675 *
1676 * returns: 0 if callback is successfully added
1677 *          -EALREADY if pool is already initialised (callback not called)
1678 *          -ENOENT if module for callback is not alive
1679 */
1680int add_random_ready_callback(struct random_ready_callback *rdy)
1681{
1682        struct module *owner;
1683        unsigned long flags;
1684        int err = -EALREADY;
1685
1686        if (crng_ready())
1687                return err;
1688
1689        owner = rdy->owner;
1690        if (!try_module_get(owner))
1691                return -ENOENT;
1692
1693        spin_lock_irqsave(&random_ready_list_lock, flags);
1694        if (crng_ready())
1695                goto out;
1696
1697        owner = NULL;
1698
1699        list_add(&rdy->list, &random_ready_list);
1700        err = 0;
1701
1702out:
1703        spin_unlock_irqrestore(&random_ready_list_lock, flags);
1704
1705        module_put(owner);
1706
1707        return err;
1708}
1709EXPORT_SYMBOL(add_random_ready_callback);
1710
1711/*
1712 * Delete a previously registered readiness callback function.
1713 */
1714void del_random_ready_callback(struct random_ready_callback *rdy)
1715{
1716        unsigned long flags;
1717        struct module *owner = NULL;
1718
1719        spin_lock_irqsave(&random_ready_list_lock, flags);
1720        if (!list_empty(&rdy->list)) {
1721                list_del_init(&rdy->list);
1722                owner = rdy->owner;
1723        }
1724        spin_unlock_irqrestore(&random_ready_list_lock, flags);
1725
1726        module_put(owner);
1727}
1728EXPORT_SYMBOL(del_random_ready_callback);
1729
1730/*
1731 * This function will use the architecture-specific hardware random
1732 * number generator if it is available.  The arch-specific hw RNG will
1733 * almost certainly be faster than what we can do in software, but it
1734 * is impossible to verify that it is implemented securely (as
1735 * opposed, to, say, the AES encryption of a sequence number using a
1736 * key known by the NSA).  So it's useful if we need the speed, but
1737 * only if we're willing to trust the hardware manufacturer not to
1738 * have put in a back door.
1739 *
1740 * Return number of bytes filled in.
1741 */
1742int __must_check get_random_bytes_arch(void *buf, int nbytes)
1743{
1744        int left = nbytes;
1745        char *p = buf;
1746
1747        trace_get_random_bytes_arch(left, _RET_IP_);
1748        while (left) {
1749                unsigned long v;
1750                int chunk = min_t(int, left, sizeof(unsigned long));
1751
1752                if (!arch_get_random_long(&v))
1753                        break;
1754
1755                memcpy(p, &v, chunk);
1756                p += chunk;
1757                left -= chunk;
1758        }
1759
1760        return nbytes - left;
1761}
1762EXPORT_SYMBOL(get_random_bytes_arch);
1763
1764/*
1765 * init_std_data - initialize pool with system data
1766 *
1767 * @r: pool to initialize
1768 *
1769 * This function clears the pool's entropy count and mixes some system
1770 * data into the pool to prepare it for use. The pool is not cleared
1771 * as that can only decrease the entropy in the pool.
1772 */
1773static void __init init_std_data(struct entropy_store *r)
1774{
1775        int i;
1776        ktime_t now = ktime_get_real();
1777        unsigned long rv;
1778
1779        mix_pool_bytes(r, &now, sizeof(now));
1780        for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1781                if (!arch_get_random_seed_long(&rv) &&
1782                    !arch_get_random_long(&rv))
1783                        rv = random_get_entropy();
1784                mix_pool_bytes(r, &rv, sizeof(rv));
1785        }
1786        mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1787}
1788
1789/*
1790 * Note that setup_arch() may call add_device_randomness()
1791 * long before we get here. This allows seeding of the pools
1792 * with some platform dependent data very early in the boot
1793 * process. But it limits our options here. We must use
1794 * statically allocated structures that already have all
1795 * initializations complete at compile time. We should also
1796 * take care not to overwrite the precious per platform data
1797 * we were given.
1798 */
1799int __init rand_initialize(void)
1800{
1801        init_std_data(&input_pool);
1802        crng_initialize_primary(&primary_crng);
1803        crng_global_init_time = jiffies;
1804        if (ratelimit_disable) {
1805                urandom_warning.interval = 0;
1806                unseeded_warning.interval = 0;
1807        }
1808        return 0;
1809}
1810
1811#ifdef CONFIG_BLOCK
1812void rand_initialize_disk(struct gendisk *disk)
1813{
1814        struct timer_rand_state *state;
1815
1816        /*
1817         * If kzalloc returns null, we just won't use that entropy
1818         * source.
1819         */
1820        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1821        if (state) {
1822                state->last_time = INITIAL_JIFFIES;
1823                disk->random = state;
1824        }
1825}
1826#endif
1827
1828static ssize_t
1829urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1830                    loff_t *ppos)
1831{
1832        int ret;
1833
1834        nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1835        ret = extract_crng_user(buf, nbytes);
1836        trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1837        return ret;
1838}
1839
1840static ssize_t
1841urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1842{
1843        unsigned long flags;
1844        static int maxwarn = 10;
1845
1846        if (!crng_ready() && maxwarn > 0) {
1847                maxwarn--;
1848                if (__ratelimit(&urandom_warning))
1849                        pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1850                                  current->comm, nbytes);
1851                spin_lock_irqsave(&primary_crng.lock, flags);
1852                crng_init_cnt = 0;
1853                spin_unlock_irqrestore(&primary_crng.lock, flags);
1854        }
1855
1856        return urandom_read_nowarn(file, buf, nbytes, ppos);
1857}
1858
1859static ssize_t
1860random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1861{
1862        int ret;
1863
1864        ret = wait_for_random_bytes();
1865        if (ret != 0)
1866                return ret;
1867        return urandom_read_nowarn(file, buf, nbytes, ppos);
1868}
1869
1870static __poll_t
1871random_poll(struct file *file, poll_table * wait)
1872{
1873        __poll_t mask;
1874
1875        poll_wait(file, &crng_init_wait, wait);
1876        poll_wait(file, &random_write_wait, wait);
1877        mask = 0;
1878        if (crng_ready())
1879                mask |= EPOLLIN | EPOLLRDNORM;
1880        if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1881                mask |= EPOLLOUT | EPOLLWRNORM;
1882        return mask;
1883}
1884
1885static int
1886write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1887{
1888        size_t bytes;
1889        __u32 t, buf[16];
1890        const char __user *p = buffer;
1891
1892        while (count > 0) {
1893                int b, i = 0;
1894
1895                bytes = min(count, sizeof(buf));
1896                if (copy_from_user(&buf, p, bytes))
1897                        return -EFAULT;
1898
1899                for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1900                        if (!arch_get_random_int(&t))
1901                                break;
1902                        buf[i] ^= t;
1903                }
1904
1905                count -= bytes;
1906                p += bytes;
1907
1908                mix_pool_bytes(r, buf, bytes);
1909                cond_resched();
1910        }
1911
1912        return 0;
1913}
1914
1915static ssize_t random_write(struct file *file, const char __user *buffer,
1916                            size_t count, loff_t *ppos)
1917{
1918        size_t ret;
1919
1920        ret = write_pool(&input_pool, buffer, count);
1921        if (ret)
1922                return ret;
1923
1924        return (ssize_t)count;
1925}
1926
1927static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1928{
1929        int size, ent_count;
1930        int __user *p = (int __user *)arg;
1931        int retval;
1932
1933        switch (cmd) {
1934        case RNDGETENTCNT:
1935                /* inherently racy, no point locking */
1936                ent_count = ENTROPY_BITS(&input_pool);
1937                if (put_user(ent_count, p))
1938                        return -EFAULT;
1939                return 0;
1940        case RNDADDTOENTCNT:
1941                if (!capable(CAP_SYS_ADMIN))
1942                        return -EPERM;
1943                if (get_user(ent_count, p))
1944                        return -EFAULT;
1945                return credit_entropy_bits_safe(&input_pool, ent_count);
1946        case RNDADDENTROPY:
1947                if (!capable(CAP_SYS_ADMIN))
1948                        return -EPERM;
1949                if (get_user(ent_count, p++))
1950                        return -EFAULT;
1951                if (ent_count < 0)
1952                        return -EINVAL;
1953                if (get_user(size, p++))
1954                        return -EFAULT;
1955                retval = write_pool(&input_pool, (const char __user *)p,
1956                                    size);
1957                if (retval < 0)
1958                        return retval;
1959                return credit_entropy_bits_safe(&input_pool, ent_count);
1960        case RNDZAPENTCNT:
1961        case RNDCLEARPOOL:
1962                /*
1963                 * Clear the entropy pool counters. We no longer clear
1964                 * the entropy pool, as that's silly.
1965                 */
1966                if (!capable(CAP_SYS_ADMIN))
1967                        return -EPERM;
1968                input_pool.entropy_count = 0;
1969                return 0;
1970        case RNDRESEEDCRNG:
1971                if (!capable(CAP_SYS_ADMIN))
1972                        return -EPERM;
1973                if (crng_init < 2)
1974                        return -ENODATA;
1975                crng_reseed(&primary_crng, NULL);
1976                crng_global_init_time = jiffies - 1;
1977                return 0;
1978        default:
1979                return -EINVAL;
1980        }
1981}
1982
1983static int random_fasync(int fd, struct file *filp, int on)
1984{
1985        return fasync_helper(fd, filp, on, &fasync);
1986}
1987
1988const struct file_operations random_fops = {
1989        .read  = random_read,
1990        .write = random_write,
1991        .poll  = random_poll,
1992        .unlocked_ioctl = random_ioctl,
1993        .compat_ioctl = compat_ptr_ioctl,
1994        .fasync = random_fasync,
1995        .llseek = noop_llseek,
1996};
1997
1998const struct file_operations urandom_fops = {
1999        .read  = urandom_read,
2000        .write = random_write,
2001        .unlocked_ioctl = random_ioctl,
2002        .compat_ioctl = compat_ptr_ioctl,
2003        .fasync = random_fasync,
2004        .llseek = noop_llseek,
2005};
2006
2007SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2008                unsigned int, flags)
2009{
2010        int ret;
2011
2012        if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2013                return -EINVAL;
2014
2015        /*
2016         * Requesting insecure and blocking randomness at the same time makes
2017         * no sense.
2018         */
2019        if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2020                return -EINVAL;
2021
2022        if (count > INT_MAX)
2023                count = INT_MAX;
2024
2025        if (!(flags & GRND_INSECURE) && !crng_ready()) {
2026                if (flags & GRND_NONBLOCK)
2027                        return -EAGAIN;
2028                ret = wait_for_random_bytes();
2029                if (unlikely(ret))
2030                        return ret;
2031        }
2032        return urandom_read_nowarn(NULL, buf, count, NULL);
2033}
2034
2035/********************************************************************
2036 *
2037 * Sysctl interface
2038 *
2039 ********************************************************************/
2040
2041#ifdef CONFIG_SYSCTL
2042
2043#include <linux/sysctl.h>
2044
2045static int min_write_thresh;
2046static int max_write_thresh = INPUT_POOL_WORDS * 32;
2047static int random_min_urandom_seed = 60;
2048static char sysctl_bootid[16];
2049
2050/*
2051 * This function is used to return both the bootid UUID, and random
2052 * UUID.  The difference is in whether table->data is NULL; if it is,
2053 * then a new UUID is generated and returned to the user.
2054 *
2055 * If the user accesses this via the proc interface, the UUID will be
2056 * returned as an ASCII string in the standard UUID format; if via the
2057 * sysctl system call, as 16 bytes of binary data.
2058 */
2059static int proc_do_uuid(struct ctl_table *table, int write,
2060                        void *buffer, size_t *lenp, loff_t *ppos)
2061{
2062        struct ctl_table fake_table;
2063        unsigned char buf[64], tmp_uuid[16], *uuid;
2064
2065        uuid = table->data;
2066        if (!uuid) {
2067                uuid = tmp_uuid;
2068                generate_random_uuid(uuid);
2069        } else {
2070                static DEFINE_SPINLOCK(bootid_spinlock);
2071
2072                spin_lock(&bootid_spinlock);
2073                if (!uuid[8])
2074                        generate_random_uuid(uuid);
2075                spin_unlock(&bootid_spinlock);
2076        }
2077
2078        sprintf(buf, "%pU", uuid);
2079
2080        fake_table.data = buf;
2081        fake_table.maxlen = sizeof(buf);
2082
2083        return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2084}
2085
2086/*
2087 * Return entropy available scaled to integral bits
2088 */
2089static int proc_do_entropy(struct ctl_table *table, int write,
2090                           void *buffer, size_t *lenp, loff_t *ppos)
2091{
2092        struct ctl_table fake_table;
2093        int entropy_count;
2094
2095        entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2096
2097        fake_table.data = &entropy_count;
2098        fake_table.maxlen = sizeof(entropy_count);
2099
2100        return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2101}
2102
2103static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2104extern struct ctl_table random_table[];
2105struct ctl_table random_table[] = {
2106        {
2107                .procname       = "poolsize",
2108                .data           = &sysctl_poolsize,
2109                .maxlen         = sizeof(int),
2110                .mode           = 0444,
2111                .proc_handler   = proc_dointvec,
2112        },
2113        {
2114                .procname       = "entropy_avail",
2115                .maxlen         = sizeof(int),
2116                .mode           = 0444,
2117                .proc_handler   = proc_do_entropy,
2118                .data           = &input_pool.entropy_count,
2119        },
2120        {
2121                .procname       = "write_wakeup_threshold",
2122                .data           = &random_write_wakeup_bits,
2123                .maxlen         = sizeof(int),
2124                .mode           = 0644,
2125                .proc_handler   = proc_dointvec_minmax,
2126                .extra1         = &min_write_thresh,
2127                .extra2         = &max_write_thresh,
2128        },
2129        {
2130                .procname       = "urandom_min_reseed_secs",
2131                .data           = &random_min_urandom_seed,
2132                .maxlen         = sizeof(int),
2133                .mode           = 0644,
2134                .proc_handler   = proc_dointvec,
2135        },
2136        {
2137                .procname       = "boot_id",
2138                .data           = &sysctl_bootid,
2139                .maxlen         = 16,
2140                .mode           = 0444,
2141                .proc_handler   = proc_do_uuid,
2142        },
2143        {
2144                .procname       = "uuid",
2145                .maxlen         = 16,
2146                .mode           = 0444,
2147                .proc_handler   = proc_do_uuid,
2148        },
2149#ifdef ADD_INTERRUPT_BENCH
2150        {
2151                .procname       = "add_interrupt_avg_cycles",
2152                .data           = &avg_cycles,
2153                .maxlen         = sizeof(avg_cycles),
2154                .mode           = 0444,
2155                .proc_handler   = proc_doulongvec_minmax,
2156        },
2157        {
2158                .procname       = "add_interrupt_avg_deviation",
2159                .data           = &avg_deviation,
2160                .maxlen         = sizeof(avg_deviation),
2161                .mode           = 0444,
2162                .proc_handler   = proc_doulongvec_minmax,
2163        },
2164#endif
2165        { }
2166};
2167#endif  /* CONFIG_SYSCTL */
2168
2169struct batched_entropy {
2170        union {
2171                u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2172                u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2173        };
2174        unsigned int position;
2175        spinlock_t batch_lock;
2176};
2177
2178/*
2179 * Get a random word for internal kernel use only. The quality of the random
2180 * number is good as /dev/urandom, but there is no backtrack protection, with
2181 * the goal of being quite fast and not depleting entropy. In order to ensure
2182 * that the randomness provided by this function is okay, the function
2183 * wait_for_random_bytes() should be called and return 0 at least once at any
2184 * point prior.
2185 */
2186static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2187        .batch_lock     = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2188};
2189
2190u64 get_random_u64(void)
2191{
2192        u64 ret;
2193        unsigned long flags;
2194        struct batched_entropy *batch;
2195        static void *previous;
2196
2197        warn_unseeded_randomness(&previous);
2198
2199        batch = raw_cpu_ptr(&batched_entropy_u64);
2200        spin_lock_irqsave(&batch->batch_lock, flags);
2201        if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2202                extract_crng((u8 *)batch->entropy_u64);
2203                batch->position = 0;
2204        }
2205        ret = batch->entropy_u64[batch->position++];
2206        spin_unlock_irqrestore(&batch->batch_lock, flags);
2207        return ret;
2208}
2209EXPORT_SYMBOL(get_random_u64);
2210
2211static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2212        .batch_lock     = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2213};
2214u32 get_random_u32(void)
2215{
2216        u32 ret;
2217        unsigned long flags;
2218        struct batched_entropy *batch;
2219        static void *previous;
2220
2221        warn_unseeded_randomness(&previous);
2222
2223        batch = raw_cpu_ptr(&batched_entropy_u32);
2224        spin_lock_irqsave(&batch->batch_lock, flags);
2225        if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2226                extract_crng((u8 *)batch->entropy_u32);
2227                batch->position = 0;
2228        }
2229        ret = batch->entropy_u32[batch->position++];
2230        spin_unlock_irqrestore(&batch->batch_lock, flags);
2231        return ret;
2232}
2233EXPORT_SYMBOL(get_random_u32);
2234
2235/* It's important to invalidate all potential batched entropy that might
2236 * be stored before the crng is initialized, which we can do lazily by
2237 * simply resetting the counter to zero so that it's re-extracted on the
2238 * next usage. */
2239static void invalidate_batched_entropy(void)
2240{
2241        int cpu;
2242        unsigned long flags;
2243
2244        for_each_possible_cpu (cpu) {
2245                struct batched_entropy *batched_entropy;
2246
2247                batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2248                spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2249                batched_entropy->position = 0;
2250                spin_unlock(&batched_entropy->batch_lock);
2251
2252                batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2253                spin_lock(&batched_entropy->batch_lock);
2254                batched_entropy->position = 0;
2255                spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2256        }
2257}
2258
2259/**
2260 * randomize_page - Generate a random, page aligned address
2261 * @start:      The smallest acceptable address the caller will take.
2262 * @range:      The size of the area, starting at @start, within which the
2263 *              random address must fall.
2264 *
2265 * If @start + @range would overflow, @range is capped.
2266 *
2267 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2268 * @start was already page aligned.  We now align it regardless.
2269 *
2270 * Return: A page aligned address within [start, start + range).  On error,
2271 * @start is returned.
2272 */
2273unsigned long
2274randomize_page(unsigned long start, unsigned long range)
2275{
2276        if (!PAGE_ALIGNED(start)) {
2277                range -= PAGE_ALIGN(start) - start;
2278                start = PAGE_ALIGN(start);
2279        }
2280
2281        if (start > ULONG_MAX - range)
2282                range = ULONG_MAX - start;
2283
2284        range >>= PAGE_SHIFT;
2285
2286        if (range == 0)
2287                return start;
2288
2289        return start + (get_random_long() % range << PAGE_SHIFT);
2290}
2291
2292/* Interface for in-kernel drivers of true hardware RNGs.
2293 * Those devices may produce endless random bits and will be throttled
2294 * when our pool is full.
2295 */
2296void add_hwgenerator_randomness(const char *buffer, size_t count,
2297                                size_t entropy)
2298{
2299        struct entropy_store *poolp = &input_pool;
2300
2301        if (unlikely(crng_init == 0)) {
2302                crng_fast_load(buffer, count);
2303                return;
2304        }
2305
2306        /* Suspend writing if we're above the trickle threshold.
2307         * We'll be woken up again once below random_write_wakeup_thresh,
2308         * or when the calling thread is about to terminate.
2309         */
2310        wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2311                        ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2312        mix_pool_bytes(poolp, buffer, count);
2313        credit_entropy_bits(poolp, entropy);
2314}
2315EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2316
2317/* Handle random seed passed by bootloader.
2318 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2319 * it would be regarded as device data.
2320 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2321 */
2322void add_bootloader_randomness(const void *buf, unsigned int size)
2323{
2324        if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2325                add_hwgenerator_randomness(buf, size, size * 8);
2326        else
2327                add_device_randomness(buf, size);
2328}
2329EXPORT_SYMBOL_GPL(add_bootloader_randomness);
2330