linux/drivers/crypto/amcc/crypto4xx_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * AMCC SoC PPC4xx Crypto Driver
   4 *
   5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
   6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
   7 *
   8 * This file implements AMCC crypto offload Linux device driver for use with
   9 * Linux CryptoAPI.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/interrupt.h>
  14#include <linux/spinlock_types.h>
  15#include <linux/random.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/platform_device.h>
  20#include <linux/init.h>
  21#include <linux/module.h>
  22#include <linux/of_address.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_platform.h>
  25#include <linux/slab.h>
  26#include <asm/dcr.h>
  27#include <asm/dcr-regs.h>
  28#include <asm/cacheflush.h>
  29#include <crypto/aead.h>
  30#include <crypto/aes.h>
  31#include <crypto/ctr.h>
  32#include <crypto/gcm.h>
  33#include <crypto/sha.h>
  34#include <crypto/rng.h>
  35#include <crypto/scatterwalk.h>
  36#include <crypto/skcipher.h>
  37#include <crypto/internal/aead.h>
  38#include <crypto/internal/rng.h>
  39#include <crypto/internal/skcipher.h>
  40#include "crypto4xx_reg_def.h"
  41#include "crypto4xx_core.h"
  42#include "crypto4xx_sa.h"
  43#include "crypto4xx_trng.h"
  44
  45#define PPC4XX_SEC_VERSION_STR                  "0.5"
  46
  47/**
  48 * PPC4xx Crypto Engine Initialization Routine
  49 */
  50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
  51{
  52        union ce_ring_size ring_size;
  53        union ce_ring_control ring_ctrl;
  54        union ce_part_ring_size part_ring_size;
  55        union ce_io_threshold io_threshold;
  56        u32 rand_num;
  57        union ce_pe_dma_cfg pe_dma_cfg;
  58        u32 device_ctrl;
  59
  60        writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
  61        /* setup pe dma, include reset sg, pdr and pe, then release reset */
  62        pe_dma_cfg.w = 0;
  63        pe_dma_cfg.bf.bo_sgpd_en = 1;
  64        pe_dma_cfg.bf.bo_data_en = 0;
  65        pe_dma_cfg.bf.bo_sa_en = 1;
  66        pe_dma_cfg.bf.bo_pd_en = 1;
  67        pe_dma_cfg.bf.dynamic_sa_en = 1;
  68        pe_dma_cfg.bf.reset_sg = 1;
  69        pe_dma_cfg.bf.reset_pdr = 1;
  70        pe_dma_cfg.bf.reset_pe = 1;
  71        writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  72        /* un reset pe,sg and pdr */
  73        pe_dma_cfg.bf.pe_mode = 0;
  74        pe_dma_cfg.bf.reset_sg = 0;
  75        pe_dma_cfg.bf.reset_pdr = 0;
  76        pe_dma_cfg.bf.reset_pe = 0;
  77        pe_dma_cfg.bf.bo_td_en = 0;
  78        writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  79        writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
  80        writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
  81        writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
  82        get_random_bytes(&rand_num, sizeof(rand_num));
  83        writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
  84        get_random_bytes(&rand_num, sizeof(rand_num));
  85        writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
  86        ring_size.w = 0;
  87        ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
  88        ring_size.bf.ring_size   = PPC4XX_NUM_PD;
  89        writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
  90        ring_ctrl.w = 0;
  91        writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
  92        device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  93        device_ctrl |= PPC4XX_DC_3DES_EN;
  94        writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  95        writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
  96        writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
  97        part_ring_size.w = 0;
  98        part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
  99        part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
 100        writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
 101        writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
 102        io_threshold.w = 0;
 103        io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
 104        io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
 105        writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
 106        writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
 107        writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
 108        writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
 109        writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
 110        writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
 111        writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
 112        writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
 113        /* un reset pe,sg and pdr */
 114        pe_dma_cfg.bf.pe_mode = 1;
 115        pe_dma_cfg.bf.reset_sg = 0;
 116        pe_dma_cfg.bf.reset_pdr = 0;
 117        pe_dma_cfg.bf.reset_pe = 0;
 118        pe_dma_cfg.bf.bo_td_en = 0;
 119        writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
 120        /*clear all pending interrupt*/
 121        writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
 122        writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 123        writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 124        writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
 125        if (dev->is_revb) {
 126                writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
 127                       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
 128                writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
 129                       dev->ce_base + CRYPTO4XX_INT_EN);
 130        } else {
 131                writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
 132        }
 133}
 134
 135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
 136{
 137        ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
 138        if (ctx->sa_in == NULL)
 139                return -ENOMEM;
 140
 141        ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
 142        if (ctx->sa_out == NULL) {
 143                kfree(ctx->sa_in);
 144                ctx->sa_in = NULL;
 145                return -ENOMEM;
 146        }
 147
 148        ctx->sa_len = size;
 149
 150        return 0;
 151}
 152
 153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
 154{
 155        kfree(ctx->sa_in);
 156        ctx->sa_in = NULL;
 157        kfree(ctx->sa_out);
 158        ctx->sa_out = NULL;
 159        ctx->sa_len = 0;
 160}
 161
 162/**
 163 * alloc memory for the gather ring
 164 * no need to alloc buf for the ring
 165 * gdr_tail, gdr_head and gdr_count are initialized by this function
 166 */
 167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
 168{
 169        int i;
 170        dev->pdr = dma_alloc_coherent(dev->core_dev->device,
 171                                      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 172                                      &dev->pdr_pa, GFP_KERNEL);
 173        if (!dev->pdr)
 174                return -ENOMEM;
 175
 176        dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
 177                                 GFP_KERNEL);
 178        if (!dev->pdr_uinfo) {
 179                dma_free_coherent(dev->core_dev->device,
 180                                  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 181                                  dev->pdr,
 182                                  dev->pdr_pa);
 183                return -ENOMEM;
 184        }
 185        dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
 186                                   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 187                                   &dev->shadow_sa_pool_pa,
 188                                   GFP_KERNEL);
 189        if (!dev->shadow_sa_pool)
 190                return -ENOMEM;
 191
 192        dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
 193                         sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 194                         &dev->shadow_sr_pool_pa, GFP_KERNEL);
 195        if (!dev->shadow_sr_pool)
 196                return -ENOMEM;
 197        for (i = 0; i < PPC4XX_NUM_PD; i++) {
 198                struct ce_pd *pd = &dev->pdr[i];
 199                struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
 200
 201                pd->sa = dev->shadow_sa_pool_pa +
 202                        sizeof(union shadow_sa_buf) * i;
 203
 204                /* alloc 256 bytes which is enough for any kind of dynamic sa */
 205                pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
 206
 207                /* alloc state record */
 208                pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
 209                pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
 210                    sizeof(struct sa_state_record) * i;
 211        }
 212
 213        return 0;
 214}
 215
 216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
 217{
 218        if (dev->pdr)
 219                dma_free_coherent(dev->core_dev->device,
 220                                  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 221                                  dev->pdr, dev->pdr_pa);
 222
 223        if (dev->shadow_sa_pool)
 224                dma_free_coherent(dev->core_dev->device,
 225                        sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 226                        dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
 227
 228        if (dev->shadow_sr_pool)
 229                dma_free_coherent(dev->core_dev->device,
 230                        sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 231                        dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
 232
 233        kfree(dev->pdr_uinfo);
 234}
 235
 236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
 237{
 238        u32 retval;
 239        u32 tmp;
 240
 241        retval = dev->pdr_head;
 242        tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
 243
 244        if (tmp == dev->pdr_tail)
 245                return ERING_WAS_FULL;
 246
 247        dev->pdr_head = tmp;
 248
 249        return retval;
 250}
 251
 252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
 253{
 254        struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 255        u32 tail;
 256        unsigned long flags;
 257
 258        spin_lock_irqsave(&dev->core_dev->lock, flags);
 259        pd_uinfo->state = PD_ENTRY_FREE;
 260
 261        if (dev->pdr_tail != PPC4XX_LAST_PD)
 262                dev->pdr_tail++;
 263        else
 264                dev->pdr_tail = 0;
 265        tail = dev->pdr_tail;
 266        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 267
 268        return tail;
 269}
 270
 271/**
 272 * alloc memory for the gather ring
 273 * no need to alloc buf for the ring
 274 * gdr_tail, gdr_head and gdr_count are initialized by this function
 275 */
 276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
 277{
 278        dev->gdr = dma_alloc_coherent(dev->core_dev->device,
 279                                      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 280                                      &dev->gdr_pa, GFP_KERNEL);
 281        if (!dev->gdr)
 282                return -ENOMEM;
 283
 284        return 0;
 285}
 286
 287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
 288{
 289        if (dev->gdr)
 290                dma_free_coherent(dev->core_dev->device,
 291                          sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 292                          dev->gdr, dev->gdr_pa);
 293}
 294
 295/*
 296 * when this function is called.
 297 * preemption or interrupt must be disabled
 298 */
 299static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
 300{
 301        u32 retval;
 302        u32 tmp;
 303
 304        if (n >= PPC4XX_NUM_GD)
 305                return ERING_WAS_FULL;
 306
 307        retval = dev->gdr_head;
 308        tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
 309        if (dev->gdr_head > dev->gdr_tail) {
 310                if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
 311                        return ERING_WAS_FULL;
 312        } else if (dev->gdr_head < dev->gdr_tail) {
 313                if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
 314                        return ERING_WAS_FULL;
 315        }
 316        dev->gdr_head = tmp;
 317
 318        return retval;
 319}
 320
 321static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
 322{
 323        unsigned long flags;
 324
 325        spin_lock_irqsave(&dev->core_dev->lock, flags);
 326        if (dev->gdr_tail == dev->gdr_head) {
 327                spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 328                return 0;
 329        }
 330
 331        if (dev->gdr_tail != PPC4XX_LAST_GD)
 332                dev->gdr_tail++;
 333        else
 334                dev->gdr_tail = 0;
 335
 336        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 337
 338        return 0;
 339}
 340
 341static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
 342                                              dma_addr_t *gd_dma, u32 idx)
 343{
 344        *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
 345
 346        return &dev->gdr[idx];
 347}
 348
 349/**
 350 * alloc memory for the scatter ring
 351 * need to alloc buf for the ring
 352 * sdr_tail, sdr_head and sdr_count are initialized by this function
 353 */
 354static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
 355{
 356        int i;
 357
 358        dev->scatter_buffer_va =
 359                dma_alloc_coherent(dev->core_dev->device,
 360                        PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 361                        &dev->scatter_buffer_pa, GFP_KERNEL);
 362        if (!dev->scatter_buffer_va)
 363                return -ENOMEM;
 364
 365        /* alloc memory for scatter descriptor ring */
 366        dev->sdr = dma_alloc_coherent(dev->core_dev->device,
 367                                      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 368                                      &dev->sdr_pa, GFP_KERNEL);
 369        if (!dev->sdr)
 370                return -ENOMEM;
 371
 372        for (i = 0; i < PPC4XX_NUM_SD; i++) {
 373                dev->sdr[i].ptr = dev->scatter_buffer_pa +
 374                                  PPC4XX_SD_BUFFER_SIZE * i;
 375        }
 376
 377        return 0;
 378}
 379
 380static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
 381{
 382        if (dev->sdr)
 383                dma_free_coherent(dev->core_dev->device,
 384                                  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 385                                  dev->sdr, dev->sdr_pa);
 386
 387        if (dev->scatter_buffer_va)
 388                dma_free_coherent(dev->core_dev->device,
 389                                  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 390                                  dev->scatter_buffer_va,
 391                                  dev->scatter_buffer_pa);
 392}
 393
 394/*
 395 * when this function is called.
 396 * preemption or interrupt must be disabled
 397 */
 398static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
 399{
 400        u32 retval;
 401        u32 tmp;
 402
 403        if (n >= PPC4XX_NUM_SD)
 404                return ERING_WAS_FULL;
 405
 406        retval = dev->sdr_head;
 407        tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
 408        if (dev->sdr_head > dev->gdr_tail) {
 409                if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
 410                        return ERING_WAS_FULL;
 411        } else if (dev->sdr_head < dev->sdr_tail) {
 412                if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
 413                        return ERING_WAS_FULL;
 414        } /* the head = tail, or empty case is already take cared */
 415        dev->sdr_head = tmp;
 416
 417        return retval;
 418}
 419
 420static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
 421{
 422        unsigned long flags;
 423
 424        spin_lock_irqsave(&dev->core_dev->lock, flags);
 425        if (dev->sdr_tail == dev->sdr_head) {
 426                spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 427                return 0;
 428        }
 429        if (dev->sdr_tail != PPC4XX_LAST_SD)
 430                dev->sdr_tail++;
 431        else
 432                dev->sdr_tail = 0;
 433        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 434
 435        return 0;
 436}
 437
 438static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
 439                                              dma_addr_t *sd_dma, u32 idx)
 440{
 441        *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
 442
 443        return &dev->sdr[idx];
 444}
 445
 446static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
 447                                      struct ce_pd *pd,
 448                                      struct pd_uinfo *pd_uinfo,
 449                                      u32 nbytes,
 450                                      struct scatterlist *dst)
 451{
 452        unsigned int first_sd = pd_uinfo->first_sd;
 453        unsigned int last_sd;
 454        unsigned int overflow = 0;
 455        unsigned int to_copy;
 456        unsigned int dst_start = 0;
 457
 458        /*
 459         * Because the scatter buffers are all neatly organized in one
 460         * big continuous ringbuffer; scatterwalk_map_and_copy() can
 461         * be instructed to copy a range of buffers in one go.
 462         */
 463
 464        last_sd = (first_sd + pd_uinfo->num_sd);
 465        if (last_sd > PPC4XX_LAST_SD) {
 466                last_sd = PPC4XX_LAST_SD;
 467                overflow = last_sd % PPC4XX_NUM_SD;
 468        }
 469
 470        while (nbytes) {
 471                void *buf = dev->scatter_buffer_va +
 472                        first_sd * PPC4XX_SD_BUFFER_SIZE;
 473
 474                to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
 475                                      (1 + last_sd - first_sd));
 476                scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
 477                nbytes -= to_copy;
 478
 479                if (overflow) {
 480                        first_sd = 0;
 481                        last_sd = overflow;
 482                        dst_start += to_copy;
 483                        overflow = 0;
 484                }
 485        }
 486}
 487
 488static void crypto4xx_copy_digest_to_dst(void *dst,
 489                                        struct pd_uinfo *pd_uinfo,
 490                                        struct crypto4xx_ctx *ctx)
 491{
 492        struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
 493
 494        if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
 495                memcpy(dst, pd_uinfo->sr_va->save_digest,
 496                       SA_HASH_ALG_SHA1_DIGEST_SIZE);
 497        }
 498}
 499
 500static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
 501                                  struct pd_uinfo *pd_uinfo)
 502{
 503        int i;
 504        if (pd_uinfo->num_gd) {
 505                for (i = 0; i < pd_uinfo->num_gd; i++)
 506                        crypto4xx_put_gd_to_gdr(dev);
 507                pd_uinfo->first_gd = 0xffffffff;
 508                pd_uinfo->num_gd = 0;
 509        }
 510        if (pd_uinfo->num_sd) {
 511                for (i = 0; i < pd_uinfo->num_sd; i++)
 512                        crypto4xx_put_sd_to_sdr(dev);
 513
 514                pd_uinfo->first_sd = 0xffffffff;
 515                pd_uinfo->num_sd = 0;
 516        }
 517}
 518
 519static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
 520                                     struct pd_uinfo *pd_uinfo,
 521                                     struct ce_pd *pd)
 522{
 523        struct skcipher_request *req;
 524        struct scatterlist *dst;
 525        dma_addr_t addr;
 526
 527        req = skcipher_request_cast(pd_uinfo->async_req);
 528
 529        if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 530                crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 531                                          req->cryptlen, req->dst);
 532        } else {
 533                dst = pd_uinfo->dest_va;
 534                addr = dma_map_page(dev->core_dev->device, sg_page(dst),
 535                                    dst->offset, dst->length, DMA_FROM_DEVICE);
 536        }
 537
 538        if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
 539                struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 540
 541                crypto4xx_memcpy_from_le32((u32 *)req->iv,
 542                        pd_uinfo->sr_va->save_iv,
 543                        crypto_skcipher_ivsize(skcipher));
 544        }
 545
 546        crypto4xx_ret_sg_desc(dev, pd_uinfo);
 547
 548        if (pd_uinfo->state & PD_ENTRY_BUSY)
 549                skcipher_request_complete(req, -EINPROGRESS);
 550        skcipher_request_complete(req, 0);
 551}
 552
 553static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
 554                                struct pd_uinfo *pd_uinfo)
 555{
 556        struct crypto4xx_ctx *ctx;
 557        struct ahash_request *ahash_req;
 558
 559        ahash_req = ahash_request_cast(pd_uinfo->async_req);
 560        ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
 561
 562        crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
 563                                     crypto_tfm_ctx(ahash_req->base.tfm));
 564        crypto4xx_ret_sg_desc(dev, pd_uinfo);
 565
 566        if (pd_uinfo->state & PD_ENTRY_BUSY)
 567                ahash_request_complete(ahash_req, -EINPROGRESS);
 568        ahash_request_complete(ahash_req, 0);
 569}
 570
 571static void crypto4xx_aead_done(struct crypto4xx_device *dev,
 572                                struct pd_uinfo *pd_uinfo,
 573                                struct ce_pd *pd)
 574{
 575        struct aead_request *aead_req = container_of(pd_uinfo->async_req,
 576                struct aead_request, base);
 577        struct scatterlist *dst = pd_uinfo->dest_va;
 578        size_t cp_len = crypto_aead_authsize(
 579                crypto_aead_reqtfm(aead_req));
 580        u32 icv[AES_BLOCK_SIZE];
 581        int err = 0;
 582
 583        if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 584                crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 585                                          pd->pd_ctl_len.bf.pkt_len,
 586                                          dst);
 587        } else {
 588                dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 589                                DMA_FROM_DEVICE);
 590        }
 591
 592        if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
 593                /* append icv at the end */
 594                crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
 595                                           sizeof(icv));
 596
 597                scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
 598                                         cp_len, 1);
 599        } else {
 600                /* check icv at the end */
 601                scatterwalk_map_and_copy(icv, aead_req->src,
 602                        aead_req->assoclen + aead_req->cryptlen -
 603                        cp_len, cp_len, 0);
 604
 605                crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
 606
 607                if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
 608                        err = -EBADMSG;
 609        }
 610
 611        crypto4xx_ret_sg_desc(dev, pd_uinfo);
 612
 613        if (pd->pd_ctl.bf.status & 0xff) {
 614                if (!__ratelimit(&dev->aead_ratelimit)) {
 615                        if (pd->pd_ctl.bf.status & 2)
 616                                pr_err("pad fail error\n");
 617                        if (pd->pd_ctl.bf.status & 4)
 618                                pr_err("seqnum fail\n");
 619                        if (pd->pd_ctl.bf.status & 8)
 620                                pr_err("error _notify\n");
 621                        pr_err("aead return err status = 0x%02x\n",
 622                                pd->pd_ctl.bf.status & 0xff);
 623                        pr_err("pd pad_ctl = 0x%08x\n",
 624                                pd->pd_ctl.bf.pd_pad_ctl);
 625                }
 626                err = -EINVAL;
 627        }
 628
 629        if (pd_uinfo->state & PD_ENTRY_BUSY)
 630                aead_request_complete(aead_req, -EINPROGRESS);
 631
 632        aead_request_complete(aead_req, err);
 633}
 634
 635static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
 636{
 637        struct ce_pd *pd = &dev->pdr[idx];
 638        struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 639
 640        switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
 641        case CRYPTO_ALG_TYPE_SKCIPHER:
 642                crypto4xx_cipher_done(dev, pd_uinfo, pd);
 643                break;
 644        case CRYPTO_ALG_TYPE_AEAD:
 645                crypto4xx_aead_done(dev, pd_uinfo, pd);
 646                break;
 647        case CRYPTO_ALG_TYPE_AHASH:
 648                crypto4xx_ahash_done(dev, pd_uinfo);
 649                break;
 650        }
 651}
 652
 653static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
 654{
 655        crypto4xx_destroy_pdr(core_dev->dev);
 656        crypto4xx_destroy_gdr(core_dev->dev);
 657        crypto4xx_destroy_sdr(core_dev->dev);
 658        iounmap(core_dev->dev->ce_base);
 659        kfree(core_dev->dev);
 660        kfree(core_dev);
 661}
 662
 663static u32 get_next_gd(u32 current)
 664{
 665        if (current != PPC4XX_LAST_GD)
 666                return current + 1;
 667        else
 668                return 0;
 669}
 670
 671static u32 get_next_sd(u32 current)
 672{
 673        if (current != PPC4XX_LAST_SD)
 674                return current + 1;
 675        else
 676                return 0;
 677}
 678
 679int crypto4xx_build_pd(struct crypto_async_request *req,
 680                       struct crypto4xx_ctx *ctx,
 681                       struct scatterlist *src,
 682                       struct scatterlist *dst,
 683                       const unsigned int datalen,
 684                       const __le32 *iv, const u32 iv_len,
 685                       const struct dynamic_sa_ctl *req_sa,
 686                       const unsigned int sa_len,
 687                       const unsigned int assoclen,
 688                       struct scatterlist *_dst)
 689{
 690        struct crypto4xx_device *dev = ctx->dev;
 691        struct dynamic_sa_ctl *sa;
 692        struct ce_gd *gd;
 693        struct ce_pd *pd;
 694        u32 num_gd, num_sd;
 695        u32 fst_gd = 0xffffffff;
 696        u32 fst_sd = 0xffffffff;
 697        u32 pd_entry;
 698        unsigned long flags;
 699        struct pd_uinfo *pd_uinfo;
 700        unsigned int nbytes = datalen;
 701        size_t offset_to_sr_ptr;
 702        u32 gd_idx = 0;
 703        int tmp;
 704        bool is_busy, force_sd;
 705
 706        /*
 707         * There's a very subtile/disguised "bug" in the hardware that
 708         * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
 709         * of the hardware spec:
 710         * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
 711         * operation modes for >>> "Block ciphers" <<<.
 712         *
 713         * To workaround this issue and stop the hardware from causing
 714         * "overran dst buffer" on crypttexts that are not a multiple
 715         * of 16 (AES_BLOCK_SIZE), we force the driver to use the
 716         * scatter buffers.
 717         */
 718        force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
 719                || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
 720                && (datalen % AES_BLOCK_SIZE);
 721
 722        /* figure how many gd are needed */
 723        tmp = sg_nents_for_len(src, assoclen + datalen);
 724        if (tmp < 0) {
 725                dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
 726                return tmp;
 727        }
 728        if (tmp == 1)
 729                tmp = 0;
 730        num_gd = tmp;
 731
 732        if (assoclen) {
 733                nbytes += assoclen;
 734                dst = scatterwalk_ffwd(_dst, dst, assoclen);
 735        }
 736
 737        /* figure how many sd are needed */
 738        if (sg_is_last(dst) && force_sd == false) {
 739                num_sd = 0;
 740        } else {
 741                if (datalen > PPC4XX_SD_BUFFER_SIZE) {
 742                        num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
 743                        if (datalen % PPC4XX_SD_BUFFER_SIZE)
 744                                num_sd++;
 745                } else {
 746                        num_sd = 1;
 747                }
 748        }
 749
 750        /*
 751         * The follow section of code needs to be protected
 752         * The gather ring and scatter ring needs to be consecutive
 753         * In case of run out of any kind of descriptor, the descriptor
 754         * already got must be return the original place.
 755         */
 756        spin_lock_irqsave(&dev->core_dev->lock, flags);
 757        /*
 758         * Let the caller know to slow down, once more than 13/16ths = 81%
 759         * of the available data contexts are being used simultaneously.
 760         *
 761         * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
 762         * 31 more contexts. Before new requests have to be rejected.
 763         */
 764        if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
 765                is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 766                        ((PPC4XX_NUM_PD * 13) / 16);
 767        } else {
 768                /*
 769                 * To fix contention issues between ipsec (no blacklog) and
 770                 * dm-crypto (backlog) reserve 32 entries for "no backlog"
 771                 * data contexts.
 772                 */
 773                is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 774                        ((PPC4XX_NUM_PD * 15) / 16);
 775
 776                if (is_busy) {
 777                        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 778                        return -EBUSY;
 779                }
 780        }
 781
 782        if (num_gd) {
 783                fst_gd = crypto4xx_get_n_gd(dev, num_gd);
 784                if (fst_gd == ERING_WAS_FULL) {
 785                        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 786                        return -EAGAIN;
 787                }
 788        }
 789        if (num_sd) {
 790                fst_sd = crypto4xx_get_n_sd(dev, num_sd);
 791                if (fst_sd == ERING_WAS_FULL) {
 792                        if (num_gd)
 793                                dev->gdr_head = fst_gd;
 794                        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 795                        return -EAGAIN;
 796                }
 797        }
 798        pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
 799        if (pd_entry == ERING_WAS_FULL) {
 800                if (num_gd)
 801                        dev->gdr_head = fst_gd;
 802                if (num_sd)
 803                        dev->sdr_head = fst_sd;
 804                spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 805                return -EAGAIN;
 806        }
 807        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 808
 809        pd = &dev->pdr[pd_entry];
 810        pd->sa_len = sa_len;
 811
 812        pd_uinfo = &dev->pdr_uinfo[pd_entry];
 813        pd_uinfo->num_gd = num_gd;
 814        pd_uinfo->num_sd = num_sd;
 815        pd_uinfo->dest_va = dst;
 816        pd_uinfo->async_req = req;
 817
 818        if (iv_len)
 819                memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
 820
 821        sa = pd_uinfo->sa_va;
 822        memcpy(sa, req_sa, sa_len * 4);
 823
 824        sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
 825        offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
 826        *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
 827
 828        if (num_gd) {
 829                dma_addr_t gd_dma;
 830                struct scatterlist *sg;
 831
 832                /* get first gd we are going to use */
 833                gd_idx = fst_gd;
 834                pd_uinfo->first_gd = fst_gd;
 835                gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 836                pd->src = gd_dma;
 837                /* enable gather */
 838                sa->sa_command_0.bf.gather = 1;
 839                /* walk the sg, and setup gather array */
 840
 841                sg = src;
 842                while (nbytes) {
 843                        size_t len;
 844
 845                        len = min(sg->length, nbytes);
 846                        gd->ptr = dma_map_page(dev->core_dev->device,
 847                                sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
 848                        gd->ctl_len.len = len;
 849                        gd->ctl_len.done = 0;
 850                        gd->ctl_len.ready = 1;
 851                        if (len >= nbytes)
 852                                break;
 853
 854                        nbytes -= sg->length;
 855                        gd_idx = get_next_gd(gd_idx);
 856                        gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 857                        sg = sg_next(sg);
 858                }
 859        } else {
 860                pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
 861                                src->offset, min(nbytes, src->length),
 862                                DMA_TO_DEVICE);
 863                /*
 864                 * Disable gather in sa command
 865                 */
 866                sa->sa_command_0.bf.gather = 0;
 867                /*
 868                 * Indicate gather array is not used
 869                 */
 870                pd_uinfo->first_gd = 0xffffffff;
 871        }
 872        if (!num_sd) {
 873                /*
 874                 * we know application give us dst a whole piece of memory
 875                 * no need to use scatter ring.
 876                 */
 877                pd_uinfo->first_sd = 0xffffffff;
 878                sa->sa_command_0.bf.scatter = 0;
 879                pd->dest = (u32)dma_map_page(dev->core_dev->device,
 880                                             sg_page(dst), dst->offset,
 881                                             min(datalen, dst->length),
 882                                             DMA_TO_DEVICE);
 883        } else {
 884                dma_addr_t sd_dma;
 885                struct ce_sd *sd = NULL;
 886
 887                u32 sd_idx = fst_sd;
 888                nbytes = datalen;
 889                sa->sa_command_0.bf.scatter = 1;
 890                pd_uinfo->first_sd = fst_sd;
 891                sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 892                pd->dest = sd_dma;
 893                /* setup scatter descriptor */
 894                sd->ctl.done = 0;
 895                sd->ctl.rdy = 1;
 896                /* sd->ptr should be setup by sd_init routine*/
 897                if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
 898                        nbytes -= PPC4XX_SD_BUFFER_SIZE;
 899                else
 900                        nbytes = 0;
 901                while (nbytes) {
 902                        sd_idx = get_next_sd(sd_idx);
 903                        sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 904                        /* setup scatter descriptor */
 905                        sd->ctl.done = 0;
 906                        sd->ctl.rdy = 1;
 907                        if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
 908                                nbytes -= PPC4XX_SD_BUFFER_SIZE;
 909                        } else {
 910                                /*
 911                                 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
 912                                 * which is more than nbytes, so done.
 913                                 */
 914                                nbytes = 0;
 915                        }
 916                }
 917        }
 918
 919        pd->pd_ctl.w = PD_CTL_HOST_READY |
 920                ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
 921                 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
 922                        PD_CTL_HASH_FINAL : 0);
 923        pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
 924        pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
 925
 926        wmb();
 927        /* write any value to push engine to read a pd */
 928        writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 929        writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 930        return is_busy ? -EBUSY : -EINPROGRESS;
 931}
 932
 933/**
 934 * Algorithm Registration Functions
 935 */
 936static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
 937                               struct crypto4xx_ctx *ctx)
 938{
 939        ctx->dev = amcc_alg->dev;
 940        ctx->sa_in = NULL;
 941        ctx->sa_out = NULL;
 942        ctx->sa_len = 0;
 943}
 944
 945static int crypto4xx_sk_init(struct crypto_skcipher *sk)
 946{
 947        struct skcipher_alg *alg = crypto_skcipher_alg(sk);
 948        struct crypto4xx_alg *amcc_alg;
 949        struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 950
 951        if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
 952                ctx->sw_cipher.cipher =
 953                        crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
 954                                              CRYPTO_ALG_NEED_FALLBACK);
 955                if (IS_ERR(ctx->sw_cipher.cipher))
 956                        return PTR_ERR(ctx->sw_cipher.cipher);
 957        }
 958
 959        amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
 960        crypto4xx_ctx_init(amcc_alg, ctx);
 961        return 0;
 962}
 963
 964static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
 965{
 966        crypto4xx_free_sa(ctx);
 967}
 968
 969static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
 970{
 971        struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 972
 973        crypto4xx_common_exit(ctx);
 974        if (ctx->sw_cipher.cipher)
 975                crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
 976}
 977
 978static int crypto4xx_aead_init(struct crypto_aead *tfm)
 979{
 980        struct aead_alg *alg = crypto_aead_alg(tfm);
 981        struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 982        struct crypto4xx_alg *amcc_alg;
 983
 984        ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
 985                                                CRYPTO_ALG_NEED_FALLBACK |
 986                                                CRYPTO_ALG_ASYNC);
 987        if (IS_ERR(ctx->sw_cipher.aead))
 988                return PTR_ERR(ctx->sw_cipher.aead);
 989
 990        amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
 991        crypto4xx_ctx_init(amcc_alg, ctx);
 992        crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
 993                                crypto_aead_reqsize(ctx->sw_cipher.aead),
 994                                sizeof(struct crypto4xx_aead_reqctx)));
 995        return 0;
 996}
 997
 998static void crypto4xx_aead_exit(struct crypto_aead *tfm)
 999{
1000        struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1001
1002        crypto4xx_common_exit(ctx);
1003        crypto_free_aead(ctx->sw_cipher.aead);
1004}
1005
1006static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1007                                  struct crypto4xx_alg_common *crypto_alg,
1008                                  int array_size)
1009{
1010        struct crypto4xx_alg *alg;
1011        int i;
1012        int rc = 0;
1013
1014        for (i = 0; i < array_size; i++) {
1015                alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1016                if (!alg)
1017                        return -ENOMEM;
1018
1019                alg->alg = crypto_alg[i];
1020                alg->dev = sec_dev;
1021
1022                switch (alg->alg.type) {
1023                case CRYPTO_ALG_TYPE_AEAD:
1024                        rc = crypto_register_aead(&alg->alg.u.aead);
1025                        break;
1026
1027                case CRYPTO_ALG_TYPE_AHASH:
1028                        rc = crypto_register_ahash(&alg->alg.u.hash);
1029                        break;
1030
1031                case CRYPTO_ALG_TYPE_RNG:
1032                        rc = crypto_register_rng(&alg->alg.u.rng);
1033                        break;
1034
1035                default:
1036                        rc = crypto_register_skcipher(&alg->alg.u.cipher);
1037                        break;
1038                }
1039
1040                if (rc)
1041                        kfree(alg);
1042                else
1043                        list_add_tail(&alg->entry, &sec_dev->alg_list);
1044        }
1045
1046        return 0;
1047}
1048
1049static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1050{
1051        struct crypto4xx_alg *alg, *tmp;
1052
1053        list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1054                list_del(&alg->entry);
1055                switch (alg->alg.type) {
1056                case CRYPTO_ALG_TYPE_AHASH:
1057                        crypto_unregister_ahash(&alg->alg.u.hash);
1058                        break;
1059
1060                case CRYPTO_ALG_TYPE_AEAD:
1061                        crypto_unregister_aead(&alg->alg.u.aead);
1062                        break;
1063
1064                case CRYPTO_ALG_TYPE_RNG:
1065                        crypto_unregister_rng(&alg->alg.u.rng);
1066                        break;
1067
1068                default:
1069                        crypto_unregister_skcipher(&alg->alg.u.cipher);
1070                }
1071                kfree(alg);
1072        }
1073}
1074
1075static void crypto4xx_bh_tasklet_cb(unsigned long data)
1076{
1077        struct device *dev = (struct device *)data;
1078        struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1079        struct pd_uinfo *pd_uinfo;
1080        struct ce_pd *pd;
1081        u32 tail = core_dev->dev->pdr_tail;
1082        u32 head = core_dev->dev->pdr_head;
1083
1084        do {
1085                pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1086                pd = &core_dev->dev->pdr[tail];
1087                if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1088                     ((READ_ONCE(pd->pd_ctl.w) &
1089                       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1090                       PD_CTL_PE_DONE)) {
1091                        crypto4xx_pd_done(core_dev->dev, tail);
1092                        tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1093                } else {
1094                        /* if tail not done, break */
1095                        break;
1096                }
1097        } while (head != tail);
1098}
1099
1100/**
1101 * Top Half of isr.
1102 */
1103static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1104                                                      u32 clr_val)
1105{
1106        struct device *dev = (struct device *)data;
1107        struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1108
1109        writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1110        tasklet_schedule(&core_dev->tasklet);
1111
1112        return IRQ_HANDLED;
1113}
1114
1115static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1116{
1117        return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1118}
1119
1120static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1121{
1122        return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1123                PPC4XX_TMO_ERR_INT);
1124}
1125
1126static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1127                                 u8 *data, unsigned int max)
1128{
1129        unsigned int i, curr = 0;
1130        u32 val[2];
1131
1132        do {
1133                /* trigger PRN generation */
1134                writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1135                       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1136
1137                for (i = 0; i < 1024; i++) {
1138                        /* usually 19 iterations are enough */
1139                        if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1140                             CRYPTO4XX_PRNG_STAT_BUSY))
1141                                continue;
1142
1143                        val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1144                        val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1145                        break;
1146                }
1147                if (i == 1024)
1148                        return -ETIMEDOUT;
1149
1150                if ((max - curr) >= 8) {
1151                        memcpy(data, &val, 8);
1152                        data += 8;
1153                        curr += 8;
1154                } else {
1155                        /* copy only remaining bytes */
1156                        memcpy(data, &val, max - curr);
1157                        break;
1158                }
1159        } while (curr < max);
1160
1161        return curr;
1162}
1163
1164static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1165                                   const u8 *src, unsigned int slen,
1166                                   u8 *dstn, unsigned int dlen)
1167{
1168        struct rng_alg *alg = crypto_rng_alg(tfm);
1169        struct crypto4xx_alg *amcc_alg;
1170        struct crypto4xx_device *dev;
1171        int ret;
1172
1173        amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1174        dev = amcc_alg->dev;
1175
1176        mutex_lock(&dev->core_dev->rng_lock);
1177        ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1178        mutex_unlock(&dev->core_dev->rng_lock);
1179        return ret;
1180}
1181
1182
1183static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1184                        unsigned int slen)
1185{
1186        return 0;
1187}
1188
1189/**
1190 * Supported Crypto Algorithms
1191 */
1192static struct crypto4xx_alg_common crypto4xx_alg[] = {
1193        /* Crypto AES modes */
1194        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1195                .base = {
1196                        .cra_name = "cbc(aes)",
1197                        .cra_driver_name = "cbc-aes-ppc4xx",
1198                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1199                        .cra_flags = CRYPTO_ALG_ASYNC |
1200                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1201                        .cra_blocksize = AES_BLOCK_SIZE,
1202                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1203                        .cra_module = THIS_MODULE,
1204                },
1205                .min_keysize = AES_MIN_KEY_SIZE,
1206                .max_keysize = AES_MAX_KEY_SIZE,
1207                .ivsize = AES_IV_SIZE,
1208                .setkey = crypto4xx_setkey_aes_cbc,
1209                .encrypt = crypto4xx_encrypt_iv_block,
1210                .decrypt = crypto4xx_decrypt_iv_block,
1211                .init = crypto4xx_sk_init,
1212                .exit = crypto4xx_sk_exit,
1213        } },
1214        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1215                .base = {
1216                        .cra_name = "cfb(aes)",
1217                        .cra_driver_name = "cfb-aes-ppc4xx",
1218                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1219                        .cra_flags = CRYPTO_ALG_ASYNC |
1220                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1221                        .cra_blocksize = 1,
1222                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1223                        .cra_module = THIS_MODULE,
1224                },
1225                .min_keysize = AES_MIN_KEY_SIZE,
1226                .max_keysize = AES_MAX_KEY_SIZE,
1227                .ivsize = AES_IV_SIZE,
1228                .setkey = crypto4xx_setkey_aes_cfb,
1229                .encrypt = crypto4xx_encrypt_iv_stream,
1230                .decrypt = crypto4xx_decrypt_iv_stream,
1231                .init = crypto4xx_sk_init,
1232                .exit = crypto4xx_sk_exit,
1233        } },
1234        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1235                .base = {
1236                        .cra_name = "ctr(aes)",
1237                        .cra_driver_name = "ctr-aes-ppc4xx",
1238                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1239                        .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1240                                CRYPTO_ALG_ASYNC |
1241                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1242                        .cra_blocksize = 1,
1243                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1244                        .cra_module = THIS_MODULE,
1245                },
1246                .min_keysize = AES_MIN_KEY_SIZE,
1247                .max_keysize = AES_MAX_KEY_SIZE,
1248                .ivsize = AES_IV_SIZE,
1249                .setkey = crypto4xx_setkey_aes_ctr,
1250                .encrypt = crypto4xx_encrypt_ctr,
1251                .decrypt = crypto4xx_decrypt_ctr,
1252                .init = crypto4xx_sk_init,
1253                .exit = crypto4xx_sk_exit,
1254        } },
1255        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1256                .base = {
1257                        .cra_name = "rfc3686(ctr(aes))",
1258                        .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1259                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1260                        .cra_flags = CRYPTO_ALG_ASYNC |
1261                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1262                        .cra_blocksize = 1,
1263                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1264                        .cra_module = THIS_MODULE,
1265                },
1266                .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1267                .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1268                .ivsize = CTR_RFC3686_IV_SIZE,
1269                .setkey = crypto4xx_setkey_rfc3686,
1270                .encrypt = crypto4xx_rfc3686_encrypt,
1271                .decrypt = crypto4xx_rfc3686_decrypt,
1272                .init = crypto4xx_sk_init,
1273                .exit = crypto4xx_sk_exit,
1274        } },
1275        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1276                .base = {
1277                        .cra_name = "ecb(aes)",
1278                        .cra_driver_name = "ecb-aes-ppc4xx",
1279                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1280                        .cra_flags = CRYPTO_ALG_ASYNC |
1281                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1282                        .cra_blocksize = AES_BLOCK_SIZE,
1283                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1284                        .cra_module = THIS_MODULE,
1285                },
1286                .min_keysize = AES_MIN_KEY_SIZE,
1287                .max_keysize = AES_MAX_KEY_SIZE,
1288                .setkey = crypto4xx_setkey_aes_ecb,
1289                .encrypt = crypto4xx_encrypt_noiv_block,
1290                .decrypt = crypto4xx_decrypt_noiv_block,
1291                .init = crypto4xx_sk_init,
1292                .exit = crypto4xx_sk_exit,
1293        } },
1294        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1295                .base = {
1296                        .cra_name = "ofb(aes)",
1297                        .cra_driver_name = "ofb-aes-ppc4xx",
1298                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1299                        .cra_flags = CRYPTO_ALG_ASYNC |
1300                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1301                        .cra_blocksize = 1,
1302                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1303                        .cra_module = THIS_MODULE,
1304                },
1305                .min_keysize = AES_MIN_KEY_SIZE,
1306                .max_keysize = AES_MAX_KEY_SIZE,
1307                .ivsize = AES_IV_SIZE,
1308                .setkey = crypto4xx_setkey_aes_ofb,
1309                .encrypt = crypto4xx_encrypt_iv_stream,
1310                .decrypt = crypto4xx_decrypt_iv_stream,
1311                .init = crypto4xx_sk_init,
1312                .exit = crypto4xx_sk_exit,
1313        } },
1314
1315        /* AEAD */
1316        { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1317                .setkey         = crypto4xx_setkey_aes_ccm,
1318                .setauthsize    = crypto4xx_setauthsize_aead,
1319                .encrypt        = crypto4xx_encrypt_aes_ccm,
1320                .decrypt        = crypto4xx_decrypt_aes_ccm,
1321                .init           = crypto4xx_aead_init,
1322                .exit           = crypto4xx_aead_exit,
1323                .ivsize         = AES_BLOCK_SIZE,
1324                .maxauthsize    = 16,
1325                .base = {
1326                        .cra_name       = "ccm(aes)",
1327                        .cra_driver_name = "ccm-aes-ppc4xx",
1328                        .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1329                        .cra_flags      = CRYPTO_ALG_ASYNC |
1330                                          CRYPTO_ALG_NEED_FALLBACK |
1331                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
1332                        .cra_blocksize  = 1,
1333                        .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1334                        .cra_module     = THIS_MODULE,
1335                },
1336        } },
1337        { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1338                .setkey         = crypto4xx_setkey_aes_gcm,
1339                .setauthsize    = crypto4xx_setauthsize_aead,
1340                .encrypt        = crypto4xx_encrypt_aes_gcm,
1341                .decrypt        = crypto4xx_decrypt_aes_gcm,
1342                .init           = crypto4xx_aead_init,
1343                .exit           = crypto4xx_aead_exit,
1344                .ivsize         = GCM_AES_IV_SIZE,
1345                .maxauthsize    = 16,
1346                .base = {
1347                        .cra_name       = "gcm(aes)",
1348                        .cra_driver_name = "gcm-aes-ppc4xx",
1349                        .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1350                        .cra_flags      = CRYPTO_ALG_ASYNC |
1351                                          CRYPTO_ALG_NEED_FALLBACK |
1352                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
1353                        .cra_blocksize  = 1,
1354                        .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1355                        .cra_module     = THIS_MODULE,
1356                },
1357        } },
1358        { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1359                .base = {
1360                        .cra_name               = "stdrng",
1361                        .cra_driver_name        = "crypto4xx_rng",
1362                        .cra_priority           = 300,
1363                        .cra_ctxsize            = 0,
1364                        .cra_module             = THIS_MODULE,
1365                },
1366                .generate               = crypto4xx_prng_generate,
1367                .seed                   = crypto4xx_prng_seed,
1368                .seedsize               = 0,
1369        } },
1370};
1371
1372/**
1373 * Module Initialization Routine
1374 */
1375static int crypto4xx_probe(struct platform_device *ofdev)
1376{
1377        int rc;
1378        struct resource res;
1379        struct device *dev = &ofdev->dev;
1380        struct crypto4xx_core_device *core_dev;
1381        u32 pvr;
1382        bool is_revb = true;
1383
1384        rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1385        if (rc)
1386                return -ENODEV;
1387
1388        if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1389                mtdcri(SDR0, PPC460EX_SDR0_SRST,
1390                       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1391                mtdcri(SDR0, PPC460EX_SDR0_SRST,
1392                       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1393        } else if (of_find_compatible_node(NULL, NULL,
1394                        "amcc,ppc405ex-crypto")) {
1395                mtdcri(SDR0, PPC405EX_SDR0_SRST,
1396                       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1397                mtdcri(SDR0, PPC405EX_SDR0_SRST,
1398                       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1399                is_revb = false;
1400        } else if (of_find_compatible_node(NULL, NULL,
1401                        "amcc,ppc460sx-crypto")) {
1402                mtdcri(SDR0, PPC460SX_SDR0_SRST,
1403                       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1404                mtdcri(SDR0, PPC460SX_SDR0_SRST,
1405                       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1406        } else {
1407                printk(KERN_ERR "Crypto Function Not supported!\n");
1408                return -EINVAL;
1409        }
1410
1411        core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1412        if (!core_dev)
1413                return -ENOMEM;
1414
1415        dev_set_drvdata(dev, core_dev);
1416        core_dev->ofdev = ofdev;
1417        core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1418        rc = -ENOMEM;
1419        if (!core_dev->dev)
1420                goto err_alloc_dev;
1421
1422        /*
1423         * Older version of 460EX/GT have a hardware bug.
1424         * Hence they do not support H/W based security intr coalescing
1425         */
1426        pvr = mfspr(SPRN_PVR);
1427        if (is_revb && ((pvr >> 4) == 0x130218A)) {
1428                u32 min = PVR_MIN(pvr);
1429
1430                if (min < 4) {
1431                        dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1432                        is_revb = false;
1433                }
1434        }
1435
1436        core_dev->dev->core_dev = core_dev;
1437        core_dev->dev->is_revb = is_revb;
1438        core_dev->device = dev;
1439        mutex_init(&core_dev->rng_lock);
1440        spin_lock_init(&core_dev->lock);
1441        INIT_LIST_HEAD(&core_dev->dev->alg_list);
1442        ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1443        rc = crypto4xx_build_sdr(core_dev->dev);
1444        if (rc)
1445                goto err_build_sdr;
1446        rc = crypto4xx_build_pdr(core_dev->dev);
1447        if (rc)
1448                goto err_build_sdr;
1449
1450        rc = crypto4xx_build_gdr(core_dev->dev);
1451        if (rc)
1452                goto err_build_sdr;
1453
1454        /* Init tasklet for bottom half processing */
1455        tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1456                     (unsigned long) dev);
1457
1458        core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1459        if (!core_dev->dev->ce_base) {
1460                dev_err(dev, "failed to of_iomap\n");
1461                rc = -ENOMEM;
1462                goto err_iomap;
1463        }
1464
1465        /* Register for Crypto isr, Crypto Engine IRQ */
1466        core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1467        rc = request_irq(core_dev->irq, is_revb ?
1468                         crypto4xx_ce_interrupt_handler_revb :
1469                         crypto4xx_ce_interrupt_handler, 0,
1470                         KBUILD_MODNAME, dev);
1471        if (rc)
1472                goto err_request_irq;
1473
1474        /* need to setup pdr, rdr, gdr and sdr before this */
1475        crypto4xx_hw_init(core_dev->dev);
1476
1477        /* Register security algorithms with Linux CryptoAPI */
1478        rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1479                               ARRAY_SIZE(crypto4xx_alg));
1480        if (rc)
1481                goto err_start_dev;
1482
1483        ppc4xx_trng_probe(core_dev);
1484        return 0;
1485
1486err_start_dev:
1487        free_irq(core_dev->irq, dev);
1488err_request_irq:
1489        irq_dispose_mapping(core_dev->irq);
1490        iounmap(core_dev->dev->ce_base);
1491err_iomap:
1492        tasklet_kill(&core_dev->tasklet);
1493err_build_sdr:
1494        crypto4xx_destroy_sdr(core_dev->dev);
1495        crypto4xx_destroy_gdr(core_dev->dev);
1496        crypto4xx_destroy_pdr(core_dev->dev);
1497        kfree(core_dev->dev);
1498err_alloc_dev:
1499        kfree(core_dev);
1500
1501        return rc;
1502}
1503
1504static int crypto4xx_remove(struct platform_device *ofdev)
1505{
1506        struct device *dev = &ofdev->dev;
1507        struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1508
1509        ppc4xx_trng_remove(core_dev);
1510
1511        free_irq(core_dev->irq, dev);
1512        irq_dispose_mapping(core_dev->irq);
1513
1514        tasklet_kill(&core_dev->tasklet);
1515        /* Un-register with Linux CryptoAPI */
1516        crypto4xx_unregister_alg(core_dev->dev);
1517        mutex_destroy(&core_dev->rng_lock);
1518        /* Free all allocated memory */
1519        crypto4xx_stop_all(core_dev);
1520
1521        return 0;
1522}
1523
1524static const struct of_device_id crypto4xx_match[] = {
1525        { .compatible      = "amcc,ppc4xx-crypto",},
1526        { },
1527};
1528MODULE_DEVICE_TABLE(of, crypto4xx_match);
1529
1530static struct platform_driver crypto4xx_driver = {
1531        .driver = {
1532                .name = KBUILD_MODNAME,
1533                .of_match_table = crypto4xx_match,
1534        },
1535        .probe          = crypto4xx_probe,
1536        .remove         = crypto4xx_remove,
1537};
1538
1539module_platform_driver(crypto4xx_driver);
1540
1541MODULE_LICENSE("GPL");
1542MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1543MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1544